
RAN Simulator Is NOTWhat You Need: O-RAN
Reinforcement Learning for the Wireless Factory

Ta Dang Khoa Le
ta-dang-khoa.le@eurecom.fr

EURECOM
Biot, France

Navid Nikaein
navid.nikaein@eurecom.fr

EURECOM
Biot, France

ABSTRACT
As modern manufacturing lines embrace greater modularity
and flexibility, the need to transition factory networks from
wired to wireless grows. Yet the mission-critical nature of
factory networks poses a key challenge - connecting numer-
ous diverse machines with high QoS predictability. After
formulating this challenge as predictable RAN optimization
via Reinforcement Learning (RL), we highlight a major-yet-
overlooked modeling issue: matching the packet handling
mechanics of a production/real RAN software. In this paper,
we show that these mismatches inside RAN simulators can
cause non-trivial QoS gaps in production. Then, we present
Twin5G, a novel training solution that brings scalable and
near-discrete-time emulations to real RAN software, remov-
ing the need for RAN simulators. In a RAN Slicing example,
Twin5G-trained policy outperforms simulator-trained and
standard RL-trained policies in both QoS achieved (+16%)
and predictability (+19%) during tests.

ACM Reference Format:
Ta Dang Khoa Le and Navid Nikaein. 2023. RAN Simulator Is NOT
What You Need: O-RAN Reinforcement Learning for the Wireless
Factory. In The 29th Annual International Conference on Mobile
Computing and Networking (ACM MobiCom ’23), October 2–6, 2023,
Madrid, Spain. ACM, New York, NY, USA, 3 pages. https://doi.org/
10.1145/3570361.3615758

1 INTRODUCTION
To meet increasingly customized and smaller manufactur-
ing orders, modern manufacturing lines are designed to be
highly modular and reconfigurable. This necessitates the use

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9990-6/23/10. . . $15.00
https://doi.org/10.1145/3570361.3615758

of mobile machinery at minimal rewiring costs, i.e., wire-
less networking [1]. However, transitioning mission-critical
factory networks from wired to wireless is a challenge; one
needs to connect as many UEs as possible, despite much
limited resources, while guaranteeing each UE’s QoS before
actual deployment (i.e., QoS predictability), despite diverse
requirements and stochastic workload variations.

In this paper, we formulate this wireless factory challenge
as (a) per-UE predictable QoS optimization solved with (b)
RL-based RAN control. (a) is crucial because we want to
maximize the value of each used resource unit. Yet, optimiz-
ing system-level or multi-UE objectives cannot guarantee
predictable network conditions for any UE [2]. (b) is neces-
sary because, due to radio scarcity, RAN remains the only
bottleneck in modern network deployments [3]. Yet, opti-
mizing it requires a sequential stochastic control approach
to handle adaptive traffic profiles and partially-observable
channel variations. Under this formulation, multiple per-UE
RL policies simultaneously control the RAN, with each pol-
icy’s expected total reward being the prediction for its UE’s
in-production QoS.
Still, as Deep RL is sensitive to modeling errors [4], high

QoS predictability requires accurate emulation of produc-
tion traffic, channel, and RAN-stack dynamics. In this paper,
we leave the well-known traffic-channel modeling errors to
future work, and focus on the overlooked RAN-stack factor:
how a production RAN software handles its UEs’ packets. In
Section-3, we show that even a minor difference between
RAN simulators and production/real RAN software can cause
non-trivial QoS gaps in production, yet training on real RAN
software is restrictive due to scalability and non-discrete-
time transitions. While the small-scale limit is well-known,
the non-discrete-time limit is because classical Markov Deci-
sion Processes assume that states do not evolve during action
selection and/or policy updates [5]; this is impossible as real
RAN software is not pausable. To our knowledge, both limits
are not yet addressed in the 5G literature.

In the next section, we present Twin5G, a novel training
approach that overcomes both limits of real RAN software-
based emulations. Twin5G is implemented as an O-RAN-
compliant xApp (using the FlexApp library [6]), so it should
apply to all O-RAN-compliant real RAN software.

1579

https://doi.org/10.1145/3570361.3615758
https://doi.org/10.1145/3570361.3615758
https://doi.org/10.1145/3570361.3615758
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3570361.3615758&domain=pdf&date_stamp=2023-10-02

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Le and Nikaein

Figure 1: Twin5G’s four elements train each target UE separately. In production, 1○ and 2○ are replaced with real
workloads, while 3○ and 4○ have their Step-2 becomesMulti-UE Batch Inference and their Step-4 and -5 becomes
Multi-UE Parallel Updates.

2 METHODOLOGY: TWIN5G
The key idea behind Twin5G is that, instead of training on
real RAN software with multiple UEs connected, we sepa-
rately train for each target UE (i.e., the UE we want to opti-
mize) by emulating the interference other UEs may cause to
its in-production traffic, channel, and RAN-stack dynamics;
this helps execute RL for scenarios of any scale. Twin5G
consists of four elements illustrated in Figure 1.
ONE. Per-UE emulation of traffic profiles - Since factory

traffics are generated internally, RAN resources become the
only bottleneck. Hence, UEs’ RAN policies do not need to ob-
serve each other to fully control their own traffics. With this
insight, one can utilize problem-specific knowledge to indi-
vidually run each target UE’s traffic profile (e.g., using iPerf,
real apps, etc.) alongside real RAN software for training.

TWO. Per-UE emulation of channel variations - To emulate
PHY-layer interference that other UEs may cause to each
target UE, one can utilize problem-specific knowledge to
conduct multi-UE ray-tracing analysis (e.g., with MATLAB)
and run this UE’s final propagation model alongside real
RAN software for training. With this in mind, we wrap PHY
models inside PHY emulation xApps to correctly get and set
relevant PHY-related variables inside real RAN software.
THREE. Training at fast control loop - To achieve non-

discrete-time transitions, we remark that the assumption
of non-evolving states still holds if our control-loop time
is negligible [5]. Since the minimum control interval of the
near-real-time RIC is 10ms [7], we aim to reduce the total
time from producing states to executing actions, i.e., the
whole control loop, to under 2ms. To this end, we interpret
O-RAN Machine Learning specifications [7] under the lens
of Actor-based concurrency. Our approach “desynchronizes”
the traditional rollout-then-update flow (of OpenAI’s Gym)
into two concurrent groups of actors. The first group, illus-
trated by Step-1 to Step-3 in Figure 1, runs the main control
loop; the second group, illustrated by Step-4 and Step-5 in
the same figure, runs the background training loop.

FOUR.Multi-agent-aware Resource-constrained RL - Simul-
taneously controlling the RAN, UEs’ radio-related resource
needs, e.g., physical resource blocks and/or transmission
power, together may exceed system capacity. For reliable
QoS guarantees, one must protect each target UE’s optimal
trajectory, separately derived during training, from possible
“resource cuts” in production. We solve this in two generic
steps: (i) At admission, each UE is guaranteed a “resource bud-
get” per RL episode; (ii) During training, the RL agent seeks
an optimal allocation of its budget along the transitions, ac-
counting for possible resource cuts. Intuitively, episode-level
admission control limits the need for resource cuts while still
allowing each UE to use “just enough” per transition. Addi-
tionally, one can try multiple training runs to identify each
UE’s just-enough budget for a target QoS satisfaction ratio.
Mathematically, for each target UE, we solve an instance of
the following generic class of episodic RL problems:

𝜋∗
A = argmax

𝜋

E𝜋

[
𝑇∑︁
𝑡=0

QoS(𝑠𝑡 , 𝑓 (𝑎𝑡))
]

s.t.
𝑇∑︁
𝑡=0

cost(𝑓 (𝑎𝑡)) ≤ 𝐵.

Where:
• 𝑓 (·) is a UE-agnostic excess resolver that reduces UEs’
resource requests to align with system capacity; opti-
mally designed per problem instance.

• A is a policy search algorithm that accounts for ex-
ternal agents’ actions and, therefore, possible resource
cuts; also optimally designed per problem instance.

• QoS(·), cost(·), and 𝐵 represent the QoS satisfaction
function, the resource usage function, and the episode-
level resource budget, respectively. They are defined
per problem statements and UE requirements.

In the next section, we show how this class of problems is
applied to a real use case: preparing a video streaming slice
towards automated factory coordination.

1580

RAN Simulator is NOT What You Need ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

Figure 2: During training, only training at full control interval (10ms) performs badly. During testing, modified
OAI-trained policy performs worse due to MCS-setting mismatch, while standard DQN-trained policy becomes
unpredictable due to resource-cut unawareness.

3 DEMO: VIDEO STREAMING SLICES
The ultimate use case is automated factory coordination from
the Edge, utilizing videos streamed frommultiple Automated
Guided Vehicles (AGVs). To train RL-based RAN policies
that manage these AGVs’ connections, let us consider the
following per-UE uplink specifications, taken from a major
manufacturing company, with emulation artifacts in Table 1.

Table 1: Per-UE Uplink Specifications

Use Case Specs Emulation Artifacts

Requirements 20mbps throughput & 50ms RTT (every 100ms)
Evaluated every second with a 260-slot budget

Traffic Profile DASH on BBR
(MSS: 1460 bytes)

BBR-based iPerf
(MSS: 1460 bytes)

Channel Profile Indoor Factory
<10m/s

TR 38.901’s InF
Gauss-Markov Mobility

Our demo is conducted on top of FlexRIC and OpenAirIn-
terface (OAI) [8], with Quectel-based UEs representing the
AGVs. The 260-slot budget is identified after multiple runs
targeting∼ 90% QoS satisfaction ratio. Algorithm-wise, there
should be no differences as we use FlexRIC-OAI’s downlink
RAN Slicing capability. To protect each UE’s optimal tra-
jectory from possible resource cuts, we apply the following
techniques during training:

• A Deep Q-Learning (DQN) policy with action space
+1 ∨ 0 ∨ −1, signaling changes to the current number
of slots per UE.

• A resolver that, once system capacity is exceeded, “cuts”
all UEs’ requests equally and just enough.

Together with episode-level admission control, these tech-
niques help “flattening” our resource-cut upper-bound across
100 transitions (10ms each) of an episode (1 second each),
minimally distorting each UE’s optimal trajectory.

With the experiments in Figure 2, we show the impact of a
minor mismatch inside RAN simulators and the two limits of

real RAN software-based training on QoS predictability. We
compare train versus test QoS satisfaction ratios (both use
the same emulation artifacts) of four methods: (1) Twin5G;
(2) Twin5G on a “simulator”, built by modifying OAI in just
one place: using 3GPP-based (instead OAI’s BLER-based)
MCS settings; (3) Twin5G at artificially-delayed 10ms control-
loop time; and (4) Standard DQN without budget and action
constraints.We remark that, due to bad training performance,
the third method is not included in testing, where slices are
run together to validate scalability.

In conclusion, to productionize RL policies: (i) One should
not use RAN simulators, (ii) Control-loop time optimization
is needed, and (iii) Training on real RAN software should and
can be scaled; all are contrary to popular beliefs.

REFERENCES
[1] Bosch in Singapore. Industrial 5G. https://www.bosch.com.sg/news-

and-stories/5g-in-action/, 2021.
[2] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Haus-

man, and Chelsea Finn. Gradient Surgery for Multi-task Learning. In
Advances in Neural Information Processing Systems (NeurIPS), 2020.

[3] Amazon Web Services. Deploying DISH’s 5G Network in AWS
Cloud. https://aws.amazon.com/blogs/industries/telco-meets-aws-
cloud-deploying-dishs-5g-network-in-aws-cloud/, 2022.

[4] Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey
Levine. EPOpt: Learning Robust Neural Network Policies Using Model
Ensembles. In International Conference on Learning Representations
(ICLR), 2017.

[5] Jaden B Travnik, Kory W Mathewson, Richard S Sutton, and Patrick M
Pilarski. Reactive Reinforcement Learning in Asynchronous Environ-
ments. Frontiers in Robotics and AI, 2018.

[6] Chieh-Chun Chen, Mikel Irazabal, Chia-Yu Chang, Alireza Mohammadi,
and Navid Nikaein. FlexApp: Flexible and Low-Latency xApp Frame-
work for RAN Intelligent Controller. In International Conference on
Communications (ICC), 2023.

[7] O-RAN Working Group 2. O-RAN AI/ML Workflow Description and
Requirements 1.03. Technical report, Open RAN, 2021.

[8] Robert Schmidt, Mikel Irazabal, and Navid Nikaein. FlexRIC: An SDK
for Next-generation SD-RANs. In International Conference on emerging
Networking EXperiments and Technologies (CoNEXT), 2021.

1581

https://www.bosch.com.sg/news-and-stories/5g-in-action/
https://www.bosch.com.sg/news-and-stories/5g-in-action/
https://aws.amazon.com/blogs/industries/telco-meets-aws-cloud-deploying-dishs-5g-network-in-aws-cloud/
https://aws.amazon.com/blogs/industries/telco-meets-aws-cloud-deploying-dishs-5g-network-in-aws-cloud/

	Abstract
	1 Introduction
	2 Methodology: Twin5G
	3 Demo: Video Streaming Slices
	References

