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Abstract—This paper presents Bit-Interleaved Coded Modu-
lation metrics for joint estimation detection using training or
reference signal transmission strategies for short to long block
length channels. We show that it is possible to enhance the
performance and sensitivity through joint detection-estimation
compared to standard receivers, especially when the channel
state information is unknown and the density of the training
dimensions is low. The performance analysis makes use of a
full 5G transmitter and receiver chains for both Polar and
LDPC coded transmissions paired with BPSK/QPSK modulation
schemes. We consider transmissions where reference signals
are interleaved with data and both are transmitted over a
small number of OFDM symbols so that near-perfect channel
estimation cannot be achieved. Our findings demonstrate that
when the detection windows used in the metric units is on the
order of four modulated symbols the proposed BICM metrics
can be used to achieve detection performance that is close to that
of a coherent receiver with perfect channel state information for
both polar and LDPC coded configurations. Furthermore, we
show that for transmissions with low DMRS density, a good
trade-off can be achieved in terms of additional coding gain and
improved channel estimation quality by adaptive DMRS power
adjustment.

Index Terms—Bit-Interleaved Coded Modulation, 5G NR
Polar code, 5G NR LDPC Code, Unknown Channel State
Information, Joint Estimation and Detection.

I. INTRODUCTION

It is expected that the 6G air-interface will build upon the
5G standard and address new pardigms for feedback-based
cyber-physical systems combining communications and sens-
ing. In particular, there will be a need for tight control loops
using the air-interface to control 6G-enabled objects with
high-reliability, perhaps even requiring lower latencies than
those achieved by current 5G technology, for example sub-
1ms uplink application-layer latency in microwave spectrum.
Although 5G transmission formats can provide very short-
packet transmission through the use of mini-slots, the ratio
of tranining information to data is not necessarily adapted
to extremely short data transmission. Moreover, the transmis-
sion formats are designed with conventional quasi-coherent
receivers which can be quite sub-optimal in such scenarios
where accurate channel estimation is impossible because of
sporadic transmission of short packets. One such instance
is because of stringent decoding latency constraints such
as those emerging in so-called Ultra-Reliable-Low-Latency
Communication (URLLC) industrial IoT applications. This
would be similar for evolved channel state information (CSI)
feedback control channels or future combined-sensing and
communication paradigms requiring rapid sensory feedback
to the network.
The area of short block transmission has garnered significant

attention in recent years, with extensive research conducted on
various aspects, including the design of signal codes, receiver
algorithms [1] [2] and the establishment of state-of-the-art
converse and achievability bounds for both coherent and non-
coherent communications [3]–[7].

In this work, we investigate bit-interleaved coded modula-
tion (BICM) and detection strategies for packets in the range
of 20-100 bits for these envisaged 6G signaling scenarios.

Zehavi [8] proposed bit-interleaved coded modulation
(BICM) as a pragmatic approach to coded modulation. Its
basic principle is the ability of an interleaving permutation to
separate an underlying binary code from an arbitrary higher-
order modulation [9]. Per-bit log-likelihood ratios are used
to convey soft metrics from the demodulator to the decoder
in order to reduce information loss. This fundamental obser-
vation spurred interest in BICM and cemented its position
as a standard coding technique in wireless communication
channels. In [10], Caire et al. later conducted a thorough
analysis of BICM in terms of information rate and error prob-
ability including both coherent and non-coherent detection.
Today, BICM is widely considered as the cornerstone of high
spectral efficiency systems, as well as low spectral efficiency
orthogonal modulation systems. Since the 3G era, BICM
has been employed in 3GPP systems. Therefore, in order to
improve their efficiency and enable high-performance com-
munication, schemes such as rate matching, scrambling and
other processes inherent in modern wireless communication
standards are de facto added to the reference BICM schematic.
In addition, the underlying detection and decoding metrics
must offer enhanced performance and low complexity trade-
off. Thus we examine BICM metrics exploiting joint detection
and estimation which are amenable to situations where low-
density demodulation reference signals are interleaved with
coded data symbols. We consider standard OFDM transmis-
sion so that both DMRS and data are interleaved in frequency.
We show that by using a properly conceived metric exploiting
interleaved DMRS in the decoding metric computation, we
can achieve performance approaching a receiver with perfect
channel estimation and significant coding gains compared to
a conventional 5G OFDM receiver. The scheme performs
detection over contiguous groups of modulated symbols in-
cluding those from the DMRS to provide soft metrics for
the bits in each group to the channel decoder. We evaluate
performance using a full 5G transceiver chain for both polar
and LDPC coded formats with up to eight receive antennas.
The schemes are applicable to both uplink and downlink
transmission where packets are encoded into a small number
of OFDM symbols with interleaved DMRS. Additionally,
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we investigate the impact of varying densities of reference
signals on performance. The remainder of this article is
structured as follows. Section II lays out the system model
and foundations of NR polar and LDPC-coded modulations,
Section III highlights the proposed BICM Metrics, Section
IV presents the results and performance analysis, and finally
Section V concludes the paper.
Notation : Scalars are denoted by italic letters, vectors and
matrices are denoted by bold-face lower-case and upper-case
letters, respectively. For a complex-valued vector x, ||x||
denotes its Euclidean norm, | · | denotes the absolute value.
E{·} denotes the statistical expectation. Re(·) denotes the real
part of a complex number. I0(·) is the zero-th order modified
Bessel function of the first kind. I is an identity matrix with
appropriate dimensions. Galois field is denoted by GF (2) or
F2. x ∈ χj

b = {x : ej = b} is the subset of symbols {x} for
which the j−th bit of the label e is equal to b = {0, 1}. At the
j − th bit location or position and the number of bits reqired
to a symbol is denoted by m ≜ log2 (M). The cardinality of
χ is given by M ≜ |χ|. Λj (·) denotes log likelihood ratio,
with j = 1, 2, . . . ,m. The superscripts T and ∗ or † denote the
transpose and the complex conjugate transpose or Hermitian.

II. PRELIMINARIES

A. System Model

Consider a SIMO OFDM BICM system with a single
antenna element on the transmit array and multiple element re-
ceive arrays. The system dimensions are defined as (NR×1),
where NT = 1 and NR refer to the number of antennas on
the transmitter and receiver, respectively. The transmitted and
received signals are N -dimensional column vectors, and thus a
system is designed in such a way that the relationship between
the transmitted and received signals is as follows:

yi = hix+ zi, i = 0, 1, · · · , NR − 1, (1)

where yi represents an observed vector in N complex dimen-
sions, x is an N -dimensional modulated vector transporting
B channel bits, so that the message m = 0, 1 . . . , 2B − 1,
z is additive white Gaussian noise whose real and imaginary
components are independent and have variance σ2 in each
dimension. Various models for h will be used in this study
and will be described along with the corresponding receiver
structures. The transmitted vector x is often composed of data
independent components which are known to the receiver.
These are so-called pilot or demodulation reference signals
(DMRS) which are conceived in order to allow for resolving
channel ambiguity in time, frequency and space. In practice,
the reference signals are used for estimating the vector chan-
nels {hi} and are commonly interleaved among the data-
dependent components according the characteristics of the
propagation channel. It is notably the case in current OFDM
systems. In earlier CDMA systems, DMRS were sometimes
superimposed on top of data-dependent signals. We denote
the number of data dimensions by Nd and reference signal
dimensions by Np where Nd + Np = N . The assumption
in this work is that the data-dependent components of x are
generated from a binary code whose output is interleaved
and mapped to an M -ary modulation symbol alphabet. We
will assume that the binary code generates E bits and the

interleaver mapping is one-to-one so that E bits are also fed
to the modulator. The binary-code and interleaver combination
can thus be seen as a (E,B) binary block code. Denote the
E coded bits as ek, k = 0, 1, · · · , E − 1. Adjacent log2 M
bit-tuples are used to select the NE modulated symbols in
the symbol alphabet. Typically, we will assume that a Gray
mapping is used in the case of non-binary modulation.
Bit Interleaved Polar Coded Modulation is referred to as
BIPCM in this paper and makes use of CRC-Aided Polar (CA-
Polar) codes, one of the basic code construction techniques
established by the 3GPP Standard [11]. In addition, Bit
Interleaved LDPC Coded Modulation is referred to as BILCM.
The overall representation of the BIPCM/BILCM schematic
is shown in Figure 1. This figure depicts the transmit-end
procedure for uplink channels.

In both scenarios, the encoded payload undergoes
rate-matching and block concatenation prior to being
fed to a QPSK modulator. This process yields a set
of complex-valued modulation symbols, represented as
x(0), x(1), . . . , x (Nd/2− 1). Subsequently, the resource al-
location process is executed, wherein one or multiple OFDM
symbols are utilized to allocate the modulated symbols to
resource blocks and insert the DMRS resources. As illustrated
in Figure 2, the resource mapping here is embedded in the
same spirit as in a 3GPP PUCCH2 transmission.

B. Perfect Channel State Information
We denote the likelihood function for the observed vector

on a particular receiver branch as

q (x, {yi,hi}) = p ({yi,hi} | x) = p ({yi} | x, {hi}) p ({hi} | x)
(2)

If the transmitted signal x is independent of the channel
realization {hi}, the term p ({hi} | x) in (2) can be dropped.
The likelihood function is equivalent to q (x, {yi,hi}) =

1
(πN0)N

exp
(
− ||yi−hix||2

N0

)
. Using the norm extension prop-

erty, ignoring terms that are independent of x, then the
likelihood function is

q (x, {y,h}) ∝
NR−1∏

i=0

exp

(
2Re (yih

∗
ix

∗)− ||hix||2
N0

)
.

(3)
The likelihood of coded bit ej ∈ {0, 1} is

qj,b (yi) =
∑

x ∈ χj
b

q (x,yi) . (4)

As is common in the case of BICM-based systems, the
soft input to the binary channel decoder is given as the log-
likelihood ratio (LLR) for coded bit j.

Λj (yi) = log
qj,0 (yi)

qj,1 (yi)
. (5)

We typically simplify (5) via a max-log approximation
log {∑i exp (λi)} ∼ maxi {λi} letting (5) to be simplified
as

Λj (y) = max
x ∈ χj

0

1

N0

NR−1∑

i=0

2Re (yih
∗
ix

∗)− ||hix||2

− max
x ∈ χj

1

1

N0

NR−1∑

i=0

2Re (yih
∗
ix

∗)− ||hix||2.
(6)
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This is considered as our ideal performance metric when
comparing with those described in the subsequent section.
They are also typically used in conventional receivers by
replacing hi with a least-squares estimate ĥi. Moreover,
for the primary case of interest here, namely transmission
without channel state information, single symbol detection is
impossible. At the very least, the observation of one reference
symbol must be used to generate likelihoods of the coded bits
of a data symbol, thus warranting the study of block detection.

So for the case of the conventional receiver, it will be
assumed that at least, the observation of a single reference
signal is used over an entire PRB in order to generate the
coded bit for each of the data symbols making up that PRB.
Thus, a block is represented as containing one data symbol.
We will note this case throughout this manuscript by No CSI
(Nd = 1).

III. BICM RECEIVERS

A. Metrics for Non-Coherent Fading Channels

We describe BICM metrics for a general non-coherent
fading channel with unknown phase on the line-of-sight
(LOS) components and fully unknown diffuse (Non-LOS)
components. The overall unknown channel gain is given by
hi =

(√
αejθi +

√
1− αh

(f)
i

)
I where θi is assumed to be

i.i.d. uniform random variables on [0, 2π), h
(f)
i is a zero-

mean unit-variance circularly-symmetric complex Gaussian
random variable and α is the relative strength of the LOS
component. The amplitude |hi| on each receiver is thus Ricean
distributed. It is worth noting that the i.i.d. assumption for the
θi is somewhat unrealistic for a modern array receiver with
accurate calibration. The phase differences would be more
appropriately characterized by two random-phases, one orig-
inating from the time-delay between transmitter and receiver
and the other from the angle of arrival of the incoming wave.
The phase differences of individual antenna elements for a
given carrier frequency could then be determined from the
angle of arrival and the particular geometry of the array. To
avoid assuming a particular array geometry, the i.i.d. uniform
model provides a simpler and universal means to derive a
receiver metric.

Propositionn 1: The corresponding likelihood function after
neglecting multiplicative terms independent of the transmitted
message, can be shown to be

q (x,y) =

NR−1∏

i=0

1

Lx
exp

(
−α ∥x∥2

Lx
+

βx

∣∣x†yi

∣∣2
)
× I0

(
2
√
α

Lx

∣∣x†yi

∣∣
) (7)

where Lx = N0 + 2(1 − α) ∥x∥2, βx = 2(1−α)

N0(N0+2(1−α)∥x∥2)

and I0(·) is the zero-order modified Bessel function.
Note that in the resulting expressions of LLR of coded bit,
we do not limit the dimensionality of the observations when
computing likelihoods of particular bits. In the original work
of Caire et al [10] the authors assume an ideal interleaving
model which allows limiting the observation interval of a
particular coded bit to the symbol in which it is conveyed.
For long blocks this assumption is realistic for arbitrary
modulation signal sets and is sufficient for BPSK and QPSK
irrespective of the block length when the channel is known
perfectly. Nevertheless, practical systems usually apply single
symbol likelihood functions for short blocks and high-order
modulations.

Proof: See appendix section.
Corollary: Metric calculations based on (7) are computa-
tionally complex from an implementation perspective and are
typically simplified. As is the case for the known channel,
we can apply the max-log approximation after first using
an exponential approximation I0(z) ∼ ez√

2πz
∼ ez yielding

the approximated log-likelihood ratio (LLR) for coded bit j.
Remark: Note that in (10), many of the terms can be dropped
when ∥x∥ is constant, as it would be the case for BPSK or
QPSK modulation for instance. Strong LOS channels can also
neglect the quadratic terms in (10).

When α = 1, (10) corresponds to a pure LOS channel.

B. Joint Estimation and Detection Principle

For the case of polar or LDPC-coded data, there is a com-
pelling motivation to divide the coded streams into smaller
blocks for detection due to complexity reasons. Assuming
an ideal interleaving scenario with known channels [10],
detection can be performed on individual modulated symbols.
However, in the presence of joint detection and estimation,
where interleaved DMRS and data symbols are considered, we
need to deal with short blocks that encompass both data and
DMRS symbols. To achieve this, the N -dimensional vectors y
and x are subdivided into smaller segments of Nb-dimensional
blocks. Subsequently, the bit LLR (Log-Likelihood Ratio)
metric is applied to each of these underlying segments for
further processing and analysis.
Proposition 2: Observing the structure of the metrics and
the absence of overlap between the data and DMRS symbols,
we can easily see that the estimated channel impulse response



(CIR) is part of the metrics. By writing x = x(d)+x(p) where
d and p are subscripts representing data, DMRS components,
respectively, we can reveal ĥLS

i in the metrics:

∣∣x†yi

∣∣ =

∣∣∣∣∣∣∣
x(p)†y(p)

i︸ ︷︷ ︸
channel estimate

+ x(d)†y(d)
i

∣∣∣∣∣∣∣
. (8)

The estimation of the channel’s characteristics is achiev-
able through the computing of the correlation between the
reference transmitted signal and the reference received signal.

Mathematically, the channel estimate can be obtained via
the joint least squares (LS) method as follow x(p)†y(p)

i =(
x(p)†x(p)

)
ĥLS
i = ∥x(p)∥2·ĥLS

i = Np·ρ·ĥLS
i where Np number

of pilots, ρ is the reference signal power and is typically
normalized to unity. Then, equation (8) is equivalent to :

∣∣x†yi

∣∣ =
∣∣∣Npĥ

LS
i + x(d)†y(d)

i

∣∣∣ . (9)

where ĥLS is the channel impulse response obtained via a
joint least-squares (LS) channel estimation using averaging
or smoothing over an appropriate number of dimensions
exhibiting channel coherence. In the process of short-block
detection, we can make use of such a channel estimate that.
In general, the channel estimation procedure will work as
usual and the resulting estimates are fed into the metrics
considered here.

Λj (y) = max
x ∈ χj

0

(
NR−1∑

i=0

−α ∥x∥2
Lx

+ βx

∣∣x†yi

∣∣2 + 2
√
α

Lx

∣∣x†yi

∣∣
)

−
∑

x ∈ χj
0

NR log (Lx)

− max
x ∈ χj

1

(
NR−1∑

i=0

−α ∥x∥2
Lx

+ βx

∣∣x†yi

∣∣2 + 2
√
α

Lx

∣∣x†yi

∣∣
)

+
∑

x ∈ χj
1

NR log (Lx) .

(10)

IV. NUMERICAL RESULTS

A. Metric Performance Analysis

The simulations are based on NR POLAR and NR LDPC
coding schemes paired with QPSK modulation. The trans-
mission process involves a transport block length of 48 bits.
The resource population process is conducted using a single
OFDM symbol with 4 PRBs and 48 REs (32 REs for data
components and 16 REs for DMRS components), wherein the
DMRS sequences occupy 4 REs per PRB. The results illus-
trated in Figure 3 show the performance of the Bit Interleaved
Coded Modulation (BICM) for joint estimation and detection
over a LOS channel, specifically when α = 1 is assessed to
understand the performance discrepancy between the Perfect
CSI and No CSI situations in extreme coverage scenarios char-
acterized by low signal-to-noise ratio. Note that the Nd = 1
case also refers to the conventional receiver utilizing separate
channel estimation. The joint estimation/detection(Nd = 4)
approach yields a perfomance gain of 1.25 dB, 1.5 dB and
1.75 fB over 2, 4 and 8 receive antennas respectively. From
this insight, it is apparent that when the number of antennas
increases, the performance gap between the Perfect CSI and
the No CSI situations (e.g., Nd = 4) expands. Similarly,
the results in Figure 3 using BIPCM are congruent with
those presented in Figure 4 that employs BILCM, in both
single and multiple antenna configurations. Although the code
rates and transmission parameters are identical, BIPCM offers
significantly better performance gains than BILCM. This is
potentially due to the fact that the 3GPP polar code has been
optimized for very short block lengths, while the 3GPP LDPC
code targets much longer transport block lengths.

Furthermore, Figure 5 indicate that the max-log metric
performs nearly as well as the accurate metric. This leads
to the conclusion that when Gray-mapped constellations are
employed, the max-log metric is known to have a minimal

impact on receiver performance. However, as the modulation
order increases, the difference in performance between opti-
mal and suboptimal techniques for generating LLRs becomes
significant as discussed in [12]. The logarithmic calculations
tied to the precise metric add an extra layer of complexity
when incorporating the requisite multiplicative and additive
operations during LLR processing.

Finally, we can assess the above results with respect to
the finite block length bounds that have been established in
the scientific literature [3], [5], [7], [13], [14]. For a more
comprehensive understanding of the bounds utilized in Figure
6, interested readers are encouraged to refer to the works of
authors [3], [13]. For this purpose, we consider the metacon-
verse (MC) and Random Coding Union (RCU) bounds for a
thorough comparative analysis. It can be observed that when
the block error rate (BLER) reaches a threshold of 1%, the
performance difference between the MC Bound and the No-
CSI(Nd = 4) is 0.7 dB, compared to 2.2 dB for the No-
CSI(Nd = 1).

B. Impact of DMRS density

In instances where the reference and data symbols are
jointly conveyed in common OFDM symbols, we can look
into the impact of DMRS density on performance. Figure 7
depicts the performance on the LOS channel in the situations
of Perfect CSI and No CSI (Nd = 1, Nd = 4) depending
on the density of DMRS per PRB. In essence, fewer DMRS
has merit of additional coding rates. Therefore, performance
improves as DMRS density decreases. However, it should be
noted that even with Nd = 4, a low DMRS density setup
expands the performance gap between Perfect CSI and No
CSI. It may be advantageous in some instances to maintain
the density of DMRSs in a certain sweet spot or simply to
rely on sparse or even low DMRS density while increasing
their power via an adaptive adjustment. More specifically,
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have a minimal impact on receiver performance. However, as
the modulation order increases, the difference in performance
between optimal and suboptimal techniques for generating
LLRs becomes significant as discussed in [41] [42]. The
logarithmic calculations tied to the precise metric add an
extra layer of complexity when incorporating the requisite
multiplicative and additive operations during LLR processing.
Given this, it is deemed more reasonable to employ the max-
log approximation as a means of mitigating the underlying
computational complexity.

Similarly, Figure 8 shows the performance of the proposed
JED metric on Rayleigh flat fading channel (i.e. ↵ = 1).

Finally, we can assess the above results with respect to the
finite block length bounds that have been established in the
scientific literature [5] [43] [44]. For a more comprehensive
understanding of the bounds utilized in Figure 9, interested
readers are encouraged to refer to the works of authors [3]
and [7]. For this purpose, we consider the metaconverse (MC)
bound for a thorough comparative analysis. It can be observed
that when the block error rate (BLER) reaches a threshold of
1%, the performance difference between the MC Bound and
the No-CSI JED is 0.5 dB, compared to 1.75 dB for the No-
CSI Conv., in a scenario with a single receive antenna.

B. (NR ⇥ NT ) SU-MIMO BICM Transmission

For illustration purposes, we consider spatially multiplexed
single user MIMO BICM systems with dimensions of (2⇥ 2)
and (4 ⇥ 4). The performance evaluation of BIPCM/BILCM
MIMO with joint estimation and detection over a Rayleigh
block fading channel is depicted in Figure 10 and Figure 11.
Analyzing Figure 10, we observe that the Joint Estimation
and Detection (JED) approach yields a significant performance
improvement of 1.10 dB and 0.3 dB with respect to BIPCM
and BILCM, respectively, for the (2⇥2) MIMO configuration,
at a Block Error Rate (BLER) of 1%.

Similarly, the findings illustrated in Figure 10, where a
(2⇥2) MIMO system is utilized, align harmoniously with the
results presented in Figure 11 employing BIPCM and BILCM
schemes in (4 ⇥ 4) MIMO configurations. Conversely, the
observable performance gains are notably pronounced, demon-
strating gains of 1.3 dB and 0.8 with JED-based receivers
when applying BIPCM and BILCM respectively.

This valuable insight further elucidates that as the diversity
order increases, the performance disparity between the Perfect
CSI and the No CSI JED scenarios substantially widens.

C. Impact of DMRS density and DMRS power Boosting

In instances where the reference and data symbols are
jointly conveyed in common OFDM symbols, we can look into
the impact of DMRS density on performance. The resources
mapping process is governed by the density of DMRS per
PRB ranging from sparse to dense (i.e. 2, 3, 4 and 6.

Figure 12 depicts the performance on the classical non-
coherent channel or gaussian LOS channel in the situations
Perfect CSI, No CSI Conv., and No CSI JED depending on
the density of DMRS per PRB.

For a clearer overview of the graphs, Table I presents the
disparity between Perfect and Imperfect Channel State Infor-
mation (CSI) for No CSI Conv. and No CSI JED in correlation
with the distribution of DMRS per physical resource block
(PRB).

TABLE I
PERFORMANCE GAP BETWEEN PERFECT CSI (PCSI) VS No CSI

Conv.(Nd = 1) AND No CSI JED(Nd = 4)) CASES OVER (4 ⇥ 1)SIMO

DMRS per PRB No CSI JED [dB] No CSI Conv. [dB]
2 1.75 4.75
3 1 3.5
4 0.625 2.625
6 0.375 1.375

Fig. 3. Block Error Rate, 48 bits(TBs+CRC), NR-
POLAR BICM, R=48/64, (CRC)-aided successive-
cancellation list decoder(List length=8), QPSK
modulation, 1 OFDM symbol, 4 PRBs, 48 REs (32
data, 16 DMRS), NT =1, NR = {2, 4, 8}, α = 1,
LOS channel.
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have a minimal impact on receiver performance. However, as
the modulation order increases, the difference in performance
between optimal and suboptimal techniques for generating
LLRs becomes significant as discussed in [41] [42]. The
logarithmic calculations tied to the precise metric add an
extra layer of complexity when incorporating the requisite
multiplicative and additive operations during LLR processing.
Given this, it is deemed more reasonable to employ the max-
log approximation as a means of mitigating the underlying
computational complexity.

Similarly, Figure 8 shows the performance of the proposed
JED metric on Rayleigh flat fading channel (i.e. ↵ = 1).

Finally, we can assess the above results with respect to the
finite block length bounds that have been established in the
scientific literature [5] [43] [44]. For a more comprehensive
understanding of the bounds utilized in Figure 9, interested
readers are encouraged to refer to the works of authors [3]
and [7]. For this purpose, we consider the metaconverse (MC)
bound for a thorough comparative analysis. It can be observed
that when the block error rate (BLER) reaches a threshold of
1%, the performance difference between the MC Bound and
the No-CSI JED is 0.5 dB, compared to 1.75 dB for the No-
CSI Conv., in a scenario with a single receive antenna.

B. (NR ⇥ NT ) SU-MIMO BICM Transmission

For illustration purposes, we consider spatially multiplexed
single user MIMO BICM systems with dimensions of (2⇥ 2)
and (4 ⇥ 4). The performance evaluation of BIPCM/BILCM
MIMO with joint estimation and detection over a Rayleigh
block fading channel is depicted in Figure 10 and Figure 11.
Analyzing Figure 10, we observe that the Joint Estimation
and Detection (JED) approach yields a significant performance
improvement of 1.10 dB and 0.3 dB with respect to BIPCM
and BILCM, respectively, for the (2⇥2) MIMO configuration,
at a Block Error Rate (BLER) of 1%.

Similarly, the findings illustrated in Figure 10, where a
(2⇥2) MIMO system is utilized, align harmoniously with the
results presented in Figure 11 employing BIPCM and BILCM
schemes in (4 ⇥ 4) MIMO configurations. Conversely, the
observable performance gains are notably pronounced, demon-
strating gains of 1.3 dB and 0.8 with JED-based receivers
when applying BIPCM and BILCM respectively.

This valuable insight further elucidates that as the diversity
order increases, the performance disparity between the Perfect
CSI and the No CSI JED scenarios substantially widens.

C. Impact of DMRS density and DMRS power Boosting

In instances where the reference and data symbols are
jointly conveyed in common OFDM symbols, we can look into
the impact of DMRS density on performance. The resources
mapping process is governed by the density of DMRS per
PRB ranging from sparse to dense (i.e. 2, 3, 4 and 6.

Figure 12 depicts the performance on the classical non-
coherent channel or gaussian LOS channel in the situations
Perfect CSI, No CSI Conv., and No CSI JED depending on
the density of DMRS per PRB.

For a clearer overview of the graphs, Table I presents the
disparity between Perfect and Imperfect Channel State Infor-
mation (CSI) for No CSI Conv. and No CSI JED in correlation
with the distribution of DMRS per physical resource block
(PRB).

TABLE I
PERFORMANCE GAP BETWEEN PERFECT CSI (PCSI) VS No CSI

Conv.(Nd = 1) AND No CSI JED(Nd = 4)) CASES OVER (4 ⇥ 1)SIMO

DMRS per PRB No CSI JED [dB] No CSI Conv. [dB]
2 1.75 4.75
3 1 3.5
4 0.625 2.625
6 0.375 1.375

Fig. 4. Block Error Rate, 48 bits(TBs+CRC),
NRLDPC BICM, R=48/64, Layered belief prop-
agation decoder, iteration=30, QPSK modulation,
1 OFDM symbol, 4 PRBs, 48 REs (32 data, 16
DMRS), NT =1, NR = 4, α = 1, LOS channel.
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computational complexity.
Similarly, Figure 9 shows the performance of the proposed

JED metric on Rayleigh flat fading channel (i.e. ↵ = 1).
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Finally, we can assess the above results with respect to the
finite block length bounds that have been established in the
scientific literature [5] [41] [42]. For a more comprehensive
understanding of the bounds utilized in Figure 10, interested
readers are encouraged to refer to the works of authors [3]
and [7]. For this purpose, we consider the metaconverse (MC)
bound for a thorough comparative analysis. It can be observed
that when the block error rate (BLER) reaches a threshold of
1%, the performance difference between the MC Bound and
the No-CSI JED is 0.5 dB, compared to 1.75 dB for the No-
CSI Conv., in a scenario with a single receive antenna.

B. (NR ⇥ NT ) SU-MIMO BICM Transmission

For illustration purposes, we consider spatially multiplexed
single user MIMO BICM systems with dimensions of (2⇥ 2)
and (4 ⇥ 4). The performance evaluation of BIPCM/BILCM
MIMO with joint estimation and detection over a Rayleigh
block fading channel is depicted in Figure 11 and Figure 12.
Analyzing Figure 11, we observe that the Joint Estimation
and Detection (JED) approach yields a significant performance
improvement of 1.10 dB and 0.3 dB with respect to BIPCM
and BILCM, respectively, for the (2⇥2) MIMO configuration,
at a Block Error Rate (BLER) of 1%.

Similarly, the findings illustrated in Figure 11, where a
(2⇥2) MIMO system is utilized, align harmoniously with the
results presented in Figure 12 employing BIPCM and BILCM
schemes in (4 ⇥ 4) MIMO configurations. Conversely, the
observable performance gains are notably pronounced, demon-
strating gains of 1.3 dB and 0.8 with JED-based receivers
when applying BIPCM and BILCM respectively.

This valuable insight further elucidates that as the diversity
order increases, the performance disparity between the Perfect
CSI and the No CSI JED scenarios substantially widens.

C. Impact of DMRS density and DMRS power Boosting

In instances where the reference and data symbols are
jointly conveyed in common OFDM symbols, we can look into
the impact of DMRS density on performance. The resources
mapping process is governed by the density of DMRS per
PRB ranging from sparse to dense (i.e. 2, 3, 4 and 6.

Figure 13 depicts the performance on the classical non-
coherent channel or gaussian LOS channel in the situations
Perfect CSI, No CSI Conv., and No CSI JED depending on
the density of DMRS per PRB.

For a clearer overview of the graphs, Table I presents the
disparity between Perfect and Imperfect Channel State Infor-
mation (CSI) for No CSI Conv. and No CSI JED in correlation

Fig. 5. Block Error Rate, 48 bits(TBs+CRC), NR-
POLAR BICM, R=48/64, (CRC)-aided successive-
cancellation list decoder(List length=8), QPSK
modulation, 1 OFDM symbol, 4 PRBs, 48 REs
(32 data, 16 DMRS), NT =1, NR = 4, α = 1,
LOS channel, Accurate Metric vs Max-log metric.13
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DMRS density has a detrimental effect on channel estimate
quality. Even if the JED-based- receiver with block detection
(Nd = 4) seems to be less sensitive to it with respect to the
conventional receiver. There appears to be a sweet spot in
terms of DMRS density per PRB, as evidenced by the results
presented in Figure 12. Therefore, the ideal DMRS distribution
setup is obtained by incorporating four DMRSs per PRB
compared to those employing two, three or six DMRSs per
PRB , using the block detection principle within the JED-
based receiver. In practice, transmission with a low density of
DMRS appears to be more valuable and should be favoured in
future communication standards in order to convey more data
symbols than reference signals. Consequently, it is advisable
to consider configurations with either one or two DMRS per

PRB. However in order to reap from the low DMRS density,
it is important to carry out some sort of adaptive DMRS/data
power adjustment that would enhance the channel estimate
accuracy, leading to an improvement in performance from
a holistic perspective. For this purpose, the system model
can be reconceived as yi =

�
x(d) + �x(p)

�
hi + zi. The

adaptive power adjustment procedure is contingent on the
values of �. The DMRS Power is to be slightly increased
in a judicious fashion since � must be perfectly calibrated to
ensure compliance with potential radio frequency constraints.
As depicted in Figure 13, the performance improvement can
be observed as a function of varying values of �. The optimal
performance enhancement is achieved when � is set to 1.75.
It is noted that by selecting � = 1.5, a gain of 1 dB and 2 dB
can be attained with the JED-based receiver(Nd = 4). Overall,
the implications of varying DMRS density within the 3GPP
standard are significant. Specifically, it is feasible to reduce the
number of DMRS per PRB to one or two, while allowing the
user equipment (UE) to adjust the power allocation between
the DMRS and data transmission. This flexibility in DMRS
density and power allocation is transparent to the receiver.

V. CONCLUSIONS

This paper presented novel bit-interleaved coded modulation
metrics for joint estimation detection using a training or
reference signal transmission strategy for medium to long
block length channels. We showed that it is possible to
enhance the performance and sensitivity of advanced receivers,
especially when channel state information is unknown and the
density of training dimensions is low. The proposed techniques
take advantage of joint estimation/detection. The performance
analysis made use of a full 5G transmitter and receiver chain
for both Polar and LDPC coded transmissions paired with with
BPSK/QPSK modulation schemes. We considered transmis-
sions where reference signals are interleaved with data and

Fig. 6. Block Error Rate, 48 bits(TBs+CRC), NR
POLAR BICM, R=48/64, (CRC)-aided successive-
cancellation list decoder(List length=8), QPSK
modulation, 1 OFDM symbol, 4 PRBs, 48 REs
(32 data, 16 DMRS), NT =1, NR = 4 over LOS
channel, vs converse and achievability bounds.
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reference signal transmission strategy for medium to long
block length channels. We showed that it is possible to
enhance the performance and sensitivity of advanced receivers,
especially when channel state information is unknown and the
density of training dimensions is low. The proposed techniques
take advantage of joint estimation/detection. The performance
analysis made use of a full 5G transmitter and receiver chain
for both Polar and LDPC coded transmissions paired with with
BPSK/QPSK modulation schemes. We considered transmis-
sions where reference signals are interleaved with data and
both are transmitted over a small number of OFDM symbols
so that near-perfect channel estimation cannot be achieved.
This is particularly adapted to mini-slot transmissions for ultra-
reliable low-latency communications or short-packet random-
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channel, adaptive power adjustment via � within the JED-based receiver

access use-cases. We characterized the performance for up to
SIMO and MIMO configurations in order to determine the
performance gain offered by the proposed BICM detection in
realistic basestation receiver scenarios. Our findings demon-
strated that when the detection windows used in the metric
units is on the order of four modulated symbols the proposed
BICM metrics can be used to achieve detection performance
that is close to that of a coherent receiver with perfect
channel state information for both polar and LDPC coded
configurations. Furthermore, we showed that for transmissions
with low DMRS density, a good trade-off can be achieved
in terms of additional coding gain and improved channel
estimation quality by adaptive DMRS power adjustment.

Fig. 7. Block Error Rate, 24 bits(TBs), NR PO-
LAR BICM, (CRC)-aided successive-cancellation
list decoder, QPSK modulation, 1 OFDM symbol,
4 PRBs, 48 REs, set of ({24, 32, 36, 40} data,
{24, 16, 12, 8} DMRS), NT =1, NR = 4, α = 1,
LOS channel.
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both are transmitted over a small number of OFDM symbols
so that near-perfect channel estimation cannot be achieved.
This is particularly adapted to mini-slot transmissions for ultra-
reliable low-latency communications or short-packet random-
access use-cases. We characterized the performance for up to
SIMO and MIMO configurations in order to determine the
performance gain offered by the proposed BICM detection in
realistic basestation receiver scenarios. Our findings demon-
strated that when the detection windows used in the metric
units is on the order of four modulated symbols the proposed
BICM metrics can be used to achieve detection performance
that is close to that of a coherent receiver with perfect
channel state information for both polar and LDPC coded
configurations. Furthermore, we showed that for transmissions
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successive-cancellation list decoder, QPSK modulation, 1 OFDM symbol, 4
PRBs, 48 REs, (40REs= data, 8REs= DMRS), NT =1, NR = 4, ↵ = 1, LOS
channel, adaptive power adjustment via � within the JED-based receiver.

with low DMRS density, a good trade-off can be achieved
in terms of additional coding gain and improved channel
estimation quality by adaptive DMRS power adjustment.

APPENDIX

Since ✓i is unknown and randomly distributed over [0, 2⇡),
the conditional probability density function can be written as
follows:

p (yi | x) =
1

2⇡ det�

Z 2⇡

0

exp

✓
�1

2
(yi � µ{x, ✓i})

†

��1 (yi � µ{x, ✓i})
�
d✓i .

(40)

Fig. 8. Block Error Rate, 24 bits(TBs), NR PO-
LAR BICM, (CRC)-aided successive-cancellation
list decoder, QPSK modulation, 1 OFDM symbol,
4 PRBs, 48 REs, (40REs= data, 8REs= DMRS),
NT =1, NR = 4, α = 1, LOS channel, adaptive
power adjustment via β with Nd = 4 and Nd = 1.

a precise approach is to identify the configuration with the
minimum number of DMRSs which allows the transmitter
to slightly increase the power of the underlying signals.
However, choosing a low DMRS density has a detrimental
effect on channel estimate quality. Even if the receiver with
block detection (Nd = 4) seems to be less sensitive to it with
respect to the conventional receiver (Nd = 1). There appears
to be a sweet spot in terms of DMRS density per PRB, as
evidenced by the results presented in Figure 7. Therefore, the
ideal DMRS distribution setup is obtained by incorporating
four DMRSs per physical resource block compared to those
employing two, three or six DMRSs per PRB , using the
block detection principle (Nd = 4). In practice, transmission
with a low density of DMRS appears to be more valuable.
Consequently, it is advisable to consider configurations with
either one or two DMRS per PRB. However in order to
reap from the low DMRS density, it is important to carry
out some sort of adaptive DMRS/data power adjustment that
would enhance the channel estimate accuracy, leading to
an improvement in performance from a holistic perspective.
For this purpose, the system model can be reconceived as
yi =

(
x(d) + βx(p)

)
hi + zi. The adaptive power adjustment

procedure is contingent on the values of β. The DMRS Power

is to be slightly increased in a judicious fashion since β must
be perfectly calibrated to ensure compliance with potential
radio frequency constraints.

As depicted in Figure 8, the performance improvement can
be observed as a function of varying values of β. The optimal
performance enhancement is achieved when β is set to 1.75.
It is noted that by selecting β = 1.5, a gain of 1 dB can be
attained when Nd = 4.

Overall, the implications of varying DMRS density within
the 3GPP standard are significant. Specifically, it is feasible
to reduce the number of DMRS per PRB to one or two, while
allowing the User Equipment (UE) to adjust the power alloca-
tion between the DMRS and data transmission. This flexibility
in DMRS density and power allocation is transparent to the
receiver.

V. CONCLUSIONS

This paper presented novel bit-interleaved coded modula-
tion metrics for joint estimation detection using a training or
reference signal transmission strategy for short to long block
length channels. The proposed techniques take advantage
of joint estimation/detection. We considered transmissions
where reference signals are interleaved with data and both



are transmitted over a small number of OFDM symbols so
that near-perfect channel estimation cannot be achieved. Our
findings demonstrate that BICM metrics combined with the
joint estimation/detection principle can be used to achieve
detection performance that is close to that of a coherent
receiver with perfect channel state information for both polar
and LDPC coded configurations. Furthermore, we showed that
for transmissions with low DMRS density, a good trade-off
can be achieved in terms of additional coding gain and im-
proved channel estimation quality by adaptive DMRS power
adjustment.
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APPENDIX

Since θi is unknown and randomly distributed over [0, 2π),
the conditional probability density function can be written as
follows:

p (yi | x) =
1

2π detΦ

∫ 2π

0

exp

(
−1

2
(yi − µ{x, θi})†

Φ−1 (yi − µ{x, θi})
)
dθi

(11)

Saying µ{x, θi} =
√
αejθix.

Covariance Matrix:
Knowing that

yi −
√
αejθix =

√
1− αhi,fx+ zi, (12)

Φ ≜
1

2
E
[(√

1− αh
(f)
i x+ zi

)(√
1− αh

(f)
i x+ zi

)†]

≜ (1− α)xx†σ2
h + σ2

zIN ,where σ2
h = 1

(13)
Determinant:

detΦ = det
(
(1− α)xx† + σ2

zI
)

= det
(
σ2
zI+ (1− α)xx†)

=
1

2

(
N0 + 2(1− α) ∥x∥2

) (14)

Inverse of Φ : The Woodbury matrix identity [15]

(A+UCV)−1 = A−1−A−1U
(
C−1 +VA−1U

)−1
VA−1,

(15)
where A, U, C and V are conformable matrices: A is n×n,
C is k × k, U is n× k, and V is k × n.

Let’s say :
{

A = σ2
zI, C = (1− α)I

U = x, V = x†

Φ−1 =
2

N0
− 2

N0
x

(
2(1− α)

N0 + 2(1− α) ∥x∥2

)
x† (16)

let’s say βx = 2(1−α)

N0(N0+2(1−α)∥x∥2)
, then Φ−1 = 2

N0
−2xβxx

†

Likelihood function:

q (x,yi) =

1

2π detΦ

∫ 2π

0

exp

(
− 1

N0
|yi − µ|2 + βx

∣∣∣(yi − µ)
†
x
∣∣∣
2
)
dθi

By extending the terms into the exponential, ignoring those
that are independent of x, the likelihood function is equal to

q (x,yi) =
1

2π detΦ
exp

(
−α ∥x∥2

(
1

N0
− βx |x|2

)

βx

∣∣x†yi

∣∣2
)∫ 2π

0

exp

(
2
√
α

(
1

N0
− βx |x|2

)

|x†yi|cos (ϕi + θi)
)
dθi

knowing that
1

π

∫ π

φ=0

exp(zcos(φ))dφ = I0(z) [16].

Saying Lx = N0 + 2(1 − α) ∥x∥2, and then after ignoring
multiplicative term that are independent of x, it comes

q (x,yi) ∝
1

Lx
exp

(
−α ∥x∥2

(
1

N0
− βx ||x| |2

)

+βx

∣∣x†yi

∣∣2
)
× I0

(
2
√
α

(
1

N0
− βx ||x| |2

) ∣∣x†yi

∣∣
)

(17)
Expressing βx w.r.t Lx → βx = 1

∥x∥2N0
− 1

∥x∥2Lx
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[4] P. Yuan, M. C. Coşkun and G. Kramer, ”Polar-Coded Non-Coherent
Communication,” in IEEE Communications Letters, vol. 25, no. 6, pp.
1786-1790, June 2021.

[5] Y. Polyanskiy, H. V. Poor and S. Verdu, ”Channel Coding Rate in
the Finite Blocklength Regime,” in IEEE Transactions on Information
Theory, vol. 56, no. 5, pp. 2307-2359, May 2010.
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