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State-aware Real-time Tracking and Remote
Reconstruction of a Markov Source

Mehrdad Salimnejad, Marios Kountouris, Nikolaos Pappas

Abstract—The problem of real-time remote tracking and re-
construction of a two-state Markov process is considered here. A
transmitter sends samples from an observed information source
to a remote monitor over an unreliable wireless channel. The
receiver, in turn, performs an action according to the state of
the reconstructed source. We propose a state-aware randomized
stationary sampling and transmission policy which accounts for
the importance of different states of the information source, and
their impact on the goal of the communication process. We then
analyze the performance of the proposed policy, and compare
it with existing goal-oriented joint sampling and transmission
policies, with respect to a set of performance metrics. Specifically,
we study the real-time reconstruction error, the cost of actuation
error, the consecutive error, and a new metric, coined importance-
aware consecutive error. In addition, we formulate and solve a
constrained optimization problem that aims to obtain the optimal
sampling probabilities that minimize the average cost of actuation
error. Our results show that in the scenario of constrained sam-
pling generation, the optimal state-aware randomized stationary
policy outperforms all other sampling policies for fast evolving
sources, and, under certain conditions, for slowly varying sources.
Otherwise, a semantics-aware policy performs better only when
the source is slowly varying.

I. INTRODUCTION

Today’s communication networks are in a transitional phase
to supporting cyber-physical and interactive critical systems,
which are key enablers for a plethora of new services and
applications, such as autonomous transportation, industrial
robotics, telehealth, and environmental monitoring. Emerging
real-time autonomous systems, empowered with networked
agents with advanced processing and learning capabilities, are
expected to take advantage of network and sensing data and
transform both human and digital decision making. Never-
theless, the realization of this euphoric vision hinges upon
networks’ ability to timely and effectively gather, analyze, and
transport vast new sources of data. As a step in that direction,
a radically new approach, which accounts for the semantics of
information, defined as the importance and the goal-oriented
utility of data exchanged in a network, has emerged. Recon-
sidering the entire communication process under the prism
of semantics of information is instrumental in transforming
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the way we generate, transmit, and reconstruct data in time-
sensitive and data-intensive communication systems. Anthony
Ephremides is among the very first who proposed and advo-
cated for the concept of semantics of information, laying the
foundation stones of goal-oriented semantic communications.
A highly relevant yet challenging problem in this context is to
design joint source sampling, transmission, and reconstruction
techniques, which consider the dynamics of the information
source and enable real-time remote tracking with the objective
of actuation.

Most prior work on remote tracking to date has mainly
focused on proposing sampling or scheduling policies aiming
to minimize estimation error or mean square error, letting the
significance and the usefulness of the generated and transmit-
ted information with respect to the application-driven goal and
context aside. In contrast to these works, in this paper, we pro-
pose a new state-aware sampling and transmission policy and
introduced a new importance-aware error metric, unearthing
the prominent role of having different action probabilities for
different states.

A. Related work

The problem of scheduling in event-triggered estimation
has been considered in [1]–[6], where a sensor observes
the state of a process and transmits it to the receiver only
when certain events occur. Optimal sampling and transmission
policies for noiseless communication channels are proposed in
[7]–[9]. The study in [7] considers sequential estimation with
limited information, where an observer sequentially observes a
stochastic process and sends the resulting sample to a receiver
over a noiseless communication channel. The authors in [8]
study a remote estimation problem in a noiseless communica-
tion system in the presence of an energy harvesting sensor
and a remote estimator. [9] presents an optimal threshold
transmission policy for a noiseless communication system
where a sensor observes a first-order Markov process and
transmits the sample to the receiver.

The work [10] proposes an optimal transmission strategy
in two sensor-assisted Gauss-Markov systems, extended to
multiple sensors and processes in [11]. The work [12] analyzes
the optimal estimation and transmission policies for remote
estimation over time-varying packet drop channels. This study
involves a scenario representing the information source as
a finite-state Markov chains and first-order auto-regressive
processes. The authors in [13] and [14] study the fundamental
limits and trade-offs of remote estimation of Markov processes
under communication constraints.
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Optimal sampling and remote estimation for monitoring
real-time stochastic processes is studied in [15]–[18]. The
problem of estimating the current state of a dynamic pro-
cess using previous measurements and a linear time-invariant
discrete-time (LTI) model of the process is investigated in
[19]–[21]. The main objective of the aforementioned studies is
to present sampling and transmission strategies that minimize
estimation errors, disregarding the importance of information
with respect to its utilization. Metrics that capture the se-
mantics and effectiveness of information, leveraging synergies
between data processing, information transmission, and signal
reconstruction have recently been introduced in [22]–[35].

B. Contributions
In this work, we consider the problem of real-time remote

tracking of an information source in a time slotted commu-
nication system. A sampler performs sampling of a two-state
Markov process, and then the transmitter sends the sample in
the form of packets to a remote receiver over an unreliable
wireless channel. Then, the real-time reconstruction of the
information source is performed at the receiver based on the
successfully received samples. The system is considered to be
in a synced state if the source state matches the state of the
reconstructed source, otherwise the system is in an erroneous
state. Furthermore, the receiver performs a specific action
according to the estimated state of the information source. This
paper extends the results of [23], [34] in which the problem
of real-time tracking and reconstruction of an information
source with the purpose of actuation is studied. These papers
proposed semantics-empowered policies to achieve significant
reduction in both the real-time reconstruction and the cost
of actuation errors. In this work, we introduce a new state-
aware sampling and transmission policy, and we evaluate its
performance in terms of a set of semantics-aware metrics that
capture the significance of information and various character-
istics of the system’s performance. Our key contributions are
summarized as follows:

1) We propose a state-aware randomized stationary sam-
pling and transmission policy, in which we consider
different sampling and success probabilities for different
states of the information source. This becomes relevant
to scenarios where the states encode commands for
actuation or other potential tasks, where different actions
have different importance, thus, is important to allow for
different sampling frequencies.

2) We analyze the performance of the proposed strategy
in terms of time-averaged reconstruction error, cost of
actuation error, and consecutive error metrics, and we
compare it with previous proposed joint sampling and
transmission policies [23], [33], [34].

3) We define a new timing-aware error metric, namely
importance-aware consecutive error metric, which jointly
captures both timing- and importance-related aspects of
errors. Specifically, this metric measures the impact on
the performance when the system remains in a specific
erroneous state for several consecutive time slots.

4) We solve the optimization problem of minimizing the
average cost of actuation error subject to a time-averaged

Source,X(t) Tx Rx X̂(t)

State-aware sampler

Fig. 1. Real-time remote tracking of an information source over a wireless
channel.

10

1 − p
p

1 − q

q

Fig. 2. DTMC describing the evolution of the information source X(t).

sampling cost constraint, as a means to reveal when
and under which conditions the proposed state-aware
randomized stationary policy outperforms state-of-the-art
alternatives.

II. SYSTEM MODEL

We consider a time slotted communication system in which
a sampler performs sampling of an information source X(t)
at time slot t, after which the transmitter sends the sample to
the receiver over a wireless channel, as shown in Fig. 1. The
remote receiver operates as an actuator and performs actions
based on the reconstructed state of the information source.
We model the information source as a two-state discrete time
Markov chain (DTMC) {X(t), t ∈ N}, depicted in Fig. 2.
Therein, the self-transition probability and the probability of
transition to another state at time slot t + 1 are defined as
follows

Pr
[
X(t+ 1) = i

∣∣X(t) = j
]
=


1− p, i = 0, j = 0

q, i = 0, j = 1

p, i = 1, j = 0

1− q, i = 1, j = 1.

(1)

In this paper, we consider different sampling and transmis-
sion actions for the states of the information source. We denote
the action of sampling at time slot t when the information
source is at state i (i = 0, 1) by αs

i(t), where αs
i(t) = 1 if

the source at state i is sampled and αs
i(t) = 0 otherwise.

Furthermore, when αs
i(t) = 1, the action of transmitting

the sample is denoted by αtx
i (t), where αtx

i (t) = 1 if the
sample is transmitted, otherwise the transmitter remains idle,
αtx
i (t) = 0. At time slot t, the receiver constructs an estimate

of the process X(t), denoted by X̂(t) based on successfully
received samples. The channel state hi(t) is equal to 1 if
the information source at state i is sampled and successfully
decoded by the receiver, and 0 otherwise. We define the
success probability when the information source at state i is
sampled and transmitted, as psi = Pr

[
hi(t) = 1

]
. Note that

allowing for different success probabilities can have interesting
connections with performing simple state-aware power control.
Successful/failed transmissions are declared to the transmitter
using acknowledgment (ACK)/negative-ACK packets, which
are assumed to be delivered instantaneously and error free
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to the transmitter1. Therefore, the transmitter has perfect
knowledge of the reconstructed source state at time slot t,
i.e., X̂(t) 2. We also assume that a sample is discarded when
its transmission fails.

III. SAMPLING AND TRANSMISSION POLICIES

We propose a new sampling and transmission policy, coined
state-aware randomized stationary, in which the generation
of a sample is triggered in a probabilistic manner at each
time slot. Specifically, we introduce a scheme that allows for
assigning different sampling probabilities for different states,
adjusting the sampling frequency depending on the importance
of the state. Consider, for example, the scenario where each
state is a command for a remote agent that requires to be
executed, and different commands are of different importance
or criticality. We assume that pαs

i
is the probability of joint

sampling and transmission actions when the source is at the
state i. Therefore, we define pαs

i
as follows

Pr
[
αs
i(t+ 1) = 1, αtx

i (t+ 1) = 1
]
= pαs

i
. (2)

The probability that the source at the state i is not sampled at
time slot t + 1 is Pr

[
αs
i(t + 1) = 0

]
= 1 − pαs

i
. In addition,

for comparison, we adopt three relevant policies proposed in
[23], [34]. Below we provide a short description of them.

1) Uniform: sampling is conducted periodically every d
time slots, independently of the evolution of the source
X(t). Therefore, the sampling time sequences are {tk =
kd, k ⩾ 1}. While this policy is simple and easy to
implement, several state transitions can be missed during
the time interval between two performed samples.

2) Change-aware: a new sample is generated when a change
in the state of the source X(t) is observed between two
consecutive time slots without considering whether the
system is in sync or not.

3) Semantics-aware: when the system is in a sync state, i.e.,
X(t) = X̂(t), a sample is generated if a change in the
source state is observed at the next time slot, i.e., X(t+
1) ̸= X(t). However, when the system is in an erroneous
state, i.e., X(t) ̸= X̂(t), a sample is generated if the
source state at the next time slot is not equal to the state
of the reconstructed source at time slot t, i.e., X(t+1) ̸=
X̂(t).

IV. PRELIMINARY PERFORMANCE ANALYSIS

In this section, we analyze the performance of state-aware
randomized stationary policy in terms of time-averaged recon-
struction error and average cost of actuation error.

1Actually, only the semantics-aware policy requires an ACK/NACK feed-
back channel.

2In this paper, since we do not consider any decoder/estimation policy, the
current state at the transmitter is the latest received update.

A. Real-time Reconstruction Error
The real-time reconstruction error captures the discrepancy

between the original source X(t) and the reconstructed source
X̂(t) at time slot t, i.e.,

E(t) =
∣∣∣X(t)− X̂(t)

∣∣∣ , (3)

where at time slot t, E(t) = 0 denotes the system is in the
sync state, while the erroneous state of the system is denoted
by E(t) ̸= 0. The time-averaged reconstruction error or the
probability that the system is in an erroneous state, PE , for
an observation interval [1, T ] with T being a large positive
number, is defined as [23], [34]

PE= lim
T→∞

1

T

T∑
t=1

1 (E(t) ̸=0)= lim
T→∞

1

T

T∑
t=1

1

(
X(t) ̸=X̂(t)

)
,

(4)

where 1(·) is the indicator function.
For a two-state DTMC information source, PE in (4) is

given by

PE = Pr[X(t) = 0, X̂(t) = 1] + Pr[X(t) = 1, X̂(t) = 0]

= π0,1 + π1,0, (5)

Note that π0,1 and π1,0 are the probabilities obtained from the
stationary distribution of the two-dimensional DTMC describ-
ing the joint status of the system regarding the current state at
the original source, i.e.,

(
X(t), X̂(t)

)
. To derive πi,j , (i, j) ∈

{0, 1}, we assume that when the sampler performs sampling,
the transmitter sends the sample in the form of packets during
the same time slot.

Lemma 1. For a two-state DTMC information source, the
stationary distribution πi,j for the state-aware randomized
stationary policy is given by3

π0,0 =
qpαs

0
ps0

[
q + (1− q)pαs

1
ps1

]
(p+ q)Φ

(
pαs

0
, pαs

1

) (6a)

π0,1 =
pqpαs

1
ps1

(
1− pαs

0
ps0

)
(p+ q)Φ

(
pαs

0
, pαs

1

) (6b)

π1,0 =
pqpαs

0
ps0

(
1− pαs

1
ps1

)
(p+ q)Φ

(
pαs

0
, pαs

1

) (6c)

π1,1 =
ppαs

1
ps1

[
p+ (1− p)pαs

0
ps0

]
(p+ q)Φ

(
pαs

0
, pαs

1

) , (6d)

where

Φ
(
pαs

0
, pαs

1

)
=ppαs

1
ps1

(
1−pαs

0
ps0

)
+pαs

0
ps0

(
q+(1−q)pαs

1
ps1

)
.

(7)

Proof. See Appendix A.

Using eqs. (6b) and (6c), the time-averaged reconstruction
error in (4) can be calculated as

PE = π0,1 + π1,0 =
pq
[
pαs

1
ps1 + pαs

0
ps0

(
1− 2pαs

1
ps1

)]
(p+ q)Φ

(
pαs

0
, pαs

1

) ,

(8)

3This work can be extended to more than two-state DTMC information
source. In Appendix B, we provide an example for the three-state DTMC
information source.
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where Φ
(
pαs

0
, pαs

1

)
is given in (7).

B. Cost of Actuation Error

This metric captures the significance of the error at the
receiver side and considers different cost or penalties for
different erroneous actions. To study the cost of actuation error
we define Ci,j the cost of error when the current state of the
source is i, and the reconstructed source is in state j ̸= i. It
is assumed that Ci,j does not change over time. Now, using
Ci,j , the average cost of actuation error for a two-state DTMC
can be calculated as follows

PC
E = C0,1π0,1 + C1,0π1,0, (9)

where using eqs. (6b) and (6c), we can write (9) as

PC
E =

pq
[
C0,1pαs

1
ps1

(
1−pαs

0
ps0

)
+C1,0pαs

0
ps0

(
1−pαs

1
ps1

)]
(p+ q)

[
ppαs

1
ps1

(
1−pαs

0
ps0

)
+pαs

0
ps0

(
q+(1−q)pαs

1
ps1

)] .
(10)

Remark 1. Using (39) and (41), we can prove that when
max{0, T1} ⩽ pαs

1
⩽ 1, the state-aware randomized sta-

tionary policy has lower average cost of actuation error as
compared to the semantics-aware policy for max{0, T2} ⩽
pαs

0
⩽ 1, where T1 and T2 are given by

T1 =
pC1,0 + C1,0ps0 − pC1,0ps0 − qC0,1(1− ps0)

C1,0(1− p)ps0 + pC1,0ps1 + C0,1(1− q)ps1 + qC0,1ps0

T2 = pαs
1

[
C0,1

(
q + (1− q)ps1

)
− pC1,0(1− ps1)

]
×
[
pαs

1

(
C1,0ps0(1−p)+pC1,0ps1+C0,1ps1(1−q)

+qC0,1ps0

)
−pC1,0−C1,0ps0+pC1,0ps0+qC0,1(1− ps0)

]−1

.

(11)

Also, when 0 ⩽ pαs
1

⩽ min{0, T1} and 0 ⩽ pαs
0

⩽
min{0, T2}, the state-aware randomized stationary policy has
lower average cost of actuation error in comparison with the
semantics-aware policy.

Remark 2. We can analytically prove that for
q2pαs

0
ps0

ps1

[
1−pαs

0
ps0

(
1+q(1−q)

)] ⩽ pαs
1

⩽ 1, the time-

averaged reconstruction error and the average cost
of actuation error are decreasing with p, when√

qpαs
0
ps0

(
q+(1−q)pαs

1
ps1

)
pαs

1
ps1

(
1−pαs

0
ps0

) < p ⩽ 1. Furthermore,

when
p2pαs

1
ps1

ps0

[
1−pαs

1
ps1

(
1+p(1−p)

)] ⩽ pαs
0

⩽ 1, the

time-averaged reconstruction error and the average
cost of actuation error are decreasing with q, for√

ppαs
0
ps0pαs

1
ps1+p2pαs

1
ps1

(
1−pαs

0
ps0

)
pαs

0
ps0

(
1−pαs

1
ps1

) < q ⩽ 1.

V. JOINT TIMING AND IMPORTANCE ERROR METRICS

In this section we consider the impact of timing and impor-
tance of errors, and we propose an extension of the consecutive

error metric, termed importance-aware consecutive errors,
which takes into account jointly both the timing and the
importance aspects of errors.

A. Consecutive Error Metric

The consecutive error metric, first introduced in [34], quan-
tifies the number of consecutive time slots during which the
system is in an erroneous state 4. This metric can be described
by a DTMC as depicted in Fig. 3. At time slot t, CE(t) = 0
denotes the synced state, whereas CE(t) = 1 ⩽ i ⩽ n − 1
denotes the number of consecutive time slots for which the
system is in an erroneous state. Furthermore, the transition
probability Pi,i+1 is defined as Pi,i+1 = Pr

[
CE(t + 1) =

i + 1
∣∣CE(t) = i

]
. For the state-aware randomized stationary

policy, this transition probability is given by

Pi,i+1 = Pr
[
CE(t+ 1) = i+ 1

∣∣CE(t) = i
]

=
Pr

[
CE(t) = i+ 1

]
Pr

[
CE(t) = i

] , ∀i ⩾ 0, (12)

where Pr[CE(t) = i] for i = 0 is equal to Pr
[
CE(t) = 0

]
=

π0,0 + π1,1, and for i ⩾ 1, it is calculated as (see Appendix
C)

Pr
[
CE(t) = i

]
=p(1−q)i−1

(
1−pαs

1
ps1

)i
π0,0+q(1−p)i−1

(
1−pαs

0
ps0

)i
π1,1,

(13)

where πi,j ,∀i, j ∈ {0, 1} was given in Lemma 1. Now,
using Pr

[
CE(t) = 0

]
= π0,0 + π1,1 and (13), the transition

probability given in (12) can be written as

P0,1 =
p
(
1− pαs

1
ps1

)
π0,0 + q

(
1− pαs

0
ps0

)
π1,1

π0,0 + π1,1
, (14a)

Pi,i+1

=
p(1−q)i

(
1−pαs

1
ps1

)i+1
π0,0+q(1−p)i

(
1−pαs

0
ps0

)i+1
π1,1

p(1−q)i−1
(
1−pαs

1
ps1

)i
π0,0+q(1−p)i−1

(
1−pαs

0
ps0

)i
π1,1

.

(14b)

Using (13), we can calculate the average consecutive error
C̄E as

C̄E =

∞∑
x=1

xPr
[
CE(t) = x

]
=

p
(
1− pαs

1
ps1

)
π0,0(

q + (1− q)pαs
1
ps1

)2 +
q
(
1− pαs

0
ps0

)
π1,1(

p+ (1− p)pαs
0
ps0

)2 . (15)

Note, that the convergence conditions for the previ-
ous expression are

∣∣(1− p)
(
1− pαs

0
ps0

)∣∣ < 1 and∣∣(1− q)
(
1− pαs

1
ps1

)∣∣ < 1.
In the following, we define the consecutive error violation

probability metric as the percentage of time during which
the system remains in an erroneous state for more than n

4A similar metric was defined first in [36] and then in [37].
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· · ·210

1− P0,1

P0,1 P1,2

1−P1,2

1− P2,3

P2,3

1− Pn,n+1

Fig. 3. DTMC describing the state of the consecutive error.

consecutive time slots. Therefore, using the expression given
in (13) and Lemma 1, we can write

Pr
[
CE(t) > n

]
=

∞∑
x=n+1

Pr
[
CE(t) = x

]
=

pqpαs
0
ps0

[
(1− q)

(
1− pαs

1
ps1

)]n+1

(1− q)(p+ q)Φ
(
pαs

0
, pαs

1

)
+

pqpαs
1
ps1

[
(1− p)

(
1− pαs

0
ps0

)]n+1

(1− p)(p+ q)Φ
(
pαs

0
, pαs

1

) , (16)

where n in (16) n is finite.

B. Importance-Aware Consecutive Errors

In this section, we introduce a new timing-aware error
metric as a means to capture the significance of a particular
erroneous action at the receiver side. For that, we propose the
importance-aware consecutive error metric, which is defined
as the number of consecutive time slots that the system is
in an particular erroneous state. Here, we assume that the
system is in an erroneous action when the state of the source
is 1

(
X(t) = 1

)
, and the reconstructed source is in state 0(

X̂(t) = 0
)
. Now, let S(t) ̸= 0 denote that the system is in

the mentioned erroneous state at time slot t, while the synced
state of the system is denoted by S(t) = 0. We also define
CS(t) as the consecutive error at time slot t when the system
is in the mentioned particular erroneous state. Now, we can
define the state evolution of consecutive error as follows

CS(t+ 1) =

{
CS(t) + 1, X(t+ 1) = 1, X̂(t+ 1) = 0

0, otherwise.
(17)

Using (17), we define the transition probability of CS(t) as

PS
i,i+1 = Pr

[
CS(t+ 1) = i+ 1

∣∣CS(t) = i
]

=
Pr

[
CS(t+ 1) = i+ 1

]
Pr

[
CS(t+ 1) = i

] . (18)

Now, using the similar procedure presented in Section V-A,
one can obtain Pr

[
CS(t) = i

]
as follows

Pr
[
CS(t) = i

]
=

{
1− π1,0, i = 0,

p(1− q)i−1
(
1− pαs

1
ps1

)i
π0,0, i ⩾ 1.

(19)

where π0,0 and π1,0 are given in Lemma 1. Now, using (19)
we can write (18) as

PS
i,i+1 =


p
(
1− pαs

1
ps1

)
π0,0

1− π1,0
, i = 0

(1− q)
(
1− pαs

1
ps1

)
, i ⩾ 1.

(20)

Remark 3. The transition probability PS
i,0 (i ⩾ 0), is defined

as PS
i,0 = 1− PS

i,i+1.

Now, using (19) and Lemma 1, the average importance-
aware consecutive error, C̄S , can be obtained as

C̄S =

∞∑
x=1

xPr
[
CS(t) = x

]
=

pqpαs
0
ps0

(
1− pαs

1
ps1

)
(p+ q)

(
q + (1− q)pαs

1
ps1

)
Φ
(
pαs

0
, pαs

1

) , pαs
0
, pαs

1
̸= 0,

(21)

where Φ
(
pαs

0
, pαs

1

)
is given in (7).

Remark 4. We would like to emphasize that since the metric
of importance-aware consecutive errors considers exclusively
the scenario of a specific error, this metric needs to be
studied in combination with another error metric, for instance,
considering a constrained optimization problem or combining
the metrics to form error vectors. This will become prominent
in the numerical results section.

VI. OPTIMIZATION PROBLEM

In this section, our objective is to find an optimal state-
aware randomized stationary sampling policy, which mini-
mizes the average cost of actuation error subject to a time-
averaged sampling cost constraint. Here, we assume that each
attempted sampling has a sampling cost δ, and that the time-
averaged sampling cost cannot exceed a certain threshold δmax.
Therefore, the optimization problem is formulated as

minimize
pαs

0
,pαs

1

PC
E (22a)

subject to lim
T→∞

1

T

T∑
t=1

δ1{αs
t = 1} ⩽ δmax, (22b)

where the constraint given in (22b) can be written as

lim
T→∞

1

T

T∑
t=1

δ1{αs
t=1}=δPr[X(t)=0]pαs

0
+δPr[X(t)=1]pαs

1

= δ
qpαs

0

p+ q
+ δ

ppαs
1

p+ q
. (23)

Now, using eqs. (9) and (23), the optimization problem can
be simplified as

minimize
pαs

0
,pαs

1

pqΨ
(
pαs

0
, pαs

1

)
(p+ q)Φ

(
pαs

0
, pαs

1

) (24a)

subject to qpαs
0
+ ppαs

1
⩽ η(p+ q), (24b)

where η = δmax/δ, Ψ
(
pαs

0
, pαs

1

)
= C0,1pαs

1
ps1

(
1− pαs

0
ps0

)
+

C1,0pαs
0
ps0

(
1− pαs

1
ps1

)
, and Φ

(
pαs

0
, pαs

1

)
is given by (7).
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To solve this optimization problem, we first note that the
objective function in (24a) is decreasing with pαs

0
, i.e., ∂PC

E

∂pαs
0

<

0, when

pαs
1
⩾

pC1,0 − qC0,1

ps1

(
pC1,0 + (1− q)C0,1

) . (25)

Also, the objective function is decreasing with pαs
1

when

pαs
0
⩾

qC0,1 − pC1,0

ps0

(
qC0,1 + (1− p)C1,0

) . (26)

Based on (25) and (26), we consider two cases: one with
pC1,0 ⩾ qC0,1 and one other with pC1,0 < qC0,1.

1) When pC1,0 ⩾ qC0,1: in this case, we can always find
a probability pαs

0
∈ [0, 1] that satisfies the condition

given in (26). Therefore, since pαs
0
⩾ 0, using (26), the

objective function has its minimum value when pαs
1

is
maximized. Now, using the constraint given in (24b), the
maximum value of pαs

1
is

pαs
1
=

η(p+ q)− qpαs
0

p
. (27)

Using (27), the optimization problem can be written as

minimize
pαs

0

F

G
(28a)

subject to pLB
αs

0
⩽ pαs

0
⩽ pUB

αs
0
, (28b)

where F , G, pLB
αs

0
, and pUB

αs
0

are given by

F = A1p
2
αs

0
+A2pαs

0
+A3, G = B1p

2
αs

0
+B2pαs

0
+B3.

pLB
αs

0
= max

{
0,

η(p+q)−p

q

}
, pUB

αs
0
=min

{
1,

η(p+ q)

q

}
,

(29)

where Ai, and Bi ∀i ∈ {1, 2, 3}, are given by

A1 = pq2ps0ps1

(
C0,1 + C1,0

)
A2 = pq

[
C1,0pps0

(
1− ηps1

)
− qC0,1ps1 − qηC1,0ps0ps1

− η(p+ q)C0,1ps0ps1

]
A3 = pq(p+ q)ηC0,1ps1

B1 = (p+ q)
[
pqps0ps1 − q(1− q)ps0ps1

]
B2 = (p+ q)

[
pqps0 − pqps1 − ηp(p+ q)ps0ps1

+ η(1− q)(p+ q)ps0ps1

]
B3 = ηpps1(p+ q)2. (30)

To determine the value of pαs
0

that minimizes the ob-
jective function in (28a), we need to calculate the crit-
ical points of the objective function within the interval[
pLB
αs

0
, pUB

αs
0

]
. When

(
2A1B3 − 2A3B1

)2
⩾ 4

(
A1B2 −

A2B1

)(
A2B3−A3B2

)
, one can obtain the critical points

of the objective function by taking the first derivative
∂

∂pαs
0

(
F
G

)
= 0 as5

pαs
0
=

2
(
A3B1 −A1B3

)
±

√
∆

2
(
A1B2 −A2B1

) , A1B2 ̸= A2B1

(31a)

pαs
0
=

A3B2−A2B3

2
(
A1B3−A3B1

) , A1B2=A2B1, A1B3 ̸=A3B1,

(31b)

where Ai, and Bi are given in (30) and ∆ can be written
as

∆=
(
2A1B3−2A3B1

)2−4(A1B2−A2B1

)(
A2B3−A3B2

)
.

(32)

Note that we consider only the value of pαs
0

in (31) within
the interval

[
pLB
αs

0
, pUB

αs
0

]
. Now, we evaluate the objective

function at the critical points, as well as at points pLB
αs

0
and

pUB
αs

0
. The minimum value of the objective function within

the given interval corresponds to the smallest value.
After determining the value of pαs

0
that minimizes the

objective function, we can calculate pαs
1

by utilizing the
expression given in (27). We note that the values of pαs

0

and pαs
1

obtained by solving the optimization problem in
(28), are the optimal values of the sampling probabilities
when pαs

1
⩾ pC1,0−qC0,1

ps1

(
pC1,0+(1−q)C0,1

) . Otherwise, the optimal

values of sampling probabilities pαs
0

and pαs
1

are given
by

p∗αs
0
= 0, p∗αs

1
= min

{
1,

η(p+ q)

p

}
. (33)

This is because using (25), as pαs
1

<
pC1,0−qC0,1

ps1

(
pC1,0+(1−q)C0,1

) , the objective function in (24a) is

increasing with pαs
0
. Therefore, the optimal values of the

sampling probabilities are given by (33).
Remark 5. When pC1,0 ⩾ qC0,1 and ps1 <

pC1,0−qC0,1

pC1,0+(1−q)C0,1
, we cannot find a probability pαs

1
∈ [0, 1]

that satisfies the condition given in (25). Therefore, in that
case, the optimal values of pαs

0
and pαs

1
that minimize

the objective function in (24a) are given by p∗αs
0
= 0 and

p∗αs
1
= min

{
1, η(p+q)

p

}
.

2) When pC1,0 < qC0,1: in this case, since pαs
1
⩾ 0, using

(25), as pαs
0

increases, the objective function in (24a)
decreases. Using the constraint in (24b), the maximum
value of pαs

0
is given by

pαs
0
=

η(p+ q)− ppαs
1

q
. (34)

Now, using (34), the optimization problem given in (24)
is simplified as

minimize
pαs

0

H

K
(35a)

subject to pLB
αs

1
⩽ pαs

1
⩽ pUB

αs
1
, (35b)

5When ∆ in (32) is negative, the optimal value of pαs
0

that minimizes the
objective function in (28a) is equal to pLB

αs
0

if A1B2 > A2B1 and pUB
αs
0

if
A1B2 < A2B1.
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where H , K, pLB
αs

1
, and pUB

αs
1

are given by

H=pq

[
C1,0ps0

(
1− pαs

1
ps1

)(
ppαs

1
− η(p+ q)

)
− C0,1pαs

1
ps1

(
q + ppαs

1
ps0 − ηps0(p+ q)

)]
K=

(
p+q

)[
ηps0(p+ q)

(
pαs

1
ps1(p+q−1)−q

)
−ppαs

1

(
q(ps1−ps0)+ps0pαs

1
ps1(p+q−1)

)]
(36)

pLB
αs

1
= max

{
0,

η(p+q)−q

p

}
, pUB

αs
1
=min

{
1,

η(p+ q)

p

}
.

(37)

Similar to the case when pC1,0 ⩾ qC0,1, we can obtain
pαs

1
that minimizes the objective function in (35a) by cal-

culating its critical points within the interval
[
pLB
αs

1
, pUB

αs
1

]
.

Then, we obtain pαs
0

using (34). We can similarly prove
that when pαs

0
⩾ qC0,1−pC1,0

ps0

(
qC0,1+(1−p)C1,0

) , pαs
0

and pαs
1

de-

rived by solving the optimization problem in (35), are the
optimal values of the sampling probabilities. Otherwise,
the optimal values of the sampling probabilities are equal
to p∗αs

0
= min

{
1, η(p+q)

q

}
and p∗αs

1
= 0.

Remark 6. In what follows, RS and RSC policies are the
abbreviations for the state-aware randomized stationary pol-
icy and the state-aware randomized stationary policy in the
constrained optimization problem, respectively.

VII. SIMULATION RESULTS

In this section, we validate our analytical results and evalu-
ate the performance of the sampling policies in terms of time-
averaged reconstruction error and the average cost of actuation
error under various system parameters. In the uniform policy,
a sample is acquired every 5 time slots. Simulation results are
obtained averaging over 107 time slots.

In Tables I through VI, we illustrate the minimum average
cost of actuation error when C0,1 = 1, C1,0 = 2 under a
sampling cost constraint for η = 0.5, and various values of p,
q, ps0 , and ps1 . As seen in these Tables, when pC1,0 ⩾ qC0,1,
the average cost of actuation error has its minimum value
when pαs

1
is greater than pαs

0
. Otherwise, the minimum average

cost of actuation error occurs for pαs
0
> pαs

1
. Note also that

for the lower successful probabilities, the minimum average
cost of actuation error occurs at small values of p∗αs

0
and

p∗αs
1
, where pC1,0 ⩾ qC0,1 and qC0,1 > pC1,0, respectively.

Furthermore, we observe that the optimal RSC policy exhibits
superior performance than the semantics-aware policy under
the conditions given in Remark 1, for both slow and fast
changing the information source. Otherwise, when Remark 1 is
not satisfied, the semantics-aware policy performs better only
when the source is slowly evolving. Note that the optimal
values in red color for the semantics-aware, change-aware,
and RS policies are obtained for values of p, q, ps0 , and ps1
that do not satisfy the constraint requirement. This means
that in the unconstrained scenario, the performance of the
optimal RS policy is either better or the same as that of the

TABLE I
MINIMUM AVERAGE COST OF ACTUATION ERROR FOR RSC STATE-AWARE WITH

η = 0.5, C0,1 = 1, C1,0 = 2, pS0
= 0.2, pS1

= 0.3, AND DIFFERENT VALUES OF

p AND q.

p q p∗
αs
0

p∗
αs
1

Minimum average cost of actuation error

0.1 0.01 0.083 0.542 0.091
0.3 0.1 0 0.667 0.25
0.5 0.4 0 0.9 0.444
0.7 0.8 0 1 0.533
0.9 0.95 0 1 0.513

TABLE II
MINIMUM AVERAGE COST OF ACTUATION ERROR FOR η = 0.5, C0,1 = 1,
C1,0 = 2, pS0

= 0.2, pS1
= 0.3, AND DIFFERENT VALUES OF p AND q.

p q Semantics-aware Change-aware Uniform RSC RS
0.1 0.01 0.055 0.628 0.131 0.091 0.055
0.3 0.1 0.267 0.613 0.417 0.25 0.25
0.5 0.4 0.489 0.596 0.638 0.444 0.444
0.7 0.8 0.571 0.588 0.683 0.533 0.533
0.9 0.95 0.587 0.589 0.677 0.513 0.513

semantics-aware policy. However, in this case, the optimal
solution for the RS policy is to sample and transmit at most
of the time slots, resulting in an excessive amount of samples
being generated.

The optimal values for sampling probabilities in the un-
constrained scenario are shown in Tables III and VI. As
observed in these Tables, for all values of p and q, we
have pC1,0 ⩾ qC0,1. Consequently, the optimal value of
p∗αs

1
is 1. Furthermore, for values of p and q where ps1 <

pC1,0−qC0,1

pC1,0+(1−q)C0,1
, the optimal value of p∗αs

0
is 0; otherwise,

p∗αs
0
= 1. This implies that when the success probability of

a state is low, the optimal solution is to refrain from sampling
for the state that causes the less important error in terms of
actuation, while for a higher success probability, the optimal
solution is to always perform sampling.

The performance of the optimal state-aware randomized
stationary policy in terms of time-averaged reconstruction
error as a function of η for ps0 = 0.5, ps1 = 0.6, and different
values of p, and q is shown in Tables VII - X. We observe

TABLE III
MINIMUM AVERAGE COST OF ACTUATION ERROR FOR RS STATE-AWARE WITH

η = 0.5, C0,1 = 1, C1,0 = 2, pS0 = 0.2, pS1 = 0.3, AND DIFFERENT VALUES OF

p AND q.

p q p∗
αs
0

p∗
αs
1

Minimum average cost of actuation error

0.1 0.01 1 1 0.055
0.3 0.1 0 1 0.25
0.5 0.4 0 1 0.444
0.7 0.8 0 1 0.533
0.9 0.95 0 1 0.513

TABLE IV
MINIMUM AVERAGE COST OF ACTUATION ERROR FOR RSC STATE-AWARE WITH

η = 0.5, C0,1 = 1, C1,0 = 2, pS0
= 0.6, pS1

= 0.6, AND DIFFERENT VALUES OF

p AND q.

p q p∗
αs
0

p∗
αs
1

Minimum average cost of actuation error

0.1 0.01 0.730 0.477 0.049
0.3 0.1 0.155 0.615 0.241
0.5 0.4 0.171 0.763 0.422
0.7 0.8 0.200 0.842 0.501
0.9 0.95 0.127 0.893 0.503
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TABLE V
MINIMUM AVERAGE COST OF ACTUATION ERROR FOR η = 0.5, C0,1 = 1,
C1,0 = 2, pS0

= 0.6, pS1
= 0.6, AND DIFFERENT VALUES OF p AND q.

p q Semantics-aware Change-aware Uniform RSC RS
0.1 0.01 0.017 0.545 0.092 0.049 0.017
0.3 0.1 0.118 0.5 0.404 0.241 0.118
0.5 0.4 0.278 0.444 0.640 0.422 0.278
0.7 0.8 0.373 0.419 0.686 0.501 0.373
0.9 0.95 0.414 0.424 0.690 0.503 0.414

TABLE VI
MINIMUM AVERAGE COST OF ACTUATION ERROR FOR RS STATE-AWARE WITH

η = 0.5, C0,1 = 1, C1,0 = 2, pS0
= 0.6, pS1

= 0.6, AND DIFFERENT VALUES OF

p AND q.

p q p∗
αs
0

p∗
αs
1

Minimum average cost of actuation error

0.1 0.01 1 1 0.017
0.3 0.1 1 1 0.118
0.5 0.4 1 1 0.278
0.7 0.8 1 1 0.373
0.9 0.95 1 1 0.414

that the time-averaged reconstruction error has a smaller value
as η increases. This is because η is the threshold of the total
time-averaged sampling cost, thus a higher value of η results in
higher sampling probabilities which in turn decreases the time-
averaged reconstruction error, as demonstrated by Tables VIII
and X, q > p and ps0 > q−p

1+q−p . Hence, the minimum time-
averaged reconstruction error in the unconstrained scenario is
obtained with p∗αs

0
= 1 and p∗αs

1
= 1.

Figs. 4, and 5 show the average consecutive error contour
plots as a function of pαs

0
and pαs

1
for p > q, considering

the slow and rapid changes of the source, respectively. As
illustrated in Fig. 4, when the source changes slowly, the
minimum average consecutive error occurs at high values
of pαs

0
and pαs

1
. In addition, as observed in Fig. 5, when

the source changes rapidly and success probabilities are low,
the average consecutive error decreases with a high value
of pαs

1
and a low value of pαs

0
. Furthermore, when success

probabilities are high, the average consecutive error has its
minimum value as pαs

0
and pαs

1
increase. Also, note that

these figures can be used to obtain the optimal values of
sampling probabilities. Another noteworthy result is that as the

TABLE VII
MINIMUM TIME-AVERAGED RECONSTRUCTION ERROR AS A FUNCTION OF η FOR

RSC STATE-AWARE WITH pS0
= 0.5, pS1

= 0.6, p = 0.2 AND q = 0.4.

η p∗
αs
0

p∗
αs
1

Minimum time-averaged reconstruction error

0.1 0.15 0 0.333
0.3 0.394 0.112 0.325
0.5 0.556 0.387 0.277
0.7 0.722 0.655 0.224
0.9 0.889 0.922 0.174

TABLE VIII
MINIMUM TIME-AVERAGED RECONSTRUCTION ERROR AS A FUNCTION OF η FOR

pS0 = 0.5, pS1 = 0.6, p = 0.2 AND q = 0.4.

η Semantics-aware Change-aware Uniform RSC RS
0.1 0.151 0.333 0.374 0.333 0.151
0.3 0.151 0.333 0.374 0.325 0.151
0.5 0.151 0.333 0.374 0.277 0.151
0.7 0.151 0.333 0.374 0.224 0.151
0.9 0.151 0.333 0.374 0.174 0.151

TABLE IX
MINIMUM TIME-AVERAGED RECONSTRUCTION ERROR FOR RSC STATE-AWARE WITH

AS A FUNCTION OF η FOR pS0
= 0.5, pS1

= 0.6, p = 0.6 AND q = 0.7.

η p∗
αs
0

p∗
αs
1

Minimum time-averaged reconstruction error

0.1 0.184 0.002 0.461
0.3 0.374 0.214 0.430
0.5 0.565 0.424 0.386
0.7 0.757 0.633 0.338
0.9 0.949 0.842 0.287

TABLE X
MINIMUM TIME-AVERAGED RECONSTRUCTION ERROR AS A FUNCTION OF η FOR

pS0 = 0.5, pS1 = 0.6, p = 0.6 AND q = 0.7.

η Semantics-aware Change-aware Uniform RSC RS
0.1 0.260 0.317 0.459 0.461 0.260
0.3 0.260 0.317 0.459 0.430 0.260
0.5 0.260 0.317 0.459 0.386 0.260
0.7 0.260 0.317 0.459 0.338 0.260
0.9 0.260 0.317 0.459 0.287 0.260

success probabilities increase, we can achieve a comparable
average consecutive error with smaller sampling probabilities
compared to situations where the success probabilities are
lower. For example, when p = 0.3 and q = 0.2, with ps0 = 0.2
and ps1 = 0.3, the minimum average consecutive error is
approximately 0.65, which is achieved by setting pαs

0
= 1

and pαs
1
= 1. However, for ps0 = 0.7 and ps1 = 0.8, the

similar average consecutive error value can be obtained by
using pαs

0
= 0.2 and pαs

1
= 1.

The average importance-aware consecutive error as a func-
tion of pαs

0
and pαs

1
for slowly and rapidly changing infor-

mation source, and selected values of success probabilities, is
presented in Figs. 6 and 7. In this analysis, we focus on the
particular erroneous state where X(t) = 1 and X̂(t) = 0. As
seen in these figures, the average importance-aware consecu-
tive error is minimized when pαs

1
is at its maximum and pαs

0

is at its minimum. The reason behind this is that when we
have poor channel conditions, successful transmission of the
less important state can have a negative impact since when
the source will transit to the important state, the destination
may miss that transition due to a potentially unsuccessful
transmission. Thus, in that case, it may be preferable to avoid
performing sampling in the less important state. To avoid such
cases, this metric has to be considered and optimized in com-
bination with other error metrics, such as the time-averaged
reconstruction error. This is because a decrease in pαs

0
may

lead to an increase in the time-averaged reconstruction error,
depending on the other system parameters. This increase can
have significant consequences for the overall performance of
such systems. Therefore, it is crucial to consider the interplay
between the average importance-aware consecutive error and
the time-averaged reconstruction error. Tables XI and XII
illustrate the average importance-aware consecutive error and
time-averaged reconstruction error as a function of pαs

0
and

pαs
1

for ps0 = 0.4, ps1 = 0.7, p = 0.5, and q = 0.9. Here we
intend to find sampling probabilities pαs

0
and pαs

1
to keep the

average importance-aware consecutive error and time-averaged
reconstruction error below predefined thresholds I1 and I2,
respectively. For example, we assume that the thresholds are
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(a) ps0 = 0.2, ps1 = 0.3

(b) ps0 = 0.7, ps1 = 0.8

Fig. 4. Average consecutive error as a function of pαs
0

and pαs
1

for a slowly
changing source with p = 0.3, q = 0.2.

equal to I1 = 0.1, and I2 = 0.3. As seen in these tables, we
can achieve our purpose by setting pαs

0
= 1, and pαs

1
= 0.9

or 1. However, when I1 = 0.1, and I2 = 0.2, we cannot find
sampling probabilities pαs

0
and pαs

1
to fulfill our objective.

While if we only consider the average importance-aware
consecutive error metric, we could achieve our purpose by
setting pαs

0
= 0.1 and pαs

1
= 1.

TABLE XI
AVERAGE IMPORTANCE-AWARE CONSECUTIVE ERROR FOR pS0 = 0.4, pS1 = 0.7,

p = 0.5 AND q = 0.9, AND SELECTED VALUES OF pαS
0

AND pαS
1

.

pαs
0

pαs
1 0.1 0.3 0.5 0.7 0.9 1

0.1 0.189 0.079 0.043 0.025 0.014 0.010
0.3 0.283 0.163 0.101 0.063 0.037 0.028
0.5 0.315 0.205 0.136 0.089 0.055 0.042
0.7 0.330 0.231 0.161 0.109 0.069 0.053
0.9 0.340 0.248 0.179 0.124 0.081 0.062
1 0.343 0.256 0.186 0.131 0.086 0.066

VIII. CONCLUSIONS

In this work, we considered a time slotted communication
system where sampling and transmission over a wireless era-

(a) ps0 = 0.2, ps1 = 0.3

(b) ps0 = 0.7, ps1 = 0.8

Fig. 5. Average consecutive error as a function of pαs
0

and pαs
1

for a rapidly
changing source with p = 0.8, q = 0.1.

TABLE XII
TIME-AVERAGED RECONSTRUCTION ERROR FOR pS0

= 0.4, pS1
= 0.7, p = 0.5

AND q = 0.9, AND SELECTED VALUES OF pαS
0

AND pαS
1

.

pαs
0

pαs
1 0.1 0.3 0.5 0.7 0.9 1

0.1 0.480 0.545 0.566 0.577 0.584 0.586
0.3 0.398 0.443 0.466 0.480 0.490 0.494
0.5 0.371 0.391 0.403 0.411 0.418 0.420
0.7 0.358 0.358 0.359 0.360 0.361 0.362
0.9 0.349 0.337 0.328 0.321 0.314 0.312
1 0.346 0.329 0.315 0.304 0.294 0.291

sure channel is performed in order to track a two-state Markov
process. We proposed a state-aware randomized stationary,
which considers varying sampling and success probabilities
for different states of the source. We then analyzed the
system performance in terms of set of metrics, namely time-
averaged reconstruction error, average cost of actuation error,
consecutive error, and importance-aware consecutive error.
Furthermore, we cast and solved the optimization problem of
minimizing the average cost of actuation error while keeping
the time-averaged sampling cost constraint less than a given
threshold. Our results illustrated that the optimal state-aware
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(a) ps0 = 0.5, ps1 = 0.5

(b) ps0 = 0.9, ps1 = 0.8

Fig. 6. Average importance-aware consecutive error as a function of pαs
0

and
pαs

1
for a slowly changing source with p = 0.1, q = 0.2.

randomized stationary policy exhibits superior performance
compared to other state-of-the-art policies when there is a
constraint on the sampling cost, in particular when the source
varies quickly. Specifically, it performs better for fast changes
in the source and can also perform well for slow changes under
certain conditions. APPENDIX

A. Proof of Lemma 1
To obtain πi,j we depict the two-dimensional DTMC de-

scribing the joint status of the system regarding the current
state at the original source, i.e., (X(t), X̂(t)) in Fig. 8, where
P0, P1, P2, and P3 are given by

P0 = Pr
[
Xt+1 = 1, X̂t+1 = 0

∣∣Xt = 0, X̂t = 0
]

= ppαs
1
(1− ps1) + p(1− pαs

1
)

P1 = Pr
[
Xt+1 = 0, X̂t+1 = 1

∣∣Xt = 0, X̂t = 1
]

= (1− p)pαs
0
(1− ps0) + (1− p)(1− pαs

0
)

P2 = Pr
[
Xt+1 = 1, X̂t+1 = 0

∣∣Xt = 1, X̂t = 0
]

= (1− q)pαs
1
(1− ps1) + (1− q)(1− pαs

1
)

P3 = Pr
[
Xt+1 = 0, X̂t+1 = 1

∣∣Xt = 1, X̂t = 1
]

= qpαs
0
(1− ps0) + q(1− pαs

0
). (38)

(a) ps0 = 0.5, ps1 = 0.5

(b) ps0 = 0.9, ps1 = 0.8

Fig. 7. Average importance-aware consecutive error as a function of pαs
0

and
pαs

1
for a rapidly changing source with p = 0.8, q = 0.9.

(0, 0)

(0, 1)

(1, 0)

(1, 1)1 − p

ppαs
1
ps1

P0

P1

(1 − p)pαs
0
ps0 p

P2

q
(1 − q)pαs

1
ps1

1 − q

P3

qpαs
0
ps0

Fig. 8. Two-dimensional DTMC describing the joint status of the system
regarding the current state at the original source using a two-state information
source model.

Now, using Fig. 8 and (38), we can obtain state stationary



11

πi,j ,∀i, j ∈ {0, 1}, as follows

π0,0 =
qpαs

0
ps0

[
q + (1− q)pαs

1
ps1

]
(p+ q)Φ

(
pαs

0
, pαs

1

)
π0,1 =

pqpαs
1
ps1

(
1− pαs

0
ps0

)
(p+ q)Φ

(
pαs

0
, pαs

1

)
π1,0 =

pqpαs
0
ps0

(
1− pαs

1
ps1

)
(p+ q)Φ

(
pαs

0
, pαs

1

)
π1,1 =

ppαs
1
ps1

[
p+ (1− p)pαs

0
ps0

]
(p+ q)Φ

(
pαs

0
, pαs

1

) , (39)

where Φ
(
pαs

0
, pαs

1

)
is given in (7). For the change-aware

policy, (39) can be written as

π0,0 =
qps0

(p+ q)
(
ps0 + ps1 − ps0ps1

) ,
π0,1 =

qps1

(
1− ps0

)
(p+ q)

(
ps0 + ps1 − ps0ps1

)
π1,0 =

pps0

(
1− ps1

)
(p+ q)

(
ps0 + ps1 − ps0ps1

)
π1,1 =

pps1

(p+ q)
(
ps0 + ps1 − ps0ps1

) . (40)

Furthermore, for the semantics-aware policy πi,j is given by

π0,0 =
qps0

[
q + (1− q)ps1

]
(p+ q)

[
qps0 + (1− q)ps0ps1 + pps1(1− ps0)

]
π0,1 =

pqps1

(
1− ps0

)
(p+ q)

[
qps0 + (1− q)ps0ps1 + pps1(1− ps0)

]
π1,0 =

pqps0

(
1− ps1

)
(p+ q)

[
qps0 + (1− q)ps0ps1 + pps1(1− ps0)

]
π1,1 =

pps1

[
p+ (1− p)ps0

]
(p+ q)

[
qps0 + (1− q)ps0ps1 + pps1(1− ps0)

] . (41)

B. Three-state DTMC information source

For a three-state DTMC information source model depicted
in Fig. 9, the stationary distribution πi,j for the state-aware
randomized stationary policy is given by

210

1− 2p

p

p

1− p− q

q

p

1− 2q

q

q

Fig. 9. The three-state DTMC model describing the evolution of the
information source.

π0,0 =
1

Z1

[
q2(3p− 1)pα0

ps0pα1
ps1

(
p
(
pα2

ps2 − 1
)
− 2q

+ (2q−1)pα2ps2

)][
p
(
pα1ps1−1

)(
(q−1)pα2ps2−q

)
+
(
pα1

ps1(q − 1)− q
)(
(2q − 1)pα2

ps2 − 2q
)]
, (42)

π0,1 =
1

Z1

[
pq2(3p− 1)pα1

ps1

(
pα0

ps0 − 1
)(

p
(
pα2

ps2 − 1
)

− 2q + (2q − 1)pα2
ps2

)][
2ppα2

ps2

(
pα1

ps1 − 1
)

− qpα2
ps2 + pα1

ps1

(
4qpα2

ps2 − 2pα2
ps2 − 3q

)]
, (43)

π0,2 =
1

Z2

[
pqpα2ps2

(
p
(
pα1ps1 − 1

)
−2q+(2q−1)pα1ps1

)]
,

(44)

π1,0 =
1

Z1

[
pq2(3p−1)pα0

ps0pα1
ps1

(
pα1

ps1−1
)(
p
(
pα2

ps2−1
)

+ (2q − 1)pα2
ps2 − 2q

)(
(3q − 1)pα2

ps2 − 3q
)]
, (45)

π1,1 =
1

Z1

[
pq(3p− 1)pα1

ps1

(
2ppα2

ps2

(
pα1

ps1 − 1
)

− qpα2
ps2 + pα1

ps1

(
4qpα2

ps2 − 2pα2
ps2 − 3q

))]
×
[
p
(
pα0

ps0 − 1
)(

− 3q + (3q − 2)pα2
ps2

)
+ pα0ps0

(
2q + pα2ps2(1− 2q)

)]
, (46)

π1,2 =
1

Z2

[
pqpα2

ps2(1− 3p)
(
1− pα1

ps1

)]
, (47)

π2,0 =
1

Z1

[
pq2(3p− 1)pα0ps0pα1ps1

(
pα2ps2 − 1

)
×
(
2p

(
pα1ps1 − 1

)
+ (q − 1)pα1ps1 − q

)
×
(
p
(
pα2ps2 − 1

)
− 2q + (2q − 1)pα2ps2

)]
, (48)

π2,1 =
1

Z1

[
qp2(3p−1)pα1

ps1

(
pα2

ps2−1
)(

2p
(
pα0

ps0 − 1
)

+ (q−1)pα0
ps0−q

)][
2ppα2

ps2

(
pα1

ps1−1
)
−qpα2

ps2

+ pα1
ps1

(
4qpα2

ps2 − 2pα2
ps2 − 3q

)]
, (49)

π2,2 =
1

Z2

[
ppα2

ps2

(
p+ 2p2

(
pα1

ps1 − 1
)
+ p(q − 3)pα1

ps1

+ q − pq + pα1
ps1(1− q)

)]
. (50)

where Z1 and Z2 in eqs. (42) to (50) are given by

Z1 = (2p+ q)
[
2p3pα2ps2

(
pα1ps1 − 1

)
+ qpα1

ps1

(
2q + pα2

ps2(1− 2q)
)
+ p2

(
− 3qpα1

ps1

+ pα2
ps2

(
1−5q+pα1

ps1(8q−3)
))

+p
(
−2q(q−1)pα2

ps2

+ pα1ps1

(
q − 6q2 + pα2ps2

(
1− 7q + 8q2

)))]
×
[
2p2pα2ps2

(
pα0ps0 − 1

)(
pα1ps1 − 1

)
+ pα0ps0

(
pα1ps1(q − 1)− q

)(
− 2q + pα2ps2(2q − 1)

)
+ p

(
qpα2

ps2 + pα1
ps1

(
3q + (2− 4q)pα2

ps2

)
+pα0ps0

(
q−4qpα1ps1+pα2ps2

(
1−2q+pα1ps1(5q−3)

)))]
,

(51)
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Z2 = 2p3pα2
ps2

(
pα1

ps1−1
)
+qpα1

ps1

(
2q+pα2

ps2(1−2q)
)

+ p2
(
− 3qpα1

ps1 + pα2
ps2

(
1− 5q + pα1

ps1(8q − 3)
))

+p
(
2q(1−q)pα2ps2+pα1ps1

(
q−6q2+pα2ps2(1−7q+8q2)

))
.

(52)

C. Proof of Equation (13)

CE(t) = i (i ⩾ 1) means that the system was in a synced
state at time slot t−i, and it has been in an erroneous state from
time slots t− i+ 1 to t. Therefore, to obtain Pr

[
CE(t) = i

]
,

we need to calculate

Pr
[
CE(t) = i

]
= Pr

[
E(t) ̸=0,· · ·, E(t−i+1) ̸=0, E(t−i)=0

]
= Pr

[
E(t) ̸=0,· · ·, E(t−i+1) ̸=0

∣∣X(t−i)=0, E(t−i)=0
]

× Pr
[
X(t− i) = 0, E(t− i) = 0

]
+ Pr

[
E(t) ̸=0,· · ·, E(t−i+1) ̸=0

∣∣X(t−i)=1, E(t−i)=0
]

× Pr
[
X(t− i) = 1, E(t− i) = 0

]
, (53)

where the first conditional probability in (53) can be written
as

Pr
[
E(t) ̸=0,· · ·, E(t−i+1) ̸=0

∣∣X(t−i)=0, E(t−i)=0
]

=Pr
[
X(t−i+1)=1, X̂(t−i+1)=0

∣∣X(t−i)=0, X̂(t−i)=0
]

×
(
i ⩾ 2

){ −1∏
j=1−i

Pr
[
X(t+j+1)=1, X̂(t+j+1)=0

∣∣X(t+j)=1, X̂(t+j)=0
]}

= p(1− q)i−1
(
1− pαs

1
ps1

)i
.

(54)

Similarly, one can obtain the second conditional probability in
(53) as

Pr
[
E(t) ̸=0,· · ·, E(t−i+1) ̸=0

∣∣X(t−i)=1, E(t−i)=0
]

= q(1− p)i−1
(
1− pαs

0
ps0

)i
. (55)

Now, using Lemma 1, (54) and (55), we can write (53) as

Pr
[
CE(t) = i

]
=p(1−q)i−1

(
1−pαs

1
ps1

)i
π0,0+q(1−p)i−1

(
1−pαs

0
ps0

)i
π1,1.

(56)
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