
THESE DE DOCTORAT DE

SORBONNE UNIVERSITE
préparée à EURECOM

École doctorale EDITE de Paris n◦ ED130
Spécialité: «Informatique, Télécommunications et Électronique»

Sujet de la thèse:

Fuzzing in the 2020s:

Novel Approaches and Solutions

Thèse présentée et soutenue à Biot, le 8/12/2023, par

Andrea Fioraldi

devant le jury composé de:

Rapporteur &
Président Prof. Mathias Payer EPFL

Rapporteur Prof. Marcel Böhme Max Planck Institute for
Security and Privacy

Examinateur Prof. Marius Muench University of Birmingham

Examinateur Prof. Melek Önen EURECOM

Directeur de thèse Prof. Davide Balzarotti EURECOM

Preface

My PhD journey has been filled with exciting challenges and incredible
support from those around me. Solving these challenges would not have
been possible without the people who have been there with me.

This thesis, the cumulative results of 3 years of work, joy, delusions, and
countless chess matches, is the output of a collaborative effort between all
the people around me and me, not only those who put a significant amount
of work in advancing the state-of-the-art in fuzz testing, but also those who
supported me with friendship and encouragement.

Aristotle stated that friendship is “one soul dwelling in two bodies”;
thus, my contributions to the scientific community also belong to those who
are always with me, even if physically not.

Acknowledgements

I want to express my heartfelt thanks to my family, mother, father, sister,
and to who is not anymore here but encouraged me for all these years to be
the best version of me possible.

No words are needed for my lifelong friends, I promise this is the last
degree that I get.

Thank you to the new friends who were with me along this path, even
if some of you just for a few months.

To my advisor, for dealing with a rather “uncommon” PhD student, and
the colleagues who exchanged precious knowledge with me, thank you.

I’m grateful also to the organization, AFLplusplus, and its members,
who shared with me most of the crazy things we did in these three years.

Lastly, I want to thank my fellow hacker’s friends, mHACKeroni and
more, we hacked a satellite, we rock.

Abstract

Security remains at risk due to elusive software vulnerabilities, even with
extensive fuzzing efforts. Coverage-guided fuzzers, focusing solely on code
coverage, often fall short in discovering specific vulnerabilities.

The proliferation of diverse fuzzing tools has fragmented the field, mak-
ing it challenging to combine different fuzzing techniques, assess contribu-
tions accurately, and compare tools effectively. To address this, standard-
ized baselines are needed to ensure equitable evaluations.

AFL, due to its popularity, is often extended to implement new proto-
types despite not being a naive baseline and its monolithic design. On the
other hand, custom fuzzers written from scratch tend to reinvent solutions
and often lack scalability on multicore systems.

This thesis addresses these challenges with several contributions:
A new feedback mechanism called InvsCov is introduced, which con-

siders program variable relationships and code coverage. It refines program
state approximation for diverse bug detection. Another additional feed-
back we introduce explores data dependency graphs to enhance fuzzing
by rewarding new dataflow edge traversal, effectively finding vulnerabili-
ties missed by standard coverage. We also present a thorough analysis of
AFL’s internal mechanisms to shed light on its design choices and their im-
pact on fuzzing performance. Finally, to address fragmentation, LibAFL is
introduced as a modular and reusable fuzzing framework. Researchers can
extend the core fuzzer pipeline, evaluation of compelling techniques, and
combination of orthogonal approaches. An attempt to rewrite AFL++ as
a frontend to LibAFL won the SBFT’23 fuzzing competition in the bug-
finding track.

These contributions advance the field of fuzz testing, addressing the chal-
lenges of sensitivity in feedback mechanisms, bug diversity, tool fragmen-
tation, and fuzzers evaluation. They provide a foundation for improving
fuzzing techniques, enabling the detection of a broader range of bugs, and
fostering collaboration and standardization within the community.

Résumé

Malgré les efforts considérables mis en œuvres en matière de fuzzing, la
sécurité des logiciels informatiques reste menacée par des vulnérabilités in-
saisissables.

Les coverage-guided fuzzers, qui se concentrent uniquement sur la cou-
verture de code, ne parviennent généralement pas à découvrir des vulnéra-
bilités spécifiques.

La multiplication de divers outils de fuzzing a grandement divisé la com-
munauté et a rendu difficile la combinaison de différentes techniques de
fuzzing, l’évaluation précise des contributions et la comparaison efficace des
différents outils. Pour remédier à cette situation, il est nécessaire de disposer
d’un socle commun afin de garantir des évaluations précises et équitables.

AFL, en raison de sa popularité, est souvent utilisé comme base lors de
la création de nouveaux prototypes malgré le fait qu’il ne s’agisse pas d’une
référence naïve et sa conception monolithique. D’autre part, les fuzzers
personnalisés réécrits à partir de zéro ont tendance à réinventer la roue et
utilisent souvent inneficacement la puissance des les systèmes multicœurs.

Cette thèse relève ces défis en apportant plusieurs contributions:
Un nouveau mécanisme de feedback appelé InvsCov est introduit, qui

prend en compte les relations entre les variables du programme et la couver-
ture du code. Il affine l’approximation de l’état du programme pour opti-
miser la détection de divers bugs. Une autre approche que nous introduisons
explore les graphes de dépendance des données pour améliorer le fuzzing en
récompensant la traversée de nouvelles arêtes du graphe de flux de données,
ce qui a permis la découverte de nouvelles vulnérabilités manquées par la
couverture standard efficacement. Nous présentons également une analyse
approfondie des mécanismes internes d’AFL afin de mettre en lumière ses
choix de conception et leur impact sur les performances du fuzzing. En-
fin, pour remédier au problème de fragmentation cité précédemment, nous
proposons un outil dédié au fuzzing modulaire et réutilisable: LibAFL.
Les chercheurs peuvent étendre la pipeline de base du fuzzer, l’évaluation

de nouvelles techniques techniques et la combinaison d’approches orthogo-
nales. Une tentative de réécriture de AFL++ comme frontend de LibAFL

a remporté le concours de fuzzing SBFT’23 dans le domaine de la recherche
de bugs.

Ces contributions font progresser le domaine du fuzzing, en abordant les
défis de la sensibilité des mécanismes de feedback, de la diversité des bugs dé-
couverts, de la fragmentation des outils et de l’évaluation des fuzzers. Elles
fournissent une base solide pour l’amélioration des techniques de fuzzing,
permettant la détection d’une plus large gamme de bugs, et favorisant la
collaboration et la standardisation au sein de la communauté.

Contents

1 Introduction 1

1.1 Challenges in Modern Fuzzing 2
1.2 Contributions . 3
1.3 List of Publications . 6

2 Background 9

2.1 Fuzz Testing . 9
2.2 Feedback-Driven Fuzz Testing 10

2.2.1 Increasing code coverage 11
2.2.2 Meaningful inputs generation 12
2.2.3 Hunting non-crashing faults 13

2.3 Program Properties and Invariants 13
2.4 Data Dependency Graphs . 15

3 Introducing Likely Invariants as Feedback 17

3.1 Methodology . 19
3.1.1 Program State Partitions 21
3.1.2 Using Invariants as Feedback 23
3.1.3 Pruning the Generated Checks 24
3.1.4 Corpus Selection . 25

3.2 Implementation . 26
3.2.1 State Invariants Learning 28
3.2.2 Program Instrumentation 29

3.3 Evaluation . 31
3.3.1 RQ1: Invariant Pruning 33
3.3.2 RQ2: State Explosion 34
3.3.3 RQ3: Program State Exploration 35
3.3.4 RQ4: Bug Detection 36
3.3.5 RQ5: Run-Time Overhead 40
3.3.6 Discussion . 41

ii ii

3.4 Limitations and Future Directions 41
3.5 Appendix . 42

4 Fuzzing with Data Dependency Information 45

4.1 Methodology and Implementation 48
4.1.1 DDG construction . 48
4.1.2 Filtering . 50
4.1.3 Instrumentation . 52

4.2 Evaluation . 54
4.2.1 Experiment Setup . 57
4.2.2 Comparison against edge coverage 57
4.2.3 Effects of our instrumentation filters 60
4.2.4 Comparison against different instrumentation strategies 62
4.2.5 Queue Explosion . 64
4.2.6 Code Coverage . 64
4.2.7 FuzzBench . 65
4.2.8 Third Dataset . 68
4.2.9 Classes of Bugs . 69

4.3 A Bug Case Study . 69
4.4 Discussion . 71
4.5 Limitations and Future Work 72

5 Understanding American Fuzzy Lop 75

5.1 American Fuzzy Lop . 78
5.1.1 General Design . 78
5.1.2 Coverage Feedback . 78
5.1.3 Scheduling . 79
5.1.4 Mutators . 80
5.1.5 Minimization . 81
5.1.6 Instrumentation . 82

5.2 Methodology and Experiments Design 82
5.3 Experiments . 86

5.3.1 Hitcounts . 87
5.3.2 Novelty search vs. maximization of a fitness 89
5.3.3 Corpus culling . 91
5.3.4 Score calculation . 92
5.3.5 Corpus scheduling . 94
5.3.6 Splicing . 96
5.3.7 Trimming . 97
5.3.8 Timeouts . 99
5.3.9 Collisions . 100

Contents

5.3.10 Discussion . 102

6 The LibAFL Fuzzing Framework 105

6.1 American Fuzzy Lop ++ . 108
6.2 Entities in Modern Fuzzing 109
6.3 Framework Architecture . 112

6.3.1 Principles and High-level Design 113
6.3.2 The Core Library . 115
6.3.3 Instrumentation Backends 118

6.4 Applications and Experiments 119
6.4.1 Bypassing Roadblocks 122
6.4.2 Structure-aware Fuzzing 124
6.4.3 Corpus Scheduling . 127
6.4.4 Energy Assignment . 129
6.4.5 A Generic Bit-level Fuzzer 134
6.4.6 Differential Fuzzing . 135
6.4.7 Third-party Applications 136

6.5 Limitations and Future Work 137

7 A LibAFL-based AFL++ Prototype 139

7.1 AFL++ on FuzzBench . 140
7.2 Implementing AFLrustrust 140
7.3 SBST’23 Competition Results 141
7.4 Discussion . 142

8 Conclusion 143

List of Figures

3.1 State partitioning for wavlike_msadpcm_init() induced by the
two likely invariants LI1, LI2. The bug can be exercised only
when in partition B (LI1, LI2 both violated). 22

3.2 High-level workflow of invariant-based fuzzing. 26
3.3 Venn Diagram showing the bugs Default found by either

InvsCov or CodeCov, and by both (gray). 37

4.1 The configuration of the Definition and Uses that we want to
isolate . 51

5.1 Comparison of AFL and AFL-edge-coverage on Grok grk de-
compress (AFL, AFL edge coverage) 88

5.2 Novelty search vs. fitness experiment on the PHP application
(AFL, AFL + fitness, AFL fitness only) 90

5.3 Corpus culling comparison on the mruby application (AFL,
AFL w/o fav_factor, AFL no culling) 91

5.4 Score computation comparison on grok (AFL, Max,
Min, Random, No novel) 93

5.5 PHP fuzz-parser for the corpus scheduling experiment (AFL,
LIFO, Random) . 95

5.6 Splicing Comparison on libxml2 (AFL, AFL Splicing

Mutation) . 97
5.7 Trimming Comparison on poppler (AFL, AFL no trim) . 98
5.8 Timeout comparison on openh64decoder (AFL, AFL

double timeout) . 100
5.9 Collisions comparison on arrow (AFL, AFL collisions free) 101

6.1 LibAFL Core architecture. Links are a representation of a
non-comprehensive picture of the interactions. 112

6.2 Uncovered code coverage over time (24h) of the roadblock
bypassing experiment. 122

6.3 Uncovered bugs after 24h of the structure-aware fuzzing ex-
periment. 124

6.4 Uncovered bugs after 24h of the Nautilus +MOpt fuzzing
experiment. 126

6.5 Uncovered code coverage over time (24h) of the corpus schedul-
ing experiment. 127

6.6 Uncovered code coverage over time (24h) of the energy as-
signment experiment. 129

6.6 Uncovered code coverage over time (23h) of the generic bit-
level fuzzer experiment. 133

6.7 Uncovered diffing inputs (unique type hashes) for the original
NeoDiff () and the LibAFL version () over 12h. 136

Chapter 1

Introduction

In the landscape of software development and security, the pursuit of robust
and secure software has become more critical than ever before. Software vul-
nerabilities can lead to catastrophic consequences, including data breaches,
system crashes, and compromised user privacy. In this context, the field
of software testing has witnessed remarkable advancements to identify and
mitigate vulnerabilities efficiently. Among these advancements, Fuzzing has
emerged as a prominent dynamic testing technique. By generating unex-
pected inputs and injecting them into software, fuzzing aims to uncover
latent vulnerabilities that traditional testing methods might miss.

The importance of fuzzing constantly increased in the last decade since
the advent of American Fuzzy Lop (AFL) [175] that consecrated coverage-
guided fuzzing, a twist of traditional fuzzing that takes into account the
uncovered code regions as feedback, as preferred technique able to uncover
bugs almost automatically, even without any knowledge of the input for-
mat [178].

The constant innovation contributed to its success, generating great at-
tention in academia [111], with thousands of papers published in the last
years, and in industry thanks to its great bug-finding performance. Dur-
ing the DARPA Cyber Grand Challenge [45], a competition to advance the
development of systems for “automated, scalable, machine-speed vulnera-
bility detection and patching” played in 2016, the most successful deployed
solutions [156, 27, 32] were using a variant of coverage-guided fuzzing to
implement the component responsible for automated vulnerability discov-
ery. Google, with its OSS-Fuzz [3, 150] program, everyday runs fuzzers such
as AFL++ [65] and LibFuzzer [105] to test more than one thousand open
source projects at scale.

The popularity of fuzzing [128], compared to other techniques such as

1

2 2

static code analysis, can be also explained by the ability of fuzzers to produce
proofs of vulnerabilities, crashing testcases that can be used by security
researchers and developers to exploit or fix a vulnerability. The virtual
absence of false positives and the ease of use of the tools made fuzzing
a first-class citizen in security development cycle pipelines and not just a
popular tool in the restricted community of security researchers.

The novelties in the field in the past years were constant, from the
introduction of the coverage feedback to various techniques to increase the
ability to uncover new program points [16, 138, 174], a necessary – but not
sufficient – condition to find bugs, the introduction of models of the input
space combined with the feedback to fuzz deeper parts of code [13, 72] and
the engineering of solutions to automatically test multi-interaction programs
such as network servers [131, 147].

Investigating the field of fuzz testing in the 2020s, after years of at-
tention and constant improvements in the performance of fuzzers and with
overall better security of the tested software, needs a shift in the angle from
which we observe the field to discover that there are still important open
challenges to address.

1.1 Challenges in Modern Fuzzing

Observing software vulnerabilities found by security researchers over the
years, there are still some of them that affect well-fuzzed software and that
fuzzers were unable to find [122].

One of the reasons why a coverage-guided fuzzer may struggle to detect
bugs is that relying solely on code coverage is necessary but not sufficient for
bug discovery. To cope with this challenge, more sensitive [162] feedbacks
were proposed in literature, such as calling context-aware edge coverage, but
while they mitigate the problem they don’t fully solve them. The condition
that triggers the fault can be implicit in coverage and so fuzzers need a
specific feedback that reason on the whole program state.

Another kind of hard bugs for fuzzers are the ones going beyond memory
corruption. Most of the fuzzing nowadays focuses on finding crashes or
assertion errors, often with the aid of memory sanitizer [149, 64]. Logic
bugs in memory unsafe code [99], but also other kinds of bugs in memory
safe languages [40], are a work-in-progress challenge in fuzz testing that
is gaining attention due to the recent expansion of this technique to the
developers’ world.

The proliferation of fuzzing tools, each with its own set of features and
variations, has led to a fragmented landscape [111], an often underestimated

1.2. Contributions 3

challenge in academia. This fragmentation hampers the effective combina-
tion of orthogonal fuzzing techniques, makes it challenging to assess individ-
ual contributions accurately, and complicates comparisons between different
tools. To overcome these challenges there’s a growing need to establish stan-
dardized baselines. These baselines serve as a common ground for evaluating
and comparing fuzzing solutions, ensuring that assessments are conducted
on a level playing field.

In the past, both industry and academia have gravitated towards AFL,
a fuzzing tool renowned for its groundbreaking heuristics, and many en-
hancements have been built upon the AFL baseline to boost code coverage
and bug discovery capabilities. This has led to a situation where AFL, al-
though highly effective, is being used as a baseline for research when it is,
in fact, a complex and well-engineered tool.

The problem of the current fuzzers regarding this problem, including
AFL++, the most active and popular fork of AFL that we developed, is
that they are designed to be tools and so without code reuse in mind. To
build another fuzzer, the way to go is to spend a lot of time adapting
different techniques from different fuzzers and so reinventing the wheel.
Custom fuzzers written from scratch are usually naive, single core loops with
a mutator, while creating the n-th fork of AFL increases the fragmentation.
Moreover, all these fuzzers have scalability problems.

1.2 Contributions

In this thesis, we present several contributions to address the previously
discussed challenges. The structure of the thesis starts with an introductive
chapter on fuzzing background, Chapter 2, then five chapters follow, one
for each contribution presented in the subsequent text, and in the end we
discuss the conclusion and the future work of the thesis.

Chapter 3

While fuzz testing proved to be a very effective technique to find software
bugs, we stated that one of its main limitations is the fact that popular
coverage-guided designs are optimized to reach different parts of the pro-
gram under test, but struggle when reachability alone is insufficient to trig-
ger a vulnerability. In reality, many bugs require a specific program state
that involves not only the control flow but also the values of some of the
program variables. Unfortunately, alternative exploration strategies that
have been proposed in the past to capture the program state are of little

4 4

help in practice, as they immediately result in a state explosion.
In this contribution, we propose a new feedback mechanism that aug-

ments code coverage by taking into account the usual values and relation-
ships among program variables. For this purpose, we learn likely invariants

over variables at the basic-block level and partition the program state space
accordingly. Our feedback can distinguish when an input violates one or
more invariants and reward it, thus refining the program state approxima-
tion that code coverage normally offers.

We implemented our technique in a prototype called InvsCov, devel-
oped on top of LLVM and AFL++. Our experiments show that our ap-
proach can find more, and different, bugs with respect to fuzzers that use
a pure code-coverage feedback. Furthermore, they led to the discovery of
two vulnerabilities in a library tested daily on OSS-Fuzz, and still present
at the time in its latest version.

Chapter 4

To further investigate the field of alternative feedbacks to uncover more
bugs, we examined existing program representations looking for a match
between expressiveness of the structure and adaptability to the context of
fuzz testing. In particular, we believe that data dependency graphs (DDGs)
represent a good candidate for this task, as the set of information embedded
in this data structure is potentially useful for finding vulnerable constructs
by stressing combinations of def-use pairs that would be difficult for a tra-
ditional fuzzer to trigger. Since some portions of the dependency graph
overlap with the control flow of the program, it is possible to reduce the
additional instrumentation to cover only “interesting” data-flow dependen-
cies, those that help the fuzzer to visit the code in a distinct way compared
to standard methodologies.

To test these observations, we propose a new approach that rewards the
fuzzer not only with code coverage information but also when new edges in
the data dependency graph are hit. Our results show that the adoption of
data dependency instrumentation in coverage-guided fuzzing is a promis-
ing solution that can help to discover bugs that would otherwise remain
unexplored by standard coverage approaches. This is demonstrated by the
72 different vulnerabilities that our data-dependency driven approach can
identify when executed on 38 target programs from three different datasets.

1.2. Contributions 5

Chapter 5

AFL is one of the most used and extended fuzzer, adopted by industry and
academic researchers alike. While the community agrees on AFL’s effective-
ness at discovering new vulnerabilities and its outstanding usability, many
of its internal design choices remain untested to date. Security practitioners
often clone the project “as-is” and use it as a starting point to develop new
techniques, usually taking everything under the hood for granted. Instead,
we believe that a careful analysis of the different parameters could help
modern fuzzers improve their performance and explain how each choice can
affect the outcome of security testing, either negatively or positively.

The goal of this paper is to provide a comprehensive understanding of
the internal mechanisms of AFL by performing experiments and comparing
different metrics used to evaluate fuzzers. This can help to show the effec-
tiveness of some techniques and to clarify which aspects are outdated. To
perform our study we performed nine unique experiments that we carried
out on the popular Fuzzbench platform. Each test focuses on a different as-
pect of AFL, ranging from its mutation approach to the feedback encoding
scheme and its scheduling methodologies.

Our findings show that each design choice affects different factors of
AFL. While some of these are positively correlated with the number of
detected bugs or the coverage of the target application, other features are
instead related to usability and reliability. Most importantly, we believe
that the outcome of our experiments indicates which parts of AFL we should
preserve in the design of modern fuzzers.

Chapter 6

The release of AFL marked an important milestone in the area of software
security testing, revitalizing fuzzing as a major research topic and spurring
a large number of research studies that attempted to improve and evaluate
the different aspects of the fuzzing pipeline.

Many of these studies implemented their techniques by forking the AFL
codebase. While this choice might seem appropriate at first, combining mul-
tiple forks into a single fuzzer requires a high engineering overhead, which
hinders progress in the area and prevents fair and objective evaluations
of different techniques. The highly fragmented landscape of the fuzzing
ecosystem also prevents researchers from combining orthogonal techniques
and makes it difficult for end users to adopt new prototype solutions.

To tackle this problem, in this chapter, we propose LibAFL, a frame-
work to build modular and reusable fuzzers. We discuss the different com-

6 6

ponents generally used in fuzzing and map them to an extensible framework.
LibAFL allows researchers and engineers to extend the core fuzzer pipeline
and share their new components for further evaluation. As part of LibAFL,
we integrated techniques from more than 20 previous works and conduct
extensive experiments to show the benefit of our framework to combine and
evaluate different approaches. We hope this can help to shed light on cur-
rent advancements in fuzzing and provide a solid base for comparative and
extensible research in the future.

Chapter 7

In this last contribution, we present a first attempt at rewriting the widely
used fuzzer AFL++ as a frontend of LibAFL, our new framework for fuzzers
development. This prototype, AFLrustrust as it is written in the Rust pro-
gramming language, was evaluated in the SBST’23 Fuzzing Competition
with great results even though it is just a first attempt with missing com-
ponents that are still under development.

1.3 List of Publications

During the development of this thesis, several papers were published, but
only some of them are contributions to this dissertation. We report all
of them, while we underline the ones that are included in this thesis (in
chronological order):

• Andrea Fioraldi, Daniele Cono D’Elia, Davide Balzarotti
“The Use of Likely Invariants as Feedback for Fuzzers”
in 30th USENIX Security Symposium (USENIX Security 21)

• Andrea Fioraldi, Alessandro Mantovani, Dominik Maier, Davide Balzarotti
“Registered Report: Dissecting American Fuzzy Lop - A FuzzBench
Evaluation”
in the 1st International Fuzzing Workshop (FUZZING 2022)

• Alessandro Mantovani, Andrea Fioraldi and Davide Balzarotti
“Fuzzing with Data Dependency Information”
EuroSP 2022, Genoa, Italy

• Andrea Fioraldi and Dominik Maier and Dongjia Zhang and Davide
Balzarotti
“LibAFL: A Framework to Build Modular and Reusable Fuzzers”

1.3. List of Publications 7

Proceedings of the 29th ACM conference on Computer and communi-

cations security (CCS) , Los Angeles, U.S.A.

• Andrea Fioraldi and Alessandro Mantovani and Dominik Maier and
Davide Balzarotti
“Dissecting American Fuzzy Lop – A FuzzBench Evaluation”
ACM Trans. Softw. Eng. Methodol.

• Andrea Fioraldi and Dominik Maier and Dongjia Zhang and Addison
Crump
“AFLrustrust: A LibAFL-based AFL++ prototype”
The 16th Intl. Workshop on Search-Based and Fuzz Testing, Fuzzing

Competition

• Addison Crump and Andrea Fioraldi and Dominik Maier and Dongjia
Zhang
“LibAFL_libfuzzer: Libfuzzer on Top of LibAFL”
The 16th Intl. Workshop on Search-Based and Fuzz Testing, Fuzzing

Competition

• Addison Crump and Dongjia Zhang and Syeda Mahnur Asif and Do-
minik Maier and Andrea Fioraldi and Thorsten Holz and Davide
Balzarotti
“CrabSandwich: Fuzzing Rust with Rust (Registered Report)”
Proceedings of the 2nd International Fuzzing Workshop (FUZZING)

2023

• Pietro Borrello, Andrea Fioraldi, Daniele Cono D’Elia, Davide Balzarotti,
Leonardo Querzoni, Cristiano Giuffrida
“Predictive Context-sensitive Fuzzing”
In Network and Distributed System Security Symposium, NDSS 24

8 8

Chapter 2

Background

In this chapter we introduce several background notions required to un-
derstand the contributions of this thesis. We start discussing fuzz testing
and its variants, then we present the concept of likely invarints and data
dependency graphs.

2.1 Fuzz Testing

Fuzz Testing, or fuzzing, is a family of software testing techniques first pro-
posed in the ’90s [118]. Recently, fuzzing techniques saw significant im-
provements in their effectiveness, and contributed to the discovery of many
security vulnerabilities [128, 111]. Nonetheless, the key idea behind Fuzz
Testing research remained simple: repeatedly execute the program under
test by using randomly generated inputs, usually chosen to be either un-
expected or invalid. Fuzzing tools monitor a program for failures, such as
invalid memory accesses or out-of-memory crashes, and report to the user
the inputs that triggered such behaviors.

The most naive embodiment of fuzzing just provides random inputs
to the program under test without any knowledge about its characteristics
(e.g., input format) or the program execution. This approach, albeit still ef-
fective in testing legacy code [117], has obvious limitations. Therefore, many
different solutions have been proposed over the past decades to increase the
effectiveness in bug finding far beyond naive fuzzing. We can group these
techniques according to the following three criteria: 1) the amount of in-
formation they require to know from the program, 2) the technique they
use to generate new testcases, and 3) the feedback they use to guide the
exploration.

9

10 10

According to the first criterion, we can distinguish three main categories
of fuzzers:

• White-box fuzzers, which build a full picture of the program using
program analyses. Concolic executors like Sage [71] and SymCC [132]
belong to this category, as they collect a model of the program in terms
of logic constraints during the execution. The cost of such white-box
analyses, however, may often be untenable [128];

• Black-box fuzzers, which blindly generate random inputs for testing.
They can access knowledge about the input format, but generate in-
puts regardless of how the program implementation looks like [171] [113];

• Grey-box fuzzers, which fall halfway between the two previous cat-
egories. They access limited information provided by a lightweight
instrumentation applied to the program under test, blending the pro-
gram analysis and testing stages [128]. An example of such informa-
tion is the code coverage extracted from a testcase by systems like
AFL [180] and LibFuzzer [105].

According to our second criterion, we can distinguish instead fuzzers
based on their input generation methodology. The two most commonly
used approaches in this respect are generational and mutational fuzzers.
A generational fuzzer creates new testcases from scratch, either randomly
or by relying on some form of format specification—like a grammar [88]
or a domain specific language [55]. Mutational fuzzers instead derive new
testcases from a set of prior testcases by mutation; the mutations can be
generic [180], target-specific [160], or driven by a user-supplied [13] [130] or
inferred [22] [63] format specification.

Finally, by using our third and last criterion, fuzzers can be divided ac-
cording to the information they use to drive their exploration, which we call
Feedback. A popular and very effective technique is coverage-guided fuzzing,
which uses code coverage as feedback to drive the testcase generation. Pre-
vious studies have shown that coverage-based fuzzers are often one order of
magnitude more effective at discovering bugs [49]. As also other forms of
feedback are possible, we will refer more in general to this fuzzing design as
Feedback-Driven Fuzz Testing.

2.2 Feedback-Driven Fuzz Testing

In short, when a CGF solution generates a testcase that triggers a previously
unexplored portion of the program, it deems the testcase as interesting

2.2. Feedback-Driven Fuzz Testing 11

and adds it to a queue of inputs (dubbed seeds) maintained for further
processing. By combining this technique with a mutational approach, we
obtain an evolutionary algorithm driven by code exploration.

Code coverage can be measured in different ways, for instance by consid-
ering basic blocks alone or by including entire calling contexts [162]. By far,
the most popular criterion used for coverage-guided fuzzers is edge cover-

age, which maximizes the number of edges visited in the control flow graph
(CFG) of program functions. Fuzzers like AFL [180] extend pure edge cov-
erage by also including a hit count for edges (i.e., how many times a testcase
exercises them) to better approximate the program state. Recently, Ankou

developed this idea further by adding coverage-equivalent testcases to the
queue depending on the results of an online principal component analysis
for hit count differences between executions.

As we anticipated before, other metrics are possible for driving fuzzer
evolution. FuzzFactory [126] recently studied several alternatives, such as
the fact that the size of memory allocations can be a useful feedback to ex-
pose out-of-memory bugs, while the number of identical bits in the operands
of a comparison instruction [103] can help in circumventing fuzzing road-
blocks. In short, all these feedback techniques act as shortcuts to domain-
specific testing goals for which code coverage is not an adequate description.

A more general approach would be to consider, alongside control flow
decisions, also data flow information regarding the program state. The most
naive embodiment of this feedback—and to the best of our knowledge also
the sole to date—is the ‘memory’ feedback, where every newly observed
data values from memory load and store operations are considered as nov-
elty factor for the fuzzer. Unfortunately, this solution easily leads to state
explosion [162].

2.2.1 Increasing code coverage

One of the main objectives for many proposed optimizations to coverage-
guided fuzzing is to reach a higher amount of covered program points in
the same time window compared to previous solutions. This metric comes
from the observation that a fuzzer cannot uncover a fault in an unxeplored
portion of the code.

During the last years, the community identified some artifacts in the
code that prevent a fuzzer to explore the code behind these so-called ”road-
blocks“. The main types of roadblocks are:

12 12

Multi-byte comparisons. The probability that a generic byte-level mu-
tator guess from scratch the value needed to bypass a certain multi-byte
comparison is near to 0. Several approaches try to overcome this problem,
like LAF-Intel [5] that splits them into several single-byte comparisons at
the compiler level, Vuzzer [139] and Angora [35] that identify portions
of the input related to the values in the comparisons using taint analysis, or
RedQueen [16] that heuristically replaces correspondences between input
and comparisons.

Checksum checks. Checksums checks are a particularly hard version
of comparison. While they can be solved by providing valid inputs, the
problem is that any generic mutation invalidates it generating an invalid
input, making the fuzzer unable to explore the code behind these checks.
The most common way to handle these checks is to patch them out and
restore them when the fuzzer finds a crash, manually or automatically, as
proposed in several works [129, 16, 63].

Hashtable lookups. The third important code pattern identified as a
problem for coverage-guided fuzzers is the hashtable lookups as the infor-
mation needed to get the right item is not explicit in code coverage and
eventual comparisons are between encoded versions of portions of the in-
put. Current automatic solutions [16, 65] are quite naive because they can
solve the roadblock if the lookup is in a specific helper function looking at
its pointer arguments. While using a helper function is a common coding
pattern for hashtable lookups, this is not an exhaustive solution and the
state-of-the-art [14] requires manual annotations.

In addition, a popular technique to handle roadblocks is hybrid fuzzing,
in which a concolic executor is used to aid the fuzzer [174, 132, 29]. For the
checksum checks, the concolic engine can be used to repair the checksums
on crashing testcases. For the other two kinds of roadblocks, in theory, it
should be possible to solve them with this technique but concolic engines
struggle to solve hashmap-like lookups due to the complexity of handling
symbolic pointers.

2.2.2 Meaningful inputs generation

A problem that fuzzers face is the inability to stress code paths behind the
parsing stage. While generic mutators are very good in stressing parsers
with invalid inputs, in order to fuzz deep in the program we need mutators
able to go beyond the parser.

2.3. Program Properties and Invariants 13

A widely adopted solution is to guide the input generation with a model
of the input format, that can be a grammar [13, 155] or a block-based model
[130], using an internal representation, like the AST, that is easy to mutate
while preserving validity.

An important field is the research into the automation of this process,
as writing an input model is still a human task. So in the past year, some
solutions were proposed to infer how the input bytes are handled by the
program with the goal of mutating them accordingly [22, 63].

Another important property of inputs that some domain-based fuzzers
may want to preserve is semantic validity. For instance, when fuzzing a
compiler, a testcase that uses undefined variables is syntactically valid, but
the compilation will fail. Fuzzers such as Fuzzilli [75] or CodeAlchemist

[77] implement semantic-preserved mutations to fuzz JavaScript interpreters
behind the compilation stage.

2.2.3 Hunting non-crashing faults

While the algorithmic improvements to fuzz testing play an important part
in the game, the discrimination between testcases that trigger or not a fault
is another important room for fuzzers’ enhancement.

It is easy to spot bugs that cause a crash in the application just by
observing the exit status for instance on UNIX systems, but many bugs are
silent and do not corrupt the application state enough to cause a crash [119].

An example of this kind of bugs is many logic bugs related to integer
arithmetic. While in some application the invalid state may be propagated
further in the code and cause a crash, in many others this kind of faults
remain silent.

2.3 Program Properties and Invariants

Property-based testing is a software testing methodology in which some form
of specification of the program’s properties drives the testing process. Such
specification simultaneously defines what behaviors are valid and serves as
basis for generating testcases [61].

The correctness oracle can be embedded in the target program itself in
the form of a set of assertions that check the validity of each invariant,
i.e., a property that according to the specification must always hold at that
program point [58]. Testcases can then be generated by aiming at violating
the invariant assertions.

14 14

QuickCheck [39] is probably the most well-known among such sys-
tems. Recently works such as Zest [125] and Hypothesis [108] borrows
fuzzing concepts like feedback-driven mutations to improve their efficiency
when testing, respectively, Java and Python codebases.

Since delegating the identification of program properties to the devel-
opers can be a daunting prospect, automation has been the subject of a
large body of previous works in the field. Automated invariant learning is
also a widely explored topic in other areas, for instance for memory error
detection [140].

Invariants can be discovered by conducting static code analysis: for
instance, rcore [70] builds on abstract interpretation [41] and monitors
invariants at run-time to detect program state corruption from memory er-
rors. Generally, such invariants are sound and incur limited false positives,
yet the inherent over-approximation of static analysis may generate invari-
ants too coarse to discriminate program states in an effective manner for
high-level analysis.

Therefore, a more precise way to discover invariants, which also pro-
duces them in greater quantity, consists of inspecting the program state
at run-time. For this reason, approaches like [78], [56], and [127] build
on information gathered during the execution, in a dynamic fashion. The
downside of dynamic approaches is that, unlike static ones, they produce
likely invariants, i.e., invariants that hold for the analyzed traces but may
not hold for all inputs. Hence, they may result in false positives when the
learned invariants capture only local properties of the observed executions.

In Chapter 3 we build upon this well-known coverage problem [58] and
turn it into an advantage for driving a fuzzer. We do that by starting from
a corpus of testcases that—as it is the case with real applications—cannot
be representative of all program states, then we modify a fuzzer to make it
more sensitive to behaviors that diverge from the likely invariants obtained
from the initial corpus. In this case, the fact that the learned invariants
capture properties of the observed executions instead of properties of the
program itself is the key intuition we use to generate a more diverse set of
input values.

Invariants historically play a key role in many development tasks such
as software testing, optimization, and maintenance [58]. In the context of
security research, several works have explored invariants for other problems
as well.

In the context of anomaly detection, invariants can act as oracles for
program hardening. Works such as [70] and [153] instrument programs to
block memory corruption exploits in production, as run-time checking costs

2.4. Data Dependency Graphs 15

turn out to be modest. Web applications can benefit from similar protection
as well, as explored in [42] with Daikon and PHP code.

Fault localization is another popular twist. Whenever multiple invari-
ants turn out to be violated, a typical workflow to locate the root cause is
to study similar inputs to filter out non-relevant invariants. An example
is Sahoo et al. [143], which uses dynamic backward slicing to remove more
invariants, and Aurora [23], which employs a statistical analysis of the
learned predicates.

2.4 Data Dependency Graphs

Data Dependency Graphs (DDGs) were first introduced by Ferrante et
al. [60] in 1987 as a program representation to capture the data-flow rela-
tionship among each instruction in the program. More formally, the LLVM
documentation defines a data dependence graph as a structure that “repre-
sents data dependencies between individual instructions. Each node in such

a graph represents a single instruction and is referred to as an ‘atomic’ node

[...]” [9] while edges are defined as “def-use dependencies between the atomic

nodes”.
The introduction of DDGs paved the way to new program analysis tech-

niques, such as program slicing [167, 34] (i.e., the set of statements that
affect the value of a certain variable) and reaching definitions [11] (i.e., the
set of definitions that could hit a certain point in the code). Over the years,
researchers have proposed DDG-based techniques to build new approaches
in compiler optimizations, as reported by the seminal work in this field by
Kuck et al. [94]. For instance, Heffernan et al. [81] used the data depen-
dencies that exist inside a program to improve instruction reordering and
increase the CPU pipeline performances. Other works [97, 82] proposed
advanced scheduling approaches based on the adoption and transformation
of the DDG to measure the dependencies among instructions and evaluate
when to perform a reordering operation. Another common application of
DDGs is dead code elimination, which aims at identifying which assignments
in the code can be removed after checking that no subsequent operations
depend on them [93, 24, 31].

In software security, DDGs are often used to verify if potentially unsafe
or poorly sanitized data (the source) can propagate information inside the
program until it reaches a certain statement that can trigger a vulnerability
(the sink). This led to a set of applications of the DDG, especially in static
software testing. For instance, in 1994 Kinloch et al. [91] suggested that
the combination of the DDG with the Control Flow Graph (CFG) could

16 16

help programmers at detecting bugs. More recently, Yamaguchi et al. [169]
proposed a program representation, known as the Code Property Graph,
that combines the CFG, the DDG, and the Abstract Syntax Tree (AST) of a
program. The authors then designed specific queries over this data structure
to detect vulnerable patterns in the code. The popularity of DDGs for
vulnerability discovery is confirmed by the comparison performed by Zhioua
et al. [183] among static software testing tools. The authors found that 3 out
of the 4 investigated frameworks implemented a data dependency analysis
component when scanning C source code. However, data dependencies are
not just used to analyze source code but play a very important role also
in other scenarios. For instance, Cheng et al [37] use them to perform
taint analysis on IOT firmware images with the goal of finding vulnerable
flows, and several model checking techniques rely on them to detect unsafe
program points [114, 165].

Possible applications of the Data Dependency Graph are not limited to
unsafe languages such as C/C++. In 2009, Hammer et al. [76] proposed an
approach based on path conditions in dependency graphs that can be used
to reveal security-sensitive flows inside Java code. Moreover, in 2015 Qian
et al. [135] developed a static analysis framework to detect vulnerabilities
in Android applications by traversing the DDG, similarly to what already
done in [169] for C source code.

Chapter 3

Introducing Likely Invariants

as Feedback

Thanks to its success in discovering software bugs, Fuzz Testing (or fuzzing)
has rapidly become one of the most popular forms of security testing. While
its original goal was simply to randomly generate unexpected or invalid in-
puts, today’s fuzzers always rely on some form of heuristics to guide their
exploration. The most popular of these strategies is, by far, Coverage-

Guided Fuzzing (CGF), in which the fuzzer selects inputs that try to in-
crease some coverage metric computed over program code—typically, the
number of unique edges in the control flow graph. Consequently, a large
body of research has focused on overcoming the limitations of coverage-
guided fuzzers, for instance by proposing techniques to solve complex path
constraints [174] [132] [156] [138] [16], by reducing the large number of invalid
testcases generated by random mutations [130] [125] [13] [22] [63], or by fo-
cusing the exploration on more ‘promising’ parts of the program [123] [120] [26].

While these improvements have considerably decreased the time required
to visit different parts of the target application, it is important to under-
stand that code coverage alone is a necessary but not sufficient condition to
discover bugs. In fact, a bug is triggered only when i.) program execution
reaches a given instruction, and ii.) the state of the application satisfies
certain conditions. In rare cases, there are no conditions on the state, as
it is the case for most of the bugs in the Lava-M [51] dataset—which were
artificially created to be triggered by simply reaching a certain point in the
target applications [80].

On the one hand, this aspect is very important because the use of code
coverage to reward the exploration results in the fact that fuzzers do not
have any incentives to explore more states for an already observed set of

17

18 18

control-flow facts (e.g., branches and their frequencies). Thus, it is consider-
ably harder for existing tools to detect bugs that involve complex constraints
over the program state. On the other hand, the simple solution of reward-
ing fuzzers for exploring new states (state coverage) is also a poor strategy,
which often decreases the bug detection rate. This is due to the fact that,
for non-trivial applications, the number of possible program states is often
infinite.

Therefore, special techniques are needed to reduce the program state into
something more manageable to explore during testing, while still preserving
the fuzzer’s ability to trigger potential bugs. To date, few works have tried to
find such compromise. For instance, some fuzzers approximate the program
state by using more sensitive feedbacks, like code coverage enriched with
call stack information, or even with values loaded and stored from memory.
This second approach, as shown by Wang et al. [162], better approximates
the program state coverage by taking into account not only the control flow
but also the values in the program state, but is less efficient than others in
finding bugs as it incurs into the state explosion problem mentioned above.

To capture richer state information while avoiding the state explosion
problem, researchers have also looked at human-assisted solutions. For in-
stance, FuzzFactory [126] lets the developers define their domain-specific
objectives and then adds waypoints that reward a fuzzer when a generated
testcase makes progress towards those objectives (e.g., when more bits are
identical among two comparison operands).

At the time of writing, the most successful approximation of the program
state coverage is achieved by targeting only certain program points selected
by a human expert, as recently proposed in [15]. In the work, portions of the
state space are manually annotated and the feedback function is modified
to explore such space more thoroughly. We believe that the automation of
this process may be a crucial topic in future research in this field.

Our Approach. In this first chapter, we propose a new feedback for
Fuzz Testing that takes into account, alongside code coverage, also some
interesting portions of the program states in a fully automated manner and
without incurring state explosion.

The key idea is to augment edge coverage—the most widely-adopted and
successful code coverage metric used by fuzzers—with information about
local divergences from ‘usual’ variable values. To this end, we mine likely

invariants on program variables by executing an input corpus (such as the
queue extracted from a previous CGF campaign) and learning constraints
on the values and relationships of those variables over all the observed ex-

3.1. Methodology 19

ecutions. It is important to note that execution-based invariant mining
produces constraints that do not necessarily model properties of the pro-
gram, but rather local characteristics of the analyzed input corpus [57]:
hence, constraints may be violated under different inputs.

Our intuition is that these local properties represent an interesting ab-
straction of the program state. We thus define a new feedback function that
treats an edge differently when the incoming basic block sees one or more
variable values that violate a likely invariant. This approach increases the
sensitivity of a standard CGF system, rewarding the exploration of program
states that code coverage alone would not be able to distinguish.

We develop a set of heuristics to produce and refine invariants, and tech-
niques to effectively instrument programs with a low-performance overhead—
a very important metric in fuzzing. We implement them into a prototype
called InvsCov on top of LLVM [95] and the AFL++ [65] fuzzer.

Our experiments, conducted over a set of programs frequently tested by
other fuzzers, suggest that our feedback, by succinctly taking into account
information about usual program state in addition to control flows, can
uncover both more and different bugs than classic CGF approaches.

Contributions. In summary, the main contributions of this chapter are:
• A new feedback that combines control flows with an abstraction of the

program state from mined invariants;
• A prototype implementation of our approach based on LLVM and

AFL++ called InvsCov;
• An evaluation of the effectiveness of our approach against classic and

context-sensitive edge coverage.
We share the InvsCov prototype as Free and Open Source Software at

https://github.com/eurecom-s3/invscov

3.1 Methodology

1 int wavlike_msadpcm_init (SF_PRIVATE *psf, int blockalign, int

samplesperblock)

2 { MSADPCM_PRIVATE *pms ;

3 unsigned int pmssize ;

4 // Likely Invariants:

5 // - blockalign ∈ { 0, 2, 256 }

6 // - blockalign < samplesperblock

https://github.com/eurecom-s3/invscov

20 20

7 ...

8 pmssize = sizeof (MSADPCM_PRIVATE) + blockalign + 3 *

psf->sf.channels * samplesperblock ;

9 ...

10 pms->samples = pms->dummydata ; // array in pms

11 pms->block = (unsigned char*) (pms->dummydata +

psf->sf.channels * samplesperblock) ;

12 pms->channels = psf->sf.channels ;

13 pms->blocksize = blockalign ;

14 ...

15 }

Listing 3.1: Excerpt of wavlike_msadpcm_init() initialization code.

1 static int msadpcm_decode_block (SF_PRIVATE *psf,

MSADPCM_PRIVATE *pms)

2 {

3 ...

4 sampleindx = 2 * pms->channels ;

5 // Likely Invariants:

6 // - pms->blocksize == 256

7 while (blockindx < pms->blocksize)

8 { bytecode = pms->block [blockindx++] ;

9 pms->samples [sampleindx++] = (bytecode >> 4) & 0x0F ; //

heap overflow bug

10 pms->samples [sampleindx++] = bytecode & 0x0F ;

11 } ;

12 ...

13 }

Listing 3.2: Vulnerable code found in msadpcm_decode_block().

In this section, we present the intuition behind our approach by using
an example of a real-world vulnerability we discovered during our experi-
ments. The vulnerability is a heap overflow in the WAV file format parsing
of libsndfile, a popular library to operate on audio files. Listings 3.1 and 3.2
show the affected code. Specifically, the vulnerability is located in themsad-

pcm_decode_block function of file ms_adpcm.c, reported here at line 9
in Listing 3.2.

For our purpose, it is interesting to note that all the coverage-guided
fuzzers we used in our experiments (§6.4) were able to reach the vulnerable

3.1. Methodology 21

point in the code without, however, triggering the bug. Despite the fact
that the vulnerable code is ‘easy-to-reach’ and that libsndfile is often used
in fuzzing experiments (including the Google OSS-Fuzz project and recent
research works such as [69] and [172]), the bug was still present when we
ran our experiments.

This is likely due to the fact that to trigger the bug the loop should write
outside the memory pointed by pms->samples, which references the C99
variable-size array field at the end of the pms structure. This only happens
when the program is in a specific state, characterized by a small allocation
size for the pms buffer (line 8 in Listing 3.1) and a pms->blocksize value
(line 13 in Listing 3.1) sufficiently high to force the loop to write out of the
bounds of the array.

However, none of these requirements can be extracted from code cover-
age, as there are no branches in the program that involve these thresholds.
Instead, they both depend on two input-derived values: blockalign and
samplesperblock. Hence, a CGF-based exploration may easily satisfy one
of the requirements but, without recognizing this as progress in the pro-
gram exploration, it would unlikely satisfy both at the same time. In fact,
any generated testcase satisfying either requirement would exercise an “in-
termediate” program state closer to the bug, but would not be seen as an
interesting one to add to the queue for more mutations, because in the eyes
of CGF it does not bring novel code coverage.

This example shows the challenge that modern fuzzers encounter when
exploring the state of a program, even for code that does not entail difficult
path conditions to be reached. State-of-the-art CGF systems can saturate
in coverage while still missing bugs at program points touched in their op-
eration. Also, they may fail to generate testcases to cover unseen program
points whenever those are reachable only upon meeting conditions that do
not depend on control flow alone.

3.1.1 Program State Partitions

The core idea of this chapter is that we can divide the program space in
different partitions at multiple points in the application code, by learning
likely invariants from executing the program under test over an initial corpus
of inputs.

To continue with our example, let us imagine that we can fuzz libsndfile
for a certain amount of time, e.g., 24h, with a standard CGF system (we will
discuss in §3.1.4 the effect of different corpora on the extracted invariants).
By investigating the values of the variables across all seeds saved by the

22 22

2

256 A

A C

C

B D

B D

B D

bl
oc
ka
lig
n

samplesperblock

<

Invariant Condition

LI1 blockalign
∈ {0, 2, 256}

LI2 blockalign <

samplesperblock

Invariant A B C D

LI1 3 7 3 7

LI2 7 7 3 3

Figure 3.1: State partitioning for wavlike_msadpcm_init() induced by the
two likely invariants LI1, LI2. The bug can be exercised only when in
partition B (LI1, LI2 both violated).

fuzzer, we would identify two likely invariants for the init function and one
for the vulnerable decoding loop. All invariants are included as comments
in Listings 3.1 and 3.2.

It is important to understand that these invariants are descriptive of the
limited number of states that were induced by the corpus generated by the
fuzzer. In other words, each invariant expresses a condition over the state
of the program that the fuzzer was unable to violate during the testing
experiment. Therefore, our intuition is that we can use these invariants to
divide the program state into a number of partitions, as depicted in Figure
3.1 for the init function.

In this case, we can see that the two invariants partition the space in four
non-contiguous areas (A to D in the figure), all but the first unvisited by
the fuzzer. This information allows us to provide feedback to the fuzzer to
explore new abstract states without incurring into the classic state explosion
problem.

Moreover, since these states can be reached only by violating the in-
variants we learned over previous executions of the fuzzer, our intuition
is that they are likely to bring the program into seldom-explored corner
cases—where vulnerabilities may lie undetected for a long time.

To capture this information, the approach presented in this chapter aug-
ments the classic edge coverage feedback by using the violation of likely
invariants learned over basic blocks. In an ideal world, we could learn ex-
act invariants and transform them in terms of code coverage, allowing pure

3.1. Methodology 23

coverage-based fuzzers to receive feedback to progress towards these areas.
However, as described in §2.3, current invariant mining techniques lead to
both over or under approximations.

3.1.2 Using Invariants as Feedback

The common limitation of dynamic invariant detection is that the resulting
invariants often capture local properties of the test suite more than static
properties of the program.

However, for our purpose, this is exactly what we want. In fact, likely
invariants that represent only local properties of the corpus are interesting
because their violation would tip fuzzers about what value combinations in
the program state are unusual, and ideally the home of bugs.

Therefore, we define our invariant-based feedback as a combination of
edge coverage with the information about which likely invariants are vio-
lated in the source basic block. To inform the fuzzer about the progress
towards interesting states, we then tweak the classic novelty search algo-
rithm adopted by most coverage-based systems. In particular, for each
CGF-instrumented control flow graph edge, we make it generate a different
value for the novelty search for each unique combination of violated invari-
ants. As we will detail in Section 3.2.2, we track invariants individually
and reward them independently at each basic block: this choice brings an
unambiguous, implicit encoding of program state partitions.

The invariants ability to partition the program state space without in-
curring state explosion is also one of the key insights of our approach. At
each basic block N invariants can partition the state locally just like N
non-parallel lines can divide a plane into N ∗ (N + 1)/2 + 1 regions. In
practice, since each basic block typically manipulates only few variables, N
is usually a very low value (statistics in Appendix 3.5).

Back to our example, for the wavlike_msadpcm_init function we have
two variables involved in the learned invariants: blockalign and samples-

perblock. The partition that triggers the vulnerability is B—the one that
sees both invariants violated. Our fuzzer found the bug for a value assign-
ment {blockalign = 1280, samplesperblock = 8}.

With the enriched sensitivity from our invariant-based feedback, the
fuzzer can violate each invariant separately, save such testcases for partitions
A and D, and for instance splice the two testcases to generate one that
brings the state to B. More in general, our approach can generate inputs
that violate multiple invariants by either combining or mutating previous
seeds—each violating one or more distinct invariants.

24 24

As for the likely invariant involving pms->blocksize in the buggy func-
tion (Listing 3.2), we observe that violating it is not a sufficient condition
to trigger the bug. The field is assigned equal to blockalign in Listing 3.1,
but also samplesperblock has to contribute to expose the bug.

3.1.3 Pruning the Generated Checks

With our example, we showed how we can use invariants to partition the
program state and how we can then provide this information as feedback to
drive the fuzzer’s exploration.

However, not all invariants are equally useful: while having more in-
variants does not affect our methodology (i.e., we do not lose sensitivity
by exposing more partitions), the extra states they generate can pollute
our feedback and the additional instrumentation can impact the run-time
overhead.

Therefore, we designed three classes of pruning rules to remove invariants
that would be fruitless to check either in light of other available information
or because of the nature of their constituents.

1. The first class of invariants we discard are those that are impossible

to violate. For instance, our likely-invariant mining system would
often learn that unsigned integer variables are always greater than or
equal to zero—which is not a very useful condition to drive a fuzzer. To
identify these and alike cases, we perform a Value Range Analysis [79]
for each function of the program under test. Arguments and global
storage are initially seen unconstrained, and the analysis produces
bounds for function variables that hold for any execution. Using range
information, we instruct our miner to never generate likely invariants
that are logically weaker than the ones found statically. Since these
invariants cannot be violated, we can save the instrumentation cost
required to monitor them.

2. The second class of fruitless invariants are those that combine unre-
lated variables. To remove these relationships, we compute Compa-

rability Sets for each function of the program under test: each variable
belongs to only one such set, and invariants combining variables across
different sets are discarded. We initially create a separate set for each
variable, then use a unification-based policy by iterating over function
instructions and merging the sets of two variables whenever those oc-
cur as operands for the same statement. Eventually, a comparability
set contains variables that take part in related computations. Few

3.1. Methodology 25

exceptions apply: for instance, in an array pointer computation we do
not merge the sets of the base and the index elements as they are not
directly related.

3. Whenever different invariants have overlapping conditions, it is
possible to optimize their run-time verifications by reusing previously
computed values. In particular, we target pairs of likely invariants
that share the same conditions on some of their variables. If the two
invariants concern two program points p and p′ where p′ can execute
only after p, we can use a standard flow-sensitive analysis to determine
whether between p and p′ there are no intervening re-definitions for
any of the involved variable. In that case, we simply propagate the
value computed at p and save the computation cost at p′.

The output of the value-range analysis and the comparability sets are
computed beforehand and passed to the invariant miner, which takes them
into account when generating the invariants. Overlapping conditions are
instead dealt with when producing the program—augmented with code for
checking invariants—that will undergo the testing process.

3.1.4 Corpus Selection

For our entire solution to work, we need to be able to learn likely invariants
from a large number of executions of the program under test. Therefore,
like for many other evolutionary fuzzing techniques, the choice of the initial
corpus of inputs is critical.

An unwise choice can generate invariants that do not describe with suf-
ficient generality the shape of the variables in the program state. For in-
stance, it is a common practice in fuzzing to download many files of a given
file format when testing a parser, but almost all those files are valid files. If
we learn likely invariants from the program executions of such a corpus, we
will bias our invariants on the validity of the file format and, in some cases,
this can be a mistake because we might miss interesting partitions of the
program state related to invalid inputs.

As we want to address the problem of finding bugs even when the fuzzer
saturates in coverage [74], a natural choice is to use as corpus the queue of
a coverage-guided fuzzer taken as soon as that fuzzer shows signs of slowing
down in reaching new coverage points. A violation of an invariant learned
over such corpus will lead to novel feedback for the fuzzer and desaturate
the search.

26 26

Figure 3.2: High-level workflow of invariant-based fuzzing.

To confirm our intuition we downloaded a dataset of valid files for the
programs we tested in §6.4 and mined likely invariants by using such test-
cases. We then compared the invariants extracted from these initial seeds
with those obtained using the queue after a 24h run of a coverage-based
fuzzer initially supplied with the same seeds. In our experiments, we ob-
served that the invariants extracted only by using the valid files led to the
discovery of 20% fewer unique bugs than with the invariants extracted from
an initial run of a fuzzer.

3.2 Implementation

In the previous section, we introduced the motivation and the key ideas
behind our approach. However, we intentionally avoided discussing two
important aspects of our solution: i.) how we define the state we want to
capture in our invariants, and ii.) how we perform the instrumentation of
the program under test to collect the information required by our technique.

3.2. Implementation 27

Our approach can be implemented in different ways, for instance by
instrumenting the target source code, or by performing binary-level in-
strumentation via static rewriting [50] or dynamic translation [47]. While
each approach has its own pros and cons, for our experiments we opted
for a compiler-based implementation of our invariant-based fuzzing using
LLVM [95] and the Daikon [57] likely-invariants system.

Our prototype is written in C++ and re-uses the fast intra-procedural
integer range analysis of Pereira et al. [136] for LLVM, which takes an
asymptotically linear time to complete. Figure 3.2 provides a high-level
view of the complete architecture. We implemented two custom compile-
time transformation phases (consisting of roughly 5 KLOC) for LLVM:

1. Learning phase, where we emit logging instrumentation for program
state variables to feed the invariant miner;

2. Instrumentation phase, where we augment the code of the program
under test to evaluate the likely invariants in a form directly suitable
for coverage-guided fuzzers.

In short, during the Learning phase we record all the information about
the program state required for invariant mining. We achieve this by running
an augmented version of the program under test over a corpus of inputs,
which can be obtained in several ways (§3.1.4; in the experiments described
in §6.4 we use the seeds generated from a 24h coverage-guided fuzzing ses-
sion). For invariant mining we use the Daikon dynamic invariant detector,
one of the most used dynamic miners: first presented in 2007, Daikon is
still under active development.

At each instrumentation place, invariant mining faces a cubic time com-
plexity in the number of constituents (i.e., program variables) [58]. How-
ever, since our technique is applied at the level of basic blocks, the number
of variables is practically a small constant, and the total computation cost
for invariant mining becomes linear in the number of basic blocks in the
program.

During the Instrumentation phase, we then encode likely-invariant in-
formation in program functions to expose them to coverage-guided fuzzers.
Our transformed programs can execute out of the box on any AFL-based
fuzzer but, as we elaborate in more details in §3.2.2, we foresee minimal
adaptations to support coverage tracking schemes from other fuzzer families.

28 28

3.2.1 State Invariants Learning

In order to learn the likely invariants, we need to observe the values of the
program state during the execution of the program over the initial corpus
of inputs. To achieve that, we compile a dedicated version of the program
under test that includes additional instrumentation to collect such values
at run-time.

Since our prototype is implemented on top of the Intermediate Repre-

sentation (IR) of LLVM, we can easily expose the state of the program at
the level of each basic block. Also, the IR allows us to avoid issues with
uninitialized values that affect tracing complex data types at the source
code level [4]. For instance, a structure may contain a pointer, and to ex-
tract the present pointed value for tracing purposes its address must be
valid. The original Kvasir front-end of Daikon uses expensive dynamic bi-
nary instrumentation [47] to read variables and inspect memory. However,
by working at the IR level, we can just wait until the address appears in a
virtual register as the result of a load operation and use it for tracing.

Another advantage of using an Intermediate Representation is that, in
an IR, instructions are typically expressed in a Single Static Assignment
(SSA) form [142]. SSA entails that each variable can only be assigned once,
and each use must be reached by a (unique) prior definition.

For simplicity, in our implementation we ignore floating-point instruc-
tions and model the program state by looking at SSA variables holding
integer values. For local variables, since multiple SSA variables exist in the
IR for a single source-level variable1, we restrict our analysis to those SSA
variables that can be directly connected to a source-level variable, by using
debug metadata from the LLVM front-end.

When a program instead accesses non-local storage or a field of a non-
primitive type, LLVM introduces an SSA variable as result of a load op-
eration for the current contents. By instrumenting such IR variables, our
invariant mining extends also to global variables, heap storage, and fields of
structs.

Moreover, since our goal is not just to model the state of an application,
but to improve the effectiveness of a security-oriented testing technique, we
focus our analysis on those variables that can have security-related conse-
quences, according to the following three rules:

• The variable is part of a GetElementPtr instruction2for pointer com-
putation unless only constant indexes are involved;

• The variable value is loaded from or stored to memory by using a
Load or Store instruction;

3.2. Implementation 29

• The variable represents the return value of a function.
To collect the value of each variable we implemented an LLVM function

pass that, alongside instrumenting the variables of interest with logging
machinery, also dumps at compilation time the Comparability sets and the
integer ranges [136] to support the pruning techniques described in §3.1.3.

The pass creates a JSON file for each code module to store information
about program points and variables (type, comparability, and bounds). We
then process and merge these intermediate files from all modules to produce
the Daikon declaration file3, adding also comparability and range bound
information for the sake of invariant pruning (Section 3.1.3). We instruct
Daikon to run the instrumented program over each input in the corpus
and retrieve the values logged for its variables. We mine our invariants by
using the on-demand mode of Daikon, which learns incrementally from
each execution.

3.2.2 Program Instrumentation

In the second phase of our approach, we embed the likely invariants obtained
from the Learning phase in the program under test and add the required
AFL instrumentation to drive the fuzzer. For this, we turn each invariant
into a C function that we compile to LLVM IR and invoke from the pro-
gram point of interest. The function takes as arguments the IR values that
are part of the invariant and evaluates them, returning a unique identifier
when the invariant is violated, and zero otherwise. Listing 3.3 provides an
example of such functions, generated for an invariant with identifier 123

that checks whether var0 > 1.

unsigned __daikon_constr_123(int var0) {

if (!(var0 > 1))

return 123 << 1;

return 0;

}

Listing 3.3: Example of generated C code from an invariant.

// Original AFL edge-coverage code

__afl_area_ptr[cur_loc ^ prev_loc]++;

1Special φ-functions regulate the currently visible assignment when it depends on the

CFG basic blocks the program traversed.
2https://llvm.org/doxygen/classllvm_1_1GetElementPtrInst.html
3https://plse.cs.washington.edu/daikon/download/doc/developer/File-formats.

html#Declarations

https://llvm.org/doxygen/classllvm_1_1GetElementPtrInst.html
https://plse.cs.washington.edu/daikon/download/doc/developer/File-formats.html#Declarations
https://plse.cs.washington.edu/daikon/download/doc/developer/File-formats.html#Declarations

30 30

prev_loc = cur_loc >> 1;

// Extended to capture violations of invariants

__afl_area_ptr[cur_loc ^ prev_loc]++;

prev_loc = cur_loc >> 1;

prev_loc ^= __daikon_constr_123(var0);

prev_loc ^= __daikon_constr_321(var2, var3);

Listing 3.4: Classic and Extended AFL instrumentation for edge coverage.

To expose the violation of invariants as if there were a code coverage
change, we modify few lines that are part of the classic AFL instrumenta-
tion, as depicted in Listing 3.4. In the original code, cur_loc represents the
identifier assigned to the current block, and prev_loc is the right-shifted-
by-one value of the previous block identifier. An edge coverage event is
reported by XOR-ing these two variables and by incrementing the corre-
sponding entry in the __afl_area_ptr coverage map. In this way, the code
can also capture the number of times that the edge is executed modulo 256
(map values are 8-bit unsigned integers).

To include the information about the violated invariants into the AFL

feedback, we encode the identifiers of the violated invariants into prev_loc

by using the XOR operation. This allows each edge to also capture which
invariants were violated in the source basic block. Listing 3.4 shows how we
augment edge coverage with the combination of the outcome of the functions
that check the invariants with identifiers 123 and 321. Note that zero is the
identity element for XOR, so edge coverage is unaffected when an invariant
is not violated (i.e., the invariant’s function returns zero).

We insert our instrumentation by using an LLVM Function pass. During
this phase, we also apply the optimization to remove overlapping conditions,
as described in §3.1.3, by identifying those invariant evaluations in different
blocks that perform the same checks on the same values. To minimize their
number, and therefore avoid redundant instrumentation that could slow
down the execution, we build the dominator tree [134] for each function
of the target program and emit the check only at the top-level block in
such tree that strictly dominates all the other blocks in which the same
invariant appears. Thanks to the SSA form, the value returned for the
check is guaranteed to be visible at its dominated blocks, and therefore we
can avoid re-executing the evaluation function.

3.3. Evaluation 31

3.3 Evaluation

In our experiments we tackle the following research questions:
• RQ1. Are our invariant pruning heuristics effective in reducing the

number of generated checks?
• RQ2. Does our new feedback incur state explosion?
• RQ3. Can our feedback lead a fuzzer to effectively exploring more

program states than code coverage?
• RQ4. Can our feedback uncover more, or just different, bugs than

code coverage?
• RQ5. What run-time overhead does our feedback introduce?

Target Programs

Program Package KLOC Sanitizers

catppt CATDOC 0.95 7 ASan, UBSan

xls2csv CATDOC 0.95 7 ASan, UBSan

jasper Jasper 2.0.16 176 ASan

sndfile-info libsndfile 1.0.28 79 ASan, UBSan

pcre2 (harness) PCRE2 10.00 68 ASan, UBSan

gm GraphicsMagick 1.3.31 251 ASan, UBSan

exiv2 Exiv2 0.27.1 80 ASan, UBSan

bison Bison 3.3 100 ASan

Table 3.1: List of target programs used for the evaluation along with the
corresponding package, the lines of C/C++ code, and the sanitizers used
when compiling each program.

In order to answer these questions, we selected 8 real-world target pro-
grams as subjects for our experiments. We opted for programs that work
on distinct file types and follow different strategies in the implementation of
the parsing stage. In more detail, cappt and xls2csv look up tokens using
large switch constructs, jasper works on a chunk-based format, sndfile-info
is stream-oriented, pcre2 uses lookup tables, gm combines different strate-
gies, exiv2 is chunk-based and uses C++ objects to represent chunks, and
bison is an LR parser. The versions we selected are known to contain bugs as
they are widely used in past works (e.g., [69] [112] [138]) to test fuzzers. For
a rigorous evaluation we also manually de-duplicate crashes when assessing
bug finding capabilities [92].

32 32

Program Command line

catppt @@

xls2csv @@

jasper -f @@ -t jp2 -T mif -F /dev/null

sndfile-info –cart –instrument –broadcast @@

pcre2 (harness)

gm convert @@ /dev/null

exiv2 @@

bison @@

Table 3.2: List of command line used for the each target program when run
in the fuzzer.

Note that popular benchmarks like Lava-M [51] are not suitable for
evaluating our approach, as the bugs they contain depend exclusively on
code reachability guarded by magic-value comparisons [80]. We also opted
not to use the recent and appealing Magma [80] benchmarks, as their
hardwired logging primitives (used to check for ground truth) split basic
blocks and thus conflict with the granularity of our invariant construction
and instrumentation.

To enable reproduction of our results, Table 3.1 lists the programs we
used in our experiments, their software package and version, their lines of
code, and the sanitizers [154] enabled at compilation time. The command
line used to run them in the fuzzer is in Table 3.2. We applied both Address-
Sanitizer (ASan) and UndefinedBehaviourSanitizer (UBSan) compile-time
instrumentation. However, we had to disable UBSan for two applications
as it introduced unwanted side-effects that made them crash even with the
simplest test inputs.

Experimental Setup

We ran all experiments on a x86_64 machine equipped with an Intel® Xeon®

Platinum 8260 CPU with a clock of 2.40 GHz. We used AFL++ version
2.65d as reference fuzzer to study the benefits of our approach and draw
comparisons with the many configurations AFL++ offers (e.g., alternative
mutation and seed scheduling policies, and context-sensitivity).

We ran each experiment 5 times to reduce the impact of fuzzing random-
ness, and report the median value to aggregate the results. Each experiment
had a 48h budget.

Starting from an initial collection of valid files, we ran AFL++ for 24h

3.3. Evaluation 33

Invariant pruning

Program None Learning All

catppt 137 137 (100%) 136 (99%)

xls2csv 453 400 (88%) 396 (87%)

jasper 11459 9144 (80%) 9144 (80%)

sndfile-info 3462 3013 (87%) 2996 (86%)

pcre2 4992 4803 (96%) 4497 (90%)

gm 16173 14362 (89%) 13278 (82%)

exiv2 6040 5534 (91%) 4943 (82%)

bison 9363 6263 (67%) 5983 (64%)

Total 52079 43556 41373

% (w.r.t. Unopt.) 100% 84% 79%

Table 3.3: Number of generated checks without any optimization, with
optimizations for learning phase only, and with optimizations for learning
& instrumentation phases.

and collected its queue as a corpus, which we used both as corpus for learning
the likely invariants and as initial seeds for all the fuzzers we evaluate in
our experiments. The same configuration was used in [22] for incremental
fuzzing runs and allowed CGF fuzzers to approach saturation in our tests.

Throughout the rest of the section, we will denote with InvsCov a fuzzer
that uses our invariant-based instrumentation as feedback, with CodeCov

a fuzzer that uses classic edge coverage as feedback, and with CtxCov a
fuzzer that augments edge coverage with context sensitivity.

3.3.1 RQ1: Invariant Pruning

To answer the first research question, we measured how the pruning rules
introduced in §3.1.3 ultimately impact the number of tests for likely invari-
ants that our system needs to insert into the program under test.

Table 3.3 reports the number of checks generated without any optimiza-
tion enabled, with only those for the learning phase (comparability sets and
removal of invariants impossible to violate) enabled, and with also the op-
timization applied at the instrumentation phase (overlapping conditions).

The optimizations from the learning phase reduce the amounts of checks
by 14% on average. This resulted in an average of 1.4 likely invariants gener-
ated for each basic block that accesses one or more profiled variables (§3.2.1)
in the LLVM IR. Upon adding the overlapping-conditions optimization from

34 34

Testcases Edges

Program InvsCov CodeCov InvsCov CodeCov

catppt 213 119 404 404

xls2csv 1358 770 1013 1007

jasper 10831 3188 5452 5487

sndfile-info 1764 1297 8164 8074

pcre2 25534 15205 9831 9502

gm 12802 9488 25680 25216

exiv2 7016 5661 31201 31062

bison 5019 4419 6703 6700

Geo mean 3985 2466 5596 5548

% (w.r.t. CodeCov) 162% 100% 101% 100%

Table 3.4: Median number of testcases stored in the fuzzers’ queues and
edges covered over 5 trials of 48h.

the instrumentation phase, the total number of invariants decreased by 21%.
While the overall reduction may seem small, according to our experiments
the smaller number of invariants to check at run-time resulted in a 10% net
increase in the performance of the fuzzer.

3.3.2 RQ2: State Explosion

The number of testcases maintained in the fuzzer’s queue can serve well the
purpose of verifying whether our technique would result in an explosion on
the number of states the fuzzer has to track. In fact, the number of stored
seeds is representative of the interesting testcases generated and therefore
of distinct portions explored in the state space that is visible to the fuzzer.
Table 3.4 reports the number of testcases in the fuzzer’s queue after a 48h
session. The growth due to the use of invariants is moderate, and only
accounts for a 62% increase across all programs.

This is very important because an excessively large queue becomes un-
manageable for a fuzzer. Wang et al. [162] studied queue sizes for two
memory-based feedbacks (§2.2) and reported growth factors of 21x and 14x
as geometric mean for the DARPA CGC benchmarks, and peaks of 196x
and 512x. The authors also observed that the relative differences among
most seeds were so small that they were very unlikely to lead to the discov-
ery of new bugs. On the contrary, more moderate increases, such as ~8x
over edge coverage for feedbacks focused on control flows (e.g., n-grams,

3.3. Evaluation 35

Violated Checks Exec / Sec

Program InvsCov CodeCov InvsCov CodeCov

catppt 40 5 112 101

xls2csv 113 13 132 128

jasper 971 462 143 166

sndfile-info 558 214 151 152

pcre2 1524 286 2508 4381

gm 1874 715 63 65

exiv2 712 342 67 59

bison 387 234 57 65

Geo mean 458 134 145 156

% (w.r.t. CodeCov) 342% 100% 93% 100%

Table 3.5: Median number of checks violated by the testcases in the fuzzers’
queues and average of the executions per second over 5 trials of 48h.

context-sensitivity), resulted in a profitable end-to-end bug finding.
In most of our programs we measured a growth factor below 2x, except

for jasper, for which it was roughly 3x, yet far behind the numbers that
were reported to cause state explosion in previous studies.

3.3.3 RQ3: Program State Exploration

Since our main goal is to help the fuzzer to explore various program states
that can lead to bugs, we now look at how our proposed approach explores
the program behaviors that would be visible to a pure code coverage-based
approach.

First of all, we study the (cumulative) edge coverage on the original,
un-instrumented program collectively exercised by executing the seeds (i.e.,
testcases) from the queues of InvsCov and CodeCov. Such coverage is a
common metric in fuzzers evaluation, as a fuzzer cannot reveal a bug in a
program point if it first does not explore it at least one time.

In Table 3.4 (column ‘Edges’) we report the median edge coverage of
AFL++ when using, respectively, invariants or standard edge coverage as
feedback. Overall, the differences are very small. For most targets, In-

vsCov results in a coverage comparable to CodeCov, showing that our
technique does not result in a decrease of edge coverage. On some pro-
grams, our approach even helped the fuzzer to increase coverage over the
saturated corpus, suggesting that some code paths may be reached only

36 36

with the right combination of conditions over some program state variables.
It is important to remember that the goal of our system is NOT to in-

crease code coverage, but instead to increase the state coverage along the
paths reached by a fuzzer. Therefore, we study the number of invariants vio-
lated by using our feedback mechanism compared to the traditional Code-

Cov, as a proxy of the improved program state coverage. The ‘Violated
Checks’ column in Table 3.5 shows that AFL++ with InvsCov, thanks to
our instrumentation mechanism (§3.2.2), maintains a set of testcases that
violate more invariants than AFL++ with just CodeCov. Overall, our ap-
proach was 3.4x more effective than pure CodeCov at helping the fuzzer
to visit different partitions of the program state.

3.3.4 RQ4: Bug Detection

Default MOpt Rare

Program Invs

Cov

Code

Cov

⋂
Invs

Cov

Code

Cov

⋂
Invs

Cov

Code

Cov

⋂
catppt 3 3 3 3 3 3 3 3 3

xls2csv 17 15 13 18 17 15 17 16 14

jasper 7 5 5 8 5 4 8 4 4

sndfile-info 11 10 10 10 10 10 11 10 10

pcre2 77 35 28 81 52 36 80 48 38

gm 19 14 13 18 14 13 20 14 13

exiv2 8 7 7 8 7 7 8 7 7

bison 5 5 5 5 5 5 5 5 5

Total 147 94 84 151 113 93 152 107 94

% (w.r.t. CodeCov) 156 % 100 % 89 % 134 % 100 % 82 % 142 % 100 % 88 %

Table 3.6: Median unique bugs found with and without invariant-based
feedback over 5 trials of 48h for each target program and three different
fuzzers (Default, MOpt and Rare).

As the ultimate goal of Fuzz Testing is to detect bugs in programs we
now analyze in more details the bugs InvsCov could find in our experiments
and study their properties.

To compare InvsCov against classic edge coverage, we consider addi-
tional AFL++ configurations that exercise different designs in other com-
ponents of the fuzzer, such as the scheduling strategies for mutations or
seed selection. These strategies are orthogonal to the feedback function in

3.3. Evaluation 37

63 1084

InvsCov
CodeCov

Figure 3.3: Venn Diagram showing the bugs Default found by either
InvsCov or CodeCov, and by both (gray).

use. Therefore, in the end, we expect InvsCov to outperform CodeCov

independently of other parameters. We believe this type of multi-pronged
experiments allows for a more fair evaluation to isolate the contribution of
the feedback technique alone.

In particular, we selected three AFL++ configurations for our tests:

• Default, i.e., the standard configuration of AFL++ used also for the
other research questions;

• MOpt, i.e., AFL++ equipped with the MOpt [107] mutation sched-
uler, a powerful technique that dynamically prioritizes mutations ac-
cording to their expected efficiency at any time in the execution;

• Rare, i.e., AFL++ scheduling that prioritizes seeds that exercise
paths not along the ‘hot’ regions traversed by most seeds in the queue.
Different, complex embodiments of this idea proved to be effective in
a number of previous works [27] [98] [25].

We run these three state-of-the-art fuzzers on all target programs for
48h, to simulate a fuzzing campaign with a medium-small length, as previ-
ously used to evaluate fuzzers in works such as [123] and [22].

For crash de-duplication, we first grouped the reported crashes by using
a standard call-stack hash from the stack trace. However, as automatic de-
duplication with stack hashes is generally unsound (it can both under- and
over-count [92] depending on the case), we decided to manually inspect and
triage each testcase.

Table 3.6 reports how many unique manually deduplicated bugs each
fuzzer found over our set of subject programs4. The table also reports the

38 38

Program Reached InvsCov \ CodeCov

catppt 0 0

xls2csv 0 4

jasper 1 2

sndfile-info 1 1

pcre2 41 51

gm 0 6

exiv2 0 1

bison 0 0

Total 43 65

Table 3.7: Median number of bugs in the set difference between the Invs-

Cov and CodeCov bugs (see Table 3.6) that are reached in coverage by
CodeCov but not triggered.

intersection between the bugs found with our approach and with classic edge
coverage. This relationship, summarized for all programs in the Venn dia-
gram of Figure 3.3, highlights that guiding fuzzers by using state invariants
not only results in more bugs being discovered, but also in different bugs5.

Notably, the fuzzers that use our InvsCov feedback never underper-
formed with respect to the corresponding CodeCov versions, in all con-
figurations. For two targets, catppt and bison, all fuzzers found the very
same number of bugs, suggesting that these bugs are easy to trigger without
particular requirements over the program state. Notably, on some of the
targets (sndfile-info, xls2csv, gm, exiv2), the use of invariants allowed the
fuzzer to also discover previously unknown bugs and vulnerabilities, like the
one we used as running example in §3.1.

To better understand the bugs that only InvsCov was able to uncover,
we classify them according to whether or not CodeCov was able to reach
the crash point (obviously, without triggering it). We report the number of
‘covered but not triggered’ bugs for CodeCov in Table 3.7. It is interesting
to observe that the instructions responsible for 43 of the 65 bugs discovered
by InvsCov were reached by CodeCov, but not triggered due to the lack of
the correct combination of state conditions required to trigger the bug upon
reaching the flawed program point. These types of bugs are particularly
common for pcre2. Since the program is essentially a parser that makes
use of lookup tables, its program states are heavily data-dependent. The
importance of the program state is also confirmed by the fact that some of
the crashing locations were reached already by the initial input corpus we

3.3. Evaluation 39

supplied to the fuzzers. Thus, our approach shows a clear advantage for
those programs that contain data dependencies in their flows.

For the remaining 21 bugs for which traditional fuzzers were unable to
even reach the vulnerable location, a possible reason—as we discussed al-
ready for Table 3.4 (§3.3.3)—could be the fact that the use of invariants
also allowed the fuzzer to achieve a slightly better code coverage. Indeed,
specific conditions on program state values may be needed not only to un-
cover a fault but also to progress the exploration towards some code regions
of the program under test.

As an additional set of experiments, we analyzed the default configura-
tion of AFL++ with edge coverage augmented by context-sensitivity6 (Ctx-

Cov), firstly introduced by Chen et al. [35], which turned out to be the
form of feedback that revealed more bugs in the recent analysis of Wang et
al. [162]. We report the number of triaged bugs for InvsCov and CtxCov

in Table 3.8, running five 48-h trials with the same initial corpus of the
other experiments.

Our experiments confirm that CtxCov performs better than Code-

Cov (+11%), revealing more unique bugs on four targets (2 on xls2csv,
6 on pcre2, 1 on exiv2 and gm). Nonetheless, call-stack information for
the context does not contain explicit information on program data, and
InvsCov consistently finds more or different bugs than CtxCov as well
(e.g., +47 on pcre2, +6 on gm2). The number of bugs found by both
slightly improves for two subjects (2 bugs on xls2cov and pcre2) compared
to CodeCov, suggesting that calling-context information offered AFL++

a different angle based on call paths to exercise the program states that
trigger such bugs.

Finally, we also explored the hybrid scenario (marked as Combined in Ta-
ble 3.8) in which we augmented edge coverage with both our invariants and
context-sensitivity at once. This combined approach led to the discovery of
another heap vulnerability in libsndfile (function wavlike_ima_decode_-

block). While this solution performs overall slightly worse than invariants
alone, we observed promising peaks on single runs of pcre2 (119 for Com-
bined, 92 for InvsCov, 47 for CtxCov), jasper (12-8-6), and sndfile-info

4The classes we observe are the typical ones from sanitization with ASan and UBSan

(e.g., heap and stack overflow, division by zero). As the bugs are many, we omit tedious

information on their types for brevity.
5InvsCov may also miss bugs reported by CodeCov within a fixed time budget

because of fuzzing entropy and different seed scheduling choices over different queues.

However, those bugs are still within reach for InvsCov.
6Fuzzers can use calling-context information, i.e., the sequence of routine calls concur-

rently active on the stack when reaching a program location [48].

40 40

Program InvsCov CtxCov
⋂

Combined

catppt 3 3 3 4

xls2csv 17 17 15 18

jasper 7 5 5 6

sndfile-info 11 10 10 11

pcre2 77 41 30 65

gm 19 15 13 21

exiv2 8 8 7 8

bison 5 5 5 5

Total 147 104 88 138

% (w.r.t. CtxCov) 141 % 100 % 85 % 133%

% (w.r.t. CodeCov) 156 % 111 % 94 % 147%

Table 3.8: Median number of bugs found with InvsCov and CtxCov,
their intersection, and the bugs found with a fuzzer Combined that uses
both feedbacks simultaneously.

(12-11-10). The downside of combining multiple feedback refinements is, in
fact, that with larger queues (e.g., +79% on pcre2 w.r.t. InvsCov) the
randomness in seed scheduling impacts which program portions, and ulti-
mately bugs, get explored in a limited time budget. We report the complete
experimental data in Appendix §3.5, and leave the investigation of how to
optimize combinations of this kind to future work.

3.3.5 RQ5: Run-Time Overhead

As our technique requires adding a more complex instrumentation to the
program under test, it is reasonable to expect a higher run-time over-
head with respect to CodeCov. Following the approach of the authors
of RedQueen [16], we measured the average execution speed of AFL++

when executed on our target programs for 48h. Table 3.5 details (in column
‘Exec / Sec’) how many executions per second InvsCov and CodeCov were
able to perform. The experiments show that our technique introduced on
average a slowdown of 8%. We believe this to be a moderate price to pay
to increase the ability of fuzzers to explore more (and more diverse) states
of the programs under test.

A counter-intuitive result here is that for some programs the execution
speed measured for InvsCov is higher than for CodeCov. The reason
is that in some programs many invariant violations were triggered along

3.4. Limitations and Future Directions 41

fast code paths: as InvsCov causes the fuzzer to spend more time on the
same code path if one or more invariants are violated along it, the fuzzer
ultimately focused on those parts and executed the other, slower paths less
often than when using CodeCov, thus benefiting from shorter executions.

3.3.6 Discussion

The results of our experiments confirmed that our feedback, by distinguish-
ing when program variables deviate from their ‘usual’ values, improves the
sensitivity of a fuzzer for program states that code coverage alone fails to
reward. Out of the 65 buggy program points that only our approach could
drive to a crash, edge coverage alone was able to reach 43 of them, without
however exposing the bug because the program was not in the correct state.
Even when using refined code-based feedbacks like context-sensitivity, our
approach continued to reveal more and different bugs than CGF.

Our tests also show that our instrumentation is tenable: it introduces
only a moderate 62% growth on the fuzzer’s queue size (orders of magnitude
less than memory feedbacks, and still smaller than several code-based feed-
backs [162]) and it slows down testcase execution by 8% on average. These
costs are clearly amortized in our experiments by the many more unique
bugs reported by our technique.

Finally, our feedback is not decremental in terms of code coverage com-
pared to edge coverage and, in some cases, it can also ‘unlock’ more state-
dependent program portions for further exploration. As briefly experi-
mented in the Combined scenario, InvsCov and fine-grained forms of code
feedbacks may also complement each other. Such a fuzzer would be able to
better differentiate and explore those local state properties that are influ-
enced by control-flow facts (e.g., the call path).

3.4 Limitations and Future Directions

Our approach augments the classic edge coverage feedback with information
on violated likely invariants. As we emit AFL-compliant instrumentation
for the sake of compatibility, there is a possibility of hash collisions—just like
with AFL—when indexing the shared map for coverage updates. AFL++

offers an alternate link-time instrumentation scheme [86] that is collision-
free but breaks compatibility. We may devise an InvsCov variant that
benefits from such design, devising a solution that combines LTO with in-
variants like Borrello et al. [28] did for CtxCov or exploring split maps
for the invariant and edge feedbacks.

42 42

On the methodological side, an intrinsic limitation of our approach is
that it is not adaptive. We learn invariants once, while there could be
potential to explore by refining them as the exploration advances and new
value conditions are observed. A follow-up of our approach would then
be to devise an online invariant mining module. Recent machine learning
advances in anomaly detection like [46] could offer valid support to this end.
We believe that a fuzzer that adaptively learns the state space partitions
over variables can have a positive practical impact, and potentially help
in desaturating fuzzing campaigns like OSS-Fuzz to catch more bugs in
software already well-tested with CGF solutions.

Finally, as we study data facts at basic-block level, our likely invari-
ants cannot capture ‘implicit’ relations between variables that do not get
processed together in any block.

3.5 Appendix

In the following we report supplementary data for some of the experiments
that we discussed throughout §6.4.

For the first research question, alongside the total number of invariants
we also collected frequency metrics for probes at function and basic-block
level. Due to the dynamic nature of the invariant mining process, only code
actually reached in any execution from the input corpus can feature invari-
ant checks. Table 3.9 reports figures computed over reached code only and
with all our pruning optimizations enabled. While the code characteris-
tics (most prominently, the varying complexity of individual functions) are
reflected by heterogeneous values for invariants checked by a single func-
tion, when considering basic blocks we observe rather regular trends, with
two peaks for bison and jasper, due to their basic blocks typically longer
and richer of LLVM IR virtual register manipulations involving variables of
interest for our method.

For the last set of experiments that we conducted for studying our bug
finding capabilities, here we report statistics on the median queue size for the
CtxCov and Combined fuzzers (Table 3.10), and the peak number of unique
bugs identified among the 5 runs we made for each program under test
(Table 3.11). The context-sensitive feedback benefited from our invariants
as well, yet a larger queue impacts the program states explored by different
runs within the 48h budget.

3.5. Appendix 43

Program Per Function Per Block Total

catppt 9.78 (14) 1 (137) 137

xls2csv 12.12 (33) 1.15 (349) 400

jasper 29.88 (306) 2.94 (3106) 9144

sndfile-info 20.09 (150) 1.01 (2979) 3013

pcre2 106.73 (45) 1.32 (3651) 4803

gm 28.78 (499) 1.38 (10391) 14362

exiv2 5.31 (1042) 1.17 (4708) 5534

bison 27.23 (230) 2.14 (2922) 6263

Geo mean 20.53 1.41 2784

Table 3.9: Average number of produced invariants for each function and
basic block with at least one invariant. The reference baseline is reported
between parentheses.

Program InvsCov CtxCov Combined

catppt 213 149 281

xls2csv 1358 950 1766

jasper 10831 3528 18057

sndfile-info 1764 1525 2096

pcre2 25534 27227 45705

gm 12802 10928 14302

exiv2 7016 8457 9073

bison 5019 4975 6076

Geo mean 3985 3143 5356

Table 3.10: Median number of testcases in the queues of InvsCov, Ctx-

Cov, and Combined.

44 44

Program InvsCov CtxCov Combined

catppt 4 3 4

xls2csv 19 19 19

jasper 8 6 12

sndfile-info 11 10 12

pcre2 92 47 119

gm 22 17 21

exiv2 8 8 8

bison 6 5 6

Total 170 115 201

Table 3.11: Peak number of unique bugs found by InvsCov, CtxCov, and
Combined among the 5 runs.

Chapter 4

Fuzzing with Data

Dependency Information

In the context of dynamic analysis, researchers have proposed many ap-
proaches to measure the coverage that a certain input produces in the soft-
ware under testing. One of the possible metrics is path coverage, which
refers to all independent paths present in a program. For example, in soft-
ware testing, the community has focused on path coverage for tests gener-
ation [151, 137] with the goal of automatically producing inputs that can
reach nested code locations. The main limitation of path coverage is that
any non trivial application can contain a huge, and potentially infinite, num-
ber of paths [141, 106] thus making this approach a poor choice for a large
set of programs. Because of this, Fuzzing mostly rely on simpler forms of
coverage, such as the popular edge coverage.

As a necessary condition for a fuzzer to discover a vulnerability is the
ability to generate an input that reaches the location of the flaw in the
target program, code-coverage has become one of the most common metrics
to gauge the effectiveness of a fuzzer and the success of a fuzzing campaign.
In this context, edge coverage became the de-facto standard to measure code
coverage. According to this paradigm, all basic blocks in the control flow
graph (CFG) of the binary are instrumented to reward the fuzzer with a
feedback when new edges connecting two basic blocks are discovered. In
this way, the fuzzing engine can keep track of the new discoveries in terms
of program points and mutate the generated inputs so that they evolve
towards the exploration of nested portions of code. This gave origin to
what is commonly referred as coverage-guided fuzzing.

A common goal among researchers is to develop new techniques to in-
crease edge coverage, which has led current state-of-the-art fuzzers to be

45

46 46

very effective at visiting difficult-to-trigger code locations. For instance,
Redqueen [16] can generate inputs that satisfy complicated conditions, like
the ones that involve a comparison with some magic bytes. However, high
code coverage alone does not always translate in a better ability to dis-
cover bugs, and therefore the fuzzing community had also explored other
approaches based on alternative coverage metrics. In this direction, Parme-
san [123] relies on the code locations instrumented with AddressSani-

tizer [148] and UndefinedBehaviorSanitizer [6] to build a directed
fuzzer that tries to uncover and stress such locations. Ankou [112] adopted
instead a different fitness function to guide the fuzzer by considering dif-
ferent combinations of the branches during the execution of the target.
These approaches have shown promising results at detecting new bugs, thus
suggesting that looking for alternative coverage approximations could help
fuzzers to find different vulnerabilities compared to those normally found
by employing edge-coverage.

Historically fuzz testing has taken inspiration from program analysis
techniques to implement novel solutions that, in the past, have allowed to
increase the fuzzers’ performances. In 2019, Chowdhury et al. [38] rely
on static analysis to make the target easier to be fuzzed, by simplifying the
loop exit conditions and determining the ranges of valid input that can reach
some error locations. Another example of the combination of fuzzing and
program analysis approaches is the use of taint analysis to support fuzzing.
This idea was adopted, for instance, by Rawat et al. in 2017 [139] and Chen
et al. in 2018[35] to infer properties of the application that were used to
generate more suitable input values, thus increasing the amount of visited
code.

A common representation used in program analysis is the Data Depen-

dency Graph (DDG), which could be used as a possible approximations of
code coverage. DDG are very often adopted in other fields, such as com-
pilers [81, 124], mostly used for code transformations or optimisations, and
static software testing [169, 170] where interestingly it is used to determine
the existence of vulnerable patterns in the source code. The fact that the
DDG is already used for vulnerability discovery purposes suggests that it
can be a good feedback candidate to drive a fuzzer to discover vulnerable
paths. Our intuition behind this, is that the set of information contained in
the DDG can provide the fuzzer with an additional feedback that the CFG
alone cannot capture.

To verify our hypothesis we implemented a custom instrumentation ap-
proach, built on top of AFL++ [65] and LLVM [96], where the fuzzer is
rewarded, on top of the traditional CFG instrumentation, every time a new

47

significant DDG edge is explored. We encountered several challenges to
make our instrumentation lightweight, incremental with respect to the edge
coverage, and effective in terms of discovered bugs. We tested our proto-
type implementation, DDFuzz, over three different datasets including a
custom one of 10 real world applications, the popular benchmarking ser-
vice Fuzzbench [116] and a third suite of programs previously used in the
state-of-the-art [22].

The findings show that adopting the DDG coverage to guide fuzzers can
lead to the discovery of additional (and different) bugs compared with tra-
ditional approaches. For instance, our data-dependency empowered fuzzer
revealed 26 bugs that the traditional AFL++ strategy missed in our cus-
tom evaluation, by introducing a modest overhead of 10% compared to a
normal edge-coverage instrumented binary. Moreover, our approach results
to be incremental also to other state-of-the-art approaches such as Context
Sensitivity and Ngrams. The second evaluation on Fuzzbench [116] that
contains a larger variety of programs and bugs emphasizes these aspects as
our approach performs better than AFL++ in 5 cases while for 3 further
applications it is still able to find different bugs. As a confirmation of our
methodology, DDFuzz discovers 12 more bugs compared to AFL++ in the
third and final evaluation.

Contributions. In short, this chapter provides the following contribu-
tions:

• We propose a novel instrumentation method, DDFuzz, and we show
its benefits as well as its limitations on a total of 38 target applications.

• We establish a reliable criteria based on the codebase structure which
allows to predict when the use of our approach should be adopted for
a fuzzing campaign.

• We test DDFuzz against several other state-of-the-art instrumenta-
tion approaches as well as a large range of targets demonstrating how,
for each case, our custom instrumentation differs in terms of detected
vulnerabilities.

The code of our prototype is available at

https://github.com/elManto/DDFuzz

https://github.com/elManto/DDFuzz

48 48

4.1 Methodology and Implementation

We now illustrate the methodology and the implementation challenges that
we encountered while developing our solution. The technique presented in
this chapter is implemented as an LLVM [96] pass. While the code is com-
patible with different versions of the LLVM APIs, for our experiments we
used LLVM 13. We chose LLVM for two main reasons: first, its intermedi-
ate representation is emitted in SSA [142] (Single Static Assignment) form,
which means that each variable is assigned only once, and all variables must
be defined before their first use. As we will see in the rest of the section, this
simplifies the recovery of dependencies between LLVM IR variables with re-
spect to other code representations where multiple definitions are allowed.
Second, the LLVM toolchain is already well integrated into popular fuzzing
projects, thus making our solution easy to plug into existing fuzzers’ imple-
mentations, such as AFL++ [65]. This gives us the possibility to deploy
our solution in an effective way, as well as to compare it with other instru-
mentation approaches that are already shipped with the AFL++ package.
The following three subsections describe how our pass works by dividing
the process into three main parts: DDG construction, dependency filtering,
and target instrumentation.

4.1.1 DDG construction

The first decision we had make, when we started to develop our static
analysis part, was the choice of the proper LLVM IR variables to construct
the data dependency graph. The first intuitive approach was to recover the
dependencies of each variable present in the LLVM bitcode by relying on the
def-use edges to represent a dependency. However, we immediately noticed
that such a technique does not fit well with our context. Indeed, because of
the SSA form of the bitcode, this would produce too many dependencies to
account for, which in turn would result in poor feedback for the fuzzer and
in a large overhead in the execution of the target binary.

The LLVM framework applies some optimizations to construct its in-
ternal Dependence Graph [8], such as considering strongly connected com-
ponents as a single node (the so-called P-Node). From now on, we will
refer to this graph as DDGraw, to indicate that we obtained it by the default
LLVM implementation without applying any further transformations/op-
timizations. Although DDGraw is already an improvement with respect to
the base strategy, it was still insufficient to overcome the performance is-
sue. Nevertheless, before completely abandoning this road, we performed a
benchmark where we evaluated this approach against the one that we ended

4.1. Methodology and Implementation 49

Algorithm 1: Data Dependency Graph builder

1 function BuildDDG(module)

2 blocks ← GetBasicBlocks(module)

3 DDGb ← {}, ∀ b ∈ blocks
4 DF T ← {}
5 for b ∈ blocks do
6 instructions ← GetInstructions(b)

7 for i ∈ instructions do
8 if IsDefinition(i) then
9 val ← GetValue(i)

10 DF Tval ← {}
11 end
12 if IsGeneric(i) then
13 val ← GetValue(i)

14 ops ← GetOperands(i)

15 InsertDataFlow(DF T , val, ops)

16 end
17 for u ∈ GetUses(i) do
18 def ← QueryDataFlow(DF T , u)

19 src ← GetParentBlock(def)

20 DDGb ← AddToSet(src)

21 end
22 end
23 end
24 end

up selecting. This was needed to ensure not to discard valid possibilities for
our final prototype tool. Results of this preliminary experiment are reported
along with the other evaluations in Section 4.2.3.

Our intuition then was to consider only a subset of LLVM variables,
depending on how they are defined and used in the bitcode, and to recover
the data dependencies that involve only this subset. This implies that we
had to choose which instructions to consider as definitions and which one
to retain as uses. The first observation was that, at the binary level, the
actual data flow happens only when the memory is read or written. At
the IR level, this led us to adopt the Load and Store instructions as a
possible source and sink of our data flows. In addition to this, we added
the Call instructions, and we considered them as uses of the variables, i.e.,
we track the dependency that reaches the function call parameters. Finally,
we selected the Alloca instructions as a potential source of the def-use edge.
Even though the compiler optimization passes would remove the majority of
the Alloca defined variables, it can still be useful to track the dependencies
that come from these variables when they are maintained in the emitted
bitcode.

Algorithm 1 shows our solution. The two main data structures that we

50 50

use are the DDG itself (a map of sets) and what we call the Data Flow

Tracker (DFT), initialized at the beginning of the algorithm. The DFT is
as a map of sets, where the key is a LLVM Value and for each key we get
a set of LLVM Values the key depends on. Our approach iterates over all
the instructions present in each basic block (line 7) and, when we meet a
defining instruction (i.e., Load and Alloca), we add an entry in the DFT
as shown in the first if block (lines 8-10). For general purpose instructions,
i.e., those instructions that are neither a source nor a sink, we first extract
the operands and subsequently the return value of the instruction (12-14).
The primitive InsertDataFlow is then responsible to track the fact that the
return value is actually depending on the operands variables (line 15). To
achieve this, it stores the Value val in the corresponding DFT set, whose key
has a dependency with the operands ops that are involved in the instruction.
The inner for loop iterates over all the uses in the instruction (line 17). For
each of them, we extract the defining instructions by means of the DFT
(with the primitive QueryDataFlow) and we add a new edge to the DDG
(lines 18-20). QueryDataFlow iterates over the keys of DFT, looking for a
match between u (the use) and one of the elements in the corresponding set,
thus performing a recovery of all definitions that u depends upon. The final
output is a data dependency graph, where an edge connects respectively a
definition of a variable D and a use of a variable that depends on D. From
now on, we will refer to such a graph as DDGfull.

4.1.2 Filtering

Given the goal of producing a lightweight instrumentation that has a limited
impact on the performance of the compiled binary, we introduce a set of
optimizations and filters to reduce the number of locations to instrument.
This filtering phase helps us to discard dependencies that would not add
any additional feedback to the fuzzer, as the associated transition is already
captured by edge coverage. First of all, since our reference granularity is the
basic block, any dependency within the same block of code is not significant.
Similarly, multiple dependencies that connect the same two basic blocks are
merged into a single one.

It is important to remember that the purpose of a DDG coverage in-
strumentation is not to help the fuzzer to reach complicated nested regions
of code, but rather to revisit a determined program point by examining the
different dependencies of the variables involved in such a path. In other
words, not by visiting more code, but by triggering additional paths in
already-explored code. Our hypothesis is that by exploring these additional
dependencies we can uncover new flaws which would normally go unde-

4.1. Methodology and Implementation 51

Def1 Def2

...

Use ...

Branch

...

Figure 4.1: The configuration of the Definition and Uses that we want to
isolate

tected. Because of that, we designed our instrumentation to co-exist with
the classic edge coverage mechanism. This allows our fuzzing engine to
receive two different feedbacks, the former useful to test different depen-
dencies and the latter to further explore the application code. However,
this also means that we had to reason about potential intersections of DDG
and CFG coverage, which would lead to duplicate feedback. Thus, we now
clarify which data dependencies we track and which ones we discard with
our pass.

Essentially, we implemented two main rules to filter out redundant data
dependencies. The first one is to check if a dependency is among two con-
nected basic blocks, i.e., in which one is the successor of the other in the
CFG. In this case, the dependency would not add any additional information
that is not captured already by the edge coverage, and therefore would just
increase the overhead without providing any useful feedback to the fuzzer.
Therefore, in this condition we discard the data flow.

The second rule is an extension of the previous one and covers other
scenarios where a data-dependency is already captured by edge coverage.
In particular, we identified two additional types of data-flow. In the first
one, the use U of a variable depends on a single definition D that can be
located many basic blocks before U . In this scenario, we noticed that it is
not worth maintaining the edge connecting the two basic blocks in our data
structure because by definition if the program reaches the code block of U ,
it must have passed through the definition D already (since it was the only
definition). Traditional edge coverage instrumentation already rewards the
fuzzer when following this path, and therefore, for these situations, we do
not track the data flow and discard the edge from our DDG.

52 52

Differently, we can have a configuration in which the use U of a variable
depends on more than one definition, for instance the use of a φ-node
variable 1. As an example, we can consider Def1 and Def2, as represented
in Figure 4.1. In the graph, the black arrows represent CFG edges while the
blue arrows represent DDG edges. In this case, a fuzzer can reach 100%
edge coverage while still triggering only one of the two def-use pairs. In fact,
because of the mechanism used to log the edge coverage (i.e., the XOR of
the current and previous BBs), the execution can reach the use always from
the same edge, and therefore the fuzzer would not consider the two paths
as two separate discoveries. As a result, this type of dependency is the only
type of flow that we keep, as it is fundamental to reward the fuzzer in a
different way compared to standard approaches (edge-coverage).

In the rest of the chapter, we will refer to the DDG obtained after the
filtering phase as DDGfiltered. To summarize, DDGfiltered is a graph that
contains only flows represented with a def-use relationship and that have at
least two definitions for the same used variable.

4.1.3 Instrumentation

As we explained in Section 2.1, typically AFL-based fuzzers log an edge
visit by computing the XOR between the IDs of the current and previous
locations and use this value as an index to access a bitmap that stores the
number of times a certain edge has been hit. For our purposes, this is still
necessary, because the DDG does not add any information to make the
fuzzer explore deeper code but only to improve how to fuzz some specific
code locations. Therefore, as a first instrumentation layer, we keep the
traditional approach that is used in off-the-shelf fuzzers to log new edges
inside a bitmap.

However, in the context of the DDG this solution does not work, since
the two locations that we want to use as input for the XOR are not con-
secutive and the execution could go through many intermediate BBs before
reaching the one that contains the data-dependent use. To solve this issue,
we add an additional marker variable, originally set to 0, for each basic
block that contains a definition we want to keep track of. Our instrumenta-
tion then changes the marker value to the ID of the block when it reaches
the block itself. Finally, we instrument each basic block containing a use
by generating a new bitmap index obtained by XORing the corresponding
marker variables with the ID of the destination block. Because N ⊕ 0 = N ,

1A φ-node merges many versions of a variable into a new one in relationship with the

incoming control flow. https://gcc.gnu.org/onlinedocs/gccint/SSA.html

https://gcc.gnu.org/onlinedocs/gccint/SSA.html

4.1. Methodology and Implementation 53

// X, Y, Z are random IDs set at compile time

void function() {
u16 on_block_X = 0;

u16 on_block_Y = 0;

int val;

// this if-statement leads to two distinct definitions of the

variable ‘val’ that is then used in the last if-statement,

producing a dependency that we want to instrument

if (...) {

// block X
on_block_X = X;
int a = load_a();

val = a;

} else {

// block Y
on_block_Y = Y;
int b = load_b();

val = b;

}

// without these branches here the DDG edges would be

included in the CFG and so pruned by our filtering pass

if (...) {

...

} else {

...

}

if (val == 0) {

// block Z
u16 idx = on_block_X ^

on_block_Y ^

Z;

__afl_area_ptr[idx]++;
use(val);

} else {

...

}

}

Listing 4.1: A simple example of how our instrumentation looks like.

54 54

Table 4.1: Dataset of the applications used for our study, along with their
version, lines of code, command line and compilation information

Application Package Commit KLOC Command
line

Sanitizers Initial
Queue

bison bison 0ac1584 100 @@ ASAN 3

pcre2(*) pcre2 65457aa 68 ASAN,

UBSAN

3

c2m mir 7670d7e 200 @@ ASAN,

UBSAN

65

qbe qbe e0b94a3 10 @@ ASAN 52

faust faust f9aac26 115 @@ ASAN,

UBSAN

27

readelf binutils 68b975a 120 -s @@ ASAN 3

objdump binutils 68b975a 120 -d @@ ASAN 3

libmagic(*) file d1ff3af 14 ASAN,

UBSAN

3

tiff2pdf libtiff 7d3b9da 63 @@ ASAN,

UBSAN

10

openssl(*) openssl 0d87763 234 ASAN 9

(*) indicates that an harness was used

the result will account only for the definition that was actually executed,
thus resulting in different values when the same basic block is reached by
following different data-flow paths.

For instance, we can consider the code in Listing 4.1, in which we high-
lighted the instrumentation inserted at the IR level. At the beginning of
the function, we insert a marker variable for each definition block that we
want to track, on_block_X and on_block_Y in our example. In the basic
blocks containing the definitions, we set the corresponding marker to the
ID of the block (X and Y respectively). Then, the basic block that contains
the use is instrumented to compute the hash of the markers linked to val

with the ID of the current block (Z). This hash is used as an index in the
AFL bitmap.

4.2 Evaluation

To assess the validity of our approach, we performed a number of experi-
ments to measure and compare the effects of our instrumentation in terms
of bug detection, performance overhead, achieved code coverage, and the

4.2. Evaluation 55

Table 4.2: Median number of unique bugs detected in 5 trials over 24h of our
evaluation against edge-coverage based fuzzing along with the intersection of
bugs detected in the median case. Results include also the DD ratio for each
of the targets, the slowdown introduced due to our DDG instrumentation
and the p-value obtained with Mann-Whitney

Target DD
ratio

DDFuzz Edge DDFuzz
∩ Edge

Slowdown P-value

bison 15% 5 3 3 2% 0.05

pcre2 14% 30 28 13 6% 0.46

c2m 23% 26 26 23 21% 0.55

qbe 15% 5 3 2 2% 0.04

faust 20% 4 2 2 18% 0.03

Total - 70 62 43 - -

Geomean 17.06% 9.51 6.66 5.14 6% -

readelf 7% 4 4 4 2% 0.45

objdump 7% 5 5 4 1% 0.56

file 5% 1 1 1 1% 0.38

tiff2pdf 8% 9 13 9 4% 0.002

openssl 5% 2 2 2 5% 0.45

Total - 21 25 20 - -

Geomean 6.28% 3.49 3.24 3.10 2% -

possibility to cause queue explosion. We believe that all these points are
equally important to evaluate when proposing a new fuzzing approach, as
they play a role in the overall effectiveness of a solution. Based on the re-
sults of our experiments, we try to understand when the adoption of our
approach is useful for a fuzzing campaign and when, instead, it does not add
any clear advantage with respect to the traditional edge coverage solution.

For our evaluation, we used 3 datasets. The first includes old versions
of 10 real-world open-source projects known to contain bugs. For the first
five applications, we selected software that we expected to contain a large
number of data dependencies. For instance, we decided to include the pcre2
library because of its frequent use of lookup tables, a C compiler frontend
(c2m) and backend (qbe), a popular parser generator (bison), and faust, a
compiler for a functional programming language used mostly for real-time
signal processing. For the remaining five applications, we selected instead
parser-related projects in which we expect data dependencies to be less

56 56

relevant. Three of them (namely readelf, objdump and libmagic) operate
on the ELF file format while tiff2pdf performs image parsing and openssl

is used to perform cryptographic operations.
The goal of this initial distinction, based purely on our expectation of

the amount and impact of data dependencies, is to select some applications
where our approach can provide an advantage and others where probably it
is less useful. This can help us to better assess in which scenario an analyst
should deploy a fuzzing campaign with our approach and when instead the
traditional edge-coverage can provide better results.

Table 4.1 reports the list of applications in our first dataset, along with
the hash commit that we tested and the command line that we used for the
fuzzer. The fourth column reports the lines of code and clearly shows how
our dataset contains software of different sizes, ranging from 10 KLOCs
(qbe) to 234 KLOCs (openssl). In three cases, namely pcre2, file and
openssl, we had to build an harness that invokes the core functionalities of
the libraries. Furthermore, for each fuzzing campaign, we enabled the ASAN
sanitizer, and, when it was possible, we also added the UBSAN sanitizer
(some of the applications failed at building when UBSAN was enabled).
We did not modify the compiler optimization level adopted by AFL++ (by
default set to O3), to make the code execution more performant.

In addition to this first set of experiments, we also wanted to extend
our evaluation to other datasets, to confirm our findings and prove that
our approach can work for different codebases. However, many popular
benchmark datasets which are used in other studies for fuzzing experiments
are not suitable for our purpose. This is due to the fact that such bench-
marks were designed to evaluate the amount of code covered by different
fuzzers, often by inserting artificial bugs. Although code reachability is a
fundamental aspect of a fuzzing approach, our solution does not add any
improvement in terms of code coverage (at least not directly). Rather, it
tries to use data dependencies to augment the amount of discovered bugs
– which does not necessarily imply exploring new program points. As a
consequence, we believe that datasets such as LAVA-M [51] are not ideal
candidates for a proper evaluation. On the other hand, both MAGMA [80]
and Fuzzbench [116] satisfy our requirements as they focus on a number of
bugs and on a large variety of applications. Among the two, we selected
Fuzzbench [116] because it contains a larger number of programs. In total,
this second dataset includes 22 different programs (we had to disable three
applications because they did not compile under clang-based instrumenta-
tions).

Finally, we added a third dataset to our evaluation, this time taken from

4.2. Evaluation 57

a recent paper by Blazytko et al. [22]. This last benchmark is composed of
targets not selected by us, thus without any a-priori knowledge about the
structure of the programs, but that may still contain targets with relevant
data-dependencies as the focus of the original paper was to deal with highly-
structured inputs and complex parsing code. This final dataset included 6
applications.

4.2.1 Experiment Setup

We performed the experiments with the first and the third dataset on a
x86_64 server containing an Intel Xeon Platinum 8260 CPU with a clock
frequency of 2.40GHz. As already explained, we adopted AFL++ (version
3.14) as a reference fuzzer, both for our implementation and evaluation. One
of the advantages that come with using this project is that it already im-
plements many feedback approaches, such as Edge Coverage, Context Sen-
sitivity, and NGram coverage (from now on respectively Edge, Ctx and
Ngram). Thus, it provides the ideal comparison for our evaluation pur-
poses. In the follow-up of the paper, we will use interchangeably Edge and
AFL++ to indicate the use of standard edge coverage mechanism whereas
we will specify Ctx and Ngram to identify the adoption of alternative
feedback techniques.

Each experiment was made of 5 trials of 24 hours to limit the randomness
of the fuzzer. The initial seeds were mostly taken from the test directories
that were already present in the repositories of the projects to ensure that
they represented valid input files for that application. The initial queue size
is reported in Table 4.1 for each target program in our custom evaluation
set.

For the experiments on the Fuzzbench targets, we adopted the default
configurations described on the public website page [10]. In this case, each
test consists of 20 trials of 23 hours for each fuzzer.

Moreover, as the authors of [92] suggest, we computed the p-value result-
ing from the Mann-Whitney U test, a nonparametric test used to compare
differences between two independent randomly selected sample values that
originate from two distinct populations. For our purposes, the test checks
that our prototype fuzzer is statistically different from the competitor one,
i.e., the default AFL++, in terms of bugs detected during the trials.

4.2.2 Comparison against edge coverage

For our initial evaluation, we want to compare our data dependency cov-
erage instrumentation against the traditional edge coverage approach. The

58 58

first question that we want to answer is whether our approach is helpful in
terms of discovered bugs. We also report a simple metric to capture the
impact of our pass by counting the amount of data dependencies in the
target application. This can tell the analyst if it makes sense to enable our
instrumentation for a new fuzzing campaign. This metric, which we call
DD ratio, is the ratio between the basic blocks that we instrumented with
the dependencies information (as described in Section 4.1) over the total
number of basic blocks in the program.

We computed such a value for the ten applications in our dataset. Re-
sults are reported in the first column of Table 4.2. We can observe that
the value of DD ratio changes quite sharply from application to application,
with a minimum of 5% for openssl to a maximum of 23% for c2m. The
other interesting and more important aspect is that the two sets of applica-
tions are clearly separated by their DD ratio value, confirming our intuition
that the first five were more data-flow intensive. For instance, if we adopt
a threshold of 10%, that derives from the geometrical mean of all ratios for
each target, we can easily classify our codebases into strongly (above the
threshold) and weakly (below the threshold) data-dependent applications.

We then ran our fuzzer evaluation against the traditional edge cover-
age instrumentation. Results are reported in the remaining columns of
Table 4.2, where DDFuzz and Edge indicate respectively the median of
the unique bugs found by the two approaches while the column with la-
bel DDFuzz ∩ Edge represents the findings that are common among the
two (i.e., the intersection). Such numbers are the result of a careful triage
phase that was conducted both in an automated fashion along with a rig-
orous manual check. As a first step, we de-duplicated bugs by grouping
them according to their call-stack hash collected from the stack trace that
we obtained by the sanitizers. However, this simple approach is generally
error-prone (as shown in [92]) and thus we manually inspected all remaining
test cases to avoid any possible duplicates.

The first way to interpret the results is by comparing the number of
discovered bugs by the two approaches. Overall, DDFuzz found 8 vulner-
able flaws more than Edge in the 5 strongly data-dependent applications.
With the exception of c2m, where the median is the same, for the other
four cases, the fuzzer equipped with our instrumentation discovered two
additional bugs each. Viceversa, for the remaining five targets that do not
exhibit a high dependency in their code base, the number of discovered bugs
remained mostly the same. The only exception is tiff2pdf, where DDFuzz

found 4 bugs less than Edge – probably due to the fact that triggering the
bugs was mostly a code reachability problem.

4.2. Evaluation 59

While these results are promising for strongly data-dependent programs,
the intersections between the discovered bugs can tell us even more. In fact,
not only our approach allows to detect more bugs on average, but it can
find some that are never discovered by Edge in any of the trials. For
instance, for c2m, even if the number of unique bugs is the same, there are
three vulnerable points that are only detected by our approach. This is even
more evident if we consider the intersections for pcre2, where DDFuzz finds
a total of 17 unique bugs which are not revealed by the vanilla AFL++.
For the remaining cases instead (bison, qbe and faust) the unique bugs
identified by DDFuzz are mostly a super set of the ones individuated by
Edge. This trend holds until a sufficiently high data dependency exists
in the analyzed code. Indeed, if we consider the last five rows, where the
DD ratio is always under 8%, the intersections converge towards the total
number of bugs – i.e., the additional instrumentation of DDFuzz had a
negligible impact on the results.

We also measured the overhead introduced by our additional instrumen-
tation, compared again with that introduced by Edge alone. The results,
reported in Table 4.2, show that the overhead introduced by our approach
is overall modest. The slowdown factor was computed as the difference
between 1 and the ratio among the DDFuzz average executions per second
over the Edge executions per second (and then transformed in percentage).
For the five strongly data-dependent applications, the average slowdown is
10% (6% if we consider the geometrical mean), despite the fact that we
observed a non-negligible variation of this value. Such a variation is only
in part justified by the DD ratio, because other factors influence it, such
as the execution path, the control flow executed and the fuzzer execution
mode (i.e., if we used an harness or we make use of the fork system call
to spawn the target process). For the remaining five applications instead,
the executions per second are almost the same between the two fuzzing ap-
proaches, demonstrating again that, in the case of a weakly data-dependent
code structure, our methodology converges towards the default AFL++.
The last column of Table 4.2 concludes our measurements about this exper-
iment with the p-value resulting from the Mann-Whitney U test computed
over the bugs found for each trial. The p-value is significant (<= 0.05)
in 3 out of the 5 cases for the strongly-dependent programs while only
one weakly-dependent application reports a p-value statistically significant.
This again suggests that for high values of DD ratio, DDFuzz behaves
differently from Edge.

60 60

Table 4.3: Comparison of the effects of our filtering strategies in terms of
median number of bugs over 5 trials of 24h each

Target DDFuzz DDFuzzfull Intersection Decrease

bison 5 4 4 67%

pcre2 30 29 24 41%

c2m 26 16 13 44%

qbe 5 4 4 49%

faust 5 1 1 52%

Total 71 54 46 -

Geomean 9.95 5.94 5.49 49.85%

4.2.3 Effects of our instrumentation filters

As presented in Section 4.1, before performing the actual instrumentation of
the DDG, we obtain three different versions of the data dependency graph.
The first is DDGraw which is the result of the default LLVM dependence graph
implementation. The second instead is DDGfull which is the output of Algo-
rithm 1 and serves as base graph to produce our final version, DDGfiltered.
As already explained, we ended up instrumenting this last version of the
DDG in our final implementation of DDFuzz, which is used across the
whole paper. However, in the current section, we want to measure the ef-
fects of our optimizations compared to the other two flavors of the DDG
(DDGraw and DDGfull).

As a first step, we compare the performances that result from the in-
strumentation of DDGraw (the LLVM default implementation) against the
final version of the DDG (DDGfiltered). For this, we selected an applications
in our dataset (qbe) for which our approach had an average performance
and instrumented it by using either the default LLVM data dependency
graph (i.e., DDGraw) or our optimized version. We then launched two fuzzing
campaigns according to the experiment setup described in the previous sub-
section.

We immediately noticed that the instrumentation based on DDGraw was
introducing a major overhead since we had to increase the timeout of AFL++
due to the fact that the instrumented program was not terminating within
the default time interval. After 24 hours, the average executions per second
was 50% higher with our optimization (362 vs. 240), and this resulted in
a median of five discovered bugs for DDFuzz versus two (always a subset
of the five) when using DDGraw.

4.2. Evaluation 61

Table 4.4: A comparison of Data Dependency coverage against Ngram2,
Ngram4 and Ctx instrumentation approaches in terms of median number
of bugs over 5 trials of 24h each

Target DDFuzz Ngram2 Ngram4 Ctx DDFuzz
∩

Ngram2

DDFuzz
∩

Ngram4

DDFuzz
∩ Ctx

bison 5 5 4 3 3 3 3

pcre2 30 29 23 33 15 14 17

c2m 26 27 27 17 23 22 12

qbe 5 3 4 5 3 4 4

faust 5 2 2 1 2 2 1

Total 71 66 60 59 46 45 37

Geomean 9.94 7.48 7.23 6.09 5.73 5.93 4.76

For the second measurement, we wanted to quantify the effects of our
pruning strategies. As described in Section 4.1.2, we filtered DDGfull to
exclude the edges which are already covered with Edge, producing as a
final output what we call DDGfiltered. To assess to which extent these fil-
tering strategies impacted the performances of our final implementation,
we performed another experiment with the same setup described in Sec-
tion 4.2.1, comparing the filtered with the unfiltered graphs. In this case
we selected only the five applications that exhibit a sufficient amount of
data dependency as we are interested at measuring the effects of our filter
strategies, and it would not be meaningful to consider applications where
our approach instruments only a small amount of locations. Results of this
evaluation are listed in Table 4.3 where we refer to DDFuzz as our proto-
type implementation after the application of the filters and to DDFuzzfull
as the implementation obtained from our pass without the filtering steps
(i.e., the instrumentation of DDGfull). Moreover, we computed the inter-
sections of bugs between DDFuzzfull and DDFuzz (third column) and the
percentage decrease of the instrumented locations (fourth column).

We can immediately notice that bugs discovered by DDFuzz are mostly
a superset of those which are detected with DDGfull. This is because the
feedback produced by the more dense instrumentation is less informative
in terms of the dependencies that were reached. However, the approach
can still find some interesting program points as demonstrated by the in-
tersections with DDFuzz. In facts, for pcre2 and c2m, 8 distinct bugs are
detected by the more naive approach and missed by DDFuzz in the median

62 62

case.
Overall, the instrumented locations decreased by 52% in average (49%

geometrical mean) with respect to the version without the filters enabled.
This resulted in better performances and indeed we observed an average
slowdown of roughly 20% compared to Edge (while, as already shown,
DDFuzz slowdown was 10%). Therefore, we can conclude that our filter-
ing strategies represent an improvement of the standard instrumentation of
DDGfull and justify our design choices.

4.2.4 Comparison against different instrumentation strate-

gies

For the second evaluation of our approach on the custom dataset, we want
to compare DDFuzz against different instrumentation approaches. As we
have shown in Section 4.1, one of the major points of our instrumentation
technique is that the edges in the DDG can connect basic blocks which
are not necessarily consecutive, i.e., when other intermediate basic blocks
exist between the source and the sink. Thus, our first hypothesis was to
examine instrumentation passes such as the ones that rely on Ngram cov-
erage (Ngram). The simple idea behind these is that when computing the
XOR of the edges to find the bitmap index where to log the new discovered
program point, Ngram approaches take into account multiple edges. For
instance, by adopting Ngram2, the index of the bitmap involves the XOR

of the previous 2 locations, while Edge would consider only the previous
location. In other words, Edge is equivalent to a Ngram1 instrumenta-
tion. For our tests, we chose to compile our target binaries with Ngram2

and Ngram4 because, according to Wang et al. [162], these are the two
approaches that provide the best results in terms of number of discovered
bugs. We also compared against Context Sensitivity [162] (Ctx), a recent
approach that takes into account the callstack in addition to the reached ba-
sic blocks. According to its authors, together with the two aforementioned
Ngram instrumentations context sensitivity was the solution that provided
better results.

The results of our second evaluation are showed in Table 4.4, limited
again to only the five strongly data-dependent binaries. As in the pre-
vious experiment, we report the median of unique bugs, de-duplicated as
explained in 4.2.2. The first four columns contain the median detected
bugs depending on each of the four instrumentations that we wanted to
include, while the remaining three columns instead show the intersections
with DDFuzz. There is no solution that outperforms all the others for all

4.2. Evaluation 63

Table 4.5: A comparison of the median values of line and function coverage
among the programs according to each different instrumentation over 5
trials of 24h each

Target DDFuzz Edge Ngram2 Ngram4 Ctx
Lines Func Lines Func Lines Func Lines Func Lines Func

bison 46.1% 49.7% 43.9% 47.6% 47.5% 50.3% 47.5% 50.3% 47.5% 50.3%

pcre2 53.2% 32.2% 53.8% 32.4% 54.1% 32.4% 54.2% 32.4% 54.2% 32.4%

c2m 48.8% 55.2% 48.8% 55.2% 48.9% 55.2% 48.9% 55.2% 49.2% 55.8%

qbe 76.9% 85.2% 76.6% 85.2% 77.0% 85.0% 77.1% 85.0% 77.0% 85.0%

faust 26.3% 28.5% 26.7% 28.4% 26.7% 28.5% 26.8% 28.5% 26.8% 28.5%

Table 4.6: Comparison among the average queue sizes over 5 trials of 24h
each when data dependency coverage and edge coverage are applied, along
with their ratio

Target DDFuzz Edge Ratio

bison 5,173 2,986 x1.7

pcre2 119,180 16,282 x7.3

c2m 14,323 13,269 x1.1

qbe 2,748 1,814 x1.5

faust 2,934 2,633 x1.1

programs, but DDFuzz results are the best for three out of five applica-
tions and the best overall – with 71 discovered bugs vs. 66 of Ngram2 (the
second-best performer).

Again, by looking at the intersection, we can see that the bugs detected
thanks to the use of our data dependency instrumentation are very different
for each of the tested applications. In each one, DDFuzz finds at least one
different bug that the other approaches could not find. It total, it was
able to detect 25 bugs that were never triggered by Ngram2, 26 more
than Ngram4, and 34 not captured by the Ctx instrumentation. This
shows once more that our extension could provide a very clear benefit for
applications that have a rich set of data dependencies and that even when
DDFuzz is not the approach that finds more bugs overall, it always leads
to detect some different ones. Moreover, it is important to underline that
we believe that all these approaches can (and should) be combined during
a fuzzing campaign.

64 64

4.2.5 Queue Explosion

If the number of vulnerable points detected is an important metric for a
fuzzer effectiveness, the number of inputs generated influences its usability
and could result in poor feedback for the fuzzer.

The authors of [162] found that an increase factor up to ∼8x is still
manageable by the fuzzer and would allow to provide relevant feedback
without incurring in a queue explosion problem. These results were derived
from experiments with different coverage instrumentations, such as Ngram

and Ctx. On the other hand, the authors observed growth factors of 21x
and 14x when using two types of memory feedbacks and concluded that such
values were potentially leading to the explosion in the queue size.

For this, we compute the average size of the queue for our five strongly
data-dependent applications, both in the baseline case with only edge cov-
erage instrumentation and with our data dependency instrumentation. Ta-
ble 4.6 shows the results along with the ratio obtained by dividing the
DDFuzz queue size by the Edge size. The numbers show that the overall
increase is quite moderate. With the exception of pcre2, where the increase
accounts for a factor of 7.3x, all other factors are below 2x, thus showing
that our technique results in additional feedback but not large enough to
cause problems in the input queue.

4.2.6 Code Coverage

As a last experiment on our custom benchmark, we decided to compare
the values of the code coverage that we obtained for our strongly data-
dependent applications. For this test, we used afl-cov [7] which represents
the default solution to measure this metric and is compatible with AFL++
based fuzzers. The tool was launched against the different instrumentation
types that we tested and produced two values for each one: line coverage
and function coverage. Results are reported in Table 4.5 and show the
median values that we observed in our experiments.

If we look at the first two columns that correspond to DDFuzz and
Edge, we observe that there is not one of the two which dominates the
other. In two cases (bison and qbe) DDFuzz performs better whereas for
c2m we registered the same line coverage. For the remaining two projects
instead, Edge reaches a major number of program points.

Other forms of instrumentation led instead to better code coverage.
However, in the worst case (bison), the line coverage difference with the
best approaches is 1.4% while for the other projects is always less than 1%.
This result is in line with our expectations since our approach is not de-

4.2. Evaluation 65

Table 4.7: Total unique bugs found accross all 20 trials of 23h by DDFuzz

and Edge on FuzzBench

Benchmark Total
bugs

Edge DDFuzz DDFuzz
∩

Edge

DD
ratio

arrow_parquet-arrow-fuzz 105 93 86 74 1%

proj4_standard_fuzzer 0 0 0 0 2%

muparser_set_eval_fuzzer 0 0 0 0 3%

openh264_decoder_fuzzer 10 10 8 8 3%

aspell_aspell_fuzzer 0 0 0 0 4%

systemd_fuzz-varlink 0 0 0 0 4%

tpm2_tpm2_execute_command_fuzzer 0 0 0 0 4%

file_magic_fuzzer 0 0 0 0 7%

libgit2_objects_fuzzer 2 2 2 2 5%

grok_grk_decompress_fuzzer 4 4 2 2 7%

stb_stbi_read_fuzzer 11 11 11 11 8%

njs_njs_process_script_fuzzer 0 0 0 0 11%

php_php-fuzz-execute 21 13 16 8 11%

libxml2_libxml2_xml_

reader_for_file_fuzzer
13 11 12 10 12%

libhtp_fuzz_htp 7 6 7 6 13%

matio_matio_fuzzer 22 20 21 19 14%

php_php-fuzz-parser-2020-07-25 13 12 12 10 14%

poppler_pdf_fuzzer 5 4 3 2 14%

libarchive_libarchive_fuzzer 0 0 0 0 15%

zstd_stream_decompress 0 0 0 0 15%

usrsctp_fuzzer_connect 0 0 0 0 17%

libhevc_hevc_dec_fuzzer 3 1 3 1 19%

Total 214 187 183 150 -

Geomean 9.72 7.98 8.20 6.38 7%

signed to increase coverage, but only to increase paths on already-covered
areas of code.

4.2.7 FuzzBench

We now look at the results we obtained from the experiments we performed
on Fuzzbench [116]. The main goal was to extend our approach to a broader
range of applications and bugs to verify whether our findings could be gen-
eralized beyond our test programs.

In these experiments we limited our comparison to DDFuzz and Edge,
because the reports generated by Fuzzbench do not include the information

66 66

Table 4.8: Median relative code-coverage accross all 20 trials of 23h by
DDFuzz and Edge on FuzzBench

Benchmark Edge DDFuzz

arrow_parquet-arrow-fuzz 96.43 95.02

proj4_standard_fuzzer 100.00 100.00

muparser_set_eval_fuzzer 97.91 97.91

openh264_decoder_fuzzer 99.38 98.91

aspell_aspell_fuzzer 99.91 99.86

systemd_fuzz-varlink 100.00 100.00

tpm2_tpm2_execute_command_fuzzer 96.16 88.62

file_magic_fuzzer 81.65 78.34

libgit2_objects_fuzzer 99.75 99.63

grok_grk_decompress_fuzzer 94.58 91.41

stb_stbi_read_fuzzer 94.81 93.01

njs_njs_process_script_fuzzer 96.22 93.66

php_php-fuzz-execute 96.15 92.77

libxml2_libxml2_xml_reader_for_file_-

fuzzer

94.73 92.85

libhtp_fuzz_htp 99.94 99.85

matio_matio_fuzzer 99.33 99.29

php_php-fuzz-parser-2020-07-25 99.12 98.08

poppler_pdf_fuzzer 97.95 97.96

libarchive_libarchive_fuzzer 96.51 81.32

zstd_stream_decompress 98.12 97.84

usrsctp_fuzzer_connect 99.58 99.65

libhevc_hevc_dec_fuzzer 96.14 93.28

about the intersections of discovered found but only an aggregated value
representing the sum of the unique bugs for all fuzzers. Therefore, if we
had included other instrumentation approaches (as, for instance, Ctx and
Ngram) we would have not been able to distinguish among the bugs found
by each technique. The experiment consisted of 20 trials of 23 hours over
a total of 22 real-world projects. We report the results in Table 4.7, where,
for each target, we list the bugs revealed by the two instrumentation ap-
proaches, the sum of the two, the intersection as well as the DD ratio, that
we introduced in Section 4.2.2. To compute the DD ratio, we built the
22 projects on our local machine, according to the docker specifications re-
ported by Fuzzbench to mimic the same environment setup. This allowed us
to run our instrumentation pass and log the instrumented locations and the
total number of basic blocks necessary to compute the ratio. The targets
in Table 4.7 are sorted by the DD ratio with the weakly data-dependent

4.2. Evaluation 67

applications in the first half and the strongly data-dependent projects in
the second.

If we look at the total unique bugs detected by the standard AFL++,
we notice that they are more than the amount of vulnerabilities triggered
by DDFuzz (respectively 187 and 183). On the other hand, the geometrical
mean, which indicates a central tendency by flattening the outlier values,
tells us that DDFuzz finds in the mean case 8.20 bugs while Edge stops
at 7.98 vulnerabilities.

By looking at individual applications, we can notice that Edge performs
better in 4 cases while DDCov in 5. For the remaining 13 benchmarks, in 10
cases none of the fuzzers reported any interesting finding (both fuzzers prop-
erly ran but did not trigger any vulnerable location) whereas for 3 cases the
bugs discovered are the same (libgit2_objects_fuzzer, stb_stbi_read_-
fuzzer, php_php-fuzz-parser-2020-07-25), despite the fact that for php_-
php-fuzz-parser-2020-07-25 the two fuzzers find 2 different bugs. More-
over, it is interesting that in two cases where Edge finds more vulnerabili-
ties, our data dependency instrumentation can still trigger different buggy
locations that were not detected by the edge coverage. More specifically,
for arrow_parquet-arrow_fuzz the intersection of bugs is 74 which means
that DDFuzz finds 12 different bugs, and the same happens for one bug dis-
covered in poppler_pdf_fuzzer. Overall the outcomes of this experiment
confirms that the feedback produced by our instrumentation is different
from the standard edge coverage and results in different program points
reached during the fuzzing session. This inherently does not always imply
more bugs but can result in some different ones.

For the 5 projects where DDFuzz works better, the DD ratio indicates
a high value of data dependency (above the 10% threshold we defined in
Section 4.2.2) whereas for 3 out of the 4 projects where Edge wins, the DD
ratio suggests that the application has a lower amount of data dependencies.
The only exception is poppler_pdf_fuzzer, where Edge detected 4 bugs
vs 3 of DDFuzz, despite a data-dependency ratio of 14%.

Overall, this confirms once more that the DD ratio can be used as a
criteria to predict the type of instrumentation that would provide better
results. To conclude our overview of the bugs, we extracted the statistical
significance data included in the Fuzzbench report. Interestingly, both for
DDFuzz and Edge the bug coverage is statistically significant (i.e., p-value
≤ ∼ 0.05) in 7 cases out of the 12 projects where they can detect at least
one vulnerability.

As a parallel consideration, we computed the coverage that our proto-
type fuzzer reached in the Fuzzbench targets. Table 4.8 shows for AFL++

68 68

Table 4.9: Outcome of the third evaluation over a dataset of 6 programs.
The results include the DD ratio, the median number of bugs found with
DDFuzz and Edge coverage, their median intersection, the Slowdown intro-
duced with our instrumentation and the p-value that we obtained with the
Mann-Whitney test.

Target DD
ratio

DDFuzz Edge DDFuzz
∩ Edge

Slowdown P-value

nasm 3% 4 4 4 1% 0.12

sqlite 7% 1 2 1 15% 0.001

lua 11% 9 2 2 20% 0.005

boolector 14% 3 1 1 6% 0.13

mruby 17% 3 3 3 35% 0.45

tcc 12% 11 8 8 7% 0.05

Total - 31 20 19 - -

Geomean 9.3% 3.9 2.6 2.4 8.7% -

and DDFuzz alike, the median relative code coverage that we obtained
across the 20 trials for each target. According to the Fuzzbench documen-
tation, the relative code coverage for a trial is computed as the ratio between
the single-trial coverage over the maximum coverage obtained during the ex-
periment. It is quite evident that for the majority of the programs (17 out
of 22), Edge results in a better code coverage while DDFuzz can do better
only in 2 cases. However, it is interesting to observe that for all targets
where DDFuzz finds more bugs, it also reaches a lower code coverage. This
confirms once more our intuition that fuzzing the data dependency edges
does not help to discover new program points but suggests how to ”stress“
the already discovered code locations in a different way.

4.2.8 Third Dataset

As a final proof of our approach efficacy, we opted to select another dataset,
made of real-world programs, and adopt it to compare against Edge. We
reviewed recent state-of-the-art papers looking for other fuzzing solutions
dedicated to specific classes of target applications (since DDFuzz works best
with highly data-dependent binaries). At the end we settled for the dataset
of Blazytko et al. [22], who evaluated their structure-aware fuzzer on a set
of 8 programs, that we report in Table 4.9 (note that we excluded PHP

and libxml2 as they are already included in the experiment we ran on

4.3. A Bug Case Study 69

the Fuzzbench dataset, and a second evaluation of these targets would be
unfair, as they both resulted in more bugs for DDFuzz, see Tab. 4.7). For the
experiment setup, we used the same configuration described in Section 4.2.1.

DDFuzz outperformed Edge in 3 targets out of the 4 with a DD ratio
above the threshold (10%), with 11 more bugs overall. On the two targets
with a low DD ratio, our technique performs like the baseline on nasm while
on sqlite it underperforms Edge missing one bug. The Mann-Whitney U
test results in a significative p-value in 3 of the 6 considered cases. With the
exception of boolector, where the test produces a p-value major than 0.05,
the two remaining applications (nasm and mruby) that result in a high
p-value justify this due to the similar number of bugs during the 5 trials.
This evaluation further confirms that the DD ratio is a good predictor of
the efficacy of DDFuzz and thus the insight that our technique should be
applied to a specific class of data-dependent programs.

4.2.9 Classes of Bugs

Another interesting measurement that we carried out on top of our exper-
iments is to study the classes of bugs that DDFuzz revealed during the
several trials. For each of the detected bugs in the median case, we anal-
ysed the reports generated with ASAN for the two datasets that we tested
on our servers. Table 4.10 reports the results in the column Total while the
last column shows the bugs that only DDFuzz could find.

The table shows that DDFuzz can detect several types of bugs, with a
prevalence for Heap Buffer Overflows (38) and Undefined Behaviors that
generate the signal ILL (36). However, many of these bugs are the same
that also the vanilla version of AFL++ can spot during our tests. Thus,
we isolated the ones that are different among the two fuzzers, and found
that the majority accounts for Stack Overflows (11 instances) and Heap
Buffer Overflows (11) while all the other cases are almost equally distributed
between the other classes of bugs.

4.3 A Bug Case Study

In this section, we present a case study about a sample bug that we found
while triaging the crashes that we obtained during our experiments. Our
goal is to show an example of how DDFuzz succeeds in real life and differs
from previous approaches at inspecting the program state.

The application that we consider is tcc, a project that implements a
fast and small C compiler (roughly 50K lines of code). During the triage

70 70

Table 4.10: Classes of bugs detected with DDFuzz in the median case

Bug Class Total DDFuzz Only

Heap BOF 38 11

Global BOF 5 3

Stack BOF 1 0

Heap UAF 4 2

Stack Overflow 19 11

Invalid Ptr Deref 11 3

Invalid Allocation Size 1 0

ABRT 2 1

ILL 36 5

phase, AddressSanitizer reports the presence of a Global Buffer Overflow.
Interestingly, no edge-coverage trial reports the same bug and therefore we
opted to re-implement the approach described in the paper by Wang et
al. [162] to investigate the crash and understand the reason why only one
of the two fuzzers was able to detect it.

The first step consists of reconstructing the testcase tree that originated
the crash. This is possible because AFL++ stores the newly generated
testcases in the queue by naming them with additional info such as the
time, the mutation strategy and the previous testcase whose the mutation
originated the current one. Moreover, when the fuzzer applies a splicing
strategy, the two parents’ names are preserved, thus allowing to recover all
original testcases also in this second scenario. After recovering the testcase
tree, the next step is to show if each mutation generates novelty according
to the fuzzer bitmap. Indeed, in case a certain testcase in the tree does not
generate novelty for the edge-coverage fuzzer, it means that the fuzzer would
have skipped the testcase, loosing one step towards the crashing input. Note
that for the bug we show, we found only one input that generated the
corresponding crash.

After running our set of scripts that implements the previously described
technique, we find that the Global Buffer Overflow is the result of 168 muta-
tions deriving from 2 initial seeds and divided into 133 havoc and 35 splicing.
More importantly, for 3 havoc mutations, the resulting testcase does not
generate any novelty according to edge-coverage, while DDFuzz classifies
it as interesting. The first of these intermediate testcases appears already
after the first 10 mutations of the tree that lead to the bug. This demon-
strates how our Data Dependency instrumentation can affect the findings

4.4. Discussion 71

of the fuzzer already after few initial mutations. The other two mutations
that were retained because of the DDG instrumentation come later in the
tree, respectively at the 18th and 105th mutation round. This case is a good
example of how the augmented sensitivity caused by our data-dependency
feedback can help the fuzzer to retain input that can later help to discover
new bugs.

4.4 Discussion

Overall DDFuzz experimented on three different datasets for a total of 38
different target applications. Our numbers and experiments show that em-
bedding data flow information in coverage-guided fuzzing is a useful prac-
tice. The feedback produced by such an instrumentation can reward the
fuzzer in a different way compared to current state-of-the-art techniques
and lead to reaching different program points that would remain unexplored
with coverage-guided approaches proposed so far. This is evident when we
compare the intersections of vulnerabilities triggered by our own approach
against the other instrumentations that we tested. In our custom dataset, it
helped to reveal 27 new bugs compared to Edge. Moreover, in Fuzzbench,
it triggered 33 different buggy locations and in our third real-world evalu-
ation set it was able to find 12 different vulnerabilities. However, DDFuzz

functioning is strictly related to the internals of the tested codebase. In-
deed, as we have seen across our evaluation it is able to spot interesting and
different bugs only in those cases where the tested application exhibits an
high data-dependent structure of the code. Therefore we tried to develop a
reliable heuristic (that we referred as DD ratio) that helps at recognizing
these cases before running the actual fuzzing session. Moreover, we tested
the impact of our technique from the point of view of the growth in the
fuzzer queue, demonstrating that in the average case the increase is minor
than x2, while in the worst case, it is smaller than many coverage guided
approaches. Finally, the code coverage reached by DDFuzz is affected neg-
atively only in a minimal part (-1.4% in the worst case against Ctx) while
in some cases, it can allow to trigger different program points. All these as-
pects come at the expense of a moderate slowdown of 10-14% in the average
case (6-8% if we use the geometric mean) compared to traditional Edge.

In total our dataset includes 38 programs, therefore respecting the
fuzzing guidelines indicated by the authors of [92]. While we cannot make
sure to cover all possible scenarios we thing that the targets we selected for
our experiments are quite representative from different points of view. For
instance, they provide a good variety of weakly and highly data-dependent

72 72

applications as well as they show different trends in terms of performances
and discovered bugs. In particular, we found that the highest amount of
data-dependency present in an app corresponds, in our set, to 23% (c2m)
that resulted in a slowdown of 21%. This hints that in a worst-case scenario
with higher values of the DD ratio, our instrumentation could penalize the
fuzzing session by injecting too much instrumentation. However, during our
research of the targets, especially w.r.t. the first custom dataset, we did not
meet any application producing a DD ratio so high to hinder the fuzzing
process.

That being said, our approach is first of all a sub-approximation of the
path coverage that allows the fuzzer to reach new program points. As we
described in the Introduction, path coverage is not a good solution for many
applications where it results in state explosion. On the other hand, the fact
itself that DDFuzz is an under-approximation in part justifies why our
approach can only work in a subset of cases. However, we believe that
relying on such approximations to produce alternative feedbacks could, and
should, represent a possible road rather than just focusing on edge coverage
based instrumentations and we hope, with our work, to put more emphasis
on this aspect for future research.

4.5 Limitations and Future Work

Although we believe that our implementation well describes the potential
of the data flow information as feedback for fuzzing, there are some points
that we did not investigate, and that could additionally extend and improve
our approach for future uses.

Firstly, our approach is useful particularly for what we called strongly
data-dependent applications. This is at the same time a limitation and a
feature, because it restricts the range of programs for which our fuzzing
approach should be deployed.

Another point of improvement is that our current implementation does
not avoid edge collisions. This could result in some paths that are ignored
as the result of the XOR computation returns the same value for two dif-
ferent sets of edges. Note that this is similar to what happens with the
Ngram instrumentation that solves the collisions problem only in part, in-
troducing a more sensitive feedback that results in more collisions in the
bitmap. Since the scope of our study was to show the efficacy of the DDG
instrumentation, we did not implement a mechanism to avoid this issue.
However, we plan to address this point in future work on this topic. For
instance, a possible solution could consist of two bitmaps, one collision-free

4.5. Limitations and Future Work 73

for edge coverage that implements the AFL++ approach transforming the
program by breaking the critical edges in the CFG [1] and a second smaller
one with collisions for DDG coverage.

For the same reason, we did not try to adapt our approach to binary-only
fuzzing. Although this is technically possible, it would require a different
approach to recover the DDG of the binary, and instrumentation should be
injected either by binary rewriting [54] or by emulation [20]. In any case,
we believe this could represent a promising future research direction, and
we hope it will be considered by researchers on this topic.

Finally, our implementation is based on AFL++ and we did not adapt
it to other fuzzing engines. Given the large number of fuzzers, it is possible
that our approach could work in a different way depending on the underlying
implementation of the engine.

74 74

Chapter 5

Understanding American

Fuzzy Lop

Recent research in software vulnerability discovery has identified fuzzing,
or fuzz testing, as a key technology to efficiently detect bugs in different
types of applications, including classical user-space programs [111, 116], OS
kernels [161, 146, 159] and virtual machine hypervisors [145].

The high demand for more and more advanced fuzzers has resulted in a
large proliferation of new prototype implementations. Some of these solu-
tions have become well-known and largely adopted tools. Others have con-
tributed to the research process, by studying new ideas that help fuzzers to
uncover new vulnerabilities faster or with higher precision. Although every
new tool comes with new features that distinguish it from existing fuzzers,
a considerable amount of the functionalities is usually inherited from its
“parent” project, which is often a well-established tool in the community.

Over the past five years, both industrial and academic research on fuzz
testing has reached a consensus on a de-facto standard for fuzzing – the
American Fuzzy Lop (AFL) [175] released in 2013 by Michał Zalewski. Two
main aspects can explain AFL’s success. On the one hand, its usability
allows researchers to run the fuzzer out-of-the-box against several programs
without any specific domain knowledge of the target itself. On the other
hand, AFL excels at finding vulnerabilities fully automated, with low man-
ual effort for security analysts. While these two factors are essential to
explain the large success of this project, its development process passed
through many phases of implementation and optimization. Often, new fea-
tures are developed by multiple external contributors, with the inherent
consequence that many design choices are not documented in a single and
accessible resource.

75

76 76

This chpater provides an accurate analysis of internal mechanisms, pa-
rameters, and algorithms, that determine the final behavior of the American
Fuzzy Lop. In other words, we shed light on the design choices that have
been implemented over the years and on their impact. In many cases, im-
provements came from contributions outside the academic ecosystem, thus
lacking experiments and clear results to demonstrate why the author chose
a specific technique over alternative options. As a result, today, everybody
uses AFL without a complete understanding of its internals. However, we
found that even minor modifications of the inner parameters affect the re-
sults of a fuzzing experiment, both positively and negatively.

More importantly, this lack of documentation prevents researchers from
identifying, in a rigorous way, what the root causes behind the excellent
performance of AFL are. We believe that this deep understanding is a
fundamental step to guide future work in the field.

It is also important to understand that not all design choices are related
to the effectiveness of the vulnerability discovery process. Some may instead
improve other aspects of the fuzzing workflow, such as usability and repro-
ducibility of results. In this chapter, we also study whether these features
are still beneficial in modern fuzzing campaigns or if they should now be
considered outdated.

Our work’s primary focus is on the algorithmic components that AFL
embeds and that we can still find in other modern fuzzers, like its sched-
uler, the mutation engine, and the feedback mechanism. We exclude other
specific engineering decisions, such as AFL’s original solution to scale over
multiple cores and machines. To verify the impact of each component, we
performed a dedicated set of experiments in which we compare the vanilla
AFL solution with a carefully-designed patched version of the project that
replaces the feature under analysis. For instance, one of the mechanisms
that captured our interest since the beginning was AFL use of hitcounts to
encode the feedback in the coverage map. To study this aspect we patched
AFL to include an alternative approach to measure the coverage, namely
plain edge coverage.

Overall, we identify nine unique aspects that represent, to the best of
our knowledge, the core design choices of modern fuzzers. We independently
evaluate each feature and its patched counterpart(s), through a set of ex-
periments performed on the popular FuzzBench benchmarking service [116].
We mainly used the bug-based dataset but also included the coverage-based
one to clarify some cases where only one dataset was insufficient to draw
conclusions. This allowed us to study each aspect in terms of its direct
effects on the fuzzing campaign, as captured by the number of bugs and

77

increased coverage. While these are the two metrics that researchers have
settled upon to evaluate the overall performances of a fuzzer, in this thesis
we argue that these two values are often insufficient to gain insights about
the impact of a certain feature or internal parameter. In fact, in our exper-
iments, we often found that these two metrics alone did not provide enough
information to fully capture the subtle difference between different imple-
mentations, which would allow security researchers and fuzzers’ developers
to debug and fine-tune their tools.

Therefore, for some of our final remarks, we limit our takeaways to
qualitative findings, just relying on what we can learn by looking at general
metrics such as bugs and coverage, and losing the necessary precision to
measure deeper consequences of using a particular technique.

Overall, we can split our findings into two main groups. The results
in the first group show that some features commonly adopted by off-the-
shelf fuzzers root their origin in pragmatical or historical reasons, rather
than scientific ones. For instance, we observed that a simple random energy
assignment policy is capable in many cases to outperform the default AFL’s
energy assignment scheme. Similarly, we found that splicing implemented as
a stage was less effective than splicing as a mutation, even though this comes
with the caveat that the generated testcases are possibly more complicated
to debug, thus affecting the usability of the system.

The second set of findings confirms the effectiveness of some historical
design attributes when compared to modern alternatives. This is the case
for novelty search, one of the major, and often forgotten contributions of
AFL. It regularly outperforms the use of other genetic algorithms in terms
of discovered bugs.

To conclude, we believe that the main contribution of this chapter is
to show how even apparently minor aspects can impact, both positively or
negatively, the performance and outcome of a fuzzing campaign. We hope
that our evaluation can pave the way for more sound and complete compar-
isons so that security practitioners and researchers can refine their tools to
obtain the best results from their efforts. Therefore, in the spirit of open
science, we release all code and artifacts to reproduce the evaluations in this
chapter at

https://github.com/eurecom-s3/dissecting_afl

https://github.com/eurecom-s3/dissecting_afl

78 78

5.1 American Fuzzy Lop

American Fuzzy Lop is a mutational coverage-guided fuzzer with a suite
of additional tools [175]. These include testcase- and corpus-minimizers,
a fault-triggering allocator, and a file format analyzer. Its latest available
version at the time of writing is the 2.57b 1, released in 2020, but the fuzzer
is unmaintained by its original author since 2.52b 2, released in 2017.

In this section, we will discuss the inner working of the fuzzer, afl-fuzz,
and the design choices behind it.

5.1.1 General Design

As stated by Zalewski in a technical whitepaper [180] written in 2016, the
main design principles behind AFL are speed, reliability, and ease of use.
While important, these metrics are no longer the predominant principles
that drive recent research on fuzz testing. Instead, researchers now pre-
dominantly focus on the time required to uncover bugs and on the amount
of coverage reached. While some choices in AFL improve these two met-
rics, the principle of ease of use is often forgotten, even though it is the
reason behind many aspects of AFL. For instance, the corpus is represented
as a queue for ease of use: by making AFL mutate simpler testcases first,
shallow crashing testcases will have only minor changes over the original,
“human-friendly” testcases. In addition, the fuzzer keeps track of the parent
testcases of each corpus entry, allowing the user to reconstruct the genealogy
of each corpus entry or crashing testcase.

The actions of the fuzzer are divided into stages that correspond to sev-
eral tasks applied on a single testcase taken from the queue. Users may
configure the behavior of these stages in different ways, for instance by
disabling the deterministic stage with the -d parameter [182]. The testcase
delivery to the target program is performed via standard input or through a
file. Finally, the target execution is controlled by using a forkserver [177], a
mechanism that uses pipes to request copy-on-write clones of the target pro-
grams with fork(2) for each execution to avoid the overhead of execve(2).

5.1.2 Coverage Feedback

The main difference between AFL and previous solutions is the code cov-
erage of the target program used as feedback. Although not the first to

1https://github.com/google/AFL/releases/tag/v2.57b
2https://lcamtuf.coredump.cx/afl/releases/afl-latest.tgz

https://github.com/google/AFL/releases/tag/v2.57b
https://lcamtuf.coredump.cx/afl/releases/afl-latest.tgz

5.1. American Fuzzy Lop 79

introduce this approach [157, 49], AFL took coverage guidance to the next
level with an effective evolutionary algorithm based on this feedback.

However, the coverage metric AFL uses is not a classic path coverage.
In fact, like many symbolic executors [19], AFL aims at a trade-off between
precision and path explosion. Therefore, instead of simple basic block cov-
erage, it uses edge coverage augmented with counters (hitcounts) to track
the number of times an edge was executed. According to Zalewski [180], the
use of hitcount buckets allows AFL to effectively tackle the path explosion
problem.

Implementation-wise, AFL keeps a shared bitmap between the target
and the fuzzer of 64kb (a value chosen to match the L2 cache size at the
time AFL was first developed) with each entry of one byte. When an edge
is executed, the corresponding entry is incremented by 1, wrapping around
the byte in case of overflow. The instrumentation is at the level of basic
blocks, so the ID used for each edge is the result of a hash function that
combines the current block with the previous. This approach introduces
collisions in the bitmap. Starting from version 2.37b (released in 2017), AFL
adopted the trace-pc-guard option of SanitizerCoverage [102] for source-
based instrumentation, an approximation of edge coverage that uses precise
block coverage after breaking critical edges. After each traced execution,
AFL post-processes the map and buckets the entries, thus reducing the
possible values from 256 to 9. This mechanism is at the core of many
fuzzers derived from AFL, such as AFL++ [65] and LibFuzzer [105].

This coverage information is used in the fuzzer by different algorithms.
Its most important use is to decide if a testcase is interesting, and, therefore,
whether it is worth adding it to the corpus for future mutations. For this,
AFL uses a novelty search algorithm that considers as interesting an input
that uncovers a new entry in the map or a value that reaches a previously
unseen bucket.

The use of hitcounts allows AFL to encode each possible bucket as a
bit in a single byte. Thanks to this optimization, AFL implements a very
fast novelty search by using only a loop of DWORD/QWORD bit-wise
operations. The choice of using 8 buckets allows AFL to avoid a path
explosion, and, at the same time, increases execution speed, as it allows for
a highly optimized processing of the resulting coverage map.

5.1.3 Scheduling

Like many other fuzzers, AFL makes use of multiple scheduling policies for
various components.

80 80

First, it schedules which testcase in the corpus should be selected next.
As described before, the corpus is represented as a queue and the base policy
is FIFO. On top of that, AFL uses heuristics to decide to skip a testcase
for various reasons. The first applies when there are some favored testcases
in the corpus. The fuzzer marks a subset of the corpus as favored in the
process of re-evaluating the queue and choosing a small subset of testcases
that cover all the coverage seen so far, the so-called corpus culling. The main
purpose of this operation is to give priority to testcases that are smaller and
faster to execute. If there is at least one corpus entry in the favored set,
a non-favored testcase is skipped with a 99% probability. Otherwise, the
probability goes down to 95% in the case of a non-favored, but previously
fuzzed entry, and 75% for never selected cases.

Another scheduling application is the so-called energy assignment [27].
For each corpus entry, AFL calculates a score that is used to compute how
many executions must be performed in each stage in which mutator is used.
The policy employed in the fuzzer, implemented in the calculate_score

routine, is based on several parameters. The first is the execution time of the
testcase, which can alter the score if slower, or faster than the global average
from 0.1x up to 3x. Another parameter is the number of filled entries in the
coverage map when executing the testcase, this time applying a multiplier
from 0.25x to 3x. The intuition is that testcases with greater coverage
trigger more interesting states. Additionally, the score is increased for newly
discovered entries to allow the fuzzer to focus on novelties. Following the
same spirit, the depth of the entry in the genealogical tree is taken into
account as a multiplier to fuzz derived inputs, that could have been difficult
to discover by blackbox approaches, for a longer time.

5.1.4 Mutators

AFL relies on generic, target-agnostic, byte-level mutators [176]. These
are used in several stages, many of which are deterministic. The fuzzer
sequentially bitflips the current input starting from one to 32 bits at a
time. During this process, as optimization, AFL records the bits that do
not contribute to a change in coverage to avoid mutating them in subsequent
deterministic stages. After that, the fuzzer walks each byte by adding and
subtracting integers in the range from -35 to +35. The next stage is the
replacement of each part of the input with numbers from a set of interesting
values, such as INT_MAX, 0, and 1. This is done iteratively on the input
first at the byte level, and then by using 16 and 32 bits integers.

The last of the deterministic stages uses a dictionary [179] of tokens
related to the input format, for instance, \x7fELF if the target is an ELF

5.1. American Fuzzy Lop 81

parser. These tokens can be specified by the user (with the -x parameter) to
help the fuzzer to generate testcases that are otherwise impossible to create
by using generic bit-level mutations. AFL can also auto-detect tokens during
the bit flips stage by looking for groups of bits that, when changed, always
produce the same coverage, a sign that they might be part of a magic value.
The dictionary stages then mutates the testcases, replacing and inserting
tokens from both, the user-specified and the generated list.

The first non-deterministic mutation stage is random havoc. It applies
several mutations, including the ones used during the previous stages and
some block-based mutations such as overwriting and inserting blocks of
inputs. The mutations are applied at random locations of the input and are
stacked. The number of applied mutations is chosen at random between 2
and 128 and the iteration of the stage is regulated by using the score of the
testcase.

The last stage, splicing, by default is activated only after the fuzzer goes
through a full cycle of the entire queue without any new finding (but it is
always enabled in FidgetyAFL [182]). It selects an entry from the corpus and
recombines it with the current testcase, then it applies the havoc mutator to
this child testcase. This is an important stage that allows AFL to generate
testcases derived from two parents.

In AFL, for ease of use, each testcase saved in the corpus or the crash
folder keeps the information about its one or two parent testcases, as well
as the mutations that were applied. This allows AFL’s users to reconstruct
the entire process of derivation of a testcase, information that helps them
during crash analysis.

5.1.5 Minimization

Some mutations can increase the size of a testcase and, especially for inputs
discovered later in a testing campaign, can result in very lage files. These
large, slow-to-parse, inputs can decrease execution speed and decrease the
likelyhood of a mutation of the correct bytes. Therefore, the fuzzer tries to
minimize their impact by using a testcase minimization algorithm.

After requesting a testcase from the corpus, AFL passes it through its
trimming stage. The key idea is to mutate the testcase by trying to obtain
a smaller testcase that still achieves the very same coverage. The algorithm
consists of removing blocks from the inputs while checking if the coverage
map remains the same. If successful, the process is repeated several times
by increasing the size of the blocks to remove. This technique reduces
the complexity of the items in the corpus, but it also requires additional
executions for each testcase that is saved in the queue.

82 82

5.1.6 Instrumentation

To obtain the coverage information from each execution of the target, AFL
employs several instrumentation options. First of all, it can instrument the
x86 compiler to intercept and modify the assembly code, to log each basic
block by relying on functions available through an injected runtime. In ad-
dition, AFL also provides an LLVM pass [95] which assigns a random block
ID at compile time and adds the instrumentation to hash the blocks and
write to the shared memory, thus resulting in a more efficient instrumenta-
tion than the one provided by the legacy x86-only solution. With LLVM,
the runtime is also more mature as it provides not only the forkserver op-
tion but also the so-called persistent mode to avoid forking when fuzzing
stateless code, resulting in increased performance.

Alongside compiler-based approaches, AFL comes with a binary-only
QEMU mode. QEMU mode uses a patched QEMU 2.10 usermode to inject
a forkserver at the guest entrypoint, and to add instrumentation between
each executed basic block, through a logger routine executed after each basic
block.

5.2 Methodology and Experiments Design

By reviewing the implementation and the internals of AFL, we identified
nine characteristics to assess in our tests. For each of them, we also looked
for alternative solutions proposed in other works to serve as a comparison
in our experiments. We have not selected the trivial comparison between
AFL and FidgetyAFL [182] as it is covered in the FuzzBench paper [116],
which highlights that FidgetyAFL always outperforms AFL in terms of code
coverage over time.

Our aim is to assess the contribution of each feature on the performance
of AFL in terms of uncovered bugs and code coverage using FuzzBench [116]
over a 23h campaign. If the results depend highly on the structure of the
target program, we will try to classify manually which kind of program is
influenced by the tested feature. Finally, when the results do not show
a significant difference, we will provide a qualitative investigation of the
possible impact of that feature on usability.

We now introduce the nine aspects to be covered in our study.

Hitcounts. Hitcounts are adopted by other fuzzers today [105, 158], but
AFL was the first to introduce this concept. Despite its wide adoption,
the impact of this optimization (over plain edge coverage) has never been
measured in isolation on a large set of targets.

5.2. Methodology and Experiments Design 83

To fill this gap, we modified AFL not to increase each entry in the
coverage map while instrumenting the target. Instead, we always set the
value to 1. We expect hitcounts to improve the coverage and especially the
bug detection capabilities by introducing additional information about the
program state, like loop counts. We want to quantify this improvement and
potentially discover target-specific corner cases.

Novelty search vs. maximization of fitness. While AFL considers
every newly discovered hitcount as interesting, both, other early fuzzing
solutions [181], and more recent tools [138] instead only consider testcases
that maximize a given metric as interesting. For instance, Vuzzer uses the
sum of all the weights of the executed basic blocks [138].

We think that a big part of the success of AFL in terms of performance
is the novelty search-based approach it uses to evaluate interesting testcases.
To evaluate this assumption, we implemented 3 a simplified version of the
Vuzzer fitness maximization without the need for static analysis, in which
each basic block has weight 1:

f(i) = |BB(i)|

∑

b∈BB(i) log2(freq(b))

log2(len(i)) if len(i) > 50000∑
b∈BB(i)

log2(freq(b)) otherwise

We chose to borrow the Vuzzer fitness function as it is a simple one
based on just code coverage, avoiding introducing a fitness from scratch as,
to the best of our knowledge, Vuzzer is the only academic work proposing
a simple fitness. Other approaches in the literature that use a fitness employ
heavy static analysis or complex approaches based on many features, not
just code coverage [115]. While it would be interesting to benchmark them
too, it is not fair to compare such complex techniques with a fuzzer that
only uses code coverage like AFL. More complex novelty search solutions
are present in literature [166] that can be used as a competing approach in
future works.

In this experiment, we benchmark the AFL approach versus a fitness
maximization and the combination of the two approaches, as proposed by
Vuzzer [138]. We expect novelty search to outperform both of the com-
peting algorithms, as the maximization saves testcases in the corpus that
are not small and fast (one of the key elements in the design of AFL), and
might end up in local maxima. A set of diverse testcases, like the ones saved

3Note that the input length is bound to 50,000 bytes (to address input bloating) and

the log base is taken from the Vuzzer code.

84 84

by AFL, is likely better in the corpus during fuzzing.

Corpus culling. The prioritization of small and fast testcases in the AFL
corpus selection algorithm improves the speed at the cost of avoiding more
complex testcases that might trigger more complex program states. We
selected this feature for our benchmark because the set of favored testcases
in AFL was a major addition to the fuzzing algorithm, and it is used even
as a metric in following works such as Driller [156].

In this experiment, we want to assess the difference between using the
AFL corpus culling mechanism and using the entire corpus. We expect
culling to result in faster coverage growth over time and, potentially, more
bugs triggered in the same time window. On the other hand, the fuzzer
without corpus culling might be able to discover new bugs that standard
AFL is unable to trigger.

Score calculation. The performance score used to calculate how many
times to mutate and execute the input in the havoc and splice stages are
derived from many variables, mainly testcase size and execution time. This
score is an essential part of AFL and the focus on many derived works (e.g.
[27, 173, 25]).

In our experiment, we measure the difference between the AFL solution
and two baselines, represented by a constant and by random scores. As
picking a constant is a sensitive operation, we opted to create two AFL
variants, one with the minimum score possible for AFL (25) and another
with the maximum (1600). The random variant selects instead a random
number within these boundaries. In addition, we include in the experiment
a version of calculate_score that does not prioritize novel corpus entries, as
this was a significant optimization introduced in AFL. Intuitively, we expect
that the major contribution comes from the prioritization of the novelties,
thus resulting in small differences between the baselines and the patched
AFL with the naive score calculation.

Corpus scheduling. The FIFO policy used by AFL is only one of the
possible policies that a fuzzer can adopt, to select the next testcase. How-
ever, derived works tend to take for granted that the corpus structure is
represented by a queue.

While we know that this feature has its root in usability, in this ex-
periment we assess whether it also contributes to the performance of the
fuzzer. Thus, we evaluate AFL versus a modified version that implements
the baseline (i.e., random selection) and the opposite approach (i.e., a LIFO
scheduler). We expect the random approach to perform equal to, or even
better than the original embodiment of AFL, while the LIFO approach may

5.2. Methodology and Experiments Design 85

help in gaining coverage faster on some targets.

Splicing as stage vs. splicing as mutation. Splicing refers to the
operation that merges two different testcases into a new one. There are
two possible ways to apply this mechanism. The first, adopted by AFL,
considers splicing as a stage. In this case, the actual merge happens only
once at some point in the execution of a specific testcase, when it is joined
with a randomly chosen input among the other ones present in the queue.
However, other fuzzers (e.g., Libfuzzer [105]) often implement splicing as a
mutation rather than a stage, thus applying it many more times for each
testcase during their havoc stage.

To compare the two solutions, we modified the AFL codebase to imple-
ment splicing as a mutation operator. This choice can also have an impact
on the usability of the fuzzer. Indeed, we expect that a major adoption of
splicing as mutation can increase the exploration of the fuzzer while reducing
the simplicity of the testcases and, therefore, complicating the a-posteriori
triaging phase.

Trimming. Trimming testcases allows the fuzzer to reduce their size and
consequently give priority to small inputs, under the assumption that large
inputs slow down the execution and that the mutations would be less likely
to modify an important portion of the binary structure. In AFL, the com-
ponent in charge of this task tries to discard blocks of data with variable
length and stepover. When the removal results in the same checksum of the
original trace map, the new minimized testcase is stored.

Even though this algorithm can bring the two important benefits de-
scribed above, we argue that reducing the size of the testcases could reduce
state coverage. Additionally, the trimming phase could become a bottle-
neck for slow targets. Therefore, in our evaluation, we compare the default
version of AFL against a modified one, in which we disabled trimming. We
expect trimming to be either beneficial or detrimental, depending on the
type of target program and the structure of its input.

Timeout. The timeout regulates the maximum amount of time the target
program runs for. This greatly influences the execution time of the target
and in turn the number of executions per second. While the user can specify
an arbitrary value by passing a command line argument (-t), AFL can also
automatically compute a timeout for the program under test. More specif-
ically, as a first step, AFL calibrates the execution speed during an initial
phase by running the target several times and computing an average of the
execution times. After that, the default heuristic applies a constant factor
(x5) to this average value and rounds it up to 20 ms. In our experiments,

86 86

we modify the multiplicative factor to measure its effect on the fuzzing ses-
sion. We expect that a higher timeout can lead to higher coverage, but also
degrade the performance of the fuzzer.

Collisions. As explained in section 5.1.6, AFL assigns an identifier for each
basic block at compile-time. When using SanitizerCoverage [102]’s pcguard,
critical edges are split into basic blocks and thus AFL assigns a random
identifier to each edge. Unlike the classic instrumentation that combines the
IDs of the current and the previous block, however, this technique is unable
to track edges related to indirect jumps. For both variants, since identifiers
are chosen at random, this causes collisions between two different edges in
the bitmap, that in turn can affect the novelty of a testcase. Although the
number of collisions depends on the number of instrumented locations, for
an average size program the actual collisions are typically between 750 and
18,000 [86].

In our evaluation, we want to compare the AFL instrumentation ap-
proach against a version that is collision-free. As SanitizerCoverage traces
each block by calling a function with a guard parameter, and this guard is
contained in a per-module table initialized in a constructor, we can easily
patch AFL to assign values to the guards by using a global incremental
counter in the constructor instead of random values. This allows the instru-
mentation to generate edge encodings that do not result in collisions during
the fuzzing session. Other fuzzers indeed make use of the guard variable as
the index to access the fuzzer bitmap.

We want to benchmark this feature as the collision-free variant is simpler
than the original implementation with pcguard, raising the question of why
random identifiers are even used in AFL. In addition, it is unclear if the lack
of feedback from the indirect jumps affects the performance more than the
collisions, so we include in our test also the classic approach to benchmark
this impact.

Please note that in this experiment, unlike the collision-free coverage
based on pcguard present in AFL++ (since 2.66c), we do not adapt the size
of the map to the detected number of blocks – a feature that significantly
improves the speed of the fuzzer – as we want to evaluate the impact of the
collisions in isolation.

5.3 Experiments

In this section, we present the results of our experiments, conducted by
using the FuzzBench service [116], and we discuss them to understand the

5.3. Experiments 87

Table 5.1: Hitcounts vs. plain edge coverage bug-based experiment score

Fuzzer Average normalized score

AFL edge coverage 88.09

AFL 74.36

impact of each selected feature. We mainly use the bug benchmark of
FuzzBench, which consists of 25 targets known to contain bugs, as we believe
that discovered bugs are the ultimate metric in fuzzing evaluation [92]. In
addition, we also report the coverage over time as another important metric
to understand the performance of each variant of AFL. Each program was
executed for 23 hours and the reported results are median values computed
over 20 trials to mitigate the effects of randomness in fuzzing. In addition,
we use the Mann-Whitney U test to verify the statistical significance of the
results by comparing differences between two independent groups that in our
case are the original AFL and its variants. The aggregation of the results
is done by using an average normalized score [116]. Finally, we executed all
variants with the trace-pc-guard instrumentation and persistent mode to
mitigate the well-known impact [168] of fork(2).

For the sake of brevity, we only report the results of interesting bench-
marks and avoid discussing each individual benchmark for each experiment.
For the interested reader, the graphs with the complete data of all the 9 ex-
periments are available online at https://anon-afl.github.io/dissecting_-

afl_reports/.
For each set of experiments, we also highlight in gray our discovered

insights. We hope this can help users to better understand AFL and improve
the design of new fuzzing approaches.

5.3.1 Hitcounts

In this first set of experiments, we compare vanilla AFL against a modified
version that does not use hitcounts. Table 5.1 reports the average nor-
malized score of the number of uncovered bugs in our experiments. Quite
surprisingly, the AFL variant without hitcounts discovered more bugs than
the unmodified AFL, a counter-intuitive result as hitcounts should allow
AFL to bypass coverage roadblocks that depend on loop counts.

In particular, vanilla AFL performed better on 6/25 benchmarks in
terms of median discovered bugs, out of which only two are statistically sig-
nificant for the Mann-Whitney U test. The variant with only edge coverage
was better on 5/25 benchmarks, of which four are statistically significant.

https://anon-afl.github.io/dissecting_afl_reports/
https://anon-afl.github.io/dissecting_afl_reports/

88 88

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

grok_grk_decompress_fuzzer

(a) Bug Detection

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

8400

8600

8800

9000

9200

9400

9600
grok_grk_decompress_fuzzer

(b) Coverage

Figure 5.1: Comparison of AFL and AFL-edge-coverage on Grok grk de-
compress (AFL, AFL edge coverage)

It is interesting to note how for some targets edge coverage clearly out-
performed vanilla AFL, as in the case of the grok and the PHP benchmarks.
For instance, in the case of grok_grk_decompress_fuzzer we can observe
that the graphs reporting bugs discovered over time and coverage over time
(Figure 5.1) are correlated. This might suggest that the use of hitcounts
prevents the fuzzer from discovering new code paths, a behavior that can be
explained by the augmented sensitivity, up to 8x as the hitcounts introduce
8 different states for each edge.

As shown by previous studies [162, 163, 62], the increase of sensitivity
introduces testcases in the saved corpus that are too similar to one another,
causing internal wastage of the exploration of the program. AFL is therefore
focusing on fuzzing testcases that are not frontiers in terms of unexplored
coverage areas. This behavior is, of course, highly target dependent, as
the states that AFL can reach by using the hitcounts in its feedback may
contain bugs that otherwise cannot be easily discovered with edge coverage
only.

Table 5.2: Hitcounts vs. plain edge coverage code coverage-based experi-
ment score

Fuzzer Average normalized score

AFL 99.63

AFL edge coverage 97.99

To further confirm our intuition that hitcounts introduce a benefit only

5.3. Experiments 89

Table 5.3: Novelty search vs. maximization of a fitness bug-based experi-
ment score

Fuzzer Average normalized score

AFL 83.32

AFL fitness 83.08

AFL fitness only 70.17

on some targets, we run another set of experiments on FuzzBench on a
different set of 22 benchmarks that FuzzBench uses to evaluate fuzzers using
only code coverage as a metric4. The score reported in Table 5.2 shows that
on this set of different subjects classic AFL outperforms the variant with
only edge coverage, confirming that hitcounts can either increase or decrease
the effectiveness of the fuzzer depending on the target application.

Our conclusion after this experiment is that AFL, and follow-ups
fuzzers like AFL++, should provide an option to disable hitcounts.
AFL++ provides many different options, and the users are suggested
to run an instance of each variant when doing parallel fuzzing, a com-
mon use-case in real-world setups. The fact that in our experiments,
hitcounts have shown very different results on different targets suggests
that users should include a variant without hitcounts when doing par-
allel or ensemble fuzzing like OSS-Fuzz [3].

5.3.2 Novelty search vs. maximization of a fitness

In this second experiment, we compare three fuzzers: vanilla AFL (with
its novelty search algorithm), a variant with only fitness maximization, and
a hybrid variant with both maximization and novelty search. In line with
our expectations, the bug-based benchmark shows that, in average, vanilla
AFL performs best. Table 5.3 reports the average normalized score of the
number of uncovered bugs.

The usage of the fitness only is clearly detrimental and the combina-
tion of both techniques does not introduce a valuable increment in bug-
discovery. AFL and the combined variant perform almost the same, with
the exception of libhtp_fuzz_htp in which the fitness variant is better
and poppler_pdf_fuzzer, in which vanilla AFL is best. While this result

4https://www.fuzzbench.com/reports/experimental/2021-12-17-afl-edges/index.

html

https://www.fuzzbench.com/reports/experimental/2021-12-17-afl-edges/index.html
https://www.fuzzbench.com/reports/experimental/2021-12-17-afl-edges/index.html

90 90

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

php_php-fuzz-execute

(a) Bug Detection

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m
135000

140000

145000

150000

155000

160000

165000

170000

175000
php_php-fuzz-execute

(b) Coverage

Figure 5.2: Novelty search vs. fitness experiment on the PHP application
(AFL, AFL + fitness, AFL fitness only)

was expected, there are some surprising results on specific targets such as
php_php-fuzz-execute, placing the variant with only the fitness maximiza-
tion as the best fuzzer on 4/25 benchmarks, all statistically significant.

Unlike in the previous experiment, this time there is also no correlation
between uncovered code and bugs. For instance, Figure 5.2 shows that for
PHP the variants with fitness only are unable to increase the coverage of
the target application, but at the same time, it is the only variant able to
discover bugs. The saved testcases in the corpus cover the same regions
as the initial testcases so we can observe that, on this target, the fuzzer is
behaving like a blackbox fuzzer without any coverage tracking capability.

A possible explanation is that the novelty search fuzzers are spending
time exploring more program behaviors, while the bugs are in the initial
code regions behind constraints that cannot be solved immediately. On
large programs, this is a well-known behaviour [30] which explains why
random testing can outperform more complex solutions.

The conclusion we can draw from this experiment is that it would
be a mistake to underestimate the impact of the novelty search. In
particular, researchers proposing new approaches that also modify this
aspect should carefully evaluate – in isolation – the benefit of a different
mechanism to decide if an input is interesting, as AFL’s novelty search
provides a strong baseline.

5.3. Experiments 91

15m 3h:10m 6h:5m 9h 11h:55m 14h:50m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

mruby-2018-05-23

(a) Bug Detection

15m 3h:10m 6h:5m 9h 11h:55m 14h:50m

13000

14000

15000

16000

17000

mruby-2018-05-23

(b) Code Coverage

Figure 5.3: Corpus culling comparison on the mruby application (AFL,
AFL w/o fav_factor, AFL no culling)

5.3.3 Corpus culling

In this third experiment, we evaluate AFL versus two other variants, one
without corpus culling and one with culling without any prioritization based
on the fav_factor (a function of execution speed and testcase size). In
Table 5.4 we report the average normalized score for each fuzzer in terms
of discovered bugs.

Table 5.4: Corpus culling experiment score

Fuzzer Average normalized score

AFL w/o fav_factor 90.14

AFL 87.00

AFL no culling 81.94

The usage of corpus culling is clearly a benefit looking at the total num-
bers, but the prioritization given by using fav_factor as weight is not.
The reason behind this is that corpus culling favors faster testcases while
maintaining the same code coverage, but loses the state triggered by more
complex testcases that cannot be easily observed by looking at edge cov-
erage alone. While this optimization is effective as it reduces the number
of testcases in the queue, prioritizing always the smaller and faster inputs
may be decremental in findings bugs. In fact, our experiments show that
the more naive version of culling seems to be the most effective in practice.

Taking mruby-2018-05-23 as case study (Figure 5.3), the variant with-
out the fav_factor provide the best results. The graphs show how the ex-

92 92

ploration of the program states not related to code coverage can help the
fuzzer to increase coverage faster. While this may seem counter-intuitive,
there are programs states blind to edge coverage (e.g. loop counter values)
that are roadblocks in terms of exploration of the control flow graph. There-
fore, fuzzing more complex testcases can help to bypass them and achieve
new coverage. While this variant is generally better, the results are only
statistically significant for the mruby and the openh264_decoder_fuzzer

applications.
Investigating the results of the variant without culling also provides in-

teresting insights. The outcome is highly variable, with benchmarks like
php_php-fuzz-execute and poppler_pdf_fuzzer in which it discover more
bugs and more code coverage in a statistically significant way, and others
like grok_grk_decompress_fuzzer in which it is only able to discover two
bugs while the others discover six. This can be explained by looking at the
number of testcases in the queue, as the fuzzer got stuck fuzzing testcases
too similar to one another if culling is disabled.

Our experiments show that complex testcases are useful to uncover
bugs and AFL should not discard them a priori. However, it is unclear
how to reach the right trade-off between complexity and speed and we
foresee future works that try to improve the prioritization algorithm of
corpus culling to fuzz faster without discarding interesting testcases.

5.3.4 Score calculation

To evaluate the algorithm used in AFL to assign the energy to a testcase, we
compare it versus several alternative implementations: two simply adopting
a constant score (respectively the maximum and the minimum possible score
in AFL), and one that assigns a random score between the valid range.
Additionally, we include a variant of the AFL scoring algorithm without
the multiplicative factor that prioritize the novel inputs recently saved in
the queue.

In our tests, vanilla AFL was not able to outperform the random baseline
in terms of an average normalized score of uncovered bugs (Table 5.5), while
it was better than the variants using a constant score. The results confirm
instead that the prioritization of novel testcases is an improvement.

However, we can observe that the normalized scores of AFL and the ran-
dom variants are really close and the random version is the best performer
only in three benchmarks (arrow_parquet-arrow-fuzz, grok_grk_decompress_fuzzer,

5.3. Experiments 93

Table 5.5: Score calculation experiment score

Fuzzer Average normalized score

AFL random score 93.52

AFL 90.51

AFL max score 88.88

AFL no novel 87.63

AFL min score 81.06

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

0

1

2

3

4

5

grok_grk_decompress_fuzzer

(a) Bug Detection

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

8400

8600

8800

9000

9200

9400

grok_grk_decompress_fuzzer

(b) Code Coverage

Figure 5.4: Score computation comparison on grok (AFL, Max, Min,
Random, No novel)

and php_php-fuzz-execute), out of which only the results on PHP are sta-
tistically significant.

The high variability of the random score fuzzer can be observed for
instance when testing grok. Figure 5.4 shows that in some runs this fuzzer
outperformed all other variants by a large margin (both according to bugs
and coverage), but in other runs, it did not.

It is worth observing in this case that the high variability in code cover-
age (Figure 5.9b) is always above the curve of the other variants, suggesting
that the random fuzzer consistently outperforms the others while the num-
ber of bugs is more aleatory. This highlights that uncovering a bug is more
susceptible to randomness.

The result of the random variant is particularly important as in recent
years energy assignment was the focus of a large number of studies, most
of which used AFL as a baseline for the experiments. However, if even
a random score can often perform better than the algorithm implemented
in AFL, it is difficult to say whether a new energy assignment algorithm

94 94

that beats AFL is really an improvement that can increase the ability of
the fuzzer to discover bugs if not compared against the real baseline. The
high variance in the results of the random algorithm also suggests that it
might be a useful adoption in parallel fuzzing. Multiple instances of the
fuzzer using this score calculation algorithm will increase the chance to hit
the best performer random distribution.

A possible threat to the validity of this experiment is the biased nature
of the benchmarks, which contain applications with a medium-small sized
codebase as they are libraries. With complex targets, the score calculations
with a non-naive algorithm may become more important, and we can see
a hint of this result by looking at the results of this experiment for the
ffmpeg_ffmpeg_demuxer_fuzzer, a complex and slow program in which
AFL triggers more median number of bugs than the random variant.

In conclusion, our experiments show that for simpler targets the
energy assignment problem may be less important than for complex
programs. On the one hand, this might suggest that the development
effort in creating faster and more effective fuzzers can make this allo-
cation problem less relevant for generic fuzzers. On the other hand,
the fastest possible fuzzer cannot compensate for a slow and complex
to execute system under test (like program interpreters or even entire
operating systems), highlighting the need to benchmark new energy as-
signment algorithms, with a dataset of complex targets. Finally, we
suggest using the baselines we introduced in this chapter to avoid the
mistake of considering AFL’s implementation as a baseline.

5.3.5 Corpus scheduling

In this experiment, we tested two alternatives to the FIFO policy used in
AFL to select the next testcase in the queue to fuzz: a random selection,
and a LIFO policy. The results show that in terms of ability to discover
bugs, vanilla AFL is better than the random baseline, but the LIFO variant
is the best among the three, as reported in Table 5.6.

can we zoom the top part of the Y axis on the coverage plot
This time, the random baseline is not superior to vanilla AFL, which

is better than random in 6 benchmarks, making the results of the previous
works in this field, corpus scheduling or seed scheduling, robust even if they
use AFL as baseline. However, a simple variation such as LIFO, shows a
boost in performance on 7 targets, two of them in a statistically significant
way.

5.3. Experiments 95

Table 5.6: Corpus scheduling experiment score

Fuzzer Average normalized score

AFL scheduling LIFO 90.33

AFL 82.94

AFL scheduling random 82.94

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

0

1

2

3

4

5

6

7

php_php-fuzz-parser-2020-07-25

(a) Bug Detection

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

11000

12000

13000

14000

15000

16000

17000

php_php-fuzz-parser-2020-07-25

(b) Code Coverage

Figure 5.5: PHP fuzz-parser for the corpus scheduling experiment (AFL,
LIFO, Random)

For instance, on php_php-fuzz-parser-2020-07-25 (Figure 5.5), fuzzing
later discovered testcases first with FIFO gives a boost in the bug discov-
ery ability while maintaining the uncovered coverage regions at the same
level of the other AFL variants. Another benchmark that benefited from
the LIFO approach is grok_grk_decompress_fuzzer, but in this case the
performance boost is affect both bugs and code coverage.

On the other hand, when the scheduling policy decreases code coverage
(like in matio_matio_fuzzer and mruby-2018-05-23), it negatively affects
the results and performs worse than the vanilla AFL and the random base-
line. The improvement of LIFO over AFL seems to not be related to the
type of the input, for instance, it performs better on the PHP benchmarks
but worst on mruby, both of which are textual programming languages
parsers. Thus, we were not able to reach a clear conclusion on which policy
is better in general, as fuzzing the newly generated testcases first is not
always the best choice even if LIFO is the top performer on average.

However, the boost in performance can be easily observed once that
LIFO starts diverging from AFL, making possible to learn during the fuzzing
campaign which policy is best suited for a given target, even with a simple

96 96

approach that alternates between the two in the first hours and then select
the best performer.

In conclusion, our experiments show that FIFO is generally better
than random, not just because of usability but also because it often pro-
vides better results. However, on many targets, the alternative approach
(LIFO) provided better results. Thus, we believe that more research is
needed to learn the best policy for corpus scheduling (such as the recent
AFL-Hier [163]). Even if the random baseline seems weaker than AFL,
we believe future works on the topic should still include it as a baseline
in their evaluation alongside other simple policies like FIFO and LIFO.

5.3.6 Splicing

In this experiment, we evaluate AFL splicing stage (in which the currently
fuzzed testcase is combined with another taken from the corpus, and then
fuzzed with the havoc stage) versus a variant in which the combination of
two or more testcases is implemented as one of the mutations included in
the havoc stage. Table 5.7 reports the average normalized score in terms of
uncovered bugs for this experiment.

Table 5.7: Corpus scheduling experiment score

Fuzzer Average normalized score

AFL splicing mutation 97.15

AFL 94.66

The results show that the AFL variant that uses splicing as part of
the havoc stage outperforms vanilla AFL. In particular, it is better in 6
benchmarks – two of which show a statistically significant difference from
AFL.

In this experiment, the insight is clear, the recombination of different
inputs in the fuzzer corpus leads to a benefit especially on highly struc-
tured inputs parsers such as php_php-fuzz-parser-2020-07-25, as shown
in Figure 5.6, in which the improvement in terms of bugs finding is very
large. Even on other benchmarks in which the difference in terms of bugs
is smaller, like mruby-2018-05-23, splicing as a mutation improved code
coverage. This result is not surprising, as recent works [22, 63] have already
shown that an enhanced mutator that can recombine and merge different

5.3. Experiments 97

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

0

1

2

3

4

5

php_php-fuzz-parser-2020-07-25

(a) Bug Detection

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m
16200

16400

16600

16800

17000

php_php-fuzz-parser-2020-07-25

(b) Code Coverage

Figure 5.6: Splicing Comparison on libxml2 (AFL, AFL Splicing

Mutation)

inputs in the corpus provides a net benefit for a fuzzer testing highly struc-
tured inputs parsers.

The downside is that frequent re-combination increases the testcase com-
plexity, making triaging harder. In fact, by introducing splicing as mutation
we lose the ability of AFL to keep track of which testcases were involved in
the recombination by simply looking at the file names. Moreover, with this
new variant, the number of parent nodes for each testcase can be greater
than two, thus reducing the ability of users to easily keep track of the trans-
formations applied by the fuzzer.

The results of this experiment confirm our intuition about the ef-
fectiveness of splicing. Modern fuzzers focus on performance as bugs
are becoming harder and harder to find, and therefore we believe they
should use splicing as a mutation. In the specific case of splicing, both
versions can co-exist in the same fuzzer without conflicts and enabled
according to user preferences.

5.3.7 Trimming

In this experiment, the comparison is between AFL (which uses trimming
to reduce the size of a testcase while maintaining the same code coverage)
and a variant without the trim stage. The overall result in terms of average
normalized score of the bugs found is reported in Table 5.8, which highlights
that the variant without trim stage outperforms vanilla AFL.

98 98

Table 5.8: Trimming experiment score

Fuzzer Average normalized score

AFL no trim 99.25

AFL 88.81

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m
0

5

10

15

20

poppler_pdf_fuzzer

(a) Bug Detection

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

36000

37000

38000

39000

40000
poppler_pdf_fuzzer

(b) Code Coverage

Figure 5.7: Trimming Comparison on poppler (AFL, AFL no trim)

The aim of the trim stage of to speedup the fuzzer by reducing the size of
testcases while maintaining intact the coverage. This can negatively affect
the effectiveness of a fuzzer in the cases in which code coverage alone is not
sufficient to describe the program state. So it is not surprising that on many
targets the trim stage decreased the performance of AFL.

In particular, the variant without trimming was the best performer
against eight targets (five of which with statistical significant results). It
is worth noting that all these five programs process structured inputs and
therefore the trim stage may be detrimental. In fact, attempts to shrink
the testcases would most likely result in invalid inputs, and therefore AFL

ends up using valuable resources to try to trim the corpus, without actually
succeeding.

As an example, the variant without trimming provided great results
on a complex structured input program such as poppler_pdf_fuzzer (Fig-
ure 5.7) in which it can discover more bugs and explore more code without
reaching saturation (as suggested by the flattening graph of AFL). The ap-
plication parses PDF, a complex format in which bit-level modification can
easily destroy the validity of an input resulting in different coverage and so
a useless (and time-consuming) trimming stage. In addition, the longer the
fuzzing campaign the slower it becomes to execute testcases, making trim-

5.3. Experiments 99

ming more and more costly without any advantage as the fuzzer is unable
to alter a testcase without maintaining the same code coverage.

The insight from this experiment is that the trim stage can be useless
or even detrimental when the tested codebase is large or when the target
input has a complex format, as every bit-level modification will unlikely
lead to a testcase that maintains the same coverage of the original. This
behavior wastes resources, as the time spent trimming (without any
benefit) could be better used for fuzzing. Therefore, in these cases we
believe that a fuzzer without the trim stage outperforms AFL simply
because it fuzz the target at a higher speed.

5.3.8 Timeouts

In this test we compare AFL with a variant that double the timeout chosen
by the timeout detection algorithm. In terms of average normalized score,
reported in Table 5.9, this variant seems to perform better than vanilla
AFL.

Table 5.9: Timeout experiment score

Fuzzer Average normalized score

AFL double timeout 97.43

AFL 94.70

The variant finds a higher median number of bugs than AFL in seven
benchmarks and performs worst than AFL in two – but none of the results
are statistically significant. However, we can see how on some targets, like
openh264_decoder_fuzzer shown in Figure 5.8, doubling the computed
timeout helps the fuzzer to find bugs faster. This small difference is due
to the environment in which the fuzzers were run, a preemtible VM on
the cloud, the default environment of the FuzzBench service. Usually, a
fuzzer decreases its execution per second with time as more complex code
paths are discovered, and slow targets are not an exception. A slow target
like openh264_decoder_fuzzer on a slow machine may cause the fuzzer
to generate inputs triggering timeouts virtually at every execution if the
timeout is too strict.

This experiment, however, may not suggest a generally valid insight
about AFL, as the speed of a target program depends on the complexity
of such program but also on the method used to fuzz it. AFL in forkserver

100 100

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

0

1

2

3

4

5

openh264_decoder_fuzzer

(a) Bug Detection

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

13200

13400

13600

13800

14000

14200

14400
openh264_decoder_fuzzer

(b) Code Coverage

Figure 5.8: Timeout comparison on openh64decoder (AFL, AFL

double timeout)

mode, for instance, may behave in a different way than the setup used in this
experiment (which uses persistent mode), or other alternative solutions used
by AFL-based fuzzers to execute a system under test (such as full-system
fuzzers [146, 85] or network fuzzers [131, 147]).

In conclusion, this experiment suggests that changing the timeout
calculation algorithm of AFL with a similar one does not change much
the performance of the fuzzer. This aspect is too much dependent on the
platform in which the fuzzer runs to get a generic insight and the user
should carefully tune the timeout based on the slowdown introduced by
using different types of machines or virtual environments, such as cloud
VMs or containers.

5.3.9 Collisions

In the final experiment, we tested AFL versus a collision-free variant that
uses the trace-pc-guard instrumentation option of LLVM to track edges in
the target program. Table 5.10 shows that, overall, collisions decrease the
ability of AFL to discover bugs.

Taking arrow_parquet-arrow-fuzz as showcase for this experiment (Fig-
ure 5.9), we can see how the collision-free variant performs better, even if
by a small small number of bugs.

The collision free variant is better than vanilla AFL on six benchmarks
(only two with statistically significant results) and worse on two benchmarks
(none statistically significant).

5.3. Experiments 101

Table 5.10: Collisions experiment score

Fuzzer Average normalized score

AFL collisions free 96.52

AFL 89.44

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

0

10

20

30

40

arrow_parquet-arrow-fuzz

(a) Bug Detection

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m
0

1000

2000

3000

4000

5000

arrow_parquet-arrow-fuzz

(b) Code Coverage

Figure 5.9: Collisions comparison on arrow (AFL, AFL collisions free)

It is very interesting to note that the only two targets in which vanilla
AFL performs better are large programs: wireshark_fuzzshark_ip and
ffmpeg_ffmpeg_demuxer_fuzzer. In both cases, the number of edges is
greater than the shared map size, thus causing collisions also in our variant.
While these collisions are considerably less (as they are only the ones due
to the overflow of the map, which also affects AFL), AFL uses a hash
function and therefore its collisions are equally distributed across the map.
Our variant uses instead sequential identifiers, and therefore all colliding
blocks are located in the same area of code – basically eclipsing an entire
area of the target from the fuzzer.

In AFL++, this problem is solved by increasing dynamically the map
size, which however introduces a significant slowdown as the processing of
the shared memory is the second most expensive operation in AFL.

This experiment shows how the simpler approach that reduces col-
lisions by using edges enumeration is marginally better. We think that
the classic hash-based index is still used in AFL as a legacy indexing
scheme borrowed from afl-gcc and never changed. Researchers that want
to build new fuzzers upon AFL should therefore consider replacing such

102 102

an indexing scheme.

5.3.10 Discussion

AFL includes multiple features whose impact has never been properly eval-
uated. Many of them, such as hitcounts, are commonly re-used by other
fuzzers and taken for granted for historical reasons. Our work highlights
the importance of benchmarking each aspect of a fuzzer in isolation to fully
understand if, and when, it is beneficial for a testing campaign.

For instance, the results of our experiment show that researchers, de-
signing new fuzzers, need to think twice before replacing certain features of
AFL, such as novelty-search, with their own. On the other hand, some fea-
tures, such as hitcounts, may not be beneficial for certain targets, and better
options may be available. Our findings also suggest that usability-oriented
features (such as using splicing as a stage, instead of as a mutator) should
be carefully considered and, if they are decreasing the fuzzer effectiveness,
should probably not be used by default in fuzzers.

Our results also show that AFL is a complex tool, and therefore it might
not be the correct baseline to use when evaluating novel ideas. In reality
simpler approaches may perform better due to a variety of reasons. There-
fore, new fuzzers (even if based on AFL) should adopt such approaches as
true baselines, since outperforming AFL can be relatively easy.

Finally, our experiments emphasize the difficulty of drawing general con-
clusions. Simply reporting the ‘average case‘ can cover up some exceptional
performance for single test cases or runs. In fact, our effort to precisely
benchmark different aspects of AFL encountered three main problems:

• Randomness. Despite the fact that FuzzBench repeats each experi-
ment up to 20 times to mitigate the random nature of fuzzing, most of
the results were not statistically significant. This affected some tests
more than others, depending on the actual magnitude of the impact
of a given feature. The worse case we observed was in the experiments
on timeouts, where even though results seem to suggest that longer
timeouts are beneficial for slow targets, none of the results were statis-
tically significant. Thus, conclusive experiments to fine-tune a fuzzer
might require very large numbers of runs.

• Target-dependency. Even when results were statistically signifi-
cant, the conclusions were often target-specific. In other words, the
“common sense” the community derives from specific targets can be

5.3. Experiments 103

misleading and difficult to generalize, and specific targets often high-
light how a feature that is often beneficial can be largely outperformed
by other configurations in a specific case (novelty search is a great ex-
ample of this behavior).

• Introspection. A final takeaway is that looking only at bugs and
code coverage is often insufficient to really understand the effect and
impact of a given technique. More fine-grained ways to introspect
the operation of a fuzzer in benchmarking tools (such as by reporting
the numer of timing-out inputs) can greatly help the community to
perform more quantitative measurements.

104 104

Chapter 6

The LibAFL Fuzzing

Framework

Fuzzers are tools designed to execute a target application with a large num-
ber of automatically-generated inputs. Their goal is to discover problem-
atic states, often associated with the presence of security vulnerabilities.
Because of their effectiveness, fuzzers have become an essential asset in the
arsenal of both developers and security researchers.

Many off-the-shelf fuzzers are available to the public, some of which
are now considered de-facto standards for general-purpose applications:
AFL [180, 67], AFL++ [65], HonggFuzz [158], and LibFuzzer [105].
These fuzzers are very popular among security testers and, for example,
routinely discover thousands of bugs on OSS-Fuzz [3], an extensive fuzzing
effort for open-source software.

Unfortunately, while off-the-shelf fuzzers are great tools that are easy to
set up and use for non-experts, they often show their limitations for expe-
rienced users. In fact, to test complex applications or to adapt to different
types of targets, such as operating systems kernels, device drivers, or em-
bedded devices, experts often resort to creating new fuzzers, or modifying
existing ones to fit their needs. For instance, academic researchers often
implement algorithmic improvements and new ideas in small prototypes,
often built on top of AFL or AFL++. While this satisfies the need of the
reviewers in terms of reproducibility of the results, it also resulted in an
incredible number of mostly-incompatible forks.

This is due to the fact that all existing fuzzing frameworks are not
designed to be extensible. Thus, researchers are forced to reinvent the wheel
over and over when implementing their prototypes, often missing out on
features that are present in other forks and that are too complex to port

105

106 106

or re-implement. Some projects, notably AFL++ [65], proposed highly
configurable architectures for fuzzing. However, they are not sufficiently
generic (e.g., all inputs are represented as byte arrays, thus requiring hacks
and workarounds to integrate structured and grammar fuzzing techniques)
nor properly compartmentalized (thus requiring forking the project to adapt
it to new techniques).

This problem is not only an engineering issue, but it also highlights the
lack of a standard definition of the entities that define a modern fuzzer.
Manes et al. [111] published an academic survey that covers all fuzz testing
efforts until 2019. The authors highlight the enormous number of public
fuzzers and categorize some common high-level concepts in a generic fuzzing
algorithm. While this high-level categorization is sufficient for a systemati-
zation, the entities, and their relationships are too coarse-grained to develop
a fuzzer framework according to this definition.

The fragmentation of the fuzzing landscape has three critical conse-
quences on the research in the field:

1. Orthogonal contributions are difficult to combine.
Several hundred, if not thousands, of different improvements have been
proposed in the last decade to increase the effectiveness of fuzz testing.
However, a new corpus scheduler implemented on top of AFL cannot be
easily combined with a new mutator implemented in a custom fuzzer.
As we mentioned before, this hinders the progress of fuzzing as a whole.
Each individual tool focuses on a few advanced techniques but cannot
take advantage of other orthogonal approaches proposed by other re-
searchers.

2. Individual contributions are difficult to assess.
A common drawback of many papers on fuzzing is that the authors com-
pare their technique (for instance, a scheduler) which they implemented
on a certain fuzzer, with previously-proposed solutions implemented in
different tools. Thus, it is often difficult to understand whether better
results are only due to the novel algorithm and not the result of other
components of the fuzzer.

3. Different solutions are difficult to compare.
While dozens of different techniques exist for every aspect of fuzzing, a
third-party comparison would require a considerable re-implementation
effort, typically reserved for surveys and systematization of knowledge
papers. As a result, only a selected amount of solutions have been prop-
erly tested and compared on the same datasets.

107

We believe that these three issues are essential roadblocks that signifi-
cantly slow down the progress of fuzzing, the transition of new techniques
from academia to industry, and the development of new solutions, due to
an extensive duplication of work.

Our Approach. Therefore, in this chapter we propose LibAFL, a novel
fuzzing framework written from scratch in Rust. LibAFL consists of a
collection of libraries that can be used to build custom fuzzers by combining
components based on extensible entities. It achieves this goal thanks to
several factors: (a) it is easily extensible; (b) it is based on a categorization
of components of modern fuzzers; (c) it is designed to exploit the features of
Rust, such as easy and fast serialization of objects and component slotting at
compile-time; (d) it already implements a wide range of fuzzing algorithms,
features, and instrumentation options proposed by recent works in the field.

LibAFL’s building blocks can be used to recreate several modern fuzzing
solutions. Thanks to the extensible design, researchers can combine blocks
and experiment with compositions of beneficial techniques. In this chap-
ter, we use a range of building blocks implemented in LibAFL to combine
and test compelling fuzzing approaches that were never before evaluated,
and others that were never evaluated on top of the same baseline. To the
best of our knowledge, we are the first work to conduct such an extensive
re-implementation (we integrated techniques from 20 previous works) and
evaluation (15 different techniques) by using the same baseline. Addition-
ally, we evaluate combinations of these techniques and provide insights into
the effectiveness of these combinations.

We also show how LibAFL is a robust base to develop standard and
more exotic fuzzers. In the first category, we build a generic bit-level fuzzer
that uses an optimal combination of known techniques and show how the
result outperforms all state-of-the art generic fuzzers like AFL++, Lib-

Fuzzer, and HonggFuzz. We then re-implemented a differential fuzzer
for the Ethereum virtual machines [110] by using a custom feedback based
on the VM state. We compare this fuzzer with its original implementation,
and show how our version outperforms it in terms of uncovered differences
in the two tested VMs.

Contributions. In short, in this chapter, we propose the following con-
tributions:

• We identify and model common building blocks used by modern fuzzers;

108 108

• We present LibAFL, a novel open-source fuzzing framework written
from scratch in Rust;

• We implement state-of-the-art building blocks and techniques;

• Based on these building blocks, we evaluate 15 techniques proposed
in prior work, as well as a range of novel combinations;

• We present a case study that re-implements a differential fuzzer using
custom feedbacks;

• Our generic fuzzer outperforms all off-the-shelf fuzzers;

LibAFL is a widely used Free and Open Source Software available at

https://github.com/AFLplusplus/LibAFL

6.1 American Fuzzy Lop ++

In the landscape of existing solutions, our previous work, American Fuzzy
Lop ++, stands out as a community-driven fork of AFL. AFL++ serves
as a comprehensive platform that amalgamates a diverse range of fuzzing
techniques while offering a certain degree of extensibility and adaptability.
Since 2019, we contributed significantly to AFL++ by incorporating vari-
ous noteworthy techniques previously explored in the realm of fuzzing and
performed some comparative experiments. This includes notable implemen-
tations like MOpt [107] and AFLFast [27].

One of the key innovations introduced by AFL++ is the development of
a plugin interface known as "custom mutators." This interface empowers the
users to tailor the tool to their specific needs by creating custom mutations
and testcase minimization. Additionally, AFL++ offers a range of hooks
that trigger during the fuzzer’s lifecycle, allowing users to intervene, for
instance, when a testcase is retrieved from the corpus.

While AFL++ marked an initial step towards achieving our goals, it also
inherited inherent limitations from its predecessor, AFL. Notably, AFL++

retained a monolithic C codebase for many tasks unrelated to mutator de-
velopment, lacking clear separation of components based on sound software
engineering principles. This architectural constraint presented challenges.

In recent years, the fuzzing community has witnessed the emergence
of several forks of AFL++ [164, 109, 155, 62], each continuing the tra-
dition of AFL by introducing incompatible forks implementing orthogonal

https://github.com/AFLplusplus/LibAFL

6.2. Entities in Modern Fuzzing 109

techniques. Additionally, since the publication of its academic paper, the
AFL++ codebase has grown in both size and scope as more techniques
have been incorporated. This expansion has made the software increasingly
difficult to maintain effectively.

To address these concerns and to ensure a more robust and maintainable
platform, we made a deliberate choice to embark on the development of
LibAFL from the ground up. This approach involved designing LibAFL

with a fresh perspective, steering clear of extending AFL++ even though it
provided a solid foundation to build upon. Our aim is to establish LibAFL

as a modern and versatile fuzzing framework that addresses the limitations
inherited from AFL++ and provides researchers and security professionals
with a flexible and sustainable tool for conducting state-of-the-art fuzzing
research.

Eventually, AFL++ will be a frontend fuzzer using LibAFL as back-
bone, as described later in Chapter 7.

6.2 Entities in Modern Fuzzing

To support the design of our framework, we first identified a set of 9 basic
entities that are commonly present in most modern fuzzers. In this section,
we present these entities and provide some examples by using state-of-the-
art fuzzers.

Input – Formally, the input of a program, or a system in general, is the
data taken from external sources that affect its behavior. In our model
of an abstract fuzzer, we define Input as the internal representation of the
program input (or a part of it). In the simplest case, the input of the
program is a single-byte array. Fuzzers such as AFL store and manipulate
this byte array directly, delivering the result to the target upon execution.

However, there are cases in which a byte array is not an ideal repre-
sentation of an Input, e.g., when the target expects a sequence of system
calls [161]. In this case, a fuzzer does not internally represent the Input in
the same way that the program consumes it. Another example is the inputs
for grammar fuzzers like NAUTILUS by Aschermann et. al. [13]. Here, the
fuzzer internally stores Inputs as Abstract Syntax Trees, a data structure
that can be easily manipulated while maintaining validity according to the
grammar. Since the target expects a byte array as input, the tree is seri-
alized to a sequence of bytes just before the execution. Other fuzzers may
also use other input representations, such as sequences of tokens encoded
as integers [144], or the intermediate representation of a programming lan-

110 110

guage [75].

Corpus – The Corpus is a storage for inputs and their associated metadata.
Different kind of storage affects the capabilities of a fuzzer, for instance, a
corpus that lives entirely in memory makes the fuzzer faster but can quickly
exhaust the available memory when fuzzing large targets, while a corpus
stored on disk allows the user to inspect the state of the fuzzer but introduce
a bottleneck on disk operations.

Most mainstream fuzzers [180, 105, 27] store the corpus on disk, but
this choice affects the scalability of parallel fuzzing and requires a standard
library to perform the file IO operations.

In our model, a fuzzer requires at least two separate corpora: one that
is used to store interesting testcases (6.2) that are used as component of
the evolutionary algorithm of the fuzzer, and another one used to store
the solutions, i.e., the testcases that fulfill the objective of the fuzzer (e.g.,
program crashes).

Scheduler – The Scheduler is a component tied with the corpus. It is the
way the fuzzer asks for the next testcase to fuzz, typically by selecting one
entry from the corpus. Naive schedulers implement, for instance, a simple
FIFO policy or a random selection. More complex schedulers may use prob-
abilistic algorithms based on introspection statistics about the fuzzer [25]
or apply other schedulers to a subset of the corpus, as AFL does when
calculating the "favored" minset.

Other examples include schedulers that try to mitigate the explosion of
the corpus caused by too sensitive feedback [164] or to prioritize testcases
with interesting properties [166].

Stage – The Stage is a component defining an action to perform on a single
testcase from the corpus. Usually, the scheduler selects a testcase and then
the fuzzer executes every stage on that given input. The Stage is a very
broad entity and in existing fuzzers, it is usually the component that invokes
one or more times a mutator on the input (e.g., the random havoc stage in
AFL) or an analysis stage that, for instance, perform taint tracking to
gather information in a white-box fuzzer [35].

Another widely known stage adopted by many fuzzers is the minimiza-
tion phase, introduced in AFL, reduces the size of a testcase obtained from
the corpus while maintaining the triggered coverage points.

Observer – The Observer is an entity that provides information from a
single execution of the target. To reason on an execution of an input,
the fuzzer executes it and then looks at the observers. A snapshot of the

6.2. Entities in Modern Fuzzing 111

observers state after an execution is equivalent to the execution itself in
terms of effects on the fuzzer state. Defining the observers in this way is
particularly useful when a distributed fuzzer can send the observers state
across multiple nodes. This avoids the need for re-execution with the same
input when fuzzing a very slow target.

An example observer is the coverage map, used by common coverage-
guided fuzzers such as AFL or HonggFuzz. The map is filled during
execution to report the executed edges. This information is not preserved
across runs and it is an observation of a dynamic property of the program.

Other fuzzers, such as Ijon [15] or FuzzFactory [126], use different
forms of observers but always rely on a map to keep track of additional
metrics beyond code coverage.

Executor – The Executor is the component responsible to execute the
target system given an input from the fuzzer. In different fuzzers, the em-
bodiment of this entity may change a lot. For instance, for in-memory
fuzzers like LibFuzzer an execution is a call to a harness function, while
for hypervisor-based fuzzers like Nyx [145] it requires an entire operating
system to re-start from a snapshot at each run.

In our model, the Executor is the entity that defines not only how to
execute the target, but all the volatile operations that are related to a single
run of the target. So the Executor is, for instance, responsible for informing
the program about the input that the fuzzer wants to use in the run, e.g., by
writing to a memory location or by passing it as a parameter to the harness
function. The Executor also maintains a set of Observers linked with each
execution.

Feedback – The Feedback is an entity that classifies the outcome of an
execution of the program under test as interesting or not. Typically, this
information is used to decide whether the corresponding input is added to
a corpus.

Most of the time, the notion of Feedback is deeply linked to the Observer,
but the two are different concepts. In fact, the Feedback usually processes
the information reported by one or more observers to decide if the execution
is interesting. While the concept of “interesting” is abstract, it is typically
related to a novelty search (i.e., interesting inputs are those that reach a
previously unseen edge in the control flow graph). In another example [126],
an Observer can be used to report all the sizes of memory allocations and
a maximization Feedback can be used to maximize these values to spot
pathological inputs in terms of memory consumption.

The process that identifies interesting inputs also has a second important

112 112

goal in fuzzing: finding the solutions that satisfy specific objectives, for
example, an observable crash in the target program. This type of feedback,
the Objectives, act as an oracle that describes the expected outcome of the
fuzzing campaign, for instance, a set of crashing testcases with a unique
stacktrace like in HonggFuzz or an input that triggers a crash along a
specified path like in AFLGo [26].

Mutator – The Mutator is an entity that takes one or more Inputs and
generates a new derived one. Mutators can be composed of other mutators
and they are generally linked to a specific Input type. In a traditional fuzzer,
mutators are composed of many bit-level mutations like bit flip or blocks
swapping. A mutator can also be informed about the input format and
mutate the internal representation of the Input, for instance, by swapping
nodes in an Abstract Syntax Tree in case of a grammar fuzzer. Mutators
are usually the part of a fuzzer that changes more often when creating a
custom fuzzer.

Generator – A Generator is a component designed to generate a new Input
from scratch. For instance, a random generator can be used to generate
random inputs. While less popular in feedback-driven fuzzing, there are
notable exceptions that adopt Generators. For instance, Nautilus [13]
uses a grammar-based generator to create the initial corpus and a sub-tree
generator as a mutation of its grammar mutator.

…

 State

Corpus

 Fuzzer

 Event Manager

Stages

LibAFL
Core

 Executor

Solutions

FeedbacksFeedbacksFeedback States

Metadata

Fire Events

Message Passing

Process Pending

Stages

 Stages

Scheduler

TCP

TestcasesTestcasesTestcases

FeedbacksFeedbacksFeedbacks

FeedbacksFeedbacksObjectives

ObserversObserversObservers

Mutators Tracers …

Harness

Target

Input

ShMem

Fuzz One

Input Evaluation

Figure 6.1: LibAFL Core architecture. Links are a representation of a
non-comprehensive picture of the interactions.

6.3 Framework Architecture

The goal of LibAFL is to provide the basic blocks required to build a new
generation of fuzzers through a modular design based on reusable compo-
nents and reliable, fast, and scalable implementations of state-of-the-art

6.3. Framework Architecture 113

techniques. To achieve this objective, we decided to bound the framework’s
design to the actual programming language that we use, Rust, by exploiting
its features from the design stage. In this section, we present and discuss
the design of LibAFL as a system and its individual components.

6.3.1 Principles and High-level Design

The LibAFL framework is designed around three key principles:

• Extensibility, to allow the user to swap different implementations
of the entities explained in Sec. 6.2 in or out, without touching other
parts. This allows the seamless combinations of orthogonal techniques
but also ease the design and development of new components;

• Portability, most of the existing fuzzers are OS-specific, running ei-
ther under *nix or Microsoft Windows. To avoid this pitfall, we opted
instead to design our core library in a system-independent way. More-
over, for maximum portability, we implemented a subset of LibAFL,
including all core components, without any dependency on any stan-
dard library, thus allowing the users to write fuzzers for bare-metal
targets like embedded systems and kernels;

• Scalability, no design choices must conflict with the ability to scale
fuzzers over multiple cores and/or machines. Because of this, we de-
sign an event-based interface that enables and facilitates the commu-
nication between fuzzers;

As we already discussed, none of the existing fuzzing frameworks are
completely extensible. Some are portable on different operating systems,
like LibFuzzer [104] but none can compile on systems without a standard
library. Last but not least, scalability is a known weakness of existing
fuzzers. The design of AFL, and therefore of its many derivates, is based
on disk IO communication and expensive syscalls such as fork(2) [177].
This causes a terrible performance when the fuzzer is scaled across multiple
cores [59]. Other more scalable solutions, like HonggFuzz, are still based
on syscalls to control the target and maintain a shared state between all the
parallel threads, leading to lock contentions. On the other hand, LibFuzzer

achieves greater scalability as different nodes cannot communicate while
fuzzing, the corpus is merged after a defined time span, and the fuzzers are
restarted.

To create a fuzzing framework following the three aforementioned ob-
jectives, we designed our system around three core libraries:

114 114

use libafl_sugar::InMemoryBytesCoverageSugar;

use libafl_targets::libfuzzer_test_one_input;

InMemoryBytesCoverageSugar::builder()

.input_dirs(input_dirs)

.output_dir(output_dir)

.cores(cores)

// For multi-node synchronization

.broker_port(broker_port)

.harness(|buf| {

libfuzzer_test_one_input(buf);

})

.build()

.run();

Listing 6.1: An example frontend with LibAFL Sugar.

• LibAFL Core is the main library and contains the fuzzing compo-
nents and their implementations. A large part of this library depends
only on Rust core+alloc and, thus, can run without any standard
library;

• LibAFL Targets contains the code that lives within the target pro-
gram, like the runtime library for coverage tracking;

• LibAFL CC provides the functionalities to write compiler wrappers
for LibAFL, by providing to the user a set of compiler extensions
useful for instrumentation;

In addition to these three core libraries, LibAFL contains several In-
strumentation Backends that offer APIs to bridge LibAFL to different
execution engines, such as QEMU usermode and Frida.

In our naming convention, all these libraries are part of a toolkit that
is used to create fuzzers called Fuzzer Frontends. Some ready-to-use
frontends are already available in an additional library in the framework,
LibAFL Sugar, that provides a high-level glue API to quickly set up a
frontend in just a few lines of code. We also provide Python bindings to the
Sugar crate for quick prototyping without recompilation.

For instance, Listing 6.1 shows a simple fuzzer that bridges a LibFuzzer-
style harness to a fuzzer that uses generic bit-level mutations and executes
the target in-process written using the high-level APIs of LibAFL Sugar.

6.3. Framework Architecture 115

At the time of writing, the entire LibAFL framework, tests included,
consists of 53k lines of Rust and 15.4k lines of C/C++.

6.3.2 The Core Library

Figure 6.1 shows the architecture of the core library in terms of links between
components. Most components are a one-to-one mapping with the entities
we discussed in Section 6.2, with the addition of three additional macro-
components:
State, Fuzzer and Events Manager.

Each component is mapped to a Rust generic trait, allowing it to work
in combination with any other orthogonal component. This configuration
of the architecture is the standard architecture for a frontend proposed
in LibAFL, but custom architectures can be defined, too. An alternative
architecture, already implemented in LibAFL, consists of a pipeline without
any executor, in which there is no traditional fuzzer loop, but the fuzzer is
a service from which inputs can be requested. This way, LibAFL can be,
for example, embedded in an emulation loop, to use in hooks of emulators
such as Panda [52].

Zero-cost Abstractions

Extensibility comes with the price of introducing abstractions, which usually
has a cost in terms of performance. As speed is an important metric in
fuzzing, we devised a design that allows flexible abstractions without paying
a noticeable cost at runtime.

Since the beginning, driven by micro-benchmarks during the early stage
of development, we avoided traditional object-oriented patterns in favor
of generic traits. This way, we leverage the design of the Rust program-
ming language to allow the compiler to perform powerful optimizations. In
LibAFL, each generic trait takes other related components as generic pa-
rameters. Sub-components are then defined via composition. In this way,
we pay the cost of combinations of linked-but-independent entities at com-
pile time, such as Executors and different kinds of Inputs. As a second
design pattern, inspired by Haskell, we employ compile-time lists similar to
hlist [121] to specify multiple objects, such as the set of observers of the set
of mutations in a composable mutator. These lists have matching capabil-
ities to retrieve single objects stored in the data structure. For instance, a
feedback can access the observers that are useful to determine the interest-
ingness of an execution by either name or type. By exploiting the powerful

116 116

compile-time facilities offered by Rust our code is compiler optimization
friendly.

The State

The State is where all the non-volatile data resides. Everything that is part
of the evolutionary algorithm’s data must be included in the State, as well
as the number of executions, the pseudo-random number generator state
and the corpora (both the main and the solutions corpus).

As some types of feedbacks also need to maintain a state, for instance,
the coverage observed so far in coverage-guided fuzzing, we introduce the
FeedbackState component that is linked to both the state and the feed-
backs. The instances of the feedback states are contained in State and are
initially generated at the start of the fuzzing process.

The main purpose of having a place for the data of the fuzzer is to
exploit the serialization facilities of Rust. Serializing and de-serializing a
state allows any LibAFL-based fuzzer to stop and later restart from the
exact same internal state. For in-process fuzzing, this novel approach allows
LibAFL to recover instances from crashes by re-loading a serialized state
in the crash handler, without the need to re-execute the entire corpus as
previous solutions do.

The Fuzzer

The Fuzzer is a recipient for the operations that define what the fuzzer
can do. It contains the Feedbacks, the Objectives, and the Scheduler, all
independent operations that may alter the fuzzer state. These stages are
separated from the fuzzer to respect the borrowing rules of Rust 1, as they
may invoke some operations that alter Fuzzer and State at the same time.

The Fuzzer, in addition, provides the definition of how a single testcase
should be processed and how to evaluate a new input. By default, the
standard implementation of it, which consists of feedback-driven fuzzing,
defines FuzzOne, the operation responsible to process a single testcase, as
the invocation of the scheduler to get the testcase to fuzz and the invocation
of every stage on the testcase. InputEvaluation, the operation that evaluates
if an input must be added to the corpus, is by default the execution of the
target program and the decision if it is interesting or a solution using the
feedbacks.

1https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html

https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html

6.3. Framework Architecture 117

Custom architectures that implement their own Fuzzer and State enti-
ties, can be used to recreate concepts like Vuzzer [138], which decouples
input generation from the immediate evaluation, in LibAFL.

The Events Manager

The Events Manager is an interface for generating and processing events,
which can be used to implement multi-node synchronization in a parallel
fuzzer or simply for the purpose of logging. The Events Manager is designed
to maximize scalability. In fact, if we assume a communication channel that
scales linearly (such as shared memory message passing [152]) the Manager
does not introduce any further bottleneck as each fuzzer works on completely
separated data and the process of pending events is deferred to specific
reconciliation points in the fuzzer loop, triggered before the fuzzer requests
a new testcase from the scheduler.

Our framework includes a rich set of events. For instance, a component
can be notified when one fuzzer adds a new testcase to its corpus, receiving
an event containing a serialized version of the input and the set of observers
that were considered interesting by the feedback.

The Metadata System

Fuzzing algorithms often need to reason about the information associated
with a given testcase or the overall state of the fuzzer. Therefore, LibAFL

must provide a way to extend the data in the testcases of the corpus and
the data maintained in the state. A naive but effective solution would be
to redefine new types by composition, but in this case, the developer would
need to be aware of each piece of metadata required by all the employed
algorithms. Thus, in order to provide this capability while maintaining
simplicity and performance, we designed a dedicated Metadata System for
the State and Testcase components. In particular, in LibAFL any struct
that implements the SerdeAny trait, a trait that we created to allow the
serialization of trait objects 2 without the requirement of a standard library,
can be used as metadata. This trait requires serialization capabilities and
static lifetime 3, as the instances must be able to be converted to trait
objects.

LibAFL provides then serializable maps that can store any instance that
can be cast to a SerdeAny trait object. Both the Testcase and State holds
a map of this type as an extensible container for metadata. In this way,

2https://doc.rust-lang.org/book/ch17-02-trait-objects.html
3https://doc.rust-lang.org/rust-by-example/scope/lifetime/static_lifetime.html

https://doc.rust-lang.org/book/ch17-02-trait-objects.html
https://doc.rust-lang.org/rust-by-example/scope/lifetime/static_lifetime.html

118 118

different but related components can cooperate by operating on the same
metadata, while completely ignoring what the other components do with
their own metadata. However, this is the only pattern in LibAFL that
introduces a small runtime overhead, due to the map lookup (currently
implemented as a hashmap).

Composable Feedbacks

A fuzzer may require combining multiple feedbacks to evaluate how “inter-
esting” was a given input or to support different objectives. In LibAFL, to
avoid the need to create new aggregated feedbacks from scratch, feedbacks
can be composed by using logical operators. For instance, a fuzzer may not
want to save every crashing input but instead perform some sort of crash
de-duplication. In LibAFL, this can be achieved for example by using a
feedback that considers crashing inputs as interesting and one that consid-
ers an input interesting when it triggers a new stack trace never observed
before. In this case, a crash de-duplication objective can be achieved by
combining the two aforementioned feedbacks with a logical AND.

The Monitor

The last component in a LibAFL-based fuzzer is the Monitor. It is the
component that maintains the statistics collected from the triggered events
and displays them to the user. While this component is not required for a
working fuzzer, the lack of human introspection reduces the effectiveness of
a fuzzing campaign. Monitors allow the developers to report and display
custom stats and to implement various reporting interfaces, such as printing
a status screen in the terminal, or forwarding the data to a Grafana web
interface with statsd 4.

6.3.3 Instrumentation Backends

LibAFL can be easily plugged into any instrumentation backend, like a bi-
nary translator or a simple compiler instrumentation pass. By default, we
provide additional libraries that tie LibAFL with some popular instrumen-
tation backends: LLVM [95], SanitizerCoverage [101], QEMU usermode [21]
and Frida [2].

The runtime in LibAFL Targets can be linked to any SanitizerCoverage
target, adding coverage and comparisons tracking to the fuzzer, using a
compiler flag. The SanCov support allows users to create frontends that are

4https://github.com/statsd/statsd

https://github.com/statsd/statsd

6.4. Applications and Experiments 119

compatible with non-C/C++ SanCov-enabled targets, such as Atheris [90]
for Python and cargo-fuzz [18] for Rust.

LibAFL CC provides a set of LLVM passes to extend Clang and other
LLVM-based compilers to track edge coverage, context-sensitive and K-
context-sensitive [17] edge coverage, N-gram coverage [162], coverage ac-
counting [166], comparisons with CmpLog [65, 16] and dictionary tokens
with autotokens, and an enhanced version of AFL++’s dict2file pass that
extracts the tokens from interesting functions such as strcmp.

LibAFL QEMU bridges QEMU usermode, and full system in the near
future, to Rust with a novel emulator API with hooking capabilities to have
programmatic control over the target’s execution. Around this interface to
QEMU, the library exposes structures like executors and helpers to install
default hooks for common fuzzing tasks, such as edge coverage tracking,
guest snapshot-restore, and binary-only ASan [64].

LibAFL Frida offers similar capabilities to the QEMU bridge, but with
the features of a DBI, without a clear host-guest separation. It includes
a binary-only ASan and, unlike QEMU usermode, it can work on various
operating systems other than Linux such as Windows, macOS, and Android.

Instrumentation capabilities in LibAFL are also offered for concolic ex-
ecution, through LibAFL Concolic and its Rust bridges to SymCC [132]
and SymQEMU [133]. Our API allows a user to write custom constraint
collection filtering in Rust. At target runtime, the constraints are then re-
ported back to a LibAFL-based fuzzer in an easy-to-manipulate format.
These constraints can then be used in a mutator, for instance, to generate
inputs invoking a solver, or for fuzzing, similar to what Borzacchiello et al.
proposed [29].

In addition to these stable backends, LibAFL already has partial sup-
port for TinyInst [68] to instrument binaries on Windows and macOS, and
for Nyx [145] for hypervisor-level snapshot fuzzing.

6.4 Applications and Experiments

In this section, we discuss some of the techniques implemented in LibAFL

and their relation with the entities presented in the previous sections. While
LibAFL already has many implemented techniques, in the first part of this
section, we focus on four popular problems in fuzzing that are the focus of
many published works in the literature: roadblocks bypassing (e.g., [16, 138,
35, 123]), structure-aware fuzzing (e.g., [13, 130, 22, 63]), corpus scheduling
(e.g., [164, 36, 53, 166]) and energy assignment (e.g., [25, 27, 26, 98]).

A non comprehensive list of the techniques integrated in LibAFL at

120 120

the time of writing is listed in Table 6.1, alongside the information if the
technique requires additional implementations of components in the fuzzer
side or additional instrumentation code in the target side.

Table 6.1: List of techniques integrated in LibAFL, the first part only
contains the techniques evaluated in Section 6.4.

Technique New
components

Additional
instrumentation

RedQueen [16] 3 3

Auto-tokens [65] 3

Value-profile [105, 126] 3

Block coverage accounting [166] 3 3

Function coverage accounting [166] 3 3

Loops coverage accounting [166] 3 3

Corpus culling scheduler [180] 3

Weigthed scheduler [65] 3

FAST power schedule [27, 65] 3

COE power schedule [27, 65] 3

EXPLORE power schedule [27, 65] 3

MOpt [107] 3

Nautilus [13] 3

Grimoire [22] 3

Gramatron [155] 3

Token-level [144] 3

NeoDiff [110] 3

LIN power schedule [27] 3

QUAD power schedule [27] 3

EXPLOIT power schedule [27] 3

SymCC [132] 3 3

SymQEMU [133] 3 3

Hitcounts [180] 3 3

Ngram coverage [162] 3

Context-sensitive coverage [35] 3

QASan [64] 3

Atheris (compatibility) [90] 3

cargo-fuzz (compatibility) [18] 3

After discussing how these techniques are implemented, we evaluate
them in three different sets of experiments:

1. We measure the performance in terms of code coverage and bug detec-

6.4. Applications and Experiments 121

tion of several approaches implemented and ready-to-use in LibAFL;

2. We show how we can combine orthogonal approaches implemented in
our framework to build new and never evaluated before fuzzers and
measure their performance;

3. Lastly, to show the efficiency of our framework in a traditional con-
text, we compare and evaluate a new generic bit-level fuzzer based
on LibAFL using the previously presented techniques against other
state-of-the-art fuzzers like AFL++ and HonggFuzz on FuzzBench

[116];

We ran the first two sets of experiments on a x86_64 machine equipped
with an Intel® Xeon® Platinum 8260 CPU with a clock of 2.40 GHz. The
dataset is a subset of the FuzzBench suite, selected to include programs
with diverse features. We run each session for 24 hours and repeated each
experiment five times to mitigate the effect of randomness in fuzzing.

For the comparison with other fuzzers, we run the experiments on the
full FuzzBench suite on the service offered by Google. Each run was 23
hours long and repeated 20 times. The benchmarks suite provides the initial
corpus for every benchmark and we used the default setting. The overall
ranking that we discuss is based on the average normalized score computed
by FuzzBench, which represents the percentage of the highest reached
median code or bugs coverage on a given benchmark.

Finally, in the last part of the section, we present a case study about
how easy, we can implement with LibAFL a fuzzer that is different from
the traditional setups like the ones shown in the first part, a differential
fuzzer that can spot logic bugs in Ethereum VMs with a different kind of
feedback based on the state of the VM instead of code coverage.

In the end, we discuss other implemented approaches and their relations
without providing an evaluation for the sake of time and brevity.

122 122

6.4.1 Bypassing Roadblocks

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m

6000

6500

7000

7500

8000

8500

ed
ge

 c
ov

er
ag

e

bloaty_fuzz_target

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m

1500

2000

2500

3000

3500

ed
ge

 c
ov

er
ag

e

lcms-2017-03-21

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m

1500

2000

2500

3000

3500

4000

ed
ge

 c
ov

er
ag

e

libpcap_fuzz_both

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m
7500

8000

8500

9000

9500

10000

10500

ed
ge

 c
ov

er
ag

e
mbedtls_fuzz_dtlsclient

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m

20000

22000

24000

26000

28000

30000

32000

ed
ge

 c
ov

er
ag

e

sqlite3_ossfuzz

Legend

cmplog

plain

value_profile

value_profile_cmplog

Figure 6.2: Uncovered code coverage over time (24h) of the roadblock by-
passing experiment.

An important field of research in fuzz testing is the development of new
techniques to increase code coverage by bypassing hard-to-solve constraints.
For instance, multi-byte comparisons pose a severe problem for fuzzers that
employ a generic bit-level mutator, since random generic mutations cannot
bypass these comparisons as the solution space is huge and blind guessing
impractical. LibAFL provides several ready-to-use techniques to implement

6.4. Applications and Experiments 123

fuzzers that can overcome these roadblocks.
The first, in chronological order of appearance in the literature, is the

value-profile [103] proposed by LibFuzzer in 2016. This technique tries to
solve comparison instructions by maximizing the number of matching bits
between the two operands of the instruction. In LibAFL, this is imple-
mented with a map observer and a feedback that maximizes the entries of
a map and considers an input as interesting when at least one new max is
discovered. This type of feedback, MaxMapFeedback, is builtin into our
framework and can be easily combined in OR with the basic edge coverage.

The second technique provided by LibAFL is cmplog from AFL++.
This solution is based on the approach adopted by RedQueen [16] and
Weizz [63], and can bypass comparisons by finding and replacing input-to-
state values. It works by instrumenting the comparison instructions and any
function with two pointers as arguments, and logging the related values in a
map at runtime. This logging operation is done only once for each testcase in
the corpus and in our framework this is implemented with a second executor
with one observer that handles the cmplog map. The executor is invoked
in a tracing stage at the beginning of the pipeline and the logged values are
stored as metadata. Later on, a custom mutator matches the pattern in
the input and replaces them with the other operand of the comparison in a
specific mutator.

The third technique, autotokens, was also inspired by AFL++, and can
only be used by instrumenting the target with an LTO pass. In LibAFL CC,
this instrumentation is available for regular compilation, as well. This pass
extracts the tokens from the comparison instructions and the functions with
immediate values, encoding them in a section of the binary. A LibAFL-
based fuzzer can then retrieve the tokens, add them to the dictionary in the
State’s metadata, and use the tokens in the mutator without any overhead.
For this experiment, we consider autotokens as the baseline. In fact, since
it does not introduce any overhead, there is no reason to not use it in a
fuzzer.

Cmplog and value-profile, on the other hand, require additional in-
strumentation and value-profile can bloat the corpus with more input as
it increases the sensitivity [162] of the fuzzer. Thus, we now evaluate
four different options. These include plain (the baseline with autotokens),
value_profile, and cmplog, as well as a new value_profile_cmplog which
combines both of the aforementioned techniques. This combination was
never evaluated in previous studies and shows how the composability of our
solution allows experimenting with different combinations of components
and simplifies the development of complex fuzzers.

124 124

Table 6.2 reports the coverage growth graphs over 5 benchmarks from
FuzzBench. Overall, cmplog is the best performer (95.94), closely fol-
lowed by value_profile_cmplog (95.03), and plain (94.65). Instead, value_profile
performed considerably worse (90.13). This is interesting, as it suggests that
autotokens alone is able to solve many roadblocks without additional over-
head, allowing plain to shine on libpcap which is a benchmark with many
input-to-state comparisons.

This confirms that most roadblocks are input-to-state and the solving
capabilities of value_profile are not an adequate reward for the additional
sensitivity it introduces (due to the possible internal wastage of the corpus
by too many similar testcases). We think that the combination of the two
techniques, however, can have interesting target-specific applications that
can be investigated in the future.

6.4.2 Structure-aware Fuzzing

C A B D

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

mruby-2018-05-23

A D C B

0

1

2

3

4

5

6

php_php-fuzz-execute

C A D B

0

2

4

6

8

quickjs_eval-2020-01-05

Legend

A: gramatron

B: grimoire

C: nautilus

D: token_level

Figure 6.3: Uncovered bugs after 24h of the structure-aware fuzzing exper-
iment.

6.4. Applications and Experiments 125

While generic mutators can effectively stress parsers by generating invalid
inputs, it is also important to fuzz deeper paths beyond the parsing routines
to spot bugs in these code regions. A common solution to this problem is
to make the fuzzer aware of the input format. While generating testcases
from a specification is one of the oldest embodiments of fuzz testing, recent
works in the literature have explored the combination of modern feedback-
based fuzzing with a mutator that is structure-aware [13, 73, 130]. Beyond
this, other approaches [22, 63, 144] proposed to approximate structure-
aware fuzzing with learning heuristics without requiring any user-provided
specification, thus working on targets without a known input format and
reducing the amount of human work.

LibAFL provides several techniques to deal with structured inputs, tak-
ing advantage of the flexibility of all the other components that are agnostic
to the input type. Nautilus [13] is a grammar-based coverage-guided fuzzer
that evolves a corpus of syntax trees with mutations like subtree generation
and replacement from another input in the corpus. In our framework, we
implemented an input type for Nautilus, a generator that can create test-
cases from scratch, and a set of mutators that make use of the generator to
create subtrees. All the other entities remain untouched and immediately
compatible with the grammar fuzzer. For instance, the ScheduledMutator

(the trait for mutators that can schedule other mutators as mutations), is
employed seamlessly with a maximum of 8 stacked mutations. Another
technique available in our framework is a re-implementation of Grama-

tron [155], a grammar-based fuzzer that employs a grammar-to-automata
conversion to implement fast mutators. In LibAFL the grammar prepro-
cessing utility is provided as a tool and the associated structures are specular
to the ones used by Nautilus, with a different underlying implementation.

As an example of approaches that perform grammar learning, LibAFL

implements Grimoire [22], a fuzzer that uses the portion of inputs that
induced the novelty in coverage as tokens to build generalized “tree-like”
inputs and perform grammar-like mutations. It also employs token-level
fuzzing [144], an approach based on token extraction with a lexer. While the
original solution was specific to JavaScript, our implementation is generic
and can be applied to any programming language. Classic bit level mu-
tations are then applied to encoded inputs and that is decoded before the
target execution.

To evaluate these three approaches we decided to use the number of
uncovered bugs instead of code coverage. In fact, the effectiveness of this
type of fuzzer is less dependent on code coverage, especially when compared
to variants that generate invalid inputs and inflate the coverage by exploring

126 126

error paths.

In this experiment, as both Grimoire and token-level require some
initial seeds, we used Nautilus to generate 4096 initial inputs for these
two fuzzers to avoid a bias due to the quality of the seed corpora [83]
provided by FuzzBench. Table 6.3 shows the number of bugs found by
each variant over 3 popular compilers. Grammar-aware approaches are still
superior, with a huge boost for Nautilus on 2 benchmarks over 3, but the
performance of the token-level approach is surprisingly similar to Nautilus

on PHP, given that they start from similar seed inputs.

B A

6

8

10

12

14

mruby-2018-05-23

A B

1.0

1.5

2.0

2.5

3.0

3.5

4.0

php_php-fuzz-execute

A B

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

quickjs_eval-2020-01-05

Figure 6.4: Uncovered bugs after 24h of the Nautilus +MOpt fuzzing
experiment.

Given the promising results of this experiment, we decided to investigate
whether we can further improve the best performer, Nautilus, by combin-
ing it with other orthogonal techniques provided by LibAFL. For instance,
we combine it with the MOpt mutation scheduler [107], to create a new
and never evaluated variant. MOpt has been used to date only to sched-
ule bit-level mutations by assigning probabilities to mutations based on the
observed effectiveness during a learning phase by using a Particle Swarm
Optimization algorithm. We repeated the experiments and compared this
new variant against the 3 grammar benchmarks, running the fuzzer 5 times
for 24 hours. The results are reported in Table 6.4 that shows how Nau-

tilus () perform well when coupled with MOpt () onmruby, but worst
on php. Overall, this confirm the highly target-dependent nature of MOpt

that was observed [65] for bit-level fuzzing.

6.4. Applications and Experiments 127

6.4.3 Corpus Scheduling

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m

6000

6500

7000

7500

bloaty_fuzz_target

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m
1000

1250

1500

1750

2000

2250

2500

2750

3000
lcms-2017-03-21

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m

1500

2000

2500

3000

3500

4000

libpcap_fuzz_both

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m

7600

7800

8000

8200

mbedtls_fuzz_dtlsclient

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m
20000

22000

24000

26000

28000

30000

32000

sqlite3_ossfuzz

Legend

accounting

minimizer

rand

weighted

Figure 6.5: Uncovered code coverage over time (24h) of the corpus schedul-
ing experiment.

The choice of the next testcase to use from the corpus is the focus of many
different studies. The simplest solutions rely either on random selection or
on a FIFO queue. LibAFL provides both, along with additional schedulers
inspired by other state-of-the-art fuzzers.

The first is taken from AFL, which in every queue cycle selects a sub-
set of “favored” seeds from the corpus. The seeds are chosen based on

128 128

execution speed and input length while preserving the maximum cover-
age. In LibAFL, we implemented a generic version of this approach called
MinimizerScheduler, which computes the minset based on the entries of a
given map feedback but with customizable weights. For simplicity, in the
following experiment, we use the traditional weighting policy used by AFL.

The second scheduler uses a recent improvement proposed in AFL++

based on probabilistic sampling. The idea is to map each testcase in the cor-
pus to a probability and a more “promising” neighboring testcase in terms
of a computed score. The score is computed by using various metrics, in-
cluding execution time and coverage map size, and it is used to calculate
the probability too. For the selection process, the scheduler chooses a ran-
dom testcase from the corpus, and a random number between 0 and 1. If
this number is less than the probability associated with the testcase, this
testcase is selected, otherwise, the more promising neighbor is picked.

The third scheduler is taken from TortoiseFuzz [166] and prioritizes
inputs by using three security impact metrics: memory operations with
both block and function granularity, and loop back edges counting. The
tracking of these metrics requires a custom instrumentation, implemented
in LibAFL CC with LLVM and a new associated observer. The scheduler
prioritizes inputs with higher scores and, breaking ties based on input length
and execution time.

Table 6.5 shows the results of four fuzzers based on the aforementioned
schedulers: accouting is the fuzzer using the TortoiseFuzz instrumen-
tation and a scheduler with function-level granularity, minimizer is using
the AFL’s algorithm, rand the random selection baseline, and weighted is
using the probabilistic scheduler from AFL++.

In terms of average normalized score of the uncovered coverage, weighted
achieves the best results (with a score of 98.91), closely followed byminimizer

(98.71), accounting (98.03), and rand in last position (97.50). The small
difference among all solutions is interesting and shows that, despite the
huge attention given to this problem in the literature, a simple random
approach still achieves decent results and it is perfectly suitable for real-
world fuzzing campaigns on fast targets. We also expected accouting to
outperform minimizer, which instead was not the case. However, unlike in
the original evaluation carried out in the TortoiseFuzz paper by using
AFL, LibAFL achieves much higher throughput by executing the target
in-process, thus reducing the difference and impact of these scheduling tech-
niques. While on fast targets the difference is minimal, we believe that the
scheduling problem is crucial on slow targets, where deciding which testcase
to fuzz beforehand can have a large impact on the fuzzing campaign.

6.4. Applications and Experiments 129

6.4.4 Energy Assignment

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m

6000

6500

7000

7500

8000

bloaty_fuzz_target

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m
1000

1250

1500

1750

2000

2250

2500

2750

lcms-2017-03-21

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m

1500

2000

2500

3000

3500

4000

libpcap_fuzz_both

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m

7500

8000

8500

9000

9500

10000

10500

mbedtls_fuzz_dtlsclient

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m

20000

22000

24000

26000

28000

30000

32000

34000

sqlite3_ossfuzz

Legend

coe

explore

fast

plain

Figure 6.6: Uncovered code coverage over time (24h) of the energy assign-
ment experiment.

Energy assignment tries to answer the question of how many times a single
input in the corpus needs to be mutated to create new testcases. The general
problem, also known as power scheduling problem, was introduced in the
literature by Böhme et al. [27] in 2016.

The most naive solution is to use a constant value, while the most com-
monly used simple approach [105, 158] assigns to each seed a random value

130 130

in a given interval. LibAFL also provides this simple algorithm, named
plain, with a range between 1 and 128 when using the default mutational
stage.

While many solutions tune this specific parameter, often for domain-
specific fuzzers [130, 26], the seminal work of AFLFast remains the most
complete coverage of this problem for generic fuzzing. AFLFast proposed
six different algorithms: exploit, explore, coe,fast, lin and quad. In detail,
exploit assigns energy proportional to some metrics like execution time of
the input, coverage density, and creation time of the testcase. Explore as-
signs low energy, dividing the energy of exploit by a constant. Coe is an
exponential scheme that assigns 0 as energy to inputs that trigger high-
frequency edges until they become low-frequency. Fast is an extension of
coe, in which instead of assigning 0 the scheme assigns energy inversely pro-
portional to the amount of visited high-frequency edges. Lin assigns energy
linearly w.r.t the times the testcase has been chosen to be fuzzed, while
quad is quadratic.

In LibAFL, we designed an interface for power scheduling based on
metadata, on top of this, we implemented the six aforementioned algo-
rithms. Our implementation is, however, based on an optimized version of
the algorithms integrated into AFL++, which was developed years after the
AFLFast paper and that was never evaluated in the literature. Among the
six, the most effective5 are explore, the default in AFL, and coe and fast, the
default in AFL++. Therefore, we will focus our tests on these three algo-
rithms and compare them with a baseline (never evaluated before) based on
the plain algorithm. Table 6.6 shows the results in terms of code coverage.

Overall, considering the average normalized score across all benchmarks,
explore is the best performer (99.72), with fast following (99.43) and then
plain (98.12) and coe (97.08). This results confirm the trend observed in
the AFL++ version of the power schedules, with fast and explore as top
performer, with fast as the now default schedule in AFL++.

The LibAFL implementations emphasize once again the same observa-
tions we did for the corpus scheduling problem. Fast fuzzers (on fast targets)
reduce the benefit that can be gained by using more complex scheduling as
less useful executions have a limited effect on the throughput. The score
of coe, which performs worse than the random baseline, can be considered
target-specific. In fact, while the algorithm suffered on some targets (par-
ticularly on the bloaty benchmark), it was the best performer on others
(e.g., on a few runs of mbedtls).

5https://github.com/google/fuzzbench/issues/249#issuecomment-700470906

https://github.com/google/fuzzbench/issues/249#issuecomment-700470906

6.4. Applications and Experiments 131

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

5000

5500

6000

6500

7000

7500

8000

bloaty_fuzz_target

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m
14500

15000

15500

16000

16500

17000

17500

18000

curl_curl_fuzzer_http

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

16000

18000

20000

22000

24000

26000

28000

freetype2-2017

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

7750

8000

8250

8500

8750

9000

9250

harfbuzz-1.3.2

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

635

636

637

638

639

640

641

jsoncpp_jsoncpp_fuzzer

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

1500

2000

2500

3000

3500

lcms-2017-03-21

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

3100

3200

3300

3400

3500

3600

3700

3800

libjpeg-turbo-07-2017

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m
2500

2750

3000

3250

3500

3750

4000

4250

4500

libpcap_fuzz_both

132 132

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

2000

2020

2040

2060

2080

2100

2120

2140

2160
libpng-1.2.56

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

9500

10000

10500

11000

11500

12000

12500

13000

libxml2-v2.9.2

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

15500

16000

16500

17000

17500

18000

18500

19000

libxslt_xpath

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

7600

7800

8000

8200

8400

8600

8800

9000

9200

mbedtls_fuzz_dtlsclient

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

13680

13700

13720

13740

13760

13780

openssl_x509

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m
5000

6000

7000

8000

9000

10000

openthread-2019-12-23

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

41500

42000

42500

43000

43500

44000
php_php-fuzz-parser

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

6000

6500

7000

7500

8000
proj4-2017-08-14

6.4. Applications and Experiments 133

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

3400

3425

3450

3475

3500

3525

3550

re2-2014-12-09

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

22000

24000

26000

28000

30000

32000

34000

36000
sqlite3_ossfuzz

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

590

600

610

620

630

640

systemd_fuzz-link-parser

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

1850

1900

1950

2000

2050

2100

2150

vorbis-2017-12-11

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m
1650

1700

1750

1800

1850

1900

1950
woff2-2016-05-06

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

920

930

940

950

960

970

980

zlib_zlib_uncompress_fuzzer

Legend

AFL++

entropic

honggfuzz

libafl generic

Figure 6.6: Uncovered code coverage over time (23h) of the generic bit-level
fuzzer experiment.

134 134

6.4.5 A Generic Bit-level Fuzzer

While the main goal of LibAFL is to be a Swiss-army knife to build custom
fuzzers, we also strive to provide good default implementations to use for
out-of-the-box generic bit-level fuzzing.

In this section, we present a frontend for LibAFL to fuzz LibFuzzer

harnesses with a generic mutator. We evaluate this fuzzer against the state-
of-the-art fuzzers used in Google OSS-Fuzz to fuzz thousands of open source
projects every day, AFL++, HonggFuzz, and LibFuzzer, with the En-

tropic [25] option enabled for better performance.
Our fuzzer, like LibFuzzer and any other fuzzer used in the previous

experiments, uses an in-process executor to run the target harness, while
AFL++ and HonggFuzz control the target with forms of IPC (like pipes).
Our fuzzer also employs some of the improvements we covered in the previ-
ous experiments: cmplog, the weighted corpus scheduler, the explore energy
assignment scheme, and the MOpt mutator.

For this particular experiment, we submitted a request to the FuzzBench

service 6, to execute the four fuzzers on 22 different benchmarks and evalu-
ate the reached code coverage. Each fuzzer was scheduled for 23h and every
single experiment was repeated 20 times to mitigate the randomness. The
results for each benchmark are reported in Table 6.6. The overall result,
based on the average normalized score of the coverage uncovered across all
the targets, is that LibAFL clearly outperforms all the other fuzzers with
a score of 98.61, followed by HonggFuzz (96.65), AFL++ (96.32) and
Entropic (94.22). This result is even more relevant since the other fuzzers
were gradually improved over time [116] based on the outcome of several
FuzzBench runs, while LibAFL has been developed independently from
this benchmarking suite.

By inspecting the results in isolation, we can see that LibAFL shines on
3 benchmarks, harbfuzz, openthread and sqlite3. Notably, it is the only
fuzzer that can reach the coverage breakthrough by unlocking the fuzzer
from saturation in a few runs on mbedtls and consistently on openthread.

On the other hand, our fuzzer clearly underperforms AFL++ and Hong-

gFuzz on libpng, resulting in an almost equal performance with Entropic.
The missing coverage of these two fuzzers can be explained with the exe-
cution model that they use, in-process, versus the out-of-process executor
that the other two uses. The latter is slower but more reliable in handling
timeouts. The strength of our approach is that limitations like this one can

6The complete details of the experiment are available at https://www.fuzzbench.com/

reports/experimental/2022-04-11-libafl/index.html

https://www.fuzzbench.com/reports/experimental/2022-04-11-libafl/index.html
https://www.fuzzbench.com/reports/experimental/2022-04-11-libafl/index.html

6.4. Applications and Experiments 135

be easily overcome by changing a few lines of code in the frontend, in this
particular case to move from InProcessExecutor to ForkserverExecutor.

Overall, these results show that LibAFL is a mature framework capable
to be the backbone of a modern generic fuzzer that can compete with state-
of-the-art solutions. We foresee the development of a new version of highly
customizable but with good defaults generic implementations, fuzzers (like
AFL++) based on LibAFL.

6.4.6 Differential Fuzzing

In the previous sections, we presented variants based on coverage-guided
fuzzing. However, LibAFL is not limited to code coverage and to its
derivates (like context and ngrams [162]), but can also work with other
types of feedback. As an example, in this section, we discuss the develop-
ment of a frontend, inspired by NeoDiff [110], for differential fuzzing of two
Ethereum virtual machines.

In short, NeoDiff, originally written in Python, compares the outcome
of the executions of two VMs provided with the same input. To do so, it
uses a state hash, a hash of the registers values, memory, and a probabilistic
sampling of the stack at each instruction site of the executed trace. As
feedback to evolve its corpus, it uses instead a type hash, the hash of the
opcodes and the types of the first two items on the stack for each instruction.
Any input that generates a trace with a new type hash is added to the
corpus.

In LibAFL, NeoDiff can be implemented by taking advantage of the
differential executor component, a structure that acts as a proxy to two un-
derlying executors. The type of the inner executors is CommandExecutor,
a simple kind of executor that spawns a new process given a command
line, and its observers are linked to the stdout of such commands, as the
Ethereum VMs print their traces in JSON after executing the input byte-
code. These observers are processed by a custom feedback, theTypeHashFeedback
that decodes the trace, computes the type hash, and compares it to the other
hashes observed so far in the linked feedback state. A differential feedback,
the feedback responsible to compare two observers, is used as objective. The
differential feedback uses the state hash to compare the observers linked to
the two executors and, if different, considers the input as a solution only if
having a novel typehash for de-duplication.

Overall, re-implementing NeoDiff from scratch in LibAFL took 2 work-
ing days person and consists of 900 lines of Rust code. We also decided
to compare it against the original implementation of NeoDiff, by using the
same metric adopted in the original paper, i.e., the number of diffing inputs

136 136

00:00 02:00 04:00 06:00 08:00 10:00 12:00
0

20

40

60

80

100

Figure 6.7: Uncovered diffing inputs (unique type hashes) for the original
NeoDiff () and the LibAFL version () over 12h.

with unique typehash. We run both fuzzers for 12 hours testing the same
go-ethereum and openethereum versions tested in the original paper. In
Figure 6.7 we report the findings over time of both fuzzers, showing that our
implementation clearly outperforms the original in this metric. We believe
that the bit-level mutators built-in in LibAFL play a major contribution
in this experiment.

In terms of unique diffing instructions, the original paper reports that 6
instructions are the causes of the found differences. During our experiment,
we reproduced the NeoDiff results finding only 5 instructions over 12h with
NeoDiff and 15 instructions with our implementation.

The diffing opcodes in details are (in hex): 3, 31, 38, 3b, 3c, 3f, 44,
45, 46, 52, 5a, f1, f2, f4, fa. The opcodes found by both the original and
our NeoDiff implementation are in bold, the others were discovered only by
the LibAFL-based variant.

Our findings are so a superset of the 6 NeoDiff instructions, showing that
LibAFL is outperforming the python implementation by a huge margin.

6.4.7 Third-party Applications

During its development, LibAFL had already been adopted to implement
several fuzzing frontends by a number of new users, who had no previous
experience with our framework. For instance, it has been used to create a
symbolic-model-guided fuzzer, tlspuffin [12] that employs a concrete se-
mantic to execute TLS symbolic traces, thus proposing a new approach that
mixes fuzzing and model testing. Thanks to this combination, tlspuffin

can reach critical protocol states that are impossible to find with classic
coverage-guided fuzzing.

A second third-party application of LibAFL is a snapshot fuzzer based

6.5. Limitations and Future Work 137

on KVM, Tartiflette [44], which provides a new executor to run a Linux
ELF as a VM with system calls emulation and instrumentation facilities for
coverage tracking and snapshotting.

Finally, another LibAFL-based project worth mentioning is bananafzz [87],
a fuzzer to detect race conditions with a novel design based on loop-per-
thread calls generations.

6.5 Limitations and Future Work

While extensible by design, the current implementation of LibAFL still
lacks some components that are required to implement some specific fuzzing
applications.

For instance, at the time of writing LibAFL CC does not include Link
Time Optimization passes to reason about the whole program Control Flow
Graph. This type of instrumentation is required to implement most of the
directed fuzzing approaches [26, 33, 123] and thus, LibAFL is not currently
providing any directed fuzzing application. This limitation, however, is not
intrinsic to our design and support for directed fuzzing will be integrated in
the near future.

A powerful feature integrated into LibAFL is the concolic tracing API,
which can be used to extend SymCC or SymQEMU with custom con-
straints filtering and communicate the symbolic trace to a LibAFL-based
fuzzer. Currently, LibAFL provides a solver stage based on Z3 that gen-
erates new testcases as traditional concolic fuzzers do. However, there are
two main limitations in traditional concolic fuzzers that our architecture
could help to overcome. First, solvers are hard to scale and are both time-
and resource-consuming tasks. This could be mitigated by solving symbolic
expressions [29] using fuzzing techniques [16, 63, 35]. The other limitation
is that fuzzers and concolic engines poorly cooperate. Even when a solver
outputs a testcase that solves a complex expression, it is very hard for a
generic bit-level fuzzer to mutate and stress the program points related to
this testcase without breaking the validity of the solved expressions. Ap-
proaches like Pangolin [89] go in this direction.

The possibility to build mutators using concolic expressions in LibAFL

allows developers to implement approaches to overcome the mentioned lim-
itations and reproduce previous experiments (e.g., the Pangolin artifacts
that have never been publicly released). However, none of these have been
implemented in LibAFL yet.

Finally, a core principle of LibAFL is scalability. Therefore, an inter-
esting future work would be to evaluate different fuzzing synchronization

138 138

approaches in terms of scalability. LibAFL already implements an event
manager capable of, if the target permits, scale linearly over multiple cores
and machines. It also provides an alternative AFL-like disk-based method
to synchronize testcases over nodes. An interesting research question is to
measure how different approaches like TCP connections or shared memory-
based communication affect fuzzing and to pinpoint their trade-offs.

Chapter 7

A LibAFL-based AFL++

Prototype

The Fuzzing community is very active and prolific, with an always growing
number of proposed ideas and prototypes [111]. In practice, however, for
generic fuzzing there are three main engines that are widely used. These
are AFL++ [65], which is gradually replacing AFL [180], LibFuzzer [105]
and HonggFuzz [158].

As a spin-off of AFL++, over the last two years – as presented in Chap-
ter 6 – we developed a new fuzzing framework to cope with the extensi-
bility problem of this widely used, but monolithic fuzzer. This framework,
LibAFL [66] is not a tool by itself but rather a collection of Rust libraries to
write fuzzers. While power users appreciate the flexibility of writing custom
fuzzers with LibAFL, most users still prefer AFL++ for its out-of-the-box
experience that fits most use-cases well.

To bridge the gap between our two projects, and solve the problem of
adding additional fuzzing algorithms to AFL++, we plan to rewrite AFL++

as a frontend of LibAFL. While this process will take many months, we can
already provide a LibAFL-based fuzzer that mimics AFL++, just without
the many command line options the main project provides to customize the
fuzzing behavior.

To challenge this new fuzzer, we submitted it to the first fuzzing com- pe-
tition at the 16th International Workshop on Search-Based and Fuzz Testing
(SBFT) [100] and it arrived first in the bug-finding category.

139

140 140

7.1 AFL++ on FuzzBench

Our goal is to faithfully replicate the configuration of AFL++ that is used
in FuzzBench [116], as it is the best performer in a generic setup.

This configuration consists of the modified SanitizerCoverage trace-pc-guard
module shipped in AFL++ as part of the LLVM-based instrumentation with
afl-clang-fast. Here, the AFL++ edge coverage logging routine is inlined in
the LLVM IR, while still using the guards generated with trace-pc-guard.
This pass breaks the direct edges of the Control Flow Graph in each func-
tion, inserting an intermediate basic block and this allows to precisely count
the edges. The coverage is non-colliding: AFL++ adapts the size of the
shared coverage map to the number of instrumented edges, and thus it
doesn’t suffer from the well-known collision problem.

The other enabled option is the compilation of a secondary binary with
the CmpLog instrumentation. The second binary logs the content of each
comparison instruction and each routine with two pointers as arguments in
a shared memory region, from which the fuzzer can read. AFL++ can use
this runtime information to run an enhanced version of the RedQueen [16]
mutator.

The last option, dict2file, extract the constants operators used in comparisons-
related functions such as strcpy during compilation. These tokens are then
used to build a dictionary for the fuzzer.

7.2 Implementing AFLrustrust

As described in the LibAFL paper [66], several components must be defined
to build a fuzzer based on LibAFL.

Executor To emulate the AFL++ behaviour, the executor that must be
used is a forkserver. The forkserver implementation in LibAFL supports
the binaries compiled with afl-clang-fast from AFL++ and their advanced
features such as shared memory input delivery and CmpLog instrumenta-
tion.

Feedback The feedback used is the maximization of each entry of a cover-
age map. The coverage map is the one created by the AFL++ target binary.
It is exposed to LibAFL with a shared-memory-based map observer. As
objective, we simply consider every crashing input.

7.3. SBST’23 Competition Results 141

Mutator The mutator is based on MOpt and schedule two sets of oper-
ations available in LibAFL, the bit-level havoc mutations and the token-
based ones in order to use an user-supplied or autogenerated dictionary –
with dict2file in this case.

Scheduler The next input to fuzz is chosen by reusing the same algo-
rithms of AFL++, reimplemented in LibAFL. Corpus culling is done by
selecting a minimal set of testcases covering every edge seen so far with a
weighted prioritization based on the testcase length and the execution time.
The selection from this pool of testcases is then performed with the AFL++

weighted scheduler using the explore energy assignment scheme [27].

Stages The stages that compose the fuzzer are four, starting with cal-

ibration, the stage used to measure stats about the current testcase such
as stability and average execution time. Then, a tracing stage is used to
run the target under a second forkserver executor with a CmpLog enabled
binary to collect the cmp traces into the fuzzer metadata. After this one,
and depending on it, there is the input-to-state stage that uses the CmpLog
metadata to match tokens in the input with the various I2S mutators. In
the end, a mutational stage with the classic havoc mutations is used and the
energy is assigned using the power schedule from the metadata generated
with the weighted scheduler.

7.3 SBST’23 Competition Results

The SBST’23 fuzzing competition [100] is composed of two experiments in
which AFLrustrust was evaluated versus 11 fuzzers, AFL++ included.

The first experiment 1 is coverage-based in which the fuzzers are com-
pared using the uncovered branch coverage over 23 hours on 38 different
programs from OSS-Fuzz [3].

In terms of average rank, AFLrustrust placed 5th, and in terms of aver-
age normalized score2 it took the 4th position. In both the ranking, it was
really close to AFL++ which took a position in front of our tool in both
the scores.

1https://storage.googleapis.com/www.fuzzbench.com/reports/experimental/

SBFT23/Final-Coverage/index.html
2This score is based on the average of per-benchmark scores, where the score represents

the percentage of the highest reached median code coverage on a given benchmark.

https://storage.googleapis.com/www.fuzzbench.com/reports/experimental/SBFT23/Final-Coverage/index.html
https://storage.googleapis.com/www.fuzzbench.com/reports/experimental/SBFT23/Final-Coverage/index.html

142 142

The second experiment 3 is bugs-based in which the fuzzers are evaluated
in their ability to discover crashes that are linked to bugs in 15 vulnerable
applications from OSS-Fuzz during 23 hours runs.

In terms of average rank, AFLrustrust wins the first position this time
and the second place, with a tie in the score with the first fuzzer Pastis
which is a hybrid fuzzer while our approach is purely based on coverage-
guided fuzzing, in the average normalized score 4 ranking.

While the performance on the bugs-based dataset seems great, we believe
that our tool was penalized in the coverage-based experiment due to the
score 0 assigned to the zlib_zlib_uncompress_fuzzer benchmark. For an
unknown reason, the fuzzer failed to start the experiment with this target
program but we could not replicate the failure locally as AFLrustrust builds
and runs fine this zlib fuzzer.

7.4 Discussion

The proposed fuzzer based on LibAFL is a first attempt at the upcoming
rewriting of AFL++ as a frontend of LibAFL and thus may be incomplete
or even with buggy components. In security research, often the best fuzzer
is not the one that finds slightly more coverage than the others but the one
that fits the user needs, and LibAFL aims at this. On the other hand,
beginners and developers need an off-the-shelf environment that can fuzz a
target with a minimal setup, as AFL does, and an AFL++ clone based on
LibAFL can provide the best of both worlds.

The results of the fuzzing competition shows that AFLrustrust shines
even if it is just a prototype. The lack of uncovered coverage compared
to the original tool, AFL++, is due to the missing implementation of the
input-to-state mutator in the same advanced way as AFL++ which in-
cludes advancements from RedQueen [16], Weizz [63] and others original
algorithms to approximately solve branch constraints developed during the
years. This is now a work in progress in LibAFL and an equivalent mutator
are under development and in the roadmap of the rewrite of AFL++ on top
of LibAFL.

3https://storage.googleapis.com/www.fuzzbench.com/reports/experimental/

SBFT23/Final-Bug/index.html
4This ranking is based on the average of per-benchmark scores, where the score repre-

sents the percentage of the highest reached median bug coverage on a given benchmark.

https://storage.googleapis.com/www.fuzzbench.com/reports/experimental/SBFT23/Final-Bug/index.html
https://storage.googleapis.com/www.fuzzbench.com/reports/experimental/SBFT23/Final-Bug/index.html

Chapter 8

Conclusion

In this chapter, we’re bringing together the findings from the different con-
tributions of the thesis to highlight the latest trends and potential future
steps in the fuzz testing field. During this journey, we investigated the ben-
efits of using likely invariants violations and data dependency graph edges
as feedbacks, dived deep into the details of the American Fuzzy Lop project,
and introduced a new, flexible fuzz testing framework, LibAFL. Here, we
outline the achievements of our research and the future directions to further
investigate the challenges that this thesis proposed to address.

First off, using likely invariants as feedback for fuzzers brings novel ideas
to better abstract, and in turn explore program states. We argue that
some bugs may be readily discovered by taking into account program state
conditions that control flow alone does not entail, accessing seldom-explored
corner cases where vulnerabilities may lie undetected for a long time. We
achieve this goal without incurring the state explosion problem and with
a moderate performance overhead, amortized by an increased number of
found bugs. We hope that our work can pave the way for more research on
program state approximations to serve as feedback for Fuzz Testing, such
as the online likely invariants mining module for fuzzing proposed in §3.4
but also other approaches not based on invariant violations.

Next up, the second chapter talks about blending information from the
Data Dependency Graph with traditional edge coverage to improve fuzzing
feedback. Our experiments show that, for applications that have a rich
set of data dependencies, this approach leads to the discovery of more and
diverse bugs. Moreover, we hope that our technique and prototype based
on AFL++ and LLVM will be adopted by users to fuzz programs alongside
the existing coverage metrics. We are working on the integration of this
feedback into LibAFL, meanwhile another similar approach [84] tracking

143

144 144

data dependencies at a higher level – using dynamically allocated objects –
has been already proposed.

Moving on, the third contribution takes a closer look at the AFL project,
breaking down its structure and how it impacts fuzz testing features. It’s
clear that the small details of AFL play a big role in how effective a fuzz
testing campaign can be, both in good and bad ways. We confirm the
positive effects of some aspects of AFL, such as the novelty search algorithm
in §5.3.2, but also the negative impact of others, such as its testcase scoring,
in §5.3.4. AFL’s prior decisions affect evaluations of new research based on
AFL. Researchers who clone and extend AFL need to be aware that AFL’s
implementation details will impact their research and the outcome of their
experiments.

We hope that our study provides useful information for researchers and
practitioners who, in the future, will have to work on the previously uneval-
uated aspects of this fuzzer.

The last part of the thesis presents a novel and completely extensible
fuzzing framework, LibAFL. To show its versatility, and the comprehen-
siveness of its ready-to-use components to build state-of-the-art fuzzers, we
present several frontends based on LibAFL and perform experiments with
them covering different problems in the fuzzing literature. We highlight the
customization allowed by the LibAFL design and the power of the combina-
tion of several orthogonal techniques, leading to a fuzzer that outperforms
the best publicly available tools. Using LibAFL as a backbone, we can
also build a clone of AFL++, AFLrustrust, the winner of the SBFT’23
fuzzing competition in the bug-finding category. A work-in-progress re-
placement for LibFuzzer [43] based on LibAFL will enable any fuzzing
infrastructure such as cargo-fuzz [18] to replace the LibFuzzer runtime
with a new compatible runtime based on LibAFL with modern algorithms
that outperform the now deprecated LibFuzzer.

To wrap it up, this thesis highlights the cool progress made in fuzz testing
with our research in the past 3 years and calls for even more innovation in
this area. It points towards focusing on better feedback systems, a deeper
understanding of baselines like AFL, and creating flexible and powerful
fuzz testing frameworks. This direction not only strengthens the basics of
fuzz testing but also opens up new opportunities, aiming for a future with
stronger and more reliable software security. We hope that bringing all
these studies together will spark new ideas and developments, pushing even
further what we can achieve in fuzz testing.

References

[1] Critical Edges Elimination Pass. https://llvm.org/doxygen/

BreakCriticalEdges_8cpp_source.html. [Online; accessed 08 Feb.
2022].

[2] Frida - a world-class dynamic instrumentation framework. https://

www.frida.re/. [Online; accessed January 17, 2024].

[3] Google OSS-Fuzz: continuous fuzzing of open source software. https:
//github.com/google/oss-fuzz. [Online; accessed January 17, 2024].

[4] Kvasir C/C++ front end. https://plse.cs.washington.edu/daikon/

download/doc/daikon.html#Kvasir. [Online; accessed January 17,
2024].

[5] Circumventing Fuzzing Roadblocks with Compiler Trans-
formations. https://lafintel.wordpress.com/2016/08/15/

circumventing-fuzzing-roadblocks-with-compiler-transformations/,
2016. [Online; accessed January 17, 2024].

[6] Undefined Behavior Sanitizer. https://clang.llvm.org/docs/

UndefinedBehaviorSanitizer.html, 2016. [Online; accessed January
17, 2024].

[7] afl-cov. https://github.com/mrash/afl-cov, Accessed January 17,
2024.

[8] Datadependencegraph class reference in the llvm framework. https:

//llvm.org/doxygen/classllvm_1_1DataDependenceGraph.html,
Accessed January 17, 2024.

[9] Definition of ddg in the llvm framework. https://llvm.org/docs/

DependenceGraphs/index.html, Accessed January 17, 2024.

145

https://llvm.org/doxygen/BreakCriticalEdges_8cpp_source.html
https://llvm.org/doxygen/BreakCriticalEdges_8cpp_source.html
https://www.frida.re/
https://www.frida.re/
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://plse.cs.washington.edu/daikon/download/doc/daikon.html#Kvasir
https://plse.cs.washington.edu/daikon/download/doc/daikon.html#Kvasir
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://github.com/mrash/afl-cov
https://llvm.org/doxygen/classllvm_1_1DataDependenceGraph.html
https://llvm.org/doxygen/classllvm_1_1DataDependenceGraph.html
https://llvm.org/docs/DependenceGraphs/index.html
https://llvm.org/docs/DependenceGraphs/index.html

146 146

[10] Fuzzbench configuration. https://google.github.io/fuzzbench/, Ac-
cessed January 17, 2024.

[11] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman.
Compilers: principles, techniques and tools. 2020.

[12] Maximilian Ammann. Symbolic-Model-Guided Fuzzing of Crypto-
graphic Protocols. Master’s thesis, University of Augsburg, Institute
for Software & Systems Engineering, 2021. See https://github.com/
tlspuffin/tlspuffin.

[13] Cornelius Aschermann, Tommaso Frassetto, T. Holz, Patrick
Jauernig, A. Sadeghi, and Daniel Teuchert. Nautilus: Fishing for
deep bugs with grammars. In NDSS, 2019.

[14] Cornelius Aschermann, Sergej Schumilo, Ali Abbasi, and Thorsten
Holz. Ijon: Exploring deep state spaces via fuzzing. In 2020 IEEE

Symposium on Security and Privacy (SP), pages 1597–1612. IEEE,
2020.

[15] Cornelius Aschermann, Sergej Schumilo, Ali Abbasi, and Thorsten
Holz. IJON: Exploring deep state spaces via fuzzing. In IEEE Sym-

posium on Security and Privacy (Oakland), 2020.

[16] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gaw-
lik, and Thorsten Holz. REDQUEEN: fuzzing with input-to-state
correspondence. In 26th Annual Network and Distributed System Se-

curity Symposium, NDSS, 2019.

[17] Giorgio Ausiello, Camil Demetrescu, Irene Finocchi, and Donatella
Firmani. K-calling context profiling. In Proceedings of the ACM

International Conference on Object Oriented Programming Systems

Languages and Applications, OOPSLA ’12, pages 867–878, New York,
NY, USA, 2012. Association for Computing Machinery.

[18] Rust Fuzzing Authority. cargo-fuzz: Command line helpers for
fuzzing. https://github.com/rust-fuzz/cargo-fuzz. [Online; accessed
January 17, 2024].

[19] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Deme-
trescu, and Irene Finocchi. A survey of symbolic execution techniques.
ACM Computing Surveys, 51(3):50:1–50:39, 2018.

https://google.github.io/fuzzbench/
https://github.com/tlspuffin/tlspuffin
https://github.com/tlspuffin/tlspuffin
https://github.com/rust-fuzz/cargo-fuzz

References 147

[20] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In
USENIX annual technical conference, FREENIX Track, volume 41,
page 46. Califor-nia, USA, 2005.

[21] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In
Proceedings of the Annual Conference on USENIX Annual Techni-

cal Conference, ATEC ’05, pages 41–41, Berkeley, CA, USA, 2005.
USENIX Association.

[22] Tim Blazytko, Cornelius Aschermann, Moritz Schlögel, Ali Abbasi,
Sergej Schumilo, Simon Wörner, and Thorsten Holz. GRIMOIRE:
Synthesizing structure while fuzzing. In 28th USENIX Security Sym-

posium (USENIX Security 19), pages 1985–2002, Santa Clara, CA,
aug 2019. USENIX Association.

[23] Tim Blazytko, Moritz Schlögel, Cornelius Aschermann, Ali Abbasi,
Joel Frank, Simon Wörner, and Thorsten Holz. AURORA: Statistical
crash analysis for automated root cause explanation. In 29th USENIX

Security Symposium (USENIX Security 20), pages 235–252. USENIX
Association, aug 2020.

[24] Rastislav Bodik and Rajiv Gupta. Partial dead code elimination us-
ing slicing transformations. In Proceedings of the ACM SIGPLAN

1997 conference on Programming language design and implement-

ation, pages 159–170, 1997.

[25] Marcel Böhme, Valentin Manès, and Sang Kil Cha. Boosting fuzzer
efficiency: An information theoretic perspective. In Proceedings of the

14th Joint meeting of the European Software Engineering Conference

and the ACM SIGSOFT Symposium on the Foundations of Software

Engineering, ESEC/FSE, pages 1–11, 2020.

[26] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik
Roychoudhury. Directed greybox fuzzing. In Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communications Secu-

rity, CCS ’17, pages 2329–2344, New York, NY, USA, 2017. Associ-
ation for Computing Machinery.

[27] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury.
Coverage-based greybox fuzzing as Markov chain. In Proceedings of

the 2016 ACM SIGSAC Conference on Computer and Communica-

tions Security, CCS ’16, pages 1032–1043, New York, NY, USA, 2016.
Association for Computing Machinery.

148 148

[28] Pietro Borrello, Andrea Fioraldi, Daniele Cono D’Elia, Davide
Balzarotti, Leonardo Querzoni, and Cristiano Giuffrida. Predictive
Context-sensitive Fuzzing. In Network and Distributed System Secu-

rity (NDSS) Symposium, NDSS 24, February 2024.

[29] Luca Borzacchiello, Emilio Coppa, and Camil Demetrescu. Fuzzing
Symbolic Expressions. In Proceedings of the 43rd International Con-

ference on Software Engineering, ICSE ’21, 2021.

[30] Marcel Böhme and Soumya Paul. A probabilistic analysis of the effi-
ciency of automated software testing. IEEE Transactions on Software

Engineering, 42(4):345–360, 2016.

[31] Qiong Cai, Lin Gao, and Jingling Xue. Region-based partial dead
code elimination on predicated code. In International Conference on

Compiler Construction, pages 150–166. Springer, 2004.

[32] S. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing mayhem
on binary code. In 2012 IEEE Symposium on Security and Privacy,
pages 380–394, Los Alamitos, CA, USA, may 2012. IEEE Computer
Society.

[33] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie,
Xiuheng Wu, and Yang Liu. Hawkeye: Towards a desired directed
grey-box fuzzer. In Proceedings of the 2018 ACM SIGSAC Con-

ference on Computer and Communications Security, CCS ’18, page
2095–2108, New York, NY, USA, 2018. Association for Computing
Machinery.

[34] Jian-Liang Chen, Feng-Jian Wang, and Yung-Lin Chen. An object-
oriented dependency graph for program slicing. In Proceedings.

Technology of Object-Oriented Languages. TOOLS 24 (Cat. No.

97TB100240), pages 121–130. IEEE, 1997.

[35] P. Chen and H. Chen. Angora: Efficient fuzzing by principled search.
In 2018 IEEE Symposium on Security and Privacy (SP), pages 711–
725, 2018.

[36] Yaohui Chen, Mansour Ahmadi, Boyu Wang, Long Lu, et al. MEUZZ:
Smart seed scheduling for hybrid fuzzing. In 23rd International Sym-

posium on Research in Attacks, Intrusions and Defenses ({RAID}
2020), pages 77–92, 2020.

References 149

[37] Kai Cheng, Qiang Li, Lei Wang, Qian Chen, Yaowen Zheng, Limin
Sun, and Zhenkai Liang. Dtaint: detecting the taint-style vulnerabil-
ity in embedded device firmware. In 2018 48th Annual IEEE/IFIP In-

ternational Conference on Dependable Systems and Networks (DSN),
pages 430–441. IEEE, 2018.

[38] Animesh Basak Chowdhury, Raveendra Kumar Medicherla, and
R Venkatesh. Verifuzz: Program aware fuzzing. In International Con-

ference on Tools and Algorithms for the Construction and Analysis of

Systems, pages 244–249. Springer, Cham, 2019.

[39] Koen Claessen and John Hughes. QuickCheck: A lightweight tool
for random testing of Haskell programs. In Proceedings of the Fifth

ACM SIGPLAN International Conference on Functional Program-

ming, ICFP ’00, pages 268–279, New York, NY, USA, 2000. As-
sociation for Computing Machinery.

[40] Code Intelligence. Jazzer - Coverage-guided, in-process fuzzing for the
JVM. https://github.com/CodeIntelligenceTesting/jazzer, 2021.
[Online; accessed January 17, 2024].

[41] Patrick Cousot and Radhia Cousot. Abstract interpretation frame-
works. Journal of Logic and Computation, 2(4):511–547, auf 1992.

[42] Marco Cova, Davide Balzarotti, Viktoria Felmetsger, and Giovanni
Vigna. Swaddler: An approach for the anomaly-based detection of
state violations in web applications. In Proceedings of the 10th In-

ternational Symposium on Recent Advances in Intrusion Detection

(RAID), pages 63–86, Queensland, Australia, September 5–7, 2007.

[43] Addison Crump, Andrea Fioraldi, Dominik Maier, and Dongjia
Zhang. LibAFL_libfuzzer: Libfuzzer on Top of LibAFL. In 2023

IEEE/ACM International Workshop on Search-Based and Fuzz Test-

ing (SBFT), pages 70–72, 2023.

[44] Tanguy Dubroca César Belley. Tartiflette: Snapshot fuzzing with
KVM and libAFL. https://www.lse.epita.fr/lse-winter-days-2021/

slides/lse_winter_days_tartiflette.pdf, 2021. [Online; accessed Jan-
uary 17, 2024].

[45] DARPA. Cyber Grand Challenge (CGC) (Archived). https://www.
darpa.mil/program/cyber-grand-challenge. [Online; accessed Jan-
uary 17, 2024].

https://github.com/CodeIntelligenceTesting/jazzer
https://www.lse.epita.fr/lse-winter-days-2021/slides/lse_winter_days_tartiflette.pdf
https://www.lse.epita.fr/lse-winter-days-2021/slides/lse_winter_days_tartiflette.pdf
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge

150 150

[46] Thomas Defard, Aleksandr Setkov, Angelique Loesch, and Romaric
Audigier. Padim: a patch distribution modeling framework for
anomaly detection and localization, 2020.

[47] Daniele Cono D’Elia, Emilio Coppa, Simone Nicchi, Federico Palmaro,
and Lorenzo Cavallaro. SoK: Using dynamic binary instrumentation
for security (and how you may get caught red handed). In Proceedings

of the 2019 ACM Asia Conference on Computer and Communications

Security, Asia CCS ’19, page 15–27, New York, NY, USA, 2019. As-
sociation for Computing Machinery.

[48] Daniele Cono D’Elia, Camil Demetrescu, and Irene Finocchi. Mining
hot calling contexts in small space. Software: Practice and Experience,
46(8):1131–1152, 2016.

[49] Jared D. DeMott and R. Enbody. Revolutionizing the field of grey-
box attack surface testing with evolutionary fuzzing. Black Hat USA,
2007.

[50] Alessandro Di Federico, Mathias Payer, and Giovanni Agosta.
Rev.Ng: A unified binary analysis framework to recover CFGs and
function boundaries. In Proceedings of the 26th International Confer-

ence on Compiler Construction, CC 2017, page 131–141, New York,
NY, USA, 2017. Association for Computing Machinery.

[51] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, An-
drea Mambretti, Wil Robertson, Frederick Ulrich, and Ryan Whelan.
Lava: Large-scale automated vulnerability addition. In 2016 IEEE

Symposium on Security and Privacy (SP), pages 110–121. IEEE, 2016.

[52] Brendan Dolan-Gavitt, Tim Leek, Josh Hodosh, and Wenke Lee. Tap-
pan zee (north) bridge: mining memory accesses for introspection. In
Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, 2013

ACM SIGSAC Conference on Computer and Communications Secu-

rity, CCS’13, Berlin, Germany, November 4-8, 2013, pages 839–850.
ACM, 2013.

[53] Xiaoning Du, Bihuan Chen, Yuekang Li, Jianmin Guo, Yaqin Zhou,
Yang Liu, and Yu Jiang. Leopard: Identifying vulnerable code for
vulnerability assessment through program metrics. In Proceedings of

the 41st International Conference on Software Engineering, ICSE ’19,
page 60–71. IEEE Press, 2019.

References 151

[54] Gregory J Duck, Xiang Gao, and Abhik Roychoudhury. Binary rewrit-
ing without control flow recovery. In Proceedings of the 41st ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation, pages 151–163, 2020.

[55] M. Eddington. Peach fuzzing platform. https://web.archive.

org/web/20180621074520/http://community.peachfuzzer.com/

WhatIsPeach.html. [Online; accessed January 17, 2024].

[56] Michael D Ernst, Jake Cockrell, William G Griswold, and David
Notkin. Dynamically discovering likely program invariants to sup-
port program evolution. IEEE Transactions on Software Engineering,
27(2):99–123, 2001.

[57] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant,
Carlos Pacheco, Matthew S. Tschantz, and Chen Xiao. The Daikon
system for dynamic detection of likely invariants. Science of Computer

Programming, 69(1–3):35–45, dec 2007.

[58] Michael Dean Ernst. Dynamically Discovering Likely Program In-

variants. PhD thesis, University of Washington, USA, 2000.
AAI9983472.

[59] Brandon Falk. aflbench. https://github.com/gamozolabs/aflbench,
2020. [Online; accessed January 17, 2024].

[60] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The program
dependence graph and its use in optimization. ACM Transactions

on Programming Languages and Systems (TOPLAS), 9(3):319–349,
1987.

[61] G. Fink and K. Levitt. Property-based testing of privileged programs.
In Tenth Annual Computer Security Applications Conference, pages
154–163, 1994.

[62] Andrea Fioraldi, Daniele Cono D’Elia, and Davide Balzarotti. The
use of likely invariants as feedback for fuzzers. In 30th USENIX Secu-

rity Symposium (USENIX Security 21), pages 2829–2846. USENIX
Association, aug 2021.

[63] Andrea Fioraldi, Daniele Cono D’Elia, and Emilio Coppa. WEIZZ:
Automatic grey-box fuzzing for structured binary formats. In Proceed-

ings of the 29th ACM SIGSOFT International Symposium on Soft-

https://web.archive.org/web/20180621074520/http://community.peachfuzzer.com/WhatIsPeach.html
https://web.archive.org/web/20180621074520/http://community.peachfuzzer.com/WhatIsPeach.html
https://web.archive.org/web/20180621074520/http://community.peachfuzzer.com/WhatIsPeach.html
https://github.com/gamozolabs/aflbench

152 152

ware Testing and Analysis, ISSTA 2020, New York, NY, USA, 2020.
Association for Computing Machinery.

[64] Andrea Fioraldi, Daniele Cono D’Elia, and Leonardo Querzoni.
Fuzzing binaries for memory safety errors with QASan. In 2020 IEEE

Secure Development Conference (SecDev), 2020.

[65] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse.
AFL++: Combining incremental steps of fuzzing research. In 14th

USENIX Workshop on Offensive Technologies (WOOT 20). USENIX
Association, aug 2020.

[66] Andrea Fioraldi, Dominik Maier, Dongjia Zhang, and Davide
Balzarotti. LibAFL: A framework to build modular and reusable
fuzzers. 2022.

[67] Andrea Fioraldi, Alessandro Mantovani, Dominik Maier, and Davide
Balzarotti. Dissecting american fuzzy lop: A fuzzbench evaluation.
ACM Trans. Softw. Eng. Methodol., 32(2), mar 2023.

[68] Ivan Fratric. TinyInst. https://github.com/googleprojectzero/

TinyInst. [Online; accessed January 17, 2024].

[69] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin,
Dong Wu, and Zuoning Chen. GREYONE: Data flow sensitive
fuzzing. In 29th USENIX Security Symposium (USENIX Security

20), pages 2577–2594. USENIX Association, aug 2020.

[70] C. Giuffrida, L. Cavallaro, and A.S. Tanenbaum. Practical automated
vulnerability monitoring using program state invariants. In Proceed-

ings of the 43rd Annual IEEE/IFIP International Conference on De-

pendable Systems and Networks, pages 1–12. IEEE CS, 2013.

[71] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. Au-
tomated whitebox fuzz testing. In Proceedings of the Network and

Distributed System Security Symposium, NDSS’08, 2008.

[72] Patrice Godefroid, Hila Peleg, and Rishabh Singh. Learn&fuzz:
Machine learning for input fuzzing. In Proceedings of the 32Nd

IEEE/ACM International Conference on Automated Software Engi-

neering, ASE 2017, pages 50–59, Piscataway, NJ, USA, 2017. IEEE
Press.

https://github.com/googleprojectzero/TinyInst
https://github.com/googleprojectzero/TinyInst

References 153

[73] Google Inc. libprotobuf-mutator. https://github.com/google/

libprotobuf-mutator. [Online; accessed January 17, 2024].

[74] Alex Groce and John Regehr. The Saturation Effect in Fuzzing.
https://blog.regehr.org/archives/1796. [Online; accessed January
17, 2024].

[75] Samuel Groß, Simon Koch, Lukas Bernhard, Thorsten Holz, and Mar-
tin Johns. FUZZILLI: fuzzing for javascript JIT compiler vulnerabili-
ties. In 30th Annual Network and Distributed System Security Sympo-

sium, NDSS 2023, San Diego, California, USA, February 27 - March

3, 2023. The Internet Society, 2023.

[76] Christian Hammer. Information flow control for Java: a comprehen-

sive approach based on path conditions in dependence graphs. 2009.

[77] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. CodeAlchemist:
Semantics-aware code generation to find vulnerabilities in javascript
engines. In ndss, 2019.

[78] Sudheendra Hangal and Monica S. Lam. Tracking down software
bugs using automatic anomaly detection. In Proceedings of the 24th

International Conference on Software Engineering, ICSE ’02, pages
291–301, New York, NY, USA, 2002. Association for Computing Ma-
chinery.

[79] William H. Harrison. Compiler analysis of the value ranges for vari-
ables. IEEE Transactions on Software Engineering, 3(03):243–250,
may 1977.

[80] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. Magma: A
ground-truth fuzzing benchmark. Proc. ACM Meas. Anal. Comput.

Syst., 4(3), nov 2020.

[81] Mark Heffernan and Kent Wilken. Data-dependency graph transfor-
mations for instruction scheduling. Journal of Scheduling, 8(5):427–
451, 2005.

[82] Mark Heffernan, Kent Wilken, and Ghassan Shobaki. Data-
dependency graph transformations for superblock scheduling. In 2006

39th Annual IEEE/ACM International Symposium on Microarchitec-

ture (MICRO’06), pages 77–88. IEEE, 2006.

https://github.com/google/libprotobuf-mutator
https://github.com/google/libprotobuf-mutator
https://blog.regehr.org/archives/1796

154 154

[83] Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish,
Mathias Payer, and Antony L. Hosking. Seed selection for successful
fuzzing. In Proceedings of the 30th ACM SIGSOFT International

Symposium on Software Testing and Analysis, ISSTA 2021, page
230–243, New York, NY, USA, 2021. Association for Computing Ma-
chinery.

[84] Adrian Herrera, Mathias Payer, and Antony L. Hosking. Dataflow:
Toward a data-flow-guided fuzzer. ACM Trans. Softw. Eng. Methodol.,
mar 2023. Just Accepted.

[85] Jesse Hertz and Tim Newsham. Project triforce: Run afl on every-
thing! [Online; accessed January 17, 2024].

[86] Marc Heuse. afl-clang-lto - collision free instrumentation at
link time. https://github.com/AFLplusplus/AFLplusplus/blob/

stable/instrumentation/README.lto.md, 2020. [Online; accessed
January 17, 2024].

[87] Peter Hlavaty. bananafzz. https://github.com/rezer0dai/bananafzz,
2022. [Online; accessed January 17, 2024].

[88] Christian Holler, Kim Herzig, and Andreas Zeller. Fuzzing with code
fragments. In 21st USENIX Security Symposium (USENIX Security

12), pages 445–458, Bellevue, WA, aug 2012. USENIX Association.

[89] H. Huang, P. Yao, R. Wu, Q. Shi, and C. Zhang. Pangolin: In-
cremental hybrid fuzzing with polyhedral path abstraction. In 2020

IEEE Symposium on Security and Privacy (SP), pages 1613–1627,
Los Alamitos, CA, USA, may 2020. IEEE Computer Society.

[90] Google Inc. Atheris: A Coverage-Guided, Native Python Fuzzer.
https://github.com/google/atheris. [Online; accessed January 17,
2024].

[91] David A Kinloch and Malcolm Munro. Understanding c programs
using the combined c graph representation. In ICSM, pages 172–180,
1994.

[92] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael
Hicks. Evaluating fuzz testing. In Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security,
CCS ’18, pages 2123–2138, New York, NY, USA, 2018. Association
for Computing Machinery.

https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.lto.md
https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.lto.md
https://github.com/rezer0dai/bananafzz
https://github.com/google/atheris

References 155

[93] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Partial dead code
elimination. ACM SIGPLAN Notices, 29(6):147–158, 1994.

[94] David J Kuck, Robert H Kuhn, David A Padua, Bruce Leasure, and
Michael Wolfe. Dependence graphs and compiler optimizations. In
Proceedings of the 8th ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, pages 207–218, 1981.

[95] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In Proceedings of the

2004 International Symposium on Code Generation and Optimization

(CGO’04), Palo Alto, California, Mar 2004.

[96] Chris Lattner and Vikram Adve. Llvm: A compilation framework for
lifelong program analysis & transformation. In International Sympo-

sium on Code Generation and Optimization, 2004. CGO 2004., pages
75–86. IEEE, 2004.

[97] Chingren Lee, Jenq Kuen Lee, and TingTing Hwang. Compiler opti-
mization on instruction scheduling for low power. In Proceedings 13th

International Symposium on System Synthesis, pages 55–60. IEEE,
2000.

[98] Caroline Lemieux and Koushik Sen. Fairfuzz: A targeted mutation
strategy for increasing greybox fuzz testing coverage. In Proceedings

of the 33rd ACM/IEEE International Conference on Automated Soft-

ware Engineering, ASE 2018, pages 475–485, New York, NY, USA,
2018. Association for Computing Machinery.

[99] Yu Liang, Song Liu, and Hong Hu. Detecting logical bugs of DBMS
with coverage-based guidance. In 31st USENIX Security Symposium

(USENIX Security 22), pages 4309–4326, Boston, MA, August 2022.
USENIX Association.

[100] D. Liu, J. Metzman, M. Bohme, O. Chang, and A. Arya. Sbft tool
competition 2023 - fuzzing track. In 2023 IEEE/ACM International

Workshop on Search-Based and Fuzz Testing (SBFT), pages 51–54,
Los Alamitos, CA, USA, may 2023. IEEE Computer Society.

[101] LLVM. SanitizerCoverage. https://clang.llvm.org/docs/

SanitizerCoverage.html. [Online; accessed January 17, 2024].

https://clang.llvm.org/docs/SanitizerCoverage.html
https://clang.llvm.org/docs/SanitizerCoverage.html

156 156

[102] LLVM. SanitizerCoverage - Edge coverage. https://clang.llvm.org/

docs/SanitizerCoverage.html#edge-coverage. [Online; accessed
January 17, 2024].

[103] LLVM Project. LibFuzzer - Value Profile. https://llvm.org/docs/

LibFuzzer.html#value-profile. [Online; accessed January 17, 2024].

[104] LLVM Project. [libFuzzer] Port to Windows. https://reviews.llvm.

org/D51022. [Online; accessed January 17, 2024].

[105] LLVM Project. libFuzzer – a library for coverage-guided fuzz testing.
https://llvm.org/docs/LibFuzzer.html, sep 2018. [Online; accessed
January 17, 2024].

[106] Shan Lu, Pin Zhou, Wei Liu, Yuanyuan Zhou, and Josep Torrellas.
Pathexpander: Architectural support for increasing the path coverage
of dynamic bug detection. In 2006 39th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture (MICRO’06), pages 38–52.
IEEE, 2006.

[107] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee,
Yu Song, and Raheem Beyah. MOPT: Optimized mutation schedul-
ing for fuzzers. In 28th USENIX Security Symposium (USENIX Se-

curity 19), pages 1949–1966, Santa Clara, CA, aug 2019. USENIX
Association.

[108] David R. MacIver, Zac Hatfield-Dodds, and Many Other Contribu-
tors. Hypothesis: A new approach to property-based testing. Journal
of Open Source Software, 4(43):1891, 2019.

[109] Dominik Maier, Otto Bittner, Marc Munier, and Julian Beier. Fitm:
Binary-only coverage-guided fuzzing for stateful network protocols. In
Workshop on Binary Analysis Research (BAR), 2022, 2022.

[110] Dominik Maier, Fabian Fäßler, and Jean-Pierre Seifert. Uncovering
smart contract vm bugs via differential fuzzing. In Reversing and

Offensive-Oriented Trends Symposium, ROOTS’21, pages 11–22, New
York, NY, USA, 2021. Association for Computing Machinery.

[111] V. Manes, H. Han, C. Han, S.K. Cha, M. Egele, E. J. Schwartz, and
M. Woo. The art, science, and engineering of fuzzing: A survey. IEEE
Transactions on Software Engineering, (01), oct 5555.

https://clang.llvm.org/docs/SanitizerCoverage.html#edge-coverage
https://clang.llvm.org/docs/SanitizerCoverage.html#edge-coverage
https://llvm.org/docs/LibFuzzer.html#value-profile
https://llvm.org/docs/LibFuzzer.html#value-profile
https://reviews.llvm.org/D51022
https://reviews.llvm.org/D51022
https://llvm.org/docs/LibFuzzer.html

References 157

[112] Valentin J. M. Manès, Soomin Kim, and Sang Kil Cha. Ankou: Guid-
ing grey-box fuzzing towards combinatorial difference. In Proceedings

of the ACM/IEEE 42nd International Conference on Software En-

gineering, ICSE ’20, pages 1024–1036, New York, NY, USA, 2020.
Association for Computing Machinery.

[113] Muhammad Numair Mansur, Maria Christakis, Valentin Wüstholz,
and Fuyuan Zhang. Detecting Critical Bugs in SMT Solvers Using

Blackbox Mutational Fuzzing, page 701–712. Association for Comput-
ing Machinery, New York, NY, USA, 2020.

[114] Masahiro Matsubara, Kohei Sakurai, Fumio Narisawa, Masushi En-
shoiwa, Yoshio Yamane, and Hisamitsu Yamanaka. Model checking
with program slicing based on variable dependence graphs. arXiv

preprint arXiv:1301.0041, 2013.

[115] Raveendra Kumar Medicherla, Raghavan Komondoor, and Abhik
Roychoudhury. Fitness Guided Vulnerability Detection with Greybox

Fuzzing, page 513–520. Association for Computing Machinery, New
York, NY, USA, 2020.

[116] Jonathan Metzman, László Szekeres, Laurent Maurice Romain Simon,
Read Trevelin Sprabery, and Abhishek Arya. Fuzzbench: An open
fuzzer benchmarking platform and service. In Proceedings of the 29th

ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering, New
York, NY, USA, 2021.

[117] B. Miller, M. Zhang, and E. Heymann. The relevance of classic fuzz
testing: Have we solved this one? IEEE Transactions on Software

Engineering, pages 1–1, 2020.

[118] Barton P. Miller, Louis Fredriksen, and Bryan So. An empirical study
of the reliability of unix utilities. Commun. ACM, 33(12):32–44, dec
1990.

[119] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon,
and Davide Balzarotti. What you corrupt is not what you crash:
Challenges in fuzzing embedded devices. In NDSS 2018, Network and

Distributed Systems Security Symposium, 18-21 February 2018, San

Diego, CA, USA, San Diego, United States, 02 2018.

158 158

[120] Manh-Dung Nguyen, Sébastien Bardin, Richard Bonichon, Roland
Groz, and Matthieu Lemerre. Binary-level directed fuzzing for use-
after-free vulnerabilities. In 23rd International Symposium on Re-

search in Attacks, Intrusions and Defenses (RAID 2020), pages 47–
62, San Sebastian, oct 2020. USENIX Association.

[121] Keean Schupke Oleg Kiselyov, Ralf Laemmel. HList: Heterogeneous
lists. https://hackage.haskell.org/package/HList, 2004. [Online;
accessed January 17, 2024].

[122] Tavis Ormandy. This shouldn’t have happened: A vulnerabil-
ity postmortem. https://googleprojectzero.blogspot.com/2021/12/

this-shouldnt-have-happened.html. [Online; accessed January 17,
2024].

[123] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Cristiano Giuf-
frida. ParmeSan: Sanitizer-guided Greybox Fuzzing. In USENIX

Security, aug 2020.

[124] Karl J Ottenstein and Linda M Ottenstein. The program dependence
graph in a software development environment. ACM Sigplan Notices,
19(5):177–184, 1984.

[125] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and
Yves Le Traon. Semantic fuzzing with zest. In Proceedings of the 28th

ACM SIGSOFT International Symposium on Software Testing and

Analysis, ISSTA 2019, pages 329–340, New York, NY, USA, 2019.
Association for Computing Machinery.

[126] Rohan Padhye, Caroline Lemieux, Koushik Sen, Laurent Simon, and
Hayawardh Vijayakumar. FuzzFactory: Domain-specific fuzzing with
waypoints. Proc. ACM Program. Lang., 3(OOPSLA), oct 2019.

[127] Karthik Pattabiraman, Giancinto Paolo Saggese, Daniel Chen, Zbig-
niew Kalbarczyk, and Ravishankar Iyer. Automated derivation of
application-specific error detectors using dynamic analysis. IEEE

Transactions on Dependable and Secure Computing, 8(5):640–655,
2010.

[128] Mathias Payer. The fuzzing hype-train: How random testing triggers
thousands of crashes. IEEE Security and Privacy, 17(1):78–82, 2019.

https://hackage.haskell.org/package/HList
https://googleprojectzero.blogspot.com/2021/12/this-shouldnt-have-happened.html
https://googleprojectzero.blogspot.com/2021/12/this-shouldnt-have-happened.html

References 159

[129] H. Peng, Y. Shoshitaishvili, and M. Payer. T-fuzz: Fuzzing by pro-
gram transformation. In 2018 IEEE Symposium on Security and Pri-

vacy (SP), pages 697–710, May 2018.

[130] V. Pham, M. Boehme, A. E. Santosa, A. R. Caciulescu, and A. Roy-
choudhury. Smart greybox fuzzing. IEEE Transactions on Software

Engineering, 2019.

[131] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. Aflnet:
A greybox fuzzer for network protocols. In Proceedings of the 13rd

IEEE International Conference on Software Testing, Verification and

Validation : Testing Tools Track, 2020.

[132] Sebastian Poeplau and Aurélien Francillon. Symbolic execution with
symcc: Don’t interpret, compile! In 29th USENIX Security Sym-

posium (USENIX Security 20), pages 181–198. USENIX Association,
aug 2020.

[133] Sebastian Poeplau and Aurélien Francillon. SymQEMU: Compilation-
based symbolic execution for binaries. In Network and Distributed

System Security Symposium. Network & Distributed System Security
Symposium, February 2021.

[134] Reese T. Prosser. Applications of boolean matrices to the analysis of
flow diagrams. In Papers Presented at the December 1-3, 1959, Eastern

Joint IRE-AIEE-ACM Computer Conference, IRE-AIEE-ACM ’59
(Eastern), pages 133–138, New York, NY, USA, 1959. Association for
Computing Machinery.

[135] Chenxiong Qian, Xiapu Luo, Yu Le, and Guofei Gu. Vulhunter: to-
ward discovering vulnerabilities in android applications. IEEE Micro,
35(1):44–53, 2015.

[136] Fernando Magno Quintao Pereira, Raphael Ernani Rodrigues, and
Victor Hugo Sperle Campos. A fast and low-overhead technique to
secure programs against integer overflows. In Proceedings of the 2013

IEEE/ACM International Symposium on Code Generation and Opti-

mization (CGO), CGO ’13, pages 1–11, USA, 2013. IEEE Computer
Society.

[137] Dudekula Mohammad Rafi, Katam Reddy Kiran Moses, Kai Petersen,
and Mika V Mäntylä. Benefits and limitations of automated software
testing: Systematic literature review and practitioner survey. In 2012

160 160

7th International Workshop on Automation of Software Test (AST),
pages 36–42. IEEE, 2012.

[138] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano
Giuffrida, and Herbert Bos. Vuzzer: Application-aware evolutionary
fuzzing. In 24th Annual Network and Distributed System Security

Symposium, NDSS, 2017.

[139] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano
Giuffrida, and Herbert Bos. Vuzzer: Application-aware evolutionary
fuzzing. In NDSS, volume 17, pages 1–14, 2017.

[140] Bob Joyce Reed Hastings. Purify: Fast detection of memory leaks
and access errors. In In proc. of the winter 1992 usenix conference.
Citeseer, 1991.

[141] Marc Roper. Software Testing, 1994.

[142] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value num-
bers and redundant computations. In Proceedings of the 15th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL ’88, pages 12–27, New York, NY, USA, 1988. Associ-
ation for Computing Machinery.

[143] Swarup Kumar Sahoo, John Criswell, Chase Geigle, and Vikram
Adve. Using likely invariants for automated software fault localization.
In Proceedings of the Eighteenth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems,
ASPLOS ’13, pages 139–152, New York, NY, USA, 2013. Association
for Computing Machinery.

[144] Christopher Salls, Chani Jindal, Jake Corina, Christopher Kruegel,
and Giovanni Vigna. Token-Level fuzzing. In 30th USENIX Secu-

rity Symposium (USENIX Security 21), pages 2795–2809. USENIX
Association, aug 2021.

[145] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, Simon Wörner,
and Thorsten Holz. Nyx: Greybox hypervisor fuzzing using fast
snapshots and affine types. In 30th USENIX Security Symposium

(USENIX Security 21), Vancouver, B.C., aug 2021. USENIX Associ-
ation.

[146] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian
Schinzel, and Thorsten Holz. KAFL: Hardware-assisted feedback

References 161

fuzzing for OS kernels. In Proceedings of the 26th USENIX Con-

ference on Security Symposium, SEC’17, pages 167–182, USA, 2017.
USENIX Association.

[147] Sergej Schumilo, Cornelius Aschermann, Andrea Jemmett, Ali Ab-
basi, and Thorsten Holz. Nyx-net: Network fuzzing with incremental
snapshots. arXiv preprint arXiv:2111.03013, 2021.

[148] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. Addresssanitizer: A fast address sanity checker. In
2012 USENIX Annual Technical Conference (USENIXATC 12), pages
309–318, 2012.

[149] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitry Vyukov. Addresssanitizer: A fast address sanity checker. In
Proceedings of the 2012 USENIX Conference on Annual Technical

Conference, USENIX ATC’12, page 28. USENIX Association, 2012.

[150] Kostya Serebryany. OSS-Fuzz - google’s continuous fuzzing service
for open source software. Vancouver, BC, August 2017. USENIX
Association.

[151] Chayanika Sharma, Sangeeta Sabharwal, and Ritu Sibal. A survey
on software testing techniques using genetic algorithm. arXiv preprint
arXiv:1411.1154, 2014.

[152] Anand Sivasubramaniam, Aman Singla, Umakishore Ramachandran,
and H. Venkateswaran. An approach to scalability study of shared
memory parallel systems. In Proceedings of the 1994 ACM SIGMET-

RICS Conference on Measurement and Modeling of Computer Sys-

tems, SIGMETRICS ’94, pages 171–180, New York, NY, USA, 1994.
Association for Computing Machinery.

[153] Chengyu Song, Byoungyoung Lee, Kangjie Lu, William Harris, Tae-
soo Kim, and Wenke Lee. Enforcing kernel security invariants with
data flow integrity. NDSS, 2016.

[154] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen,
and M. Franz. SoK: Sanitizing for security. In 2019 IEEE Symposium

on Security and Privacy (SP), pages 1275–1295, 2019.

[155] Prashast Srivastava and Mathias Payer. Gramatron: Effective
grammar-aware fuzzing. In Proceedings of the 30th ACM SIGSOFT

International Symposium on Software Testing and Analysis, ISSTA

162 162

2021, page 244–256, New York, NY, USA, 2021. Association for Com-
puting Machinery.

[156] Nick Stephens, John Grosen, Christopher Salls, Audrey Dutcher,
Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. Driller: Augmenting fuzzing through
selective symbolic execution. In NDSS, volume 16, pages 1–16, 2016.

[157] Harmen-Hinrich Sthamer. The automatic generation of software test

data using genetic algorithms. PhD thesis, University of Glamorgan,
1995.

[158] Robert Swiecki. Honggfuzz. https://github.com/google/honggfuzz.
[Online; accessed January 17, 2024].

[159] Fabian Toepfer and Dominik Maier. Bsod: Binary-only scalable
fuzzing of device drivers. In 24th International Symposium on Re-

search in Attacks, Intrusions and Defenses, pages 48–61, 2021.

[160] Guido Vranken. Cryptofuzz - differential cryptography fuzzing. https:
//github.com/guidovranken/cryptofuzz, 2019. [Online; accessed
January 17, 2024].

[161] Dmitry Vyukov. syzkaller - kernel fuzzer. [Online; accessed January
17, 2024].

[162] Jinghan Wang, Yue Duan, Wei Song, Heng Yin, and Chengyu Song.
Be sensitive and collaborative: Analyzing impact of coverage metrics
in greybox fuzzing. In 22nd International Symposium on Research in

Attacks, Intrusions and Defenses (RAID 2019), pages 1–15, Chaoyang
District, Beijing, sep 2019. USENIX Association.

[163] Jinghan Wang, Chengyu Song, and Heng Yin. Reinforcement
learning-based hierarchical seed scheduling for greybox fuzzing. In
NDSS, 2021.

[164] Jinghan Wang, Chengyu Song, and Heng Yin. Reinforcement
learning-based hierarchical seed scheduling for greybox fuzzing. In
28th Annual Network and Distributed System Security Symposium,

NDSS 2021, virtually, February 21-25, 2021. The Internet Society,
2021.

[165] Lei Wang, Qiang Zhang, and PengChao Zhao. Automated detection of
code vulnerabilities based on program analysis and model checking. In

https://github.com/google/honggfuzz
https://github.com/guidovranken/cryptofuzz
https://github.com/guidovranken/cryptofuzz

References 163

2008 Eighth IEEE International Working Conference on Source Code

Analysis and Manipulation, pages 165–173. IEEE, 2008.

[166] Yanhao Wang, Xiangkun Jia, Yuwei Liu, Kyle Zeng, Tiffany Bao,
Dinghao Wu, and Purui Su. Not all coverage measurements are equal:
Fuzzing by coverage accounting for input prioritization. In NDSS,
2020.

[167] Mark Weiser. Program slicing. IEEE Transactions on software engi-

neering, (4):352–357, 1984.

[168] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. De-
signing new operating primitives to improve fuzzing performance. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, CCS ’17, page 2313–2328, New York, NY,
USA, 2017. Association for Computing Machinery.

[169] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. Mod-
eling and discovering vulnerabilities with code property graphs. In
2014 IEEE Symposium on Security and Privacy, pages 590–604.
IEEE, 2014.

[170] Fabian Yamaguchi, Alwin Maier, Hugo Gascon, and Konrad Rieck.
Automatic inference of search patterns for taint-style vulnerabilities.
In 2015 IEEE Symposium on Security and Privacy, pages 797–812.
IEEE, 2015.

[171] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and
understanding bugs in C compilers. In Proceedings of the 32nd ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation, PLDI ’11, page 283–294, New York, NY, USA, 2011. As-
sociation for Computing Machinery.

[172] W. You, X. Liu, S. Ma, D. Perry, X. Zhang, and B. Liang. SLF:
Fuzzing without valid seed inputs. In 2019 IEEE/ACM 41st Inter-

national Conference on Software Engineering (ICSE), pages 712–723,
2019.

[173] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu, Kai Lu, and
Xu Zhou. EcoFuzz: Adaptive Energy-Saving greybox fuzzing as a
variant of the adversarial Multi-Armed bandit. In 29th USENIX Se-

curity Symposium (USENIX Security 20), pages 2307–2324. USENIX
Association, aug 2020.

164 164

[174] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim.
Qsym: A practical concolic execution engine tailored for hybrid
fuzzing. In Proceedings of the 27th USENIX Conference on Security

Symposium, SEC’18, pages 745–761, USA, 2018. USENIX Associa-
tion.

[175] Michał Zalewski. American Fuzzy Lop. https://lcamtuf.coredump.

cx/afl/. [Online; accessed January 17, 2024].

[176] Michał Zalewski. Binary fuzzing strategies: what works,
what doesn’t. https://lcamtuf.blogspot.com/2014/08/

binary-fuzzing-strategies-what-works.html, 2014. [Online; ac-
cessed January 17, 2024].

[177] Michał Zalewski. Fuzzing random programs with-
out execve(). https://lcamtuf.blogspot.com/2014/10/

fuzzing-binaries-without-execve.html, 2014. [Online; accessed
January 17, 2024].

[178] Michał Zalewski. Pulling JPEGs out of thin air. https://lcamtuf.

blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html, 2014.
[Online; accessed January 17, 2024].

[179] Michał Zalewski. afl-fuzz: making up grammar with a
dictionary in hand. https://lcamtuf.blogspot.com/2015/01/

afl-fuzz-making-up-grammar-with.html, 2015. [Online; accessed
January 17, 2024].

[180] Michał Zalewski. American Fuzzy Lop - Whitepaper. https://

lcamtuf.coredump.cx/afl/technical_details.txt, 2016. [Online; ac-
cessed January 17, 2024].

[181] Michał Zalewski. Bunny the Fuzzer. https://code.google.com/

archive/p/bunny-the-fuzzer/, 2016. [Online; accessed January 17,
2024].

[182] Michał Zalewski. "FidgetyAFL" implemented in 2.31b.
https://groups.google.com/g/afl-users/c/1PmKJC-EKZ0/m/

zck6Iu77DgAJ, 2016. [Online; accessed January 17, 2024].

[183] Zeineb Zhioua, Stuart Short, and Yves Roudier. Static code analy-
sis for software security verification: Problems and approaches. In
2014 IEEE 38th International Computer Software and Applications

Conference Workshops, pages 102–109. IEEE, 2014.

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html
https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html
https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html
https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html
https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html
https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://code.google.com/archive/p/bunny-the-fuzzer/
https://code.google.com/archive/p/bunny-the-fuzzer/
https://groups.google.com/g/afl-users/c/1PmKJC-EKZ0/m/zck6Iu77DgAJ
https://groups.google.com/g/afl-users/c/1PmKJC-EKZ0/m/zck6Iu77DgAJ

	Introduction
	Challenges in Modern Fuzzing
	Contributions
	List of Publications

	Background
	Fuzz Testing
	Feedback-Driven Fuzz Testing
	Increasing code coverage
	Meaningful inputs generation
	Hunting non-crashing faults

	Program Properties and Invariants
	Data Dependency Graphs

	Introducing Likely Invariants as Feedback
	Methodology
	Program State Partitions
	Using Invariants as Feedback
	Pruning the Generated Checks
	Corpus Selection

	Implementation
	State Invariants Learning
	Program Instrumentation

	Evaluation
	RQ1: Invariant Pruning
	RQ2: State Explosion
	RQ3: Program State Exploration
	RQ4: Bug Detection
	RQ5: Run-Time Overhead
	Discussion

	Limitations and Future Directions
	Appendix

	Fuzzing with Data Dependency Information
	Methodology and Implementation
	DDG construction
	Filtering
	Instrumentation

	Evaluation
	Experiment Setup
	Comparison against edge coverage
	Effects of our instrumentation filters
	Comparison against different instrumentation strategies
	Queue Explosion
	Code Coverage
	FuzzBench
	Third Dataset
	Classes of Bugs

	A Bug Case Study
	Discussion
	Limitations and Future Work

	Understanding American Fuzzy Lop
	American Fuzzy Lop
	General Design
	Coverage Feedback
	Scheduling
	Mutators
	Minimization
	Instrumentation

	Methodology and Experiments Design
	Experiments
	Hitcounts
	Novelty search vs. maximization of a fitness
	Corpus culling
	Score calculation
	Corpus scheduling
	Splicing
	Trimming
	Timeouts
	Collisions
	Discussion

	The LibAFL Fuzzing Framework
	American Fuzzy Lop ++
	Entities in Modern Fuzzing
	Framework Architecture
	Principles and High-level Design
	The Core Library
	Instrumentation Backends

	Applications and Experiments
	Bypassing Roadblocks
	Structure-aware Fuzzing
	Corpus Scheduling
	Energy Assignment
	A Generic Bit-level Fuzzer
	Differential Fuzzing
	Third-party Applications

	Limitations and Future Work

	A LibAFL-based AFL++ Prototype
	AFL++ on FuzzBench
	Implementing AFLrustrust
	SBST'23 Competition Results
	Discussion

	Conclusion

