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ABSTRACT

The vast majority of approaches to speaker anonymization
involve the extraction of fundamental frequency estimates,
linguistic features and a speaker embedding which is per-
turbed to obfuscate the speaker identity before an anonymized
speech waveform is resynthesized using a vocoder. Recent
work has shown that x-vector transformations are difficult
to control consistently: other sources of speaker informa-
tion contained within fundamental frequency and linguis-
tic features are re-entangled upon vocoding, meaning that
anonymized speech signals still contain speaker information.
We propose an approach based upon neural audio codecs
(NACs), which are known to generate high-quality synthetic
speech when combined with language models. NACs use
quantized codes, which are known to effectively bottleneck
speaker-related information: we demonstrate the potential
of speaker anonymization systems based on NAC language
modeling by applying the evaluation framework of the Voice
Privacy Challenge 2022.

Index Terms— Speaker anonymization, neural audio
codec, language modeling

1. INTRODUCTION

Speaker anonymization involves the task of processing a
speech signal to conceal the identity of the speaker while re-
taining the spoken content and other para-linguistic attributes
such as intonation and prosody. As defined by the Voice Pri-
vacy Challenge [1], a speaker anonymization system should
provide a certain trade-off between privacy protection and
utility preservation. The former is measured by the difficulty
of an attacker to recover the identity of the original speaker
from an anonymized signal via automatic speaker verification
(ASV). The latter is assessed primarily by the reliability of an
automatic speech recognition (ASR) system to transcribe the
anonymized waveform, among other, secondary metrics such
as pitch correlation and gain of voice distinctiveness [2].

Most speaker anonymization systems are based on often-
incremental changes to original work in [3], which oper-
ates upon three distinct components extracted from an input
waveform: an F0 curve encoding prosodic information; some
form of linguistic features encoding the spoken content; an
x-vector [4] encoding the speaker identity. The x-vector is

perturbed to conceal the identity of the speaker and then fed to
a vocoder with the other two components in order to synthe-
size an anonymized waveform. This approach assumes that
speaker information is contained entirely within the x-vector,
even if this is known not to be the case [5, 6]. Residual
speaker information captured in linguistic features and the
F0 curve is re-entangled with the anonymized x-vector upon
vocoding. An x-vector extracted afresh from the anonymized
utterance then still contains speaker information which can
be used by an adversary to reverse the anonymization and re-
identify the speaker [5, 7]. Other researchers [5] have found
that the level of speaker information contained in linguistic
features can be reduced through their quantization.

Motivated by their successful application to numerous au-
dio synthesis tasks [8, 9], we have sought to exploit the po-
tential of neural audio codec (NAC) language modeling to de-
sign a speaker anonymization system that better suppresses
speaker information and hence provides an improved trade-
off between anonymization and utility. Such an approach is
appealing since linguistic features are not used directly for
waveform synthesis, as with previous approaches: instead,
they are used to infer a set of NAC acoustic tokens with a
language model. These features are quantized and therefore
have the potential to bottleneck speaker information and im-
prove anonymization. The final waveform is synthesized by
decoding the acoustic tokens with a decoder neural network.
We hope that the representational power of NACs should help
to preserve speech quality and utility.

2. RELATED WORK

In the following we describe some related research which pro-
vided motivation for the work presented in this paper.

X-vector–based speaker anonimization - The original
x-vector–based pipeline introduced in [3] is the basis of much
of the related work reported recently. An approach to dis-
pense with the intermediate acoustic model was proposed
in [2]. More refined x-vector anonymization functions were
proposed in later work [10, 11], with some [12] achieving no-
table improvements to privacy protection levels, albeit under
the assumption that the attacker does not have full knowl-
edge of the anonymization system. Whatever the approach,
x-vector perturbation does not prevent speaker-related in-
formation contained in the F0 curve and linguistic features



from leaking into the anonymized waveform upon vocoding.
As a result, the x-vector which can be re-extracted from the
anonymized waveform by a privacy adversary who wishes
to reidentify the speaker tends to drift away from that at
the vocoder input [13]. While the drift can be beneficial
to anonymization, it hinders the design of more effective
anonymization functions and can also be inverted by an ad-
versary to undo the privacy protection [14]. Attempts to
sanitize speaker information from linguistic features have
also been explored, e.g. [7] based on the concept of differ-
ential privacy, which reports improvements to privacy at the
cost of reduced utility and pitch correlation. The same issue
was tackled in [5] by means of feature quantization, which
is shown to be effective as a speaker information bottleneck,
though with a degradation to utility. In this paper, we follow
a similar approach, but propose a completely new synthe-
sis pipeline in which we avoid the leakage of information
between different speech components by design.

NAC language modeling - NACs were proposed recently
for audio compression [15, 16]. They consist in convolutional
autoencoders that compress audio to low-bitrate, tokenized
representations which support high-fidelity decoding. Due
to their discretized nature, encoded representations can be
modeled using techniques normally used for language-related
tasks, such as transformers. This idea was first introduced
in [8] for a variety of audio generation tasks, and tailored to
text-to-speech (TTS) in [9]. A transformer is used to convert
the input (be it audio or text) to a set of high-level semantic
tokens. These are then fed to another transformer which con-
verts them into NAC acoustic tokens which can be decoded to
resynthesize an audio signal.

The same technique can also be applied to voice conver-
sion [8, 17], and is hence ideally suited to speaker anonymiza-
tion. NAC language models operate on quantized codes,
which are known to be beneficial to privacy protection [5].
Moreover, such models appear to naturally disentangle lin-
guistic information into semantic tokens, while encoding
speaker information and recording conditions mostly in
acoustic tokens [8]. Hence, we propose a speaker anonymiza-
tion system whereby an input utterance is re-synthesized by
means of a NAC language model. Semantic tokens are kept
unchanged, while acoustic tokens are substituted with those
of a different speaker, the goal being to preserve the linguistic
content of the signal while suppressing information related to
the original speaker.

3. PROPOSED APPROACH

3.1. Neural audio codec language modeling

A diagram of the proposed system is shown in Figure 1. Fol-
lowing [9], it is comprised of a semantic encoder, a NAC
(encoder and decoder), a pair of transformers and a pool of
speaker prompts. They are described in the following.
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Fig. 1. Diagram of the proposed anonymization system.

The semantic encoder produces high-level semantic rep-
resentations of the input signal using a codebook of NS quan-
tized embeddings. The output is a sequence of integers s ∈
{1, . . . , NS}TS , where TS is the number of frames and where
each integer is a codeword index.

The NAC is an encoder-decoder architecture. The en-
coder maps input waveforms to a quantized, compressed
representation from which the decoder reconstructs a high-
fidelity waveform. Efficient compression is achieved with
a set of Q hierarchical codebooks. Lower level codebooks
capture coarser waveform characteristics, while finer details
are captured by higher level codebooks. Following [8, 9],
we refer to the first QC codebooks as ‘coarse codebooks’,
and to the last Q − QC codebooks as ‘fine codebooks’. All
have NQ codewords so that the output of the encoder is
ã ∈ {1, . . . , NQ}Q×TA , where TA is the number of frames
into which the input is divided.

The coarse and fine transformers estimate a set of
acoustic tokens a from a prompt of input semantic tokens s
and acoustic tokens ã. Essentially, the transformers attempt
to predict what semantic information should ‘sound like’ in
the domain of quantized acoustic tokens. The coarse trans-
former autoregressively predicts coarse acoustic tokens, i.e.
the codewords belonging to the coarse codebooks. More
specifically, for frame t, the transformer predicts the proba-
bility distribution of token aq,t conditioned on the following
elements: the semantic prompt s, the coarse tokens from the



acoustic prompt ã<QC ,:, and all previous predictions.1 The
modeled distribution is therefore

p (aq,t|s, ã<QC ,:,a<QC ,<t,a<q,t) (1)

for q ∈ [1, QC ]. The fine transformer is instead non-
autoregressive. It estimates the tokens of codebook q using
all tokens belonging to codebooks < q and all tokens of the
acoustic prompt ã, thus modeling the distribution

p (aq,:|ã,a<q,:) (2)

for every q ∈ [QC + 1, Q]. Once the acoustic tokens a have
been predicted for all codebooks q ∈ [1, Q], they can be input
into the decoder to synthesize an anonymized waveform.

The pool of speaker prompts is a set of acoustic tokens
extracted by the NAC encoder from utterances belonging to
a set of external speakers. Those speakers are referred to as
pseudo-speakers, since they replace the original speaker in
the anonymized utterance. As suggested in [8], acoustic to-
kens, especially the coarse tokens, can capture information
related to the speaker identity. We use them to perform voice
conversion, as detailed in the following.

3.2. Anonymization technique

A set of semantic tokens s is first extracted from the input
utterance. They encode the high-level spoken content. Their
quantization helps to suppress speaker-related information.

A pseudo-speaker is chosen by randomly selecting an
acoustic prompt ã from the speaker prompt pool. Anonymiza-
tion can be performed at either speaker or utterance levels.
At the speaker level, anonymization is performed using the
same speaker prompt for each utterance corresponding to any
one speaker. In contrast, for utterance level anonymization,
a speaker prompt is selected at random for each utterance.
While several anonymization systems include techniques to
synthesize fictitious voices [5, 10, 11, 12], here we use real
voices as pseudo-speakers to focus our analysis on the intrin-
sic anonymization capability of the NAC language model.

Prompted with s and ã, the coarse and fine transformers
generate a set of acoustic tokens a which reflect the semantic
information of the original utterance, but the acoustic charac-
teristics of the pseudo-speaker. Acoustic tokens a are fed to
the decoder which synthesizes the anonymized output wave-
form.

4. EXPERIMENTAL SETUP

Our codebase is branched from Bark,2 an open-source,
NAC-based TTS system which is very similar to VALL-E [9].

1In practice, the sequence upon which to perform regression is flattened
to (s, ã,a1,1,a2,1, . . . ,aQC ,1,a1,2,a2,2, . . . ,aQC ,2, . . . ). See [8, 9] for
more details.

2The original source code is available at www.github.com/
suno-ai/bark, though we built our system from the port included in the

The modules described in Section 3.1 are all taken from Bark.
The semantic encoder has a HuBERT backbone [19] and a
LSTM [20] back-end which predicts the semantic token as-
sociated to the HuBERT feature vector output at each frame.
The semantic dictionary is of size NS = 10000. The coarse
and fine transformers are 12-layer GPT-like models [21], each
having Q = 8 different codebooks with NQ = 1024 code-
words. The first QC = 2 codebooks are considered coarse.
The NAC is EnCodec [16]. The difference between Bark and
our system is that, being a TTS model, Bark estimates se-
mantic tokens s corresponding to an input text using a further
semantic transformer. In our implementation, we bypass the
semantic transformer and use ground truth semantic tokens
from the input waveform thereby providing for voice con-
version instead of TTS. With this setup, we are able to use
pre-trained Bark modules off-the-shelf, without the need for
any training.

We adopt the Voice Privacy Challenge 2022 protocol [2]
for evaluation. The test set comprises subsets of the Lib-
riSpeech [22] and VCTK [23] databases. The pool of speaker
prompts is taken from the Bark voice library. It consists of
130 utterances collected from speakers of different gender
and nationality.3 The threat model is the semi-informed at-
tack described in [2]. Trial utterances are anonymized at
the speaker level. The attacker is assumed to have access
to the anonymization system. They anonymize a set of ex-
ternal data (librispeech-clean-360) at the utterance level and
use it to train an ASV system (a TDNN with a PLDA back-
end [24]). They also have access to original (non-protected)
enrollment utterances which they anonymize at the speaker
level. The attacker thus has enrollment and trial utterances
both of which are anoymized and uses an ASV system to
verify whether they correspond to the same speaker. The at-
tacker has no knowledge of which pseudo-speaker was used
for anonymization on the test utterance and will hence likely
select a different pseudo-speaker to anonymize the enrollment
utterance. The privacy metric is the resulting EER estimated
from a large number of ASV trials. Utility is assessed by
training an ASR system on the same anonymized version of
librispeech-clean-360 and by estimating the word error rate
(WER) from anonymized test data. Two additional metrics
are defined in the VoicePrivacy Challenge evaluation plan [2].
The first is the F0 curve correlation ρF0 between original and
anonymized utterance which is used as a measure of prosody
preservation. The second is the gain of voice distinctiveness
GV D which is used to estimate how well the anonymized
voices of different speakers can be distinguished [2].

We adopt the B1b and T11 participant system from the
Voice Privacy Challenge 2022, in addition to the system pro-

CoquiTTS library available at www.github.com/coqui-ai/TTS. Our
source code, as well as audio samples, will be made available upon publica-
tion.

3www.github.com/suno-ai/bark/tree/main/bark/
assets/prompts/v2

www.github.com/suno-ai/bark
www.github.com/suno-ai/bark
www.github.com/coqui-ai/TTS
www.github.com/suno-ai/bark/tree/main/bark/assets/prompts/v2
www.github.com/suno-ai/bark/tree/main/bark/assets/prompts/v2


System LibriSpeech VCTK
EER (%) WER (%) GV D ρF0 EER (%) WER (%) GV D ρF0

Original 4.4 4.2 0 1 3.2 12.8 0 1Original (eval. pipeline of [18]) 1.5 2.5 n.a. 1.1 7.6 n.a.
B1b [2] 8.6 4.4 -5.8 0.78 9.7 10.7 -7.1 0.81
T11 [10] 20.6 3.9 -19.0 0.68 39.7 7.9 -18.4 0.73
Champion et al. [5] 17.5 4.5 n.a. 0.67 28.0 10.0 n.a. 0.73
Champion et al. (noise on F0) [5] 23.4 4.6 n.a. 0.52 40.8 10.3 n.a. 0.60
Ours 28.5 7.5 -1.5 0.68 45.5 18.9 -2.1 0.74Ours (eval. pipeline of [18]) 34.1 4.6 n.a. 36.6 15.5 n.a.

Table 1. Results of the analyzed systems on the Voice Privacy Challenge 2022 test subsets.

posed by Champion et al. [5] as baselines. System T11 is the
non-TTS system that achieved the highest privacy level in the
2022 challenge.4 The work in [5] was the first to propose the
use of codebook-based feature quantization.

5. RESULTS

Results are shown separately for LibriSpeech and VCTK test
sets in Table 1. Our system achieves the highest privacy lev-
els: 28.5% EER for LibriSpeech; 45.5% EER for VCTK. The
substantially lower EERs of 17.5% and 28.0% for the two test
sets and the system of Champion et al. suggest that our quan-
tization approach is more effective in removing speaker infor-
mation than that proposed in [5]. In an effort to further sup-
press speaker information, Champion et al. also experimented
with the addition of Gaussian noise to the input F0 curve. Im-
provements to privacy nonetheless result in a lower pitch cor-
relation ρF0 ≈ 0.55.5 For our method, the pitch correlation is
in the order of ρF0 ≈ 0.7 on average, and compares favorably
with that of other systems in the literature [2]. In terms of pri-
vacy protection, our model also comfortably outperforms the
T11 system by 8% and 5% EER for LibriSpeech and VCTK
test sets respectively. The gain in voice distinctiveness for the
T11 system are also low. This is not surprising since the sys-
tem maps all speakers to similar pseudo-speakers. In contrast,
our system gives values of GV D ≈ −2, denoting substantially
better speaker distinctiveness.

However, utility estimates for our model are lower than
that of other systems. The WER increase from 4.2% (original
data) to 7.5% for the LibriSpeech subset and from 12.8% to
18.9% for the VCTK subset. Similar issues have also been
reported in the literature. The authors of [8] show that the
NAC copy-synthesis of LibriSpeech test-clean dataset causes

4Results available at www.voiceprivacychallenge.org/
results-2022. The overall highest privacy level was in fact achieved
by a TTS-based system [11] that barely passed the prosody preservation
requirement of scoring ρF0 > 0.3. In general, TTS-based systems are
known to almost completely erase speaker information, at the cost of a
severe loss of intonation and prosody. Therefore, we do not include [11] in
our comparative analysis.

5This result is provided by courtesy of the main author of [5].

an increases to the WER of its own ASR system from 2.5% to
6%, with similar results being reported in [9]. Nevertheless,
informal listening tests on our data do not reveal any notable
artifacts or degradation to intelligibility.

In an attempt to shed light on the cause for this phe-
nomenon, we repeated similar experiments using a different
ASR architecture, namely that reported in [18], which is re-
trained according to the same setup described in Section 4.
The issue persists. The WER increases from 2.5% to 4.6%
for the LibriSpeech subset and from 7.6% to 15.5% for the
VCTK subset. These findings suggest that the degradation to
utility is more dependend on the NAC language model than
on the ASR system. As suggested in [8], this could be due
to the quality of some pseudo-speaker prompts, since the ex-
tracted fine acoustic tokens tend also to capture aspects of the
(potentially poor) recording conditions, the characteristics
of which are then transferred to anonymized outputs. More
thorough experimentation to help us better understand this
phenomena is already underway.

6. CONCLUSIONS

We present a novel approach to speaker anonymization based
on a neural audio codec (NAC) language model. Our system
performs voice conversion by extracting a set of semantic
tokens from an input signal and using them to estimate a set
of acoustic tokens belonging to a different speaker, which
in turn are used to synthesize an anonymized speech signal
with a NAC decoder. The quantized nature of the semantic
and acoustic tokens successfully bottlenecks speaker-related
information delivering substantially improved anonymiza-
tion performance without compromising prosody or speaker
distinctiveness. While informal listening tests show that
anonymized signals are of high quality and intelligibility,
automatic transcription with a speech recognition system
shows a modest degradation to utility. Future work should
investigate strategies to better protect utility while retaining
the benefits to privacy safeguard, such as using high-quality
speaker prompts or fine-tuning parts of the system with utility
preservation constraints.

www.voiceprivacychallenge.org/results-2022
www.voiceprivacychallenge.org/results-2022
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