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Abstract

In the realm of future 6G wireless networks, integrating the intelligent edge through the

advent of AI signifies a momentous leap forward, promising revolutionary advancements in

wireless communication. This integration fosters a harmonious synergy, capitalizing on the

collective potential of these transformative technologies. Central to this integration is the

role of federated learning (FL), a nascent decentralized learning paradigm. Particularly,

federated learning, aided by communication networks, facilitates collaborative training of

machine learning models across networks of edge devices by leveraging their distributed

datasets through an iterative process of decentralized on-device model optimization and

centralized aggregation of model updates. This circumvents the need to migrate sensitive

user raw data to centralized servers for training or inference, overcoming critical privacy

barriers. Additionally, federated learning allows the development of high-accuracy models

that harness subtle patterns across vastly more total data than any single device could

provide alone. By embracing this paradigm, 6G networks can unlock a myriad of benefits

for both wireless networks and edge devices. On one hand, wireless networks stand to benefit

from federated learning ability to develop data-driven solutions surpassing the limitations of

traditional model-driven approaches, by facilitating cooperative training spanning different

cellular networks or other wireless technology domains. This empowers future networks

through embedded inference to adapt, optimize performance, and enhance network efficiency

dynamically. On the other hand, edge devices benefit from personalized experiences and

tailored solutions, catered to their specific requirements. Specifically, edge devices will

experience improved performance and reduced latency through localized decision-making,

real-time processing, and reduced reliance on centralized infrastructure.

While federated learning has the potential to revolutionize future networks by offering

limitless opportunities for distributed model training, its widespread adoption is contingent

upon addressing several significant challenges that impede its full utilization. The two most

prominent hurdles in federated learning are the communication overhead associated with

exchanging model updates over communication channels, which can be prohibitive when

dealing with a large number of devices, and ensuring the reliability of trained models in

heterogeneous settings, where data distribution and computational resources vary greatly.

In the first part of the thesis, we tackle the predicament of statistical heterogeneity

in federated learning stemming from divergent data distributions among devices datasets.

Rather than training a conventional one-model-fits-all, which often performs poorly in non-

IID settings, we propose user-centric set of rules that produce personalized models tailored

to each user objectives. To mitigate the extra communication overhead associated with

training distinct personalized model for each user, users are partitioned into clusters based
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on their objectives similarity. This enables collective training of cohort-specific personalized

models. As a result, the total number of personalized models trained is reduced. This

reduction lessens the consumption of wireless resources required to transmit model updates

across bandwidth-limited wireless channels.

In the second part, our focus shifts towards integrating the Internet of Things (IoT)

remote devices into the intelligent edge by leveraging Unmanned Aerial Vehicles (UAVs)

as a federated learning orchestrator. While previous studies have extensively explored the

potential of UAVs as flying base stations or relays in wireless networks, their utilization

in facilitating model training is still a relatively new area of research. In this context,

we leverage the UAV mobility to bypass the unfavorable channel conditions in rural areas

and establish learning grounds to remote IoT devices. However, UAV deployments poses

challenges in terms of scheduling and trajectory design. To this end, a joint optimization of

UAV trajectory, device scheduling, and the learning performance is formulated and solved

using convex optimization techniques and graph theory.

In the third and final part of this thesis, we take a critical look at the communication

overhead imposed by federated learning on wireless networks. While compression techniques

such as quantization and sparsification of model updates are widely used, they often achieve

communication efficiency at the cost of reduced model performance. Accordingly, we employ

over-parameterized random networks to approximate target networks, through parameter

pruning rather than direct optimization to overcome this limitation. This approach has

been demonstrated to require transmitting no more than a single bit of information per

model parameter under a satisfactory learning performance level. We show that state of

the art (SoTA) methods fail to capitalize on the full attainable advantages in terms of

communication efficiency by relying on consistent loss objectives. Therefore, we propose a

regularized loss function which considers the entropy of transmitted updates, resulting in

notable improvements to communication and memory efficiency during federated training

on resource-constrained edge devices with slight generalization performance loss in some

cases.
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Résumé

Dans le domaine des futurs réseaux sans fil 6G, l’intégration de la périphérie intelligente

grâce à l’avènement de l’IA représente un bond en avant considérable, promettant des

avancées révolutionnaires en matière de communication sans fil. Cette intégration favorise

une synergie harmonieuse, capitalisant sur le potentiel collectif de ces technologies trans-

formatrices. Au cœur de cette intégration se trouve le rôle de l’apprentissage fédéré, un

paradigme d’apprentissage décentralisé qui préserve la confidentialité des données tout en

exploitant l’intelligence collective des appareils interconnectés. En adoptant l’apprentissage

fédéré, les réseaux 6G peuvent débloquer une myriade d’avantages à la fois pour les réseaux

sans fil et pour les appareils périphériques. D’une part, les réseaux sans fil acquièrent la

capacité de fournir des solutions basées sur les données, dépassant les limites des approches

traditionnelles basées sur des modèles. En particulier, l’exploitation des données en temps

réel permettra aux réseaux 6G de s’adapter, d’optimiser les performances et d’améliorer

l’efficacité du réseau de manière dynamique. D’autre part, les appareils périphériques

bénéficient d’expériences personnalisées et de solutions sur mesure, adaptées à leurs besoins

spécifiques. Plus précisément, les appareils périphériques bénéficieront de meilleures perfor-

mances, d’une latence réduite et d’une efficacité énergétique accrue, ce qui renforcera leurs

capacités. Simultanément, la périphérie intelligente permet aux dispositifs de périphérie de

prendre des décisions localisées, d’effectuer des traitements en temps réel et de réduire la

dépendance à l’égard de l’infrastructure centralisée. Cette convergence des futurs réseaux

6G et de l’IA révolutionne les réseaux sans fil et renforce l’intelligence périphérique, les

propulsant dans une ère de connectivité, d’intelligence et d’innovation sans précédent.

L’apprentissage fédéré a le potentiel de révolutionner les réseaux du futur en offrant des

possibilités illimitées pour la formation de modèles distribués. possibilités illimitées pour la

formation de modèles distribués, son adoption à grande échelle dépend de la résolution de

plusieurs défis importants qui empêchent sa pleine utilisation. son adoption à grande échelle

dépend de la résolution de plusieurs problèmes importants qui empêchent sa pleine utilisa-

tion. Les deux obstacles les plus Les deux obstacles les plus importants de l’apprentissage

fédéré sont le surcoût de communication associé à l’échange de mises à jour de modèles

sur les canaux de communication, et le coût de la formation. l’échange de mises à jour de

modèles sur les canaux de communication, qui peut être prohibitif lorsqu’il s’agit d’un grand

nombre d’appareils de communication, qui peut être prohibitif lorsqu’il s’agit d’un grand

nombre d’appareils, et la garantie de la fiabilité des dans des environnements hétérogènes,

où la distribution des données et les ressources informatiques varient considérablement.

Dans la première partie de la thèse, nous nous attaquons au problème de l’hétérogénéité

statistique dans l’apprentissage fédéré, qui découle des distributions de données divergentes
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entre les ensembles de données des dispositifs. Plutôt que d’entrâıner un modèle unique

conventionnel, qui donne souvent de mauvais résultats avec des données non identifiées,

nous proposons un ensemble de règles centrées sur l’utilisateur qui produisent des modèles

personnalisés adaptés aux objectifs de chaque utilisateur. Pour atténuer la surcharge de

communication prohibitive associée à l’apprentissage d’un modèle personnalisé distinct pour

chaque utilisateur, les utilisateurs sont répartis en groupes sur la base de la similarité de

leurs objectifs. Cela permet l’apprentissage collectif de modèles personnalisés spécifiques à

la cohorte. En conséquence, le nombre total de modèles personnalisés formés est réduit.

est réduit. Cette réduction diminue la consommation de ressources sans fil nécessaires à la

transmission des mises à jour de modèles sur des canaux sans fil à bande passante limitée.

Dans la deuxième partie, nous nous concentrons sur l’intégration des dispositifs à distance

de l’IdO dans la périphérie intelligente en exploitant les véhicules aériens sans pilote en tant

qu’orchestrateur d’apprentissage fédéré. Alors que des études antérieures ont largement

exploré le potentiel des drones en tant que stations de base volantes ou relais dans les réseaux

sans fil, leur utilisation pour faciliter l’apprentissage de modèles est encore un domaine de

recherche relativement nouveau. Dans ce contexte, nous tirons parti de la mobilité des

drones pour contourner les conditions de canal défavorables dans les zones rurales et établir

des terrains d’apprentissage pour les dispositifs IoT distants. Cependant, les déploiements

de drones posent des défis en termes de planification et de conception de trajectoires. À

cette fin, une optimisation conjointe de la trajectoire du drone, de l’ordonnancement du

dispositif et de la performance d’apprentissage est formulée et résolue à l’aide de techniques

d’optimisation convexe et de la théorie des graphes.

Dans la troisième et dernière partie de cette thèse, nous jetons un regard critique sur la

surcharge de communication imposée par l’apprentissage fédéré sur les réseaux sans fil. Bien

que les techniques de compression telles que la quantification et la sparsification des mises à

jour de modèles soient largement utilisées, elles permettent souvent d’obtenir une efficacité de

communication au prix d’une réduction de la performance du modèle. Pour surmonter cette

limitation, nous utilisons des réseaux aléatoires sur-paramétrés pour approximer les réseaux

cibles par l’élagage des paramètres plutôt que par l’optimisation directe. Il a été démontré

que cette approche ne nécessite pas la transmission de plus d’un seul bit d’information par

paramètre du modèle. Nous montrons que les méthodes SoTA ne parviennent pas à tirer

parti de tous les avantages possibles en termes d’efficacité de la communication en utilisant

cette approche. En conséquence, nous proposons une fonction de perte régularisée qui prend

en compte l’entropie des mises à jour transmises, ce qui se traduit par des améliorations

notables de l’efficacité de la communication et de la mémoire lors de l’apprentissage fédéré

sur des dispositifs périphériques à ressources limitées, sans sacrifier la précision.
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Chapter 1

Introduction

The ubiquitous evolution of 5G (Fifth Generation) and upcoming 6G (Sixth Generation)

networks are expected to enable a new paradigm of intelligent edge computing. As network

speeds increase dramatically and latency decreases, more processing and intelligence can be

pushed to the edge rather than relying solely on cloud data centers [1–3]. This allows for

real-time data processing and decision-making closer to the end-user or device, adhering to

future network requirements. In newly deployed 5G networks, multi-access edge computing

cloud allows compute and storage resources to be deployed at the network’s edge [4]. Looking

ahead to 6G, some of the proposed visions promote for highly distributed intelligent networks

with AI enabled (Artificial Intelligence-enabled) processing directly embedded into end-users

edge devices. The integration of AI capabilities and edge devices encompasses tasks such

as training and inferring machine learning models locally, enabling innovative applications

such as industrial automation [5], autonomous vehicles [6], augmented reality [7], and other

services requiring ultra-low latency. For instance, 3GPP (The 3rd Generation Partnership

Project) has been pushing towards integrating AI in wireless networks and the edge. In

Release 18, various techniques have been studied to enhance the performance and efficiency

of wireless networks, including beam management, channel state information feedback, and

positioning accuracy [8].

The rapidly growing number of connected devices further motivates this shift. As shown

in Fig. 1.1, the estimated number of worldwide IoT devices has increased over 140% from

2018 to 2023, reaching nearly 15 billion [9,10]. Accommodating and leveraging this massive

influx of such sensory and computationally capable edge devices is only feasible with the

help of distributed edge intelligence.

In recent years, a notable paradigm shift has occurred in the integration of machine

learning models within edge devices. The conventional approach of transmitting data from

devices to centralized servers for model training or inference, and subsequently deploying the

trained models or inference decisions to the edge, has witnessed a decline in favor [11, 12].

This change can be primarily attributed to two pivotal factors: privacy and communication

overhead.

The preservation of privacy has emerged as a paramount concern in the era of data-

driven technologies. Traditional model training and data inference approaches has raised

substantial apprehensions regarding the protection of sensitive personal information [13].

1
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Figure 1.1: The Rise of Connected IoT

This concern becomes particularly pronounced in domains that handle confidential data,

such as healthcare applications, where wearable devices collect patient-specific information.

Consequently, safeguarding data privacy has become a pivotal consideration in the design

and deployment of machine learning methodologies.

Additionally, the communication overhead associated with transferring data between de-

vices and central servers has gained attention as a crucial challenge. The transmission of

substantial amounts of data for centralized training or inference over networks not only in-

troduces latency issues but also imposes a burden on network resources. In scenarios where

real-time data collection and decision-making are paramount, such as industrial environ-

ments relying on IoT devices for sensor data acquisition, the inefficiencies introduced by the

excessive communication overhead can impede the overall system performance.

Furthermore, this shift in paradigm gains further momentum due to the widespread avail-

ability of powerful edge devices equipped with significant computational capabilities and

sensory functionalities. These advancements have made it feasible to perform data acquisi-

tion, processing, and model training directly on the device.

However, a challenge arises when conducting on-device local training. Edge devices such

as smartphones typically grapple with limited datasets sampled from their immediate envi-

ronments. The inherent limitations of the datasets can be interpreted through the lens of

their representational quality and size. Representational quality, which is synonymous with
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the expressiveness of the datasets, measures their effectiveness in training a model specifi-

cally designed for each device task. This effectiveness relies on factors such as the sampling

resolution and the sensory capabilities of the devices. These data limitations impede the

potential of local training to generate models that exhibit robust generalization performance

over the devices’ tasks.

1.1 Federated Learning

Due to the limitations mentioned earlier, Federated Learning (FL) surfaced as a potential

solution to overcome these challenges [14]. FL is a nascent sub-field of machine learning

that provides devices (also known as clients or users) with the opportunity for collaborative

training of models, supervised by a central orchestrator, without the need to share their

raw training data. Instead, FL allows edge devices to collectively train models that exhibit

improved generalization and performance, while promoting data privacy by design. The

diversity of data across devices enables the trained models to capture a broader range of

patterns and variations, enhancing their ability to handle diverse user preferences and gen-

eralize better compared to locally learned models. This distributed learning paradigm also

reduces the dependence on centralized servers, enabling real-time processing and context-

aware decision-making directly on the edge. This facilitates faster response times, reduced

latency, and improved user experience in various applications. In its prototypical configura-

tion [15], FL involves distributed training executed iteratively over several communication

rounds. A communication round refers to a single iteration or cycle of the training process

between the orchestrator and the participating devices. During a communication round, the

following steps typically occur:

1. Model Distribution: The central server sends a global ML model to a selected

subset of devices over a downlink (DL) channel.

2. Local Model Training: Each device performs local training using its own local

dataset and the received global model. The device optimizes its local model over its

local data.

3. Uplink Model Transmission: The locally trained models from the participating

devices are sent back to the central server over an uplink (UL) communication channel.

4. Model Aggregation: The central server aggregates the received models from the

edge devices to produce an updated global model. The updated global model is then

distributed to a new set of devices for the next communication round.
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The training typically involves multiple communication rounds to iteratively refine and

optimize the global model till convergence. An illustration of the FL process is given in Fig.

1.2.

Figure 1.2: Federated Learning: decentralized model optimization and centralized
aggregation.

FL training can be split into two main settings: cross-silo and cross-device training.

Cross-silo training in FL refers to the process of training a machine-learning model on data

from multiple silos or domains. Each silo represents a separate entity or organization (e.g.

hospitals or banks) that has its data and wants to collaborate with other silos to train a

shared model. All participating data silos are reliable and are almost always available during

training. Training allows these silos to work together to train a model that is more accurate

and robust than any individual silo could achieve on its own. On the other hand, cross-device

training in FL involves training a machine-learning model using data from multiple devices,

such as smartphones, smart home devices, or IoT devices. In this scenario, each device

represents a separate data source with a relatively small volume of data that contributes to

the training of a shared model. These devices are naturally less reliable due to factors like

availability, poor network connectivity, and hardware failures.

By virtue of its inherent privacy guarantees, FL has been adopted by several major in-

dustrial companies. For instance, Nvidia applied FL across various domains such as medical

imaging, and genetics research [16]. Additionally, Apple employs FL in the development

of biometric identification systems like Face ID and voice commands for digital assistants

4



CHAPTER 1. INTRODUCTION

like Siri [17]. One prominent example is Google’s keyboard app, Gboard [18], which utilizes

FL to improve its language model without compromising user data privacy. By leverag-

ing collaborating among multiple devices, Gboard can train a shared model that adapts to

users’ typing habits and preferences, enhancing the accuracy of its predictions. Another

notable application is found in wireless communication, where there is a growing interest to

complement the traditional model-driven design approaches with data-driven solutions [19].

The traditional methods often rely on idealized models that are insufficient for capturing

the intricate complexities of real-world scenarios. These models are frequently based on sim-

plifying assumptions that do not accurately reflect the practical realities, which can limit

their effectiveness in addressing the challenges of wireless communication [20–23].

Realizing the full potential of federated learning necessitates addressing several critical

challenges that arise mainly in practical cross-device deployment.

For instance, communication-efficient aggregation of model updates from participating

devices over bandwidth-limited wireless networks is imperative to ensure feasible and scal-

able FL. Furthermore, heterogeneous hardware, and data distributions across devices must

also be reconciled to enable effective federated training. In section 1.4, we delve deeper into

each of these key issues, while highlighting the main challenges that this thesis targets.

1.2 Federated Learning System Modelling

The standard objective of FL [15, 24] is to find a global model θ ∈ Rd that minimizes the

weighted loss of the K devices in the system, over their local data distribution {Pk}Kk=1:

min
θ∈Rd

[
L(θ) ≜

K∑
k=1

wkℓk(θ)

]
, (1.1)

where {ℓk} are the devices’ loss functions and {wk} denote their corresponding weights, such
that

∑
k wk = 1. The local losses can be defined as:

ℓk(θ) ≜ Ex∼Pk
[ℓk(θ, x)] , (1.2)

where E [·] denotes the mathematical expectation. In the case where the devices are en-

dowed with finite datasets denoted {Dk} sampled from the local data distributions with

a cardinality {|Dk| < ∞} , then the global objective in (1.1) is termed the empirical risk

minimization (ERM). Accordingly, the local losses can be written as :

ℓk(θ) =
1

|Dk|

|Dk|∑
j=1

ℓk(θ, xk,j), (1.3)
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where |Dk| denotes the dataset cardinality of device k, and xk,j denotes the jth sample of

Dk. Commonly [24–26], the weights found in (1.1) are based on factors like the devices’

dataset sizes, and are given by :

wi =
|Di|∑
k |Dk|

. (1.4)

In this case, the objective is to train a model parameterized by θ to minimize the weighted

losses, across the union of the datasets of the entire system denoted as D =
⋃

kDk. This

dataset is sampled from the mixture of distributions denoted by P =
∑

k wkPk. In this

scenario, the assumption is that all devices will encounter data sampled from the target

distribution P . Consequently, a key concern is that the model discovered should exhibit

effective generalization over P .

In certain scenarios, users may require a personalized experience [27]. Prototypical fed-

erated optimization (1.1) aggregates updates from diverse devices to train a single model.

However, severe distributional divergences across the devices’ target distributions Pk can

render a one-model-fits-all approach ineffective. Instead, tailored models catering to specific

user preferences or even individual users may be necessary. Nonetheless, accommodating

personalized experiences presents an additional challenge: how can statistical divergences

be inferred without direct data access, while preserving privacy? This question remains

pertinent today, given the various forms of heterogeneity that can exist across devices’ data.

Ultimately, it is the responsibility of the training service provider to ensure that the chosen

training algorithm can effectively handle diverse data distributions while maintaining data

privacy.

1.3 Federated Optimization

In order to address problem (1.1), it is imperative to recognize that the global gradient can

be expressed as the weighted average of the local gradients:

∇L(θ) =
∑
k

wk∇ℓk(θ). (1.5)

Once the global gradient has been computed, it can be utilized to optimize the objective

in (1.1), by applying Gradient Descent (GD) during each communication round t, according

to the following update rule:

θ(t+ 1) = θ(t)− ηt∇L(θ(t)), (1.6)

where ηt > 0 represents the learning step size that may vary across different communica-

tion rounds.
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Within a FL setting, wherein devices have access to their local data, and receive the global

model θ(t) in the DL from the orchestrator, local GD can be employed to compute the

local gradients. Considering the star configuration prevalent in federated learning, devices

transmit their computed local gradients in the UL to the orchestrator. These gradients are

subsequently weighted and aggregated to yield the global update described in (1.5). This

global update is then applied to the global model according to (1.6). The updated global

model is subsequently sent to all devices to initiate the subsequent communication round.

The training process concludes when convergence is achieved, an indication that the global

gradient norm approaches zero within a small margin.

Despite its theoretical applicability and being extensively researched, GD is not commonly

used in practical FL settings. This is primarily attributed to the computational overhead

it imposes, as it requires the computation of full local gradients [28]. This computational

requirement can pose challenges, particularly for devices with limited resources. Moreover,

GD involves a single local update step per communication round, which leads to a relatively

slow convergence rate. Consequently, numerous communication rounds between devices

and the central server are necessary until convergence is achieved. This significantly adds

to the communication overhead, particularly in networks with limited resources. Instead,

stochastic and adaptive variants are used, such as SGD and ADAM [29].

1.4 Challenges

Given the applicability of FL in cross-device settings, supported by the devices’ rising capa-

bilities and pervasiveness, the use of FL brings about several critical issues that are necessary

to address to realize its full potential. Specifically, the communication efficiency during the

federated process over wireless networks requires optimization. Also, devices exhibiting

hardware, software, and data heterogeneity must be reconciled. Additionally, even with FL

privacy provisions, residual privacy concerns persist that warrant further technical amelio-

ration. In the following subsections, each of these key challenges is explored in more detail,

while elucidating our contributions towards tackling them.

1.4.1 Communication Bottleneck

The communication bottleneck presents a substantial challenge within the context of FL,

mainly when applied to resource-constrained edge networks. In a cross-device setting, FL

necessitates the frequent aggregation of model updates from numerous participating devices.

However, transmitting complete model updates across wireless networks with limited band-

width can often prove to be unfeasible. The sizes of raw model updates, particularly for

large deep learning models, can reach hundreds of megabytes, leading to network congestion.
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This can impede user participation in a federated system, prompting users to withdraw from

training due to wireless resource limitations [30].

Several approaches have been proposed in the literature to mitigate the communication

bottleneck of FL in both the UL and DL directions. In the UL, dedicated point-to-point

connections are established between individual users and the orchestrator to transmit the

model updates. However, in the DL, updates are transmitted to multiple users via a mul-

ticast or broadcast channel when they are all served by a single cell, a common scenario

in industrial environments utilizing private cellular networks. Alternatively, point-to-point

communication links are employed in settings where devices are served by local Wi-Fi con-

nectivity. Notably, the DL overhead can be comparable to that of the UL in the latter

scenario, and therefore, should be addressed with equal importance. One set of methods

involves compressing updates through sparsification [31–33] and quantization [34,35] to re-

duce their size. Nonetheless, this often results in a trade-off with decreased model accuracy.

Another set of algorithms focuses on minimizing communication overhead by limiting the

number of devices involved in each communication round [36–38]. This is accomplished

by selecting reliable devices based on specific criteria, such as their wireless channel condi-

tion, battery status, and time zone. This thesis examines communication-efficient federated

learning in Chapters 2 and 4, proposing techniques to mitigate communication bottlenecks

without sacrificing model performance.

While communication-efficient techniques help mitigate bottlenecks for bandwidth limited

devices, more fundamental orchestration innovations may be necessary for extremely re-

mote endpoints like IoT devices in rural areas. IoT devices role as data generators positions

them as highly suitable candidates for the participation in training models, contributing to

the development of an intelligent edge [39]. However, the intermittent connectivity from

poor coverage and unreliable channels creates barriers to their participation [40,41]. There-

fore, integrating these devices requires optimizations beyond efficient transmission protocols.

Fully decentralized learning may help in this setting, leveraging peer-to-peer communication

between the devices without the need for a centralized orchestrator [42,43]. However, man-

aging coordination in these settings remains an open problem. Modern approaches propose

the utilization of UAVs as dynamic relays capable of supervising FL training [44–46]. This

strategy is particularly well-suited to situations characterized by challenging connectivity,

and on-demand training requirements. Chapter 3 of this thesis thoroughly examines this

problem and explores the use of UAVs as orchestrators for FL in remote areas.

1.4.2 Statistical Data Heterogeneity

Statistical heterogeneity poses a significant challenge in FL stemming from the non-IID

(non-identically or independently distributed) local datasets of the participating devices [47].
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When referencing non-IID data in FL, this typically refers to the underlying differences be-

tween the local data distributions Pi and Pj for different devices i and j. This heterogeneity

in data is manifested in individual preferences, geographic-specific features capturing local-

ized traits, and time-specific transient dynamics [48]. For instance, IoT devices may differ

in their sampling rates or data collection frequencies; some devices might collect data ev-

ery minute, while others collect data every hour. These variations can affect the temporal

resolution of the data and therefore introduce heterogeneity.

There are numerous ways in which data tend to diverge from being identically distributed.

If we consider the local distributions supported by (X ,Y), as in supervised learning settings,

where X denotes the input feature space and Y denotes the ground truth label space, then

the local data distributions of the devices are defined as {Pk(x, y)}Kk=1. The most prominent

forms of data heterogeneity are [14]:

• Covariate Shift: The conditional probability distributions of the input variables Pi(x|y),
may differ across different client populations. For instance, in a collaborative health

monitoring FL system, some clients might use high-end medical sensors, while others

use simpler wearable devices. The noise among the measurements captured by the

different devices alters the input distributions.

• Label Skew: The distribution of labels, represented by Pi(y), varies among different

devices. For instance, in a federated sentiment analysis scenario, one client with

a substantial dataset may contribute mostly positive reviews, while another client

may have more negative reviews. Consequently, the global model could exhibit bias

towards the dominant labels present in the device with the larger dataset, considering

the weighting scheme mentioned in equation (1.4). As a result, the performance of the

global model might be subpar for labels that are under-represented in the datasets.

• Concept Shift: The conditional distribution Pi(y|x) varies across devices datasets. In
this case, devices may assign different labels to the same input feature vectors. For

instance, labels associated with predicting the next word at different devices (e.g. in

Gboard), given a starting phrase (i.e. the input feature), can exhibit variations based

on personal choices and regional differences.

In practical scenarios, datasets often comprise a mixture of those effects, and the typical FL

objective (1.1) results in suboptimal models when confronted with these effects. While a

few algorithms in the literature have successfully dealt with the combined manifestation of

these effects across users’ data, many approaches have focused on addressing these effects

individually while disregarding the interplay among them [14]. Chapter 2 of the thesis

investigates the interplay among the mentioned effects that promote heterogeneity and offers

a personalized modeling approach as a potential solution.
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1.4.3 System Heterogeneity

System heterogeneity in FL leads to divergences in the capabilities and properties of client

devices. This heterogeneity spans hardware, connectivity, and availability [47,49]. Hardware

differences across mobile, embedded, and server devices induce variable compute parallelism,

affecting local training speeds. Connectivity heterogeneity produces differences in communi-

cation channel conditions and reliability. Availability heterogeneity arises when stragglers,

defined as slower nodes that delay overall execution, emerge due to issues like unreliable par-

ticipation, power limitations, and mobility. The multitude of hardware, connectivity, and

availability divergences together pose significant systems challenges in FL settings. Chap-

ter 3 of the thesis presents an in-depth exploration of the impact of channel heterogeneity

among low-powered remote devices in a UAV-orchestrated federated learning setting.

1.4.4 Privacy

Federated Learning was initially developed as a means to address privacy concerns arising

from the sharing of users’ data with cloud servers for ML model training. By exchanging

model updates instead of raw data, FL aimed to provide privacy guarantees to users during

the training process. However, recent research has unveiled potential vulnerabilities wherein

adversaries could exploit the model updates to infer the content of user datasets [50, 51].

To address this issue, ongoing research focuses on enhancing the privacy of FL through

techniques such as secure aggregation, differential privacy, and encryption. Secure aggre-

gation methods aim to ensure that model updates from individual devices are combined

in a way that prevents adversaries from extracting information about individual data sam-

ples [52, 53]. Differential privacy techniques introduce random noise to the model updates

to protect against privacy leakage. Encryption methods can be employed to secure model

updates during transmission, preventing unauthorized access and tampering.

While privacy is a vital consideration in FL, this thesis does not explore the difficulties

associated with preserving privacy during FL training.

1.5 Thesis Considerations:

We now list some assumptions made across the different chapters of the thesis.

• Device Participation: In the following chapters, our analysis is based on the assump-

tion that all devices are available for training, unless stated otherwise. This indicates

that the total number of devices available for training is fixed. However, whether all

devices are selected for training or whether the updates are successfully transmitted
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through the communication channels will depend on the specific assumptions made in

each chapter.

• Local Training: Local training is a widely used technique in FL to minimize the

communication overhead. Accordingly, in all chapters, we assume that devices use

gradient stochastic approximation methods, such as stochastic mini-batch gradient

descent, to compute the local updates before sending them to the orchestrator in the

uplink. Such stochastic approximations help reduce the local computational costs

at the devices. The number of local steps is determined by the number of epochs

predefined by the orchestrator.

1.6 Contributions and Thesis Outline

This thesis is divided into three distinct parts, each addressing specific challenges that arise

from the integration of federated learning in wireless edge networks. The proposed solutions

are algorithmic in nature, substantiated by either theoretical or empirical results using

information theoretic tools and Monte-Carlo methods respectively. The thesis is structured

as follows:

• In the first part of this thesis, we address the problem of data heterogeneity across

the devices datasets in federated learning. We propose a user-centric approach that

deviates from the traditional one-model-fits-all approach that often performs poorly

in these settings [14, 24], and instead offers personalized, fine-tuned models tailored

to each user’s unique objectives. To mitigate the high communication overhead as-

sociated with training the personalized models, we propose a clustering method that

groups users with similar objectives, allowing them to collaborate to produce a shared

personalized model. Our proposed algorithm demonstrates superior convergence rates

compared to several state-of-the-art personalization algorithms. This part is associated

with Chapter 2, and is based on the following two published works:

– [54] Mohamad Mestoukirdi, Matteo Zecchin, David Gesbert, and Qianrui Li.

”User-centric federated learning, Trading off Wireless Resources for

Personalization.” IEEE Transactions on Machine Learning in Communications

and Networking, 1:346–359, 2023.

– [55] Mohamad Mestoukirdi, Matteo Zecchin, David Gesbert, Qianrui Li and

Nicolas Gresset, ”User-Centric Federated Learning,” IEEE Globecom Work-

shop, Madrid, Spain, 2021, pp. 1-6, doi: 10.1109/GCWkshps.
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• In the second part of the thesis, we focus on incorporating IoT remote devices in the

intelligent edge by leveraging UAVs as federated learning orchestrator. While UAVs

have been thoroughly investigated for their potential to act as flying base stations or

relays in wireless networks [56,57], the application of UAVs in facilitating model train-

ing remains a nascent field. The UAVs deployment offers several advantages, including

cost-effective and on-demand deployment which aligns with periodic model training

and refinement requirements. Moreover, UAVs mobility enables the establishment of

LoS (Line-of-Sight) communication links with devices in difficult areas, circumvent-

ing unfavorable channel conditions. However, UAV deployment in such settings poses

challenges in terms of scheduling and trajectory design. To optimize UAV trajectory

and device scheduling, we propose a heuristic metric that serves as a proxy for train-

ing performance. Based on this metric, we define a surrogate objective that enables

joint optimization of UAV trajectory and device scheduling using convex optimization

techniques and graph theory. This segment summarizes Chapter 3, which is based on

the published work:

– [45] Mohamad Mestoukirdi, Omid Esrafilian, David Gesbert, and Qianrui Li,

”UAV-Aided Multi-Community Federated Learning,” IEEE Global Com-

munications Conference, Rio de Janeiro, Brazil, 2022 , pp. 1314-1319.

• In the final part of the thesis, we shift our focus towards addressing the challenge of the

communication burden associated with exchanging model updates. In archetypical FL

algorithms, during each round of communication, model updates are often quantized

or sparsified before being sent on the UL or DL channels, leading to improved com-

munication efficiency. However, this compression often comes at the cost of reduced

model accuracy. To overcome this trade-off, extensive research has been conducted to

explore alternative algorithms that can decouple model accuracy from communication

efficiency in FL. One recent promising approach involves pruning a random network

to approximate a target network, according to the subset-sum approximation prob-

lem [58,59], which has demonstrated significant gains in communication efficiency and

model generalization. However, we show that existing state-of-the-art algorithms that

adopt such schemes in federated settings fail to fully harness the potential for com-

munication efficiency improvements. As a result, we propose a novel algorithm that

achieves substantially higher communication gains. Our approach promotes additional

pruning of the random networks, resulting in sparser model updates. Importantly, the

proposed solution is demonstrated to have a negligible impact on the generalization

performance of the produced model compared to the communication-efficiency gains

achieved.
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This part is covered by Chapter 4 and is based on :

– [60] Mohamad Mestoukirdi, Omid Esrafilian, David Gesbert, Qianrui Li, and

Nicolas Gresset, 2023. Sparser Random Networks Exist: Enforcing

Communication-Efficient Federated Learning via Regularization. arXiv

preprint arXiv:2309.10834. (Submitted to IEEE Communication letters)
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Chapter 2

User-Centric Federated Learning

Federated learning aims to enable collaborative training between devices that individually

may not have sufficient local data to train sufficiently good models. By aggregating updates

from many devices’ local datasets, the goal is to leverage supplementary training data ex-

isting across devices. However, a fundamental trade-off arises when the data distribution

on each device is not well aligned. For instance, when the labeling or annotation functions

used to generate training data differ across devices, then for the same input data points,

contradictory or inconsistent labels may be applied. When models are trained on aggre-

gated data from those devices, it creates conflicting optimization objectives. Herein, the

model has to compromise and learn weights that perform adequately but not optimally on

any localized labeling distribution. In such cases, attempting to learn a single global model

yields poor generalization performance compared to training customized models per device

that can adapt to each one’s unique labeling behavior. The personalization of models, while

providing significant in heterogeneous settings, also demands a greater utilization of commu-

nication resources, particularly in the downlink channels to transmit the unique personalized

models.

Accordingly, in this chapter, we tackle the predicament of statistical heterogeneity in

federated learning stemming from the divergent data distributions among devices datasets.

To address this problem without violating the privacy constraints that FL imposes, per-

sonalized FL methods have to couple statistically similar clients without directly accessing

their data in order to guarantee a privacy-preserving transfer. We design user-centric ag-

gregation rules at the parameter server (PS) that are based on readily available gradient

information and are capable of producing personalized models for each device. Secondly, we

derive a communication-efficient variant based on user clustering which greatly enhances its

applicability to communication-constrained systems.

Early FL algorithms were devised under the assumption that the data distribution of

clients’ data sets is common. In this case, clients are said to share the same learning task,

and traditional FL (e.g FedAvg [24]) algorithms can perform and generalize well yielding a

single model, fitting the common data distribution. However, this assumption is hardly met

in practice [61], as data distribution heterogeneity often arises in distributedly generated

data sets. In such cases, traditional FL (e.g. FedAvg) approaches exhibit slow convergence

and often fail to generalize well [62], especially when conflicting objectives among users
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exist. This is a direct consequence of the fact that in heterogeneous settings, a convex com-

bination of locally trained models may not be fit for any particular client data distribution.

Hence, heterogeneous distributions bring about an interesting trade-off: On the one hand

the advantage of exploiting training data at other clients when the local training data are

insufficient, and on the other hand the problem of having the trained model steered towards

improper directions due to differences in data distributions among clients. This trade-off

motivates the search for new FL strategies that can navigate the compromise between model

aggregation benefits and the threat of model mismatch.

We propose a novel user-centric aggregation rule to tackle the underlying heterogeneity

among clients and overcome the shortcomings of the traditional FL schemes. The proposed

strategy leverages user-centric aggregation rules at the PS to produce models at each de-

vice that are tailored to their local data distribution. This is achieved by generalizing the

aggregation rule introduced by McMahan et al. [24]. Particularly, in the case of a set of

K collaborating devices, the original objective in [24] produces a common model at each

communication round t according to

θt ←
K∑
i=1

wiθ
t−1/2
i , (2.1)

where each wi weights the contribution of the locally optimized model θ
t− 1

2
i of user i, to the

update global model θt. On the other hand, the proposed aggregation rule replaces each

device i weighting coefficient wi, by user-specific weighting vectors w⃗i = (wi,1, . . . , wi,K) and

it produces a personalized model update for each FL client

θti ←
K∑
j=1

wi,jθ
t−1/2
j , for i = 1, 2, · · · , K. (2.2)

The key motivation underpinning the use of distinct user-centric personalization rules is

that a single model often fails in heterogeneous settings [24]. At the same time, hard clus-

tering strategies [61,63] are limited to restrictive intra-cluster collaboration and they cannot

exploit similarities among different clusters. The authors in [64] proposed FedFomo, a per-

sonalization scheme that uses a similar aggregation policy as ours [65]. However, FedFomo’s

weighting scheme is repeatedly refined during training and it relies on sharing local models

among clients at each communication round. This strategy can violate the FL privacy-

preserving nature, and introduces a large communication burden to the training procedure.

In contrast, our personalization policy is shown experimentally to enjoy faster convergence,

being able to capture the data heterogeneity at the start of training without the need for

further refinements at later stages.
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The main contributions of this chapter can be summarized as follows :

• We establish an upper bound on the expected risk of the minimizer of the user-centric

learning objective.

• Based on the developed bound, we motivate the use of heuristically determined collab-

oration coefficients as an alternative to theoretically optimal ones, thereby presenting

a practical approach.

• To reduce the communication costs associated with the transmission of multiple per-

sonalized models, we introduce a k-means clustering algorithm that operates on the

user-centric weighing vectors w⃗i. This approach effectively limits the number of per-

sonalized streams while considering the heterogeneity of local data and learning tasks.

It effectively balances learning accuracy and communication load.

• We show that by evaluating the quality of the k-means solution using the silhouette

score, we can identify the underlying heterogeneity a priori. This technique provides

a principled way of determining the number of user-centric rules.

• Through extensive numerical experiments conducted on popular FL benchmarks, we

validate the performance of our proposed strategy and compare it with state-of-the-art

solutions. Specifically, we evaluate the inference accuracy and communication costs,

thereby highlighting the effectiveness of our approach and its relevance in scenarios

characterized by scarce communication resources.

2.1 Related Work

Several recent studies investigate the challenges that arise due to the underlying task hetero-

geneity and communication efficiency present across learners in Federated Learning settings.

For instance, the authors in [36] propose a novel framework for enabling the implementa-

tion of FL algorithms over wireless networks by jointly taking into account FL and wireless

factors. [61,63] devised a hierarchical clustering scheme to group users that share the same

learning task and enable collaboration among them only. However, their strategy is based

on the assumption that heterogeneous tasks are either tangential or parallel, which is not

necessarily true, as tasks are defined by the users’ target data distributions which are often

different for each of them. In this sense, hard-clustering strategies – despite maintain-

ing communication efficiency – limit the degree of collaboration across learners and may

not always be able to capture the differences across users’ tasks. In [66] a distributed
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Expectation-Maximization (EM) algorithm has been proposed, that concurrently converges

to a set of shared hypotheses and a personalized linear combination of them at each device.

Similarly in [67], a Mixture of Experts’ formulation has been devised to learn a personalized

mixture of the outputs of a jointly trained set of models. Similar to [64], exploiting the full

personalization potential of the solutions in [66, 67] induces a huge overhead over the com-

munication resources in the federated system, which renders their approaches unpractical.

Similar to Fedprox [26], the authors in [68] propose SCAFFOLD to tackle the “client drifts”

that emerge as a result of the heterogeneity of the clients’ data sets during the global model

training. However, in some heterogeneous settings, “client drifts” can act as an indication

of the existence of opposing target tasks among the learners. Therefore, intelligently em-

ploying the drifts can highlight similarity patterns among the clients’ tasks [61], which in

turn can aid in training multiple refined models to fit each of the available tasks, yielding

better-personalized models in contrast to a single global model trained by SCAFFOLD.

More recently, the authors in [25] propose Ditto, where users collaborate to train a separate

global model akin to [24], which is then used to steer the training of the local personal-

ized model at each user via local model adaptation. Their approach embodies the intuition

of pFedMe [69], which decouples personalized model optimization from the global model

learning by introducing a penalizing term to regularize the clients’ local adaptation step.

Despite resulting in a per-user personalized model, collaboration among users in Ditto and

pFedMe is limited to updating the global model, while relying solely on the local data sets

to train their personalized models, rather than leveraging collaboration among statistically

similar learners to refine those models. Consequently, the resulting personalized models may

generalize poorly, especially in settings where local data sets are small in size.

2.2 Learning with heterogeneous data sources

In this section, we provide theoretical guarantees for learners that combine data from het-

erogeneous data distributions. The setup mirrors the one of personalized federated learning

and the results are instrumental to derive our user-centric aggregation rule. In the following,

we limit our analysis to the discrepancy distance, but it can be readily extended to other

divergences as we show later.

In the federated learning setting, the weighted combination of the empirical loss terms

of the collaborating devices represents the customary training objective. Namely, in a dis-

tributed system with K nodes, each endowed with a data set Di of |Di| IID samples from

a local distribution Pi, the goal is to find a predictor f : X → Ŷ from a hypothesis class F
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that minimizes

L(f, w⃗) =
K∑
i=1

wi

|Di|
∑

(x,y)∈Di

ℓ(f(x), y), (2.3)

where ℓ : Ŷ × Y → R+ is a loss function and w⃗ = (w1, . . . , wK) is a weighting scheme.

In the case of identically distributed local data sets, the typical weighting vector is w⃗ =
1∑
i |Di| (|D1|, . . . , |DK |), the relative fraction of data points stored at each device. This par-

ticular choice minimizes the variance of the aggregated empirical risk, which is also an

unbiased estimate of the local risk at each node in this scenario. However, in the case of

heterogeneous local distributions, the minimizer of w⃗-weighted risk may transfer poorly to

certain devices whose target distribution differs from Pw⃗ =
∑K

i=1wiPi, the mixture of dis-

tributions which the final global model is trained to generalize over. Furthermore, there

may not exist a single weighting strategy that yields a universal predictor with satisfactory

performance for all participating devices. To address the above limitation of a universal

model, personalized federated learning allows adapting the learned solution at each device.

To better understand the potential benefits and drawbacks coming from the collaboration

with statistically similar but not identical devices, let us consider the point of view of a

generic node i that has the freedom of choosing the degree of collaboration with the other

devices in the distributed system. Namely, identifying the degree of collaboration between

node i and the rest of users by the weighting vector w⃗i = (wi,1, . . . , wi,K) (where wi,j defines

how much node i relies on data from user j) we define the personalized objective for user i

L(f, w⃗i) =
K∑
j=1

wi,j

|Dj|
∑

(x,y)∈Dj

ℓ(f(x), y), (2.4)

and the resulting personalized model

f̂w⃗i
= argmin

f∈F
L(f, w⃗i). (2.5)

We now seek an answer to: “What’s the proper choice of w⃗i in order to obtain a personalized

model f̂w⃗i
that performs well on the target distribution Pi?”. This question is deeply tied to

the problem of domain adaptation, in which the goal is to successfully aggregate multiple

data sources to produce a model that transfers positively to a different and possibly unknown

target domain. In our context, the data set Di is made of data points drawn from the target

distribution Pi, and the other devices’ data sets provide samples from the sources {Pj}j ̸=i.

Leveraging results from domain adaptation theory [70], we provide learning guarantees on

the performance of the personalized model f̂w⃗i
to gauge the effect of collaboration that we

later use to devise the weights for the user-centric aggregation rules.
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To avoid negative transfer, it is crucial to upper bound the performance of the predictor

w.r.t. to the target task. The discrepancy distance introduced in [71] provides a measure

of similarity between learning tasks that can be used to this end. For a hypothesis set of

functions F : X → Ŷ and two distributions P,Q on X , the discrepancy distance is defined

as

dF(P,Q) = sup
f,f ′∈F

|Ex∼P [ℓ(f, f ′)]− Ex∼Q [ℓ(f, f ′)]| , (2.6)

where we streamlined notation denoting f(x) by f . For bounded and symmetric loss func-

tions that satisfy the triangular inequality, the previous quantity allows to obtain the fol-

lowing inequality

E(x,y)∼P [ℓ(f, y)] ≤ E(x,y)∼Q[ℓ(f, y)] + 2dF(P,Q) + 2γ,

where γ = inff∈F
(
E(x,y)∼P [ℓ(f, y)] + E(x,y)∼Q[ℓ(f, y)]

)
. We can exploit the inequality to

obtain the following risk guarantee for f̂w⃗i
w.r.t the true minimizer f ∗ of the risk for the

distribution Pi.

Theorem 1. For a loss function ℓ with B-bounded range, symmetric and satisfying the

triangular inequality, with probability 1− δ the function fw⃗i
satisfies

Ez∼Pi
[ℓ(fw⃗i

, z)]− Ez∼Pi
[ℓ(f ∗, z)] ≤

B

√√√√ K∑
j=1

w2
i,j

|Dj|

(√
2d∑
i |Di|

log

(
e
∑

i |Di|
d

)
+

√
log

(
2

δ

))
+

2
K∑
j=1

wi,jdF(Pi, Pj) + 2γ,

where γ = minf∈F

(
Ez∼Pi

[ℓ(f, z)] + Ez∼Pw⃗i
[ℓ(f, z)]

)
and d is the VC-dimension of the func-

tion space resulting from the composition of F and ℓ.

In a scenario with similar underlying data distributions and sufficiently large datasets,

the selection of weight vector w⃗i has a negligible effect. As the cardinality of the datasets

approaches infinity, the functions fw⃗i
converges to the true minimizer f ∗, irrespective of

choice of the user-centric weights. Recently, an alternative bound based on an information-

theoretic notion of dissimilarity, the Jensen-Shannon divergence, has been proposed [72].

It is based on less restrictive constraints, as it only requires the loss function ℓ(f, Z) to be

sub-Gaussian of some parameter σ for all f ∈ F , and therefore whenever ℓ(·) is bounded,

the requirement is automatically satisfied. Measuring similarity by the Jensen-Shannon
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divergence the following inequality is available

EX∼P [X] ≤ EX∼Q[X] + βσ2 +
DJS(P ||Q)

β
, for β > 0, (2.7)

where DJS(P∥Q) = KL
(
P
∥∥∥P+Q

2

)
+ KL

(
Q
∥∥∥P+Q

2

)
. Exploiting the above inequality we

obtain the following estimation error bound.

Theorem 2. For a loss function ℓ B-bounded range, the function fw⃗i
satisfies

Ez∼Pi
[ℓ(fw⃗i

, z)]− Ez∼Pi
[ℓ(f ∗, z)] ≤

B

√√√√ K∑
j=1

w2
i,j

|Dj|

(√
2d∑
i |Di|

log

(
e
∑

i |Di|
d

)
+

√
log

(
2

δ

))
+

B

√√√√2
K∑
j=1

wi,jDJS(Pi||Pj),

Proof of Theorems 1 and 2: In the Appendix.

The theorems highlight that a fruitful collaboration should strike a balance between the bias

term due to the dissimilarity between the local distributions and the risk estimation gains

provided by the data points of other nodes. Minimizing the upper bound in Theorems 1 and

2 with respect to the user-specific weights, and using the optimal weights in our aggregation

rule seems an appealing solution to tackle the data heterogeneity during training; however,

the distance terms (dF(Pi, Pk) and DJS(Pi||Pj)) are difficult to compute, especially under

the privacy constraints that federated learning imposes. For this reason, in the following,

we consider a heuristic method based on the similarity of the readily available users’ model

updates to estimate the collaboration coefficients.

2.3 User-centric aggregation

For a suitable hypothesis class parametrized by θ ∈ Rd, federated learning approaches use

an iterative procedure to minimize the aggregate loss (2.3) with w⃗ = 1∑
i |Di| (|D1|, . . . , |DK |).

At each round t, the PS broadcasts the parameter vector θt−1 and then combines the locally

optimized models by the clients {θt−1
i }Ki=1 according to the following aggregation rule

θt ←
K∑
i=1

|Di|∑K
j=1 |Dj|

θt−1
i .
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As mentioned in Sec. 2.2, this aggregation rule has two shortcomings: it does not take

into account the data heterogeneity across users, and it is bounded to produce a single

solution. For this reason, we propose a user-centric model aggregation scheme that takes

into account the data heterogeneity across the different nodes participating in training and

aims at neutralizing the bias induced by a universal model. Our proposal generalizes the

näıve aggregation of FedAvg, by assigning a unique set of mixing coefficients w⃗i to each user

i and, consequently, a user-specific model aggregation at the PS side. Namely, on the PS

side, the following set of user-centric aggregation steps are performed

θti ←
K∑
j=1

wi,jθ
t−1/2
j , for i = 1, . . . , K, (2.8)

where now, θ
t−1/2
j is the locally optimized model at node j starting from θt−1

j , and θti is the

user-centric aggregated model for user i at communication round t. As we elaborate next,

Figure 2.1: Personalized Federated Learning with user-centric aggregates at round t.

the mixing coefficients are heuristically defined based on a distribution dissimilarity metric

and the data set size ratios. These coefficients are calculated before the start of federated

training. The dissimilarity score we propose is designed to favour collaboration among

similar users and takes into account the relative data set sizes, as more intelligence can be

harvested from clients with larger data availability. Using these user-centric aggregation

rules, each node ends up with its personalized model that yields better generalization for

the local data distribution. It is worth noting that the user-centric aggregation rule does

not produce a minimizer of the user-centric aggregate loss given by (2.4). At each round,

the PS aggregates model updates are computed starting from a different set of parameters.
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Nonetheless, we find it to be a good approximation of the true update since personalized

models for similar data sources tend to propagate in a close neighborhood. The aggregation

in [64] capitalizes on the same intuition.

2.3.1 Computing the Collaboration Coefficients

Computing the discrepancy distance (2.6) can be challenging in high-dimension, especially

under the communication and privacy constraints imposed by federated learning. For this

reason, we propose to compute the mixing coefficient based on the relative data set sizes

and the distribution dissimilarity metric given by

∆i,j(θ̂) =

∥∥∥∥∥∥ 1

|Di|
∑

(x,y)∈Di

∇ℓ(fθ̂, y)−
1

|Dj|
∑

(x,y)∈Dj

∇ℓ(fθ̂, y)

∥∥∥∥∥∥
2

≈
∥∥Ez∼Pi

∇ℓ(fθ̂, y)− Ez∼Pj
∇ℓ(fθ̂, y)

∥∥2 ,
where the quality of the approximation depends on the number of samples |Di| and |Dj|.
The mixing coefficients for user i are then set to the following normalized Gaussian kernel

function

wi,j =

|Dj |
|Di|e

− 1
2σiσj

∆i,j(θ̂)∑K
j′=1

|Dj′ |
|Di| e

− 1
2σiσj

∆i,j′ (θ̂)
, for j = 1, . . . , K. (2.9)

The mixture coefficients are calculated at the PS during a special round before federated

training. During this round, the PS broadcasts an initialized model denoted (θ̂ = θ0) to the

users, which computes the full gradient on their local data sets. At the same time, each node

i locally estimates the value σ2
i partitioning the local data randomly in N batches {Dk

i }Nk=1

of size ni,k and computing

σ2
i =

1

N

N∑
k=1

∥∥∥∥∥∥ 1

ni,k

∑
(x,y)∈Dk

i

∇ℓ(fθ̂, y)−
1

|Di|
∑

(x,y)∈Di

∇ℓ(fθ̂, y)

∥∥∥∥∥∥
2

, (2.10)

where σ2
i is an estimate of the gradient variance (i.e. noise) computed over local data sets

Dk
i sampled from the same target distribution Pi. The variances are computed as a function

of the partitioned mini-batch sizes. Consequently, the size of the mini-batches shall be

chosen carefully to successfully capture clients of similar data distributions during training.

We discuss the suitable choice of mini-batch sizes to compute the variances in Sec. V-2.4.6.

Once all the necessary quantities are computed, they are uploaded to the PS, which proceeds

to calculate the mixture coefficients and initiates the federated training using the custom
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aggregation scheme given by (2.8).

The proposed heuristic (2.8) embodies the intuition provided by Theorems 1 and 2.

Specifically, a device should collaborate with peers that have similar data distributions and

large data sets instead of devices that have small data sets or dissimilar data. Moreover,

the proposed weighting scheme recovers as special case scenarios for which is possible to

explicitly characterize the value of the collaboration coefficients. For example, in the case

of homogeneous users, it falls back to the standard FedAvg aggregation rule, while if node

i has an infinite amount of data, it degenerates to the local learning rule that is optimal in

this case.

Algorithm 1: User-centric Federated Learning

Input : number of clients K, local mini-batch size B, number of epochs E and
learning rate η

PS broadcasts θ0 to the users
foreach user k do

Compute ∇ℓ(θ0,Dk)
Compute σ2

k as in (2.10)
Transmit {∇ℓ(θ0,Dk), σ

2
k} to PS

end
PS computes wi,j as in (2.9)
for t = 0, . . . , T do

PS unicasts θtk to each node k
foreach node k do

θt+1
k ← ClientUpdate(θtk,Dk)
return θt+1

k to PS
end

PS computes θt+1
k ←

∑K
j=1wk,jθ

t+1
j

end

PROCEDURE: ClientUpdate(θtk,Dk):
B ← Split Dk into mini-batches of size B
θk ← θtk
for t = 0, . . . , E do

foreach mini-batch b ∈ B do
θk ← θk − η∇ℓ(θk,b)

end

end
return θk

26



CHAPTER 2. USER-CENTRIC FEDERATED LEARNING

2.3.2 Algorithm Complexity

We will now analyze the overhead, per-round computation, and communication complexity

of the proposed user-centric aggregation strategy, which can be found in Algorithm 1. In

user-centric federated learning, the overhead is primarily introduced during the computation

of collaboration coefficients before training. As discussed in Section 2.3.1, the computation

and communication complexity of this procedure are equivalent to that of one round of

standard federated learning. Specifically, the collaboration coefficients are computed by the

parameter server (PS) broadcasting a single model to the devices, each device computing a

model update and sending it back to the PS server. Consequently, the overhead resulting

from the computation of collaboration coefficients becomes negligible as the overall number

of federated learning rounds increases.

The computation complexity of user-centric federated learning on the device side is identi-

cal to that of standard federated learning. Each device is simply required to locally optimize

the received model. On the PS side, the use of multiple aggregation rules increases the com-

putation complexity compared to standard federated learning, where the aggregation rule

is singular. However, since each aggregation rule involves a simple linear combination of

model parameter vectors, its computational cost remains limited and negligible.

Regarding communication complexity, the uplink communication of user-centric federated

learning is the same as that of standard federated learning, with each device sending a single

model to the PS. On the other hand, in the downlink, the communication cost grows linearly

with the number of personalized models. While this cost is significant, Section 2.3.3 provides

a procedure to efficiently reduce the number of personalized streams, thereby mitigating the

communication cost in the downlink.

In conclusion, although the per-round communication cost of user-centric federated learn-

ing is higher than that of standard federated learning, the use of personalized aggregation

rules greatly reduces the number of training rounds required to achieve convergence under

heterogeneous settings. Consequently, the aggregate communication and computation cost

is lower in these settings, as demonstrated in the experiments in Section 2.4.

2.3.3 Reducing the Communication Load

A full-fledged personalization employing the user-centric aggregation rule (2.8) would intro-

duce an K-fold increase in communication load during the downlink phase as the original

broadcast transmission is replaced by unicast ones. Although from a learning perspective,

the user-centric learning scheme is beneficial, it is also possible to consider overall system

performance from a learning-communication trade-off point of view. The intuition is that, for

small discrepancies between the user data distributions, the same model transfers positively
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to statistically similar devices. To strike a suitable trade-off between learning accuracy and

communication overhead we hereby propose to adaptively limit the number of personalized

downlink streams. In particular, for a number of personalized models m, we run a k-means

clustering scheme over the set of collaboration vectors {w⃗i}Ki=1 and we select the centroids

{c⃗i}mi=1 to implement the m personalized streams. Formally, given m and the user-specific

weights {w⃗i}Ki=1, the objective is to find m < K clusters C1, . . . , Cm such that

m∑
n=1

∑
w⃗i∈Cn

∥w⃗i − c⃗n∥ (2.11)

is minimized, where c⃗n is the centroid of cluster Cn. We then proceed to replace the unicast

transmission with group broadcast ones, in which all users belonging to the same cluster

i receive the same personalized model associated with the centroid c⃗i. Choosing the right

value for the number of personalized streams is critical to saving communication bandwidth

but at the same time obtain satisfactory personalization capabilities. In the following, we

experimentally show that clustering quality indicators such as the Silhouette score can be

used to guide the search for a suitable number of clusters m.

2.3.4 Choosing the Number of Personalized Streams

Algorithm 2: Silhouette based scoring

Input : Collaboration vectors {w⃗i}Ki=1 from Algorithm 1 and a trade-off function
c(k, sk).

Output: Number of clusters m
for k = 1, 2, . . . , K do
Ck ← k-means clustering of {w⃗i}Ki=1

sk ← the silhouette score of s(Ck)
end
return m = argmaxk=1,...,K c(k, sk)

Choosing an insufficient number of personalized streams can yield unsatisfactory perfor-

mance, while concurrently learning many models can prohibitively increase the communica-

tion load of personalized federated learning. Therefore, properly tuning this free parameter

is essential to obtain a well-performing but still practical algorithm. Being agnostic w.r.t.

the underlying data generating distributions at the devices, there does not exist a univer-

sal number of personalized streams that fits all problems. However, we now illustrate that

the silhouette coefficient, a quality measure of the clustering, provides a rule of thumb for

choosing the number of personalized streams. In order to compute the silhouette score of the
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clusters C1, . . . , Cm, we define the intra-cluster similarity of the collaboration vector w⃗i ∈ Ck
as

a(w⃗i) =
1

|Cj| − 1

∑
w⃗j∈Ck,w⃗j ̸=w⃗i

∥w⃗j − w⃗i∥ ,

and the smallest mean distance between the collaboration vector w⃗i ∈ Ck and the closest

cluster

b(w⃗i) = min
Cj ̸=Ck

1

|Cj|
∑
w⃗j∈Cj

∥w⃗j − w⃗i∥ .

The average silhouette score s is then defined as

s(C) = 1

K

K∑
i=1

b(i)− a(i)
max{a(i), b(i)}

,

and it is a number in the range [−1, 1], directly proportional to the quality of the clustering.

In turn, a good clustering of the collaboration vectors {w⃗i}Ki=1 implies that users belonging to

the same clusters are similar and that the centroid c⃗j is a good approximation of the collabo-

ration coefficient of users in Cj. Consequently, whenever the silhouette score is large, the loss
in terms of personalization performance resulting from the reduced number of aggregation

rules compared to the full-fledged personalization system is modest. For this reason, the sil-

houette score provides a proxy to the inference performance and at the same time, it allows

for a trade-off between communication load and personalization capabilities in a principled

way. In Algorithm 2 we provide the pseudocode of the procedure that autonomously chooses

the optimal number of personalized streams m based on a communication-personalization

trade-off function c(k, sk) : N× [−1, 1]→ R scoring the utility of pairs of the systems based

on the number of user-centric rules and the resulting silhouette scores.

Possible communication-personalization trade-off functions are of the form

c(k, sk) = sk − λk. (2.12)

This particular function allows us to measure the trade-off between two factors. In a system

with limited bandwidth, having a high value of k would result in increased communication

costs. Conversely, a relatively large value of sk reflects the quality of clustering among

the associated clients, given k clusters. The parameter λ > 0, serves as a design parameter

balancing the trade-off between the clustering quality sk and the communication cost induced

by the presence of k clusters.
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(a) EMNIST + label shift
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(c) CIFAR10 + concept shift

Figure 2.2: Average Validation Accuracy across the three different experiments

2.4 Experiments

We now provide a series of experiments to showcase the personalization capabilities and

communication efficiency of the proposed algorithm.

2.4.1 Set-up

In our simulation we consider a handwritten character/digit recognition task using the EM-

NIST data set [73], an image classification task using the CIFAR-10 data set [74], and a

text sentiment classification on Stack Overflow questions dataset extracted from the much

larger public Stack-Overflow dataset on BigQuery [75]. Data heterogeneity is induced by

splitting and transforming the data set differently across the group of devices. In particular,

we analyze four different scenarios:

• Character/digit recognition with user-dependent label shift in which 10k EM-

NIST data points are split across 20 users according to their labels. The label distri-

bution follows a Dirichlet distribution with parameter α = 0.4, as in [66,76].

• Character/digit recognition with user-dependent label shift and covariate

shift in which 100k samples from the EMNIST data set are partitioned across 100

users each with a different label distribution (α = 8), as in the previous scenario.

Additionally, users are clustered in 4 groups G = {G1,G2,G3,G4}, and at each group

images are rotated by {0◦, 90◦, 180◦, 270◦} respectively. In particular, heterogeneity is

imposed such that Pi (x|y) ̸= Pj(x|y), ∀ i ∈ Gk, j ∈ Gk′ , k ̸= k′, ∀(x, y) ∈ X × Y .
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Table 2.1: Average test accuracy of the different algorithms across the three proposed
scenarios.

Algorithm Scenario

EMNIST (K = 20)
label shift

EMNIST (K = 100)
covariate & label shift

CIFAR10 (K = 20)
concept shift

Proposed m = K 79.4 (± 4.2) 77.9 (± 2.7) 47.7 (± 2.2)
Proposed m = 4 77.8 (± 3.9) 79.7 (± 2.5) 49.1 (± 1.4)
SCAFFOLD [68] 77.2 (± 4.0) 72.5 (± 2.2) 17.5 (± 1.8)
Ditto [25] 78.3 (± 3.9) 74.1 (± 2.3) 44.1 (± 1.4)
pFedMe [69] 77.6 (± 4.1) 75.2(± 4.4) 46.6 (± 1.5)
Fedprox [26] 79.6 (± 4.8) 72.4 (± 2.4) 22.3 (± 2.2)
Local 68.2 (± 5.3) 62.8 (± 3.3) 38.3 (± 1.2)
FedAvg [24] 76.7 (± 4.0) 70.5 (± 2.2) 24.2 (± 2.6)
Oracle (Upper bound) - 80.7 (± 1.8) 49.5 (± 1.2)

• Image classification with group dependent concept shift in which the CIFAR-

10 data set is distributed across 20 users which are grouped in 4 clusters, for each

group we apply a different random label permutation. More specifically, given an

image x ∈ X and the labelling functions fi, fj : X → Y , then fi(x) ̸= fj(x),∀i ∈
Gk , j ∈ Gk′ , k ̸= k′.

• Text sentiment classification with user-dependent label shift in which 16k

samples from the Stack-Overflow dataset are distributed across 35 users. A sample

tuple (Q, t) is composed of a question Q and its corresponding tag t (either Python,

CSharp, JavaScript, or Java). Heterogeneity is imposed across the tag/label distribu-

tions, which follow a Dirichlet distribution with α = 0.4 akin to the first experiment.

For each scenario, we aim to solve the task at hand by leveraging the distributed and

heterogeneous data sets. We compare our algorithm against two sets of baseline algorithms.

The first set includes algorithms that achieve personalization by resulting in multiple per-

sonalized models. Those include CFL [61], FedFomo [64], pFedMe [69] and Ditto [25]. The

second set of baselines include algorithms that yield a single Federated model such as Fed-

prox 1 [26], SCAFFOLD [68]. FedAvg [24], and Local training algorithms are also included

for reference. The image classification tasks are trained using the LeNet-5 [77] convolu-

tional neural network architecture, while for the text sentiment classification task, we train

a feedforward network consisting of an embedding layer, a dense layer, and a softmax out-

put layer. We use stochastic gradient descent optimizer with fixed learning rate η = 0.01,

1The penalization hyperparameters µ and λ = {0.1, 0.5, 1} were used in the simulations of Fedprox and
Ditto, then, the best results were reported.
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momentum β = 0.9, and the number of epochs E = 1 and mini-batch size = 64 for image

classification tasks2. For the Stack-Overflow sentiment classification problem, we set the

mini-batch size to 32 and η = 0.01. The feature preprocessing, feature extraction, and word

embedding steps were done akin to [78]. For FedFomo, we experiment with different values

of the hyper-parameter M . M denotes the number of models shared with each user at each

round to compute FedFOMO aggregation weights. In our simulations, we chose the number

of clusters, denoted as m, by choosing the value that maximizes the silhouette score. Never-

theless, we also conducted experiments using different values of m to illustrate the trade-off

between learning accuracy and communication efficiency.

2.4.2 Personalization Performance

We now report the average accuracy over 5 trials attained by the different approaches. We

also study the personalization performance of our algorithm when we restrain the over-

all number of personalized streams, namely the number of personalized models that are

concurrently learned.

2.4.2.1 Multi-Model Baseline Algorithms

In Fig. 2.2 and Table 2.1, we report the average validation accuracy of the baseline algo-

rithms that yield multiple personalized models, alongside FedAvg, Fedprox, SCAFFOLD,

and local training. In the EMNIST label shift scenario (Fig.2.2a), we first notice that

harvesting intelligence from the data sets of other users amounts to a large performance

gain compared to the localized learning strategy. This indicates that data heterogeneity

is moderate and collaboration is fruitful. Nonetheless, personalization can still provide

gains compared to FedAvg. Our solution yields a validation accuracy which is increasing in

the number of personalized streams. Allowing maximum personalization, namely a different

model for each user, we obtain a 3% gain in the average accuracy compared to FedAvg. CFL

is not able to transfer intelligence among different groups of users and attains performance

similar to the FedAvg. This behavior showcases the importance of soft clustering compared

to the hard one for the task at hand. We find that FedFOMO, despite excelling in case of

strong statistical heterogeneity, fails to harvest intelligence in the label shift scenario. In Fig.

2.2b we report the personalization performance for the second scenario. In this case, we also

consider the Oracle baseline, which corresponds to running 4 different FedAvg instances,

one for each cluster of users, as if the 4 groups of users were known beforehand. Different

from the previous scenario, the additional shift in the covariate space renders personaliza-

2Exception: the hyperparameters ηglobal = ηlocal = 0.01, batch-size = 20, E = 20 and mini-batch size
= 20 were used for pFedMe, and η = 0.01, E = 5 for SCAFFOLD
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Figure 2.3: Average Validation Accuracy across the different algorithms over the
Stack-Overflow Sentiment dataset

tion necessary to attain satisfactory performance. The Oracle training largely outperforms

FedAvg. Furthermore, as expected, our algorithm matches the Oracle final performance

when the number of personalized streams is 4 or more. Also, CLF and FedFOMO can cor-

rectly identify the 4 clusters. However, the former exhibits slower convergence due to the

hierarchical clustering over time while the latter plateaus to a lower average accuracy level.

Additionally, we note that FedFOMO withM set to 25 – the number of users in each cluster

– fails to recognize the distinct clusters and shows poor generalization performance. We turn

now to the more challenging CIFAR-10 image classification task. In Fig. 2.2c we report the

average accuracy of the proposed solution for a varying number of personalized streams, the

baselines, and the oracle solution. As expected, the label permutation renders collabora-

tion extremely detrimental as the different learning tasks are conflicting. As a result, local

learning provides better accuracy than FedAvg. On the other hand, personalization can still

leverage data among clusters and provide gains in this case. Our algorithm matches the Or-

acle performance for a suitable number of personalized streams. This scenario is particularly

suitable for hard clustering, which isolates conflicting data distributions. As a result, CFL

matches the proposed solution. FedFOMO promptly detects clusters and therefore quickly

converges, but it attains lower average accuracy compared to the proposed solution. On

the other hand, Ditto and pFedMe perform relatively better than the aforementioned two

approaches, given their personalization capabilities. However, they fall short while lever-

aging collaboration among users towards training the global model only and disregarding

the potential generalization gain that could be achieved by enabling collaboration among

statistically similar users towards refining their local personalized models.
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We now focus on the text sentiment classification task. In particular, we assess the vali-

dation performance of different algorithms for a fixed number of communication rounds and

communication cost. In this experiment, we consider the proposed scheme with full-fledged

personalization in which each user has its personalized model, and the communication effi-

cient version with several personalized streams equal to 16.

In Figure 2.3a we report the validation accuracy against the number of communication

rounds. The proposed user-centric algorithm and FedFOMO exhibit faster convergence

compared to other algorithms. In particular, the FedFomo algorithm converges faster during

the initial stages of training but it plateaus at the same validation accuracy as the proposed

algorithm. The situation changes if we consider a fixed communication budget as reported

in Figure 2.3b. In this case, the proposed algorithm converges to a larger validation accuracy

compared to all other algorithms.

2.4.2.2 Single-Model Baseline Algorithms

Despite that all algorithms that yield a single model (i.e. Fedprox and SCAFFOLD) excel

in the label shift setting (Table 2.1), our proposed algorithm stands out in the two other

scenarios. This stems from their inadequacy in addressing the conflicting nature of the

available target tasks via a single global model in the other two proposed heterogeneous

scenarios.
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35



CHAPTER 2. USER-CENTRIC FEDERATED LEARNING

0 5 10 15

Centers/Personalized Stream

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
ve

ra
ge

S
ilh

ou
et

te
S

co
re

(a) EMNIST label shift.

0 10 20 30 404

Centers/Personalized Stream

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

A
ve

ra
ge

S
ilh

ou
et

te
S

co
re

(b) EMNIST label & covariate
shift.

5 10 15 204

Centers/Personalized Stream

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
ve

ra
ge

S
ilh

ou
et

te
S

co
re

(c) CIFAR10 concept shift.

Figure 2.5: Average silhouette scores of the k-means clustering in the three scenarios. In
the last two scenarios, in which users inherently belong to 4 different clusters, the scores

indicate the necessity of at least 4 personalized streams.

2.4.2.3 Average Worst Performance

The performance reported so far is averaged over users and therefore fails to capture the

existence of outliers performing worse than average. To assess the fairness of the training

procedure, in Table 2.2 we report the worst user performance in the federated system across

the different algorithms. The proposed approach produces models with the highest worst

case in all three scenarios.

2.4.2.4 Inter-Cluster Collaboration

We illustrate the clustering performance of our proposed solution in the EMNIST co-variate

shift and the CIFAR10 concept shift scenarios (Experiments two and three) with four clusters

each in Fig. 2.4. Interestingly, we notice that in the EMNIST covariate shift experiment (Fig.

2.4a), our clustering algorithm can detect similarities among the different groups of users,

leveraging inter-cluster collaboration among them, unlike hard clustering algorithms [61].

This stems from the fact that some digits and letters features are invariant to the 180◦

rotation applied (e.g. letters X,Z,O,N, etc ... and the digits {0, 1, 8}).

2.4.3 Silhouette Score

In Fig. 2.5 we plot the average silhouette score obtained by the k-means algorithm when

clustering the federated users based on the procedure proposed in Sec. 2.3.3. In the labels

shift scenario, for which we have seen that a universal model performs almost as well as
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Figure 2.6: Evolution of the average validation accuracy against time normalized w.r.t. Tdl
for the three different systems.

the personalized ones, the silhouette scores monotonically decrease with m. In fact, in this

simulation setting, a natural cluster-like structure among clients’ tasks does not exist. On the

other hand, in the covariate shift and the concept shift scenarios, the silhouette score peaks

around m = 4. In Sec. 2.4.2 this has shown to be the minimum number of personalized

models necessary to obtain satisfactory personalization performance in the system. This

behavior of the silhouette score is expected and desired, in this case, the number of clusters

matches exactly the number of underlying different tasks among the participants in FL that

was induced by the rotation of the covariates and the permutation of the labels. We then

conclude that the silhouette score provides meaningful information to tune the number of

user-centric aggregation rules before training.

2.4.4 Communication Efficiency

Personalization comes at the cost of increased communication load in the downlink trans-

mission from the PS to the federated user. To compare the algorithm convergence time, we

parametrize the distributed system using two parameters. We define by ρ = Tul

Tdl
the ratio

between model transmission time in UL and DL. Typical values of ρ in wireless communi-

cation systems are in the [2, 4] range because of the larger transmitting power of the base

station compared to the edge devices. Furthermore, to account for unreliable computing

devices, we model the random computing time Ti at each user i by a shifted exponential

r.v. with a cumulative distribution function

P [Ti > t] = 1− 1(t ≥ Tmin)
[
1− e−µ(t−Tmin)

]
,
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where Tmin represents the minimum possible computing time and 1/µ is the average addi-

tional delay due to random computation impairments. Therefore, for a population of K

devices, we then have

Tcomp = E [max{T1, . . . , TK}] = Tmin +
HK

µ
,

where Hk is the k-th harmonic number. Accordingly, the communication round duration is

Tround =mTdl +KTul + Tcomp

=Tdl(m+ ρK) + Tcomp

where m denotes the number of personalized streams transmitted in the DL. Note that Tdl
and Tul implicitly depend on the model size and the available communication resources. On

the other hand, the computation time Tcomp is related to the computational power of the

devices and the randomness in the completion time of the local training procedure, and

it does not depend on the number of users or the number of personalized streams. This

abstraction of the system is simple, yet effective, in capturing different types of distributed

learning systems based on the reliability of its workers and the asymmetricity of the UL and

DL communication.

To study the communication efficiency we consider the simulation scenario with the EM-

NIST data set with label and covariate shift. In Fig. 2.6 we report the time evolution of

the validation accuracy in 3 different systems: wireless systems with slow UL ρ = 4 and

unreliable nodes Tmin = Tdl =
1
µ
, a wireless system with fast uplink ρ = 2 and reliable nodes

Tmin = Tdl,
1
µ
= 0 and a wired system ρ = 1 (symmetric UL and DL) with reliable nodes

Tmin = Tdl,
1
µ
= 0. In all plots, we normalize the time axis by Tdl to make the plots inde-

pendent of the scale of this quantity. From the results, we note that the increased DL cost

is negligible for wireless systems with strongly asymmetric UL/DL rates and in these cases,

the proposed approach largely outperforms the baselines. In the case of more balanced UL

and DL transmission times ρ = [1, 2] and reliable nodes, it becomes necessary to properly

choose the number of personalized streams to render the solution practical. Nonetheless,

the proposed approach remains the best even in this case for m = 4. Note that FedFOMO

incurs a high communication cost as personalized aggregation is performed on the client

side.

2.4.5 Comparison with Parallel User-centric FL

Even if the proposed user-centric aggregation rules outperform state-of-the-art personalized

FL approaches, the resulting optimization procedure departs from the standard FL in the

38



CHAPTER 2. USER-CENTRIC FEDERATED LEARNING

0 20 40 60 80 100
Communication Rounds

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Local
Proposed w/ 20 models
FedAvg
Proposed m × m collaboration

(a) EMNIST label shift

0 20 40 60 80
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

Oracle
Local
Proposed w/ 20 models
FedAvg
Proposed m × m collaboration

(b) CIFAR10 label & covariate shift

Figure 2.7: Comparison between the proposed algorithm and the parallel user-centric fed-
erated learning approach. The validation accuracy is averaged over 5 experiment runs.

following sense: In the typical FL framework, at each communication round t, the PS

aggregates the models that were locally trained, at each participating device, starting from

the same launch model θt−1. On the contrary, according to our proposed framework, devices

may optimize different models depending on the specific user-centric aggregation rule they

have been assigned. This design choice is motivated by the assumption that the models

of statistically similar propagate towards the same neighborhood of the parameter space

during the optimization [64]. As a result, in the proposed aggregation rule, models that

are largely weighted, therefore associated with similar users, were locally optimized starting

from similar initial parameters. Furthermore, if we were to adhere to the traditional FL

procedure, and produce an exact minimizer of (2.4), we would have to run in parallel as

many FL instances as the number of personalized streamsK and incur aK-fold computation

and uplink communication load.

To assess the quality of our assumption, we consider running in parallel K collaborative

FL instances employing the proposed user-centric weights and solving exactly (2.4) for each

different aggregation rule. At each communication round, each user also optimizes the user-

centric models of the other K−1 personalized streams which are then used at the PS server

to apply the user-centric aggregation rules

θti ←
K∑
j=1

wi,jθ
t−1/2
i,j , for i = 1, 2 · · · , K. (2.13)
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Note that the aggregation rule in (2.13) is different from the one in (2.2), as θ
t−1/2
i,j denotes

the update of user j to the model of user i obtained by locally optimizing θt−1
j .

We experiment using the EMNIST data set with label shift and the CIFAR10 data set

with covariate and label shift. We set K = 20 and use the same neural network model and

settings indicated in Sec. 2.4. In Fig. 2.7, we report the performance of the parallel collabo-

rative FL approach compared to our personalization strategy. For reference, we also report

the performance of the FedAvg, local learning, and Oracle baselines. First, we notice that

the fully collaborative solution performance serves as an upper bound to our personalization

approach and that the oracle slightly outperforms the fully collaborative approach, which

highlights the sub-optimality of our heuristic weighting scheme. However, the slight per-

formance gain of the fully collaborative approach compared to our personalization strategy

comes at the expense of m times larger uplink communication load and computation cost

at each edge device. These empirical results support our assumption: Even if the updated

models are trained starting from different points in the parameter space at each communi-

cation round, the user-centric weighting scheme can direct statistically similar models in a

neighborhood across the loss landscape during training.

2.4.6 Variance Computation: Mini-batch Size

As mentioned in section 2.3.1, the mini-batch sizes chosen to calculate the variances play

an essential role in the quality of the derived weights, i.e. their ability to couple statisti-

cally similar users in the federated system. In Fig. 2.8, we report the validation accuracy

attained in an EMNIST label shift and covariate shift experiments. In both experiments,

we randomly split 100k EMNIST data points across 100 users, i.e. 1000 samples per user.

Heterogeneity is introduced in both settings akin to the ”label shift”, and ”label and co-

variate shift” settings in section 2.4.1, respectively. We vary the mini-batch sizes used to

calculate the variances from between 100 and 660 samples to explore the effect of this pa-

rameter on the validation accuracy of our personalization strategy in both scenarios. First,

we note that according to (2.10), decreasing the mini-batch size would yield an increase

in the variance value as a result of the noisy gradients obtained compared to the average

gradient computed over each user data set. In this case, our proposed aggregation rule

renders similar to FedAvg, enabling collaboration among all users in the federated system,

while still managing to softly couple statistically similar users under the assumption that

EDi,Dj∼Pi
[∆i,j] ≤ EDi∼Pi,Dk∼Pk

[∆i,k] given that dF(Pi, Pk) > 0. This condition is favorable

in the label shift setting while being detrimental to the extremely heterogeneous co-variate

shift experiment, as it enables collaboration among users with competing tasks. Our claim

is verified by the performance attained by our personalization rule in Fig. 2.8, achieving a

high validation accuracy in the label shift setting while suffering in the co-variate shift exper-
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iment with a performance comparable to that of FedAvg attained in Fig. 2.2b (∼ 70.5%).

However, as we increase the mini-batch size, the variances converge toward zero and our

personalization algorithm degenerates to local training which is detrimental to both settings.

Therefore, we conclude that the mini-batch size can be seen as a hyper-parameter for our

algorithm, to be tuned according to the local data set size and the type of heterogeneity

present across the learners. In our experiments presented in Fig. 2.2, we set the mini-batch

size n = 100 for the label shift experiment, and n = |D|/3 for the other two EMNIST

co-variate and CIFAR10 concept shift experiments, where |D denotes the local data set size

of each user.
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Figure 2.8: Effect of the mini-batch sizes on the maximum validation accuracy attained: A
proxy to the quality of the calculated collaboration coefficients

2.5 Conclusion

In this chapter, we have presented a novel FL personalization framework that exploits multi-

ple user-centric aggregation rules to produce personalized models. The aggregation rules are

based on user-specific mixture coefficients that can be computed during one communication

round before federated training and are designed based on an excess risk upper bound of

the weighted aggregated loss minimizer. Additionally, to limit the communication burden of

personalization, we have proposed a K-means clustering algorithm to lump together users

based on their similarity and serve each group of similar users with a single personalized

model. To effectively trade communication resources for personalization capabilities, we

have proposed to use the silhouette score to tune the number of user-centric aggregation
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rules at the PS before training commences. We have studied the performance of the proposed

solution across different tasks. Overall, our solution yields personalized models with higher

testing accuracy while at the same time being more communication-efficient compared to

other state-of-the-art personalized FL baselines.

In this chapter, a static orchestrator is considered. In the subsequent one, we explore

the advantages of using a mobile orchestrator in federated learning, with a particular focus

on the gains in terms of the reliability of the wireless communication channels between

devices and the orchestrator, the learning performance, and learning fairness among different

communities of devices, each defined by a distinct task.
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Chapter 3

UAV-Aided Multi-Community

Federated Learning

In this third chapter, we focus on incorporating remote IoT devices in the intelligent edge

by leveraging a mobile orchestrator in lieu of the standard static one. The use of mobile

agents has been explored in scenarios ranging from cooperative vehicular networks [79],

to 3D-mobile agents such as UAVs supporting emergency and disaster response [80] and

expanding the coverage area of ground base stations by acting as a relay to ground de-

vices [81]. However, two main limitations arise in such deployments: first, the algorithmic

complexity imposed by dynamic mobility patterns and the wireless channels, and second,

the limited energy capacity constraining operational longevity. Nevertheless, mobility grants

several advantages that can overcome challenges faced in static deployments. For instance,

intelligent 3D mobility patterns enable mobile relays to dynamically shape wireless chan-

nel distributions, mitigating obstruction and improving link reliability for users, providing

means to counter system heterogeneity in FL with respect to channel heterogeneity, which

can otherwise lead devices to drop or not be properly scheduled, resulting in a model biased

towards devices with strong channels conditions. Additionally, mobile relays such as UAVs

can operate in nomadic modes, moving among and dwelling in optimized locations to reduce

energy expenditure and prolong autonomy.

Building on the previous insights, in this chapter, we investigate the problem of an online

trajectory design for the UAV in a federated learning setting where several communities exist,

each defined by a unique task to be learned. In this setting, spatially distributed devices

belonging to each community collaboratively contribute towards training their community

model via wireless links provided by the UAV. Accordingly, the UAV acts as a mobile

orchestrator coordinating the transmissions and the learning schedule among the devices in

each community, intending to accelerate the learning process of all tasks.

The utilization and incorporation of UAVs have augmented significantly thanks to their

fast on-demand deployment and their inherent maneuvering capabilities. Their role evolved

to complement or even substitute static access points in multiple areas [82]. More recently,

the usage of UAVs to facilitate FL model training of ground and airborne units has gained

significant attention. In [83], a UAV trajectory path planning problem has been formulated

in order to govern the participation of the straggling devices during training. Their solution
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optimizes the UAV trajectory to balance the local model updates computation and trans-

mission times at each learner to fit in each communication round time slot and guarantee

the widest participation of devices. In [84], a joint power allocation and scheduling design

is proposed to optimize the convergence rate of FL training among a swarm of UAVs.

While orchestrating FL training is not a typical use-case for UAVs in urban areas — where

wireless connectivity is guaranteed and static access points (APs) can act as robust front-haul

orchestrators —, it sounds appealing to deploy UAVs as FL orchestrators for IoT devices in

remote areas where a multitude of data are expected to be generated by massive numbers

of machines and sensors. The generated data are envisioned to help in the management and

optimization of the industrial and agricultural economy by serving as a training data feed for

predictive machine learning models. In this setting, training models centrally by pooling the

massive amounts of data from edge IoT devices may inflict a hit over their energy budget,

especially if data are high dimensional. Additionally, the deployment of static APs in rural

unpopulated areas is costly, and inefficient as they are mostly under-utilized. Moreover,

the static nature of APs does not guarantee a good wireless channel quality to the IoT

edge devices, worsening their transmission times and consequently expanding their energy

expenditure. Alternatively, devices can rely on decentralized machine learning (ML) schemes

over wireless device-to-device (D2D) networks to train ML models [85]. However, due to the

limited communication range of edge devices, their connectivity is not always guaranteed.

As a result, distributed D2D ML algorithms may perform poorly.

Unlike the previous works, we investigate an online path planning problem of a UAV

missioned to orchestrate the FL training among devices belonging to different communities.

Each community consists of statistically heterogeneous devices (i.e with non-IID datasets)

that wish to train a model corresponding to their unique community task. The model

updates are transmitted by the devices through a lossy channel, therefore, the successful

participation of all devices during each training round is not guaranteed. Our goal is to

establish learning fairness among the different community tasks/models during training,

therefore, guaranteeing a desirable inference performance of all the different tasks at the

end of training. This is achieved by employing a heuristically derived metric that is able

to capture the training performance and the scheduling requirements of the different tasks

throughout the course of training. Capitalizing on this metric, we devise a surrogate opti-

mization problem which is solved by the UAV at each communication round, to dynamically

schedule devices and optimize the UAV trajectory to successfully pool their model updates.

Our solution aims at steering the scheduling and the UAV control in favor of users belonging

to communities that are seen to lag behind in terms of convergence and as a result, establish

learning fairness among all the tasks.
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3.1 System Model

We consider a scenario where a UAV acts as a flying orchestrator for FL training across

different communities of devices in a service area. The considered area is composed of a

total of C communities. Communities can be viewed as distinct groups of devices that desire

to train personalized models akin to those delineated in the preceding chapter, or perhaps

entirely different tasks. Each community c consists of |Kc| ground devices where Kc is a set

of devices’ index in community c and |.| denotes the cardinality function. The total number

of devices in the system is
∑C

c=1 |Kc| = K. The devices within each community wish to

collaboratively train a supervised learning model to fit to their corresponding community

task in a federated manner. We emphasize that the models that we wish to train at the

different communities are unrelated, hence, there is no collaboration among devices that are

not in the same community. The k-th ground device, is located at uk = [xk, yk]
T ∈ R2. By

no means, the ground-level device assumption is restrictive and the proposed solution can in

principle be applied to a scenario where the devices are located in 3D. The UAV’s mission

consists of M communication rounds. During each communication round m ∈ [1,M ] the

UAV collects the locally optimized models from the devices (yet to be optimally scheduled

later) in different communities. At the end of each round, the UAV aggregates the collected

model updates from the devices of each community, to obtain new community-specific global

models. Each global model is then broadcasted back to its corresponding community devices,

therefore initiating a new communication round. The UAV is characterized by a battery

budget which allows it to maneuver for a distance of L̄total meters with a constant velocity

of vm/s. Moreover, the UAV is assumed to fly at an altitude z(t) above the ground, and

the horizontal location of the UAV at time t is denoted by v(t) = [x(t), y(t)]T . We assume

that the UAV is equipped with a GPS, hence, its location is known at each time stamp t.

We do not consider the optimization over the UAV altitude and assume that the UAV flies

at a fixed altitude z(t) = H. Since controlling the UAV in continuous time is cumbersome,

we discretize each communication round into N time steps. Hence, the UAV trajectory

is defined by a set of discrete locations {v[n] = [x[n], y[n]]T , n ∈ [1, N ]}, where each two

consecutive UAV locations are connected with a straight line.

3.1.1 Channel Model

We define the wireless channel gain between device k and the UAV at time step n as a

log-normal fading channel under Additive White Gaussian Noise (AWGN) , given by :

hk,s[n] =
βs

dk[n]αs
ξs, (3.1)
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where ξs denotes the shadowing component that is modeled as a Log-normal distribution

ξs ∼ Lognormal(0, σ2
s). s ∈ {LoS,NLoS} emphasizes the strong dependence of the propa-

gation parameters on the Line-of-Sight (LoS) or Non-Line-of-Sight (NLoS) segments. βs is

the average gain at the reference point d = 1 meter, and dk[n] =
√
∥uk − v[n]∥2 +H2 is

the distance between the ground device k and the UAV at step n. Note that the channel

gain model only includes the large-scale fading effects and does not directly account for

small-scale fading as we rather average over them. This approximation is valid because the

small-scale fading has a negligible impact on the trajectory optimization and user scheduling

problems addressed later. The LoS event probability of the link between the UAV at time

step n and device k is given by [86] :

ρk[n] =
1

1 + exp(−a1θk[n] + a2)
, (3.2)

where θk[n] = arctan( H
∥uk−v[n]∥) is the elevation angle, parameters {a1, a2} denote the model

coefficients of the LoS probability which depends on the structure of the city and can be

obtained according to [86].

Without loss of generality, we assume that the model updates are transmitted in packets

across a lossy channel and that the UAV has enough power to transmit the global models

in the downlink for all devices with an average packet success rate equal to one, from

every point inside the service area. In the next subsection, we derive the expression of the

average Packet Error Rate (PER) experienced by the ground devices while transmitting

their updates in the uplink.

3.1.2 Average Packet Error Rate

We define q(γ), the instantaneous PER, representing the probability of packet detection

error at a given signal-to-noise ratio (SNR) γ. We assume that the packets are erroneously

detected with a probability 0 ≤ q(γ) ≤ 1 if the instantaneous SNR resides below a threshold

γ0, and q(γ) = 0, otherwise. The instantaneous SNR experienced by the UAV when device

k is in s ∈ {LoS, NLoS} at step n, is given by :

γk,s[n] =
Pk hk,s[n]

N0

, (3.3)

where Pk is the transmission power of device k, andN0 is the noise power level. In accordance

with (3.1), γk,s[n] follows a log-normal distribution γk,s[n] ∼ Lognormal(µk,s[n], σ
2
s), where

µk,s[n] = log( Pk βs

N0 dk[n]αs ). We denote by gγk,s(γ) the probability density function of γk,s[n].

The average PER experienced by device k during the model transmission in the UL at
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UAV location at time step n can be written as :

q̄k[n] = Es

[
Eγk,s[n] [ q(γk,s[n])]

]
. (3.4)

The inner expectation is over the instantaneous SNR randomness, while the outer expecta-

tion over s is with respect to the channel LoS/NLoS segments probabilities. Hereafter we

drop the time step index n for ease of notation. For a given time step n, averaging over the

LoS/NLoS probabilities, we can rewrite (3.4) as :

q̄k = ρk Eγk,LoS
[q(γk,LoS)] + (1− ρk) Eγk,NLoS

[q(γk,NLoS)]

(a)

≤ ρk

∫ γ0

0

gγk,LoS
(γ)dγ + ρk

∫ γ0

0

gγk,NLoS
(γ)dγ

= ρk ϕ (γ0, γk,LoS) + ρk ϕ (γ0, γk,NLoS) , (3.5)

where ρk = (1 − ρk). Step (a) holds given that q(γ) ≤ 1, ∀ γ ∈ (0, γ0). ϕ (γ0, γk,s) =

P (γk,s < γ0) is the cumulative density function of γk,s, and is written as :

ϕ (γ0, γk,s) =
1

2

[
1 + erf

(
log(γ0)− µk,s

σs
√
2

)]
, (3.6)

where erf(x) is the error function.

3.2 Community FL and UAV trajectory Modelling

In this section, we describe the Federated Learning training process across devices belonging

to different communities.

3.2.1 Classical Federated Learning

In classical FL settings [24], the goal is to collaboratively train a model across different

learners to find a global model parameterized by ϑc that minimizes the expected local risk

over the learners datasets. Given a set of different communities and their corresponding

tasks, this reflects as finding the predictor of each community c that minimizes :

L(ϑc) =
∑
k∈Kc

pkℓk(ϑc), ∀c, (3.7)

where p⃗ = (p1, . . . , p|Kc|) is a weighting scheme such that
∑

k∈Kc
pk = 1.
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3.2.2 UAV-aided Orchestration

Unlike traditional FL implementations, a mobile UAV is deployed to orchestrate the training

of the different community tasks available. In this setting, a communication round starts

as the UAV finds an optimized trajectory as well as schedules a set of devices from the

different available communities to participate in the training. Then, the global models are

broadcasted to all communities during the DL phase with a PER equal to zero, as explained

in Sec. 3.1.1. The models are then optimized locally at the scheduled devices. Model

updates are then sent back in the UL phase, as the UAV maneuvers following the optimized

path found earlier, while governing a favorable channel condition for the scheduled devices,

and consequently, a low packet error transmission rate, to successfully gather their updates.

To limit the energy spent by the UAV during the UL phase, we limit the total distance that

can be travelled by the UAV during each round to L̄max meters. We assume that the ground

devices are served by the UAV in a Time-Division Multiple Access (TD-MA) manner in the

UL, and that a maximum of K devices can be served by the UAV at each time step. Note

that each device can be scheduled at most once during each round, to implicitly preserve

their energy, especially when experiencing unfavorable channel conditions that induce high

packet error rates.

3.3 Accounting for the learning performance

Accounting for the learning performance is essential to the online path planning optimization

problem that we wish to solve. In a single community vanilla FL setting, the for-seen

advantage of sampling a device during a communication round is proportional to its dataset

sizes. However, this is partially true in a multi-community FL setting, as scheduling (i.e

device sampling) and resource allocation should be carried out while accounting to the

relative learning performance of the different available communities. Particularly in our

case, scheduling and UAV trajectory planning should be considered to insure a low PER for

devices with tasks that are seen to fall behind other communities in terms of convergence.

Theoretically, the convergence rate of the FL models can be quantified based on the level

of heterogeneity of the datasets available at the learners, their participation rate, and the

model architecture. Unfortunately, computing the convergence rates in practice is not trivial,

especially in settings where the loss landscape is non-convex and datasets are heterogeneously

distributed [26]. Consequently, we choose the Coefficient of Variation (CoV), computed

periodically during training, over the average validation accuracy of each community devices,

as a metric of choice, to quantify the training performance of each community model.

The motivation behind using the CoV is its ability to capture the current model perfor-

mance difference among the devices belonging to the same community, compared to their
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average performance, ergo convey how well the current model performs over the devices’

local datasets. Consequently, the CoV being calculated periodically offers a measure of

goodness of the available different community models during training, which we can rely on

to compare the training performance of the underlying tasks and quantify their scheduling

and resource allocation requirements.

The CoV of each community c , is updated by the UAV every t̄ communication rounds, and

is given by

ψc =

√∑
k∈Kc

(εk − ε c)
2

ε c

∀c, (3.8)

where εk is the average validation accuracy for device k computed over t̄ rounds as follows :

εk =
1

t̄

m−1∑
j=m−t̄

εk(ϑj). (3.9)

εk(ϑj) is the validation accuracy computed locally at device k over the validation dataset,

using the global model parameterized by ϑj transmitted in the DL during round j. ε c

denotes the weighted average validation accuracy over all devices in community c which is

given by :

ε c =
∑
k∈Kc

pk εk, such that pk =
|Dk|∑
i∈Kc
|Di|

, (3.10)

where |Dk| is the training data set size of device k.

We assume that εk is transmitted alongside the local models during the UL phase at each

round by the scheduled devices. However, if εk is not received during the round in which

the CoV is updated, the last successfully received value is considered for the update.

3.4 UAV Trajectory Planning

In this section, we seek to find an optimized UAV trajectory during each communication

round, in order to improve the overall learning performance within the communities.

We introduce a surrogate optimization problem which enables us to optimize the UAV

trajectory for collecting the model updates from a subset of devices of each community

to improve the performance of learning. The objective function proposed is equivalent

to that proposed in [36] for static AP, while we also aim at providing learning fairness

among the different communities in a UAV-aided federated setting. We define the surrogate
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optimization problem at each communication round as follows

max
V,W

∑
n∈[1,N ]

∑
k∈[1,K]

ωk[n] (1− q̄k[n]) δk (3.11a)

s.t.
∑

n∈[1,N ]

ωk[n] ≤ 1, ∀k, (3.11b)∑
k∈[1,K]

ωk[n] ≤ K,∀n, (3.11c)

N−1∑
n=1

∥v[n+ 1]− v[n]∥ ≤ L̄max, (3.11d)

v[1] = vI, (3.11e)

where V = {v[n],∀n} is the UAV trajectory, and W = {ωk[n] ∈ {0, 1},∀n, k} is the set

of scheduling binary variables where ωk[n] indicates if device k is scheduled at time step

n. Constraint (3.11b) implies that a device can only be served once by the UAV at each

communication round, and (3.11c) indicates the maximum of K devices can be served by the

UAV at each time step. Constraint (3.11d) is the maximum length of the UAV trajectory

allowed in each round, and vI is the staring location at each round (i.e. vI can be the location

of the UAV at the end of the previous communication round to guarantee a continuous

trajectory throughout the entire mission). δk captures the importance of participation of

device k during the current round. δk is a function of device k weight pk given in (3.10), and

the CoV of the community which it belongs to ψc. Moreover, in order to guarantee fairness

over the participation of devices throughout the course of training, we impose an extra

weight λ (λ > 1), for devices that have failed to transmit their model updates successfully,

or have not been scheduled during the previous round. Hence, the importance of scheduling

device k ∈ Kc at each round is given by

δk =

{
pk ψc λ, if ∀n, wk[n] = 0 during the previous round,

pk ψc, Otherwise.
(3.12)

Solving problem (3.11) is challenging since the exact close form of q̄k[n] is not available.

To solve this problem we first simplify the objective function by finding an approximate for

q̄k[n]. Since q̄k[n] comprises the erf(.) function, a closed-form approximation can be obtained

by using the logistic function. Therefore, an approximate for q̄k[n] is given by

q̄k[n] ≈ q̃k[n] ≜
1

1 + exp(b1θk[n] + b2)
, (3.13)
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where θk[n] is the elevation angle between the UAV at time step n and the k-th device. The

parameters {b1, b2} can be found using regression techniques on the samples taken from (3.5)

for different UAV and device locations. For further simplification, we also relax the binary

scheduling variables W into continuous variables. Hence, problem (3.11) by substituting

q̃k[n] and relaxed scheduling variables can be reformulated as follows

max
V,W

∑
n∈[1,N ]

∑
k∈[1,K]

ωk[n] (1−
1

1 + exp(b1θk[n] + b2)
) δk (3.14a)

s.t. (3.11b), (3.11c), (3.11d), (3.11e), (3.14b)

0 ≤ ωk[n] ≤ 1,∀n, k. (3.14c)

However, having simplified the objective function, this problem is still difficult to solve as

it is a non-convex optimization problem. To tackle this difficulty, we split the optimization

problem (3.14) into two sub-problems of device scheduling and UAV trajectory optimization.

In the first phase, the devices are scheduled while fixing the UAV trajectory. Then in

the second phase, given the scheduled devices from the first phase the UAV trajectory is

optimized. The algorithm iterates between two phases until convergence.

3.4.1 Device Scheduling

For a given UAV trajectory V , the ground device scheduling can be optimized as follows

max
W

∑
n∈[1,N ]

∑
k∈[1,K]

ωk[n] (1− q̃k[n]) δk (3.15a)

s.t. (3.11b), (3.11c), (3.14c). (3.15b)

This problem is a standard Linear Program (LP) and can be solved by using any optimization

tools such as CVX [87].

3.4.2 Trajectory Optimization

Having optimized the scheduling variables W , the optimal UAV trajectory can be obtained

by solving the following optimization

max
V

∑
n∈[1,N ]

∑
k∈[1,K]

ωk[n] (1−
1

1 + exp(b1θk[n] + b2)
) δk (3.16a)

s.t. (3.11d), (3.11e). (3.16b)
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This problem is still non-convex. By introducing slack variables S = {Sk[n],∀n, k}, T =

{θk[n], ∀n, k}, and R = {rk[n],∀n, k} problem (3.16) can be rewritten as

max
V,S,T ,R

∑
n∈[1,N ]

∑
k∈[1,K]

ωk[n] (1−
1

1 + Sk[n]
) δk (3.17a)

s.t. Sk[n] ≤ exp(b1θk[n] + b2),∀n, k, (3.17b)

θk[n] ≤ arctan(
H

rk[n]
),∀n, k, (3.17c)

rk[n] = ∥v[n]− uk∥, ∀n, k, (3.17d)

(3.11d), (3.11e). (3.17e)

Without loss of optimality the constraints (3.17b) and (3.17c) can be met with equality. It

can be verified that objective function (3.17a) is a concave function for Sk[n] ≥ 0, however,

problem (3.17) is still non-convex. To solve this problem efficiently, we employ the sequential

convex programming techniques by using a local first-order Taylor estimation to convert the

problem into a convex form. To do so, it can be shown that the right hand side functions

in constraints (3.17b), (3.17c), and (3.17d) are convex functions of θk[n], rk[n], and v[n],

respectively, when θk[n], rk[n] ≥ 0. Since every convex function can be lower-bounded by its

first-order Taylor approximation, a lower bound of problem (3.17) is given by

max
V,S,T ,R

∑
n∈[1,N ]

∑
k∈[1,K]

ωk[n] (1−
1

1 + Sn[k]
) δk (3.18a)

s.t. Sk[n] ≤ S̃(θk[n]),∀n, k, (3.18b)

θk[n] ≤ θ̃(rk[n]),∀n, k, (3.18c)

rk[n] ≥ r̃(v[n]), ∀n, k, (3.18d)

Sn[k], θk[n], rk[n] ≥ 0,∀n, k, (3.18e)

(3.11d), (3.11e). (3.18f)

where S̃(θk[n]), θ̃(rk[n]), and r̃(v[n]) are the local first-order Taylor approximation of func-

tions in the right hand side of constraints (3.17b), (3.17c), and (3.17d) with respect to

θk[n], rk[n], and v[n], respectively.

3.4.3 Overall Algorithm and Convergence

According to the preceding analysis, now we propose an iterative algorithm to solve the

optimization problem (3.14) by applying the alternating optimization method. We split
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the problem into two phases i) user scheduling, and ii) UAV trajectory optimization. In

the first phase, the devices are scheduled while keeping the UAV trajectory fixed. Then

in the second phase, given the optimized scheduling variables W from the first phase, the

UAV trajectory is optimized. The algorithm iterates between two phases until convergence.

Moreover, the obtained solution in each iteration is used as the input for the next iteration.

The convergence of the aforementioned algorithm is guaranteed since, at each phase of device

scheduling and the UAV trajectory optimization, the objective function is optimized and

does not decrease compared to the previous phase which results in convergence to at least

a local optima. The details of the proof are omitted for the sake of the limited space.

3.4.4 Trajectory Initialization

Due to the non-convexity of problem (3.14), the iterative solution proposed above will con-

verge to a local minima. Therefore, it is of a crucial importance to suitability initialize the

UAV trajectory. To do so, we use a low complexity graph-based algorithm to find a good

candidate for the initial UAV trajectory. We define the graph G(N , E) comprising a set of

nodes N and a set of edges E . The graph nodes includes a set of UAV locations where the

UAV can fly to and is defined as N =
{
νk = [xk, yk, H]T , k ∈ [1, K]

}
. This implies that the

UAV has to fly to the location at top of the devices at a fixed altitude H. We also add vI as

node zero to N . The graph edges consists of all the possible combinations of the segments

between the nodes and is defined as E = {ei,j = (νi,νj),νi,νj ∈ N ,νi ̸= νj}. We assign a

reward ri,j to each edge ei,j of the graph defined

ri,j := max
ωk[j],k∈[1,K]

∑
k∈[1,K]

ωk[j] (1− q̃k[j]) δk

s.t.
∑

k∈[1,K]

ωk[j] ≤ K,

where the index j indicates when the UAV is at location νj ∈ N . Then a trajectory is

defined as set of connected edges starting from vI in graph G that maximized the sum

rewards while satisfying the maximum UAV trajectory length constraint (3.11d) and the

constraint (3.11b). To solve this problem, a greedy algorithm is used where an optimized

initial trajectory is found within the graph iteratively.

3.5 Experiments

In our simulations, the UAV flies at constant altitude H = 60m with a constant velocity

v = 20m/s, a travel budget L̄total = 40 km, and L̄max = 800m. The true propagation
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parameters are chosen similar to [81]. The transmission power for all ground devices is set

to −20 dB, with a noise level of −95 dB. We chose K = 3, γ0 = 10, the periodicity of CoV

updates t̄ = 4, λ = 1.5. We set ψc = 1 ∀ c at the first round.

We consider a sub-urban area of size 800× 800m2, containing two communities (C = 2),

of 6 devices each, defined by two different tasks to train, namely the CIFAR10 [74] and

MNIST [88] image classification tasks. We distribute the devices randomly inside the service

area, and as a data partitioning strategy, and to enforce heterogeneity among the datasets,

we randomly assign 2 different label IDs to each member across the different communities

as in [15]. Then, we randomly and equally divide the samples corresponding to each label

across devices which own that label. For both tasks, we use Fed-Prox [47] with parameter

µ = 0.1, to tackle the heterogeneity burden induced by the partial participation and the

data heterogeneity of the devices. The SGD optimizer is used with a fixed learning rate of

0.01, and momentum = 0.9. The batch size is set to 16, and number of epochs is set to 1.

In addition to our proposed solution, we analyze 4 different, handpicked static and mobile

deployments :

• A static UAV hovering at the Barycenter of the devices emulating a BS deployment.

Given that the UAV hovers still, we assume that each round lasts for 5 seconds in this

particular experiment, which accounts to 100 meters traveled distance per round.

• A rectangular UAV trajectory (Fig. 3.1b): where the UAV attempts to cover the

whole service area during its mission. Communication rounds are initiated over a set

of hovering locations scattered on the predefined rectangular trajectory.

• Optimal UAV control with naive scheduling (No-CoV): where the UAV attempts

to maximize the objective in (3.11) while setting δk = pk if device k participated in

the previous round, and δk = pk λ otherwise.

• Ideal case: Representing the maximum achievable performance in the case where all

users are scheduled and enjoy no packet loss.

In all experiments, the devices are scheduled akin to Sec. 3.4.1. Moreover, in all deployments

(excluding the Barycenter case), we consider that the duration of the DL/UL transmissions

and local training is negligible compared to the maneuvering time taken by the UAV at each

round. In Fig. 3.2, we report the average validation accuracy attained by both tasks over

Monte-Carlo (MC) simulations. At each MC iteration, the devices are distributed randomly.

As expected, our solution achieves the highest average validation accuracy, compared to the

other benchmarks. In the Rectangular trajectory case, the UAV energy budget is wasted on

traversing predefined paths which does not take into account the exact devices’ locations.
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(a) Snapshot: Optimized UAV Trajectory (3
comm. rounds)

(b) Snapshot: Rectangular Trajectory

Figure 3.1: Optimized UAV Trajectory vs Rectangular trajectory

(a) CIFAR10 Test Accuracy (b) MNIST Test Accuracy

Figure 3.2: Average Validation Accuracy attained by different strategies

Accordingly, the UL packet transmissions endure high average PER, resulting in low par-

ticipation count during each round, undermining the convergence rate and hampering the

training performance. In the Barycenter case, despite that the UAV hovers still at the mean

devices location, the channel yet imposes a strong PER penalty over the devices packets

transmission, especially for devices that reside far from the UAV, given their low transmis-

sion power. The poor performance of those two benchmarks is mainly related to the wrong

UAV placement. Hence, in order to quantify the gain of our scheduling algorithm incorpo-

rating the CoV of the different communities, we devise the No-CoV experiment, in which the

UAV attempts to maximize the objective in (3.14) while naively assigning the importance of
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the devices as a function of their dataset sizes, and ignoring their tasks training performance

that is quantified by the CoV. As expected, employing the CoV in our optimization leads

to faster convergence and a percentage gain of 14% for the CIFAR10 task compared to the

No-CoV experiment, while maintaining a similar performance in the MNIST case. This

advantage stems from the inherent ability of the CoV in quantifying the training perfor-

mance of the two different communities throughout the course of training, ergo enabling the

UAV to establish learning fairness among them by prioritizing the CIFAR10 task in terms

of device scheduling and trajectory planning, which is well recognized as a more complex

task compared to the MNIST task.

3.6 Conclusion

In this chapter, we studied the problem of an online path planning for a UAV missioned to

orchestrate the training of different communities’ tasks. We proposed a heuristic metric that

is able to quantify the training performance and the scheduling requirements of the different

tasks. Hinging on this metric, we devise a surrogate optimization problem which we solve

iteratively using Convex optimization techniques, to schedule devices and find the optimal

trajectory to successfully pool their updates, while aiming at achieving learning fairness

among the available tasks. The performance of the proposed algorithm was evaluated via

simulations, which highlighted its advantage compared to other benchmarks.

In the subsequent chapter, we explore novel methods that can ensure communication-

efficient federated learning without relying on compression or sparsification, which often

compromise learning accuracy and communication efficiency.
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Chapter 4

Communication-Efficient Federated

Learning via Sparse Random

Networks

In this chapter, our goal shifts to explore novel approaches through which federated learning

can be communication efficient. Particularly, we seek to identify methods that can enhance

the communication efficiency of FL beyond conventional means such as quantization and

sparsification, which often lead to subpar model performance. Accordingly, we present a

new method for enhancing communication efficiency in federated learning by leveraging

over-parameterized random networks. In this setting, a binary mask is optimized instead

of the model weights, which are kept fixed. The mask characterizes a sparse sub-network

that is able to approximate a smaller target network. Importantly, sparse binary masks are

exchanged rather than the floating point weights in traditional federated learning, reducing

communication cost to at most 1 bit per parameter. We show that previous state of the

art stochastic methods fail to find the sparse networks that can reduce the communication

and storage overhead using consistent loss objectives. To address this, we propose adding

a regularization term to local objectives that encourages sparser solutions by eliminating

redundant features across sub-networks. Extensive experiments demonstrate significant im-

provements in communication and memory efficiency of up to five magnitudes compared

to the literature, with minimal performance degradation in validation accuracy in some

instances.

Recent efforts have focused on reducing communication overhead leveraging compres-

sion via quantization and model sparsification techniques [89–91] on the exchanged model

weights. Despite these efforts, exchanged compressed models are still represented accord-

ing to float bit-representations (e.g., 32/16 bits per model weight), leading to significant

communication overhead as the size of trained models increases (e.g., LLM).

A recent work [92] has revealed that in over-parameterized random neural networks, it

is possible to find smaller sub-networks that perform just as well as a fully trained tar-

get network in terms of generalization. These sub-networks are produced by element-wise

multiplication of a sparse binary mask with the initial weights of the over-parameterized

network (i.e while fixing the weights). In this case, the binary mask is optimized to identify
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the initial weights that would constitute a sub-network with similar generalization perfor-

mance as the target network. Subsequently, the authors in [59] leverage the subset-sum

approximation problem [58] to prove the existence of those sub-networks. They show that

dense target networks with width d (neuron count in a layer) and depth l (number of layers)

can be closely approximated by pruning an over-parameterized dense random network with

a width O(log(dl)) times larger and a depth twice as deep. This discovery is particularly

interesting for FL training, due to the lower communication overhead associated with ex-

changing binary masks in the UL and DL instead of float-bit representations of the weight

updates. In [93], the authors introduce FedMask, a personalized federated learning algo-

rithm based on pruning over-parameterized random networks. FedMask is a deterministic

algorithm that involves pruning a random network by optimizing personalized binary masks

using Stochastic Gradient Descent (SGD), aiming to approximate the personalized target

networks that fit the heterogeneous datasets found at the devices. Their approach has been

shown to ensure a 1-bit-per-parameter (1bpp) communication cost per each round of com-

munication to exchange the updates in FL training. This can be attributed to the nature

of their algorithm, which optimizes the binary masks within a constrained search space,

wherein the masks demonstrate an equiprobable occurrence of ones and zeros. Recently, a

stochastic approach called FedPM [94] was introduced as an alternative to the deterministic

FedMask. FedPM requires edge devices to identify a global probability mask, as apposed

to the deterministic mask in FedMask. Binary masks then are sampled from the global

probability mask, characterizing sub-networks with strong generalization capabilities over

the diverse datasets of the edge devices. The results of their approach demonstrate state-

of-the-art accuracy and communication efficiency compared to FedMask and other baseline

methods. However, our subsequent analysis reveals that their method fails to discover sparse

networks, leaving a significant amount of unnecessary redundancy in terms of the size of the

found sub-networks.

The proposed solution builds upon the foundation of stochastic masking techniques [92,

94], leveraging their favorable generalization performance and convergence while aiming to

enhance communication and memory efficiency. Our main contributions are summarized as

follows:

• We introduce a new objective function leading to effectively narrow down the search

space to discover a limited set of sub-networks within the over-parameterized ran-

dom network. These sub-networks offer both communication efficiency and strong

generalization performance compared to the literature.

• Through simulations, we demonstrate that our approach, which enforces non-structural

sparsity through regularization, results in significantly sparser solutions compared to

state-of-the-art algorithms such as FedPM. Importantly, this sparsity gain is achieved
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without sacrificing generalization, leading to up to about 5 times more communication

and memory efficiency during training.

• Additionally, simulations reveal that our proposed algorithm allows for a flexible trade-

off between accuracy, communication overhead and memory efficiency if required. This

feature makes it highly suitable for systems with limited bandwidth and memory re-

sources, providing an effective solution to optimize resource utilization in such con-

strained environments.

4.1 System Model and Problem Formulation

The training procedure commences as the parameter server sends a randomly initialized net-

work to the edge devices. This is accomplished by providing the devices with both the net-

work’s structure and an initialization seed, enabling them to construct the network’s layers

and weights. We denote the initialized weights of the network by winit = (w1, · · · , wn) ∈ Rn.

The primary objective is to identify a global binary mask m ∈ {0, 1}n, yielding a sub-

network ym ∈ R given according to1:

ym(x) = (m⊗winit)
T · x, (4.1)

where x ∈ Rn denotes a data point, ⊗ denotes the element-wise multiplication operator,

and (·) denotes vector multiplication. The produced sub-network minimizes the empirical

risk function in accordance to:

min
m

L(m) =
1∑
i |Di|

K∑
k=1

|Dk|ℓk(ym,Dk), (4.2)

where f(m) denotes the empirical risk of ym over the devices datasets.

We denote the target network that we aim at approximating by ytarget. The number of

sub-networks that can be found within the over-parameterized network to approximate ytarget
increases with its size [59,92,95]. Accordingly, constructing a sufficiently over-parameterized

random network according to the rules derived in [59] guarantees with a high probability

that a sub-network y exists, such that y ≈ ytarget. To this end, we aim at identifying the

individual weights of winit that play a role in producing sub-networks capable of generalizing

as effectively as ytarget. This is achieved by maximizing the likelihood of these weights while

disregarding the weights that do not offer any meaningful contribution towards that objec-

tive. Akin to [94], along-side the initialized weights, the users receive a global probability

1For ease of representation, we use a linear model in (4.1).
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mask vector2 θ ∈ [0, 1]n:

θi ←− θ(t) (4.3)

using the probability mask, each user i derives a local score vector si, according to :

si = σ−1(θi) (4.4)

where σ(s) denotes the sigmoid function applied to each element of the vector s. The

probability mask represents the likelihood of each particular weight in winit contributing

to the chosen sub-network in (4.1). Once each device i receive the global probability mask

θ(t) from the server, training starts by sampling a binary mask which characterizes the

local sub-network ymh
i
to minimize its loss, given by

ymh
i
(x) =

(
mh

i ⊗winit

)T · x , mh
i ∼ Bernoulli(θh

i ), (4.5)

Here h denotes the local mini-batch iterations count, where θh=0
i = θ(t). Similar to [92],

instead of directly optimizing θh
i , the score vector is employed in the optimization process.

This ensures smooth and unbiased3 updates of θ. The scores and probability masks are

updated at each mini-batch iteration h according to:

θh
i = σ(sh−1

i − η

|Bh|
∇sh−1

i
ℓi(ymh−1

i
,Bh)), (4.6)

where η is the learning rate, Bh ⊆ Di is a mini-batch, and |Bh| denotes its cardinality.

∇sh−1
i
ℓi(y,Bh) denotes the gradient of the loss function (e.g. the cross entropy loss in clas-

sification tasks) of the local sub-network ymh−1
i

– sampled during the current iteration h

– over the mini-batch Bh at device i, with respect to the scores vector sh−1
i . Accordingly,

each element indexed k of the score vector sh−1
i,k are optimized locally using the chain rule

according to:

shi,k = sh−1
i,k − η

(
∂ℓi

∂ymh−1
i

×
∂ymh−1

i

∂mh−1
i,k

×
∂mh−1

i,k

∂θh−1
i,k

×
∂θh−1

i,k

∂sh−1
i,k

)
. (4.7)

mh−1
i,k and θh−1

i,k denote the kth elements of mh−1
i and θh−1

i respectively. We omit the

local iteration count h in the following expressions for ease of representation. Note that

the sampling operation mh
i,k ∼ Bernoulli(θhi,k) is not differentiable. Therefore

∂mh
i,k

∂θhi,k
can be

2All mask probabilities are set to 0.5 during the first round
3For instance, FedMask relies on optimizing a deterministic mask via SGD, and then thresholding the

resultant updated mask. The thresholding operation results in severely biased updates which harms the
convergence.
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approximated using straight-through estimators [92, 94]. Next, after optimizing the scores

for a number of local iterations, let θ̂i(t) denote the locally produced probability mask at

round t. For each client i, a binary mask m̂i is sampled according to:

m̂i(t) ∼ Bernoulli(θ̂i(t)).

These binary masks are then sent to the server. The masks highlight the weights con-

tributing to the best sub-networks. This approach effectively reduces the communication

cost (entropy) to a maximum of 1 bit per parameter (1bpp), where the actual entropy de-

pends on the sparsity of the mask. The server then performs averaging to generate a global

probability mask according to:

θ(t+ 1)←− 1

K

∑
i

m̂i(t). (4.8)

The resultant global probability mask θ(t+1) is re-distributed to the devices in the DL to

commence the next communication round. The global mask has been demonstrated in [94]

to be asymptotically unbiased estimate of the true global probability mask θ̄, which is given

by θ̄(t+ 1) = 1
K

∑
i θ̂i(t).

4.2 Intuition and Proposed Algorithm

4.2.1 Intuition

We first delineate the shortcomings of the current state-of-the-art technique [94] with re-

gards to the sparsity level of the networks identified. Accordingly, we first undertake a

thorough analysis of the results outlined in [59]. These outcomes serve as guiding directives

stipulating the extent of over-parameterization necessary for a random network to approxi-

mate a smaller target network. Subsequently, we conduct a comprehensive evaluation of the

original optimization algorithm employed within the framework of FedPM. This evaluation

is conducted from the vantage point of each individual learner, under the premise of an

absence of regularization in the loss function.

4.2.1.1 Lack of a unique solution to the approximated Subset-Sum Problem

In [59], the authors investigated the estimation of a target weight wt through the lens of the

approximated subset-sum problem [58]. Under this context, they proved that a target weight

value wt can be approximated by a subset-sum of n random variables X = {X1, . . . , Xn}
sampled from a uniform distribution, within a specified margin of error ϵ, with probability
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1− γ. The number of variables n required is in the order of O(log(2/min(γ, ϵ))). Formally,

let n = O (log (2/min(γ, ϵ))), then, ∃S ⊆ X w.p. 1− γ, a feasible solution of:

find S ⊆ X

subject to : |
∑
X∈S

X − wt| < ϵ (4.9)

Expanding upon these findings, the authors introduce a systematic approach to discern the

required size (e.g. width and depth) of an over-parameterized dense random network, in

order to effectuate the accurate approximation of a target dense network weights. Note

that (4.9) does not necessarily deem a single feasible solution. Accordingly, the objective of

finding a sub-network within an over-parameterized random network by optimizing a mask

via SGD using consistant loss functions [94] (e.g. cross entropy loss in classification tasks),

is not synonymous to solving (4.9), but equivalent to solving :

min
S
|
∑
X∈S

X − wt| (4.10)

which entails the identification of a solution that aims at reducing the average loss of the sub-

network chosen, without factoring in its size and without investigating alternative sparser

feasible solutions that can offer a small trade-off of accuracy in response to large sparsity

gains. Therefore, we posit the addition of a regularization term over the average number

of chosen weights in the global mask, serving to find those sparser sub-networks that can

generalize well.

4.2.1.2 FedPM stochasticity results in redundant trained sub-networks

During FedPM training, within every local iteration (e.g. mini-batch update), individual

devices sample a distinct instance sub-network based on a received probability mask as

outlined in equation (4.1). As a result of the considerable scale of the over-parameterized

random network, the sampled sub-networks may be entirely new for the devices at each

local iteration. Subsequently, each device calculates the loss specific to the sampled network

and then back-propagates the gradients to minimize the loss. This is done by adjusting

the scores in directions that activate or deactivate the fixed random weights appropriately.

In subsequent local iterations, additional networks are sampled, and their weight scores are

tuned to minimize their corresponding loss. From a broader perspective, the local stochastic

sub-network sampling step designed in FedPM implicitly promotes the minimization of

the weighted average loss of all sub-networks sampled from the probability mask at each

device. Due to the substantial number of existing sub-networks that can generalize well,
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this sampling step results in redundancy in terms of the number of optimized sub-networks

and accordingly the number of activated weights. This considerably increases the size of the

sampled sub-networks.

4.2.2 Proposed Loss function

Particularly, we integrate a regularization term alongside the conventional cross-entropy loss

between the predicted output and the ground truth value for classification tasks. Therefore,

our loss function imposes unstructured sparsity on the sub-networks independently discov-

ered by each individual device, by accounting to the normalized average number of chosen

parameters within the original over-parameterized network through a regularization term.

Accordingly, the definition of the local loss function at device i over a mini-batch B ⊆ Di is

given as follows:

ℓi(ymi
,B) = ℓ̄i(ymi

,B) + λ

n

n∑
k=1

σ(si,k), (4.11)

where now ℓ̄ denotes the model average local loss and λ serves as a regularization param-

eter that governs the level of sparsity exhibited by the resulting sub-networks. Note that

the regularization term in (4.11) should be balanced with the values attained by the model

loss function, in order to produce sparse models that can generalize well, while avoiding any

bias to either objectives. Accordingly the regularization term λ should be carefully chosen,

given a bound on the model loss function to reach that goal. The regularization term intro-

duced aims at expediting the deactivation of weights with minimal impact on the current

sampled network. This regularization reduces the likelihood of sampling entirely new and

distinct sub-networks in subsequent iterations, favoring the sampling of sub-networks shar-

ing substantial features with early stages samples. Upon transmitting the updated mask

under regularization to the server, the resulting global probability mask defined in (4.8)

introduces redundant sub-networks once again due to the inherent stochasticity in the local

sub-network sampling process on each device. However, this global mask also characterizes

a more constrained search space for the devices in the subsequent rounds as the training

progress, given the limited number of distinct sub-networks optimized by each device dur-

ing successive iterations. The training proceeds until a probability mask is found that can

produce sub-networks with sparsity guided by the parameter λ, thereby ensuring both com-

munication and memory efficiency, alongside achieving good generalization performance.
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4.3 Experiments

To assess the effectiveness of our proposed approach in comparison to FedPM, we carry out a

series of experiments involving image classification tasks. These experiments are conducted

under both homogeneous and heterogeneous conditions, as follows:

• In an Independent and Identically Distributed (IID) scenario, we evenly distribute the

datasets CIFAR10, CIFAR100 [96], and MNIST [97] across 10 devices.

• We distribute the CIFAR10 dataset across 10 devices while introducing heterogeneity

by randomly assigning each device a subset of c = {2, 4} classes from the available 10

classes.

For these experiments, we present the average testing accuracy over the population target

distribution (top row) and the average bits per parameter required (lower row) as a function

of the number of rounds (e.g an average of three simulation runs). The bits per parameter

required represents the average entropy of the binary masks transmitted in the UL by the

devices. The number of local epochs is set to three with |B| = 128. We utilize three

feed-forward convolutional networks (4Conv, 6Conv and 10Conv [95]) to train over MNIST,

CIFAR10 and CIFAR100 respectively. The initial score vector is sampled from a standard

normal distribution with identity covariance matrix. As in [92], the model random weights

are sampled from a uniform distribution over {−ς, ς}, where ς denotes the standard deviation

of the Kaiming normal distribution [98].

Figure 4.1 illustrates the validation accuracy of FedPM with our proposed regularization

term (λ = 1) compared to the original algorithm under IID settings. The validation accuracy

of both techniques is similar across all simulations. However, FedPM combined with our

proposed regularization term achieves significant improvement in communication efficiency

compared to the original algorithm. Specifically, on CIFAR10 experiments, an average effi-

ciency gain of 0.31 bits per parameter (bpp) is achieved using our proposed modification. On

MNIST experiment, we achieve 0.8 bpp greater efficiency, while on CIFAR100 experiment,

we gain 0.25 bpp higher efficiency relative to original algorithm. Therefore, our proposed

recipe provides notable gains in communication efficiency while maintaining the generaliza-

tion performance of FedPM in the IID settings configuration. We now examine Fig. 4.2,

which evaluates the performance of the two algorithms on non-IID CIFAR10 datasets. The

regularization term value is varied to highlight the potential trade-off between generalization

and communication efficiency in this setting. For λ = 1, the communication efficiency gain

trend persists, where we observe substantial improvements of 0.52 bits per parameter (bpp)

when label heterogeneity is present with c = 2, and 0.44 bpp when c = 4. However, unlike

the IID setting, a slight loss in generalization performance is observed (around 3% and 4%
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Figure 4.1: From left to right: CIFAR10, MNIST, CIFAR100 experiments. First row:
Validation Accuracy vs Rounds. Second row: The corresponding Average

Bit-per-parameter (bpp) required vs Rounds.

respectively). However, when λ is set to 0.1 and 0.2 for c = 2 and c = 4 respectively, our

algorithm converges to a sub-network with comparable generalization to FedPM while en-

suring around 0.12 bpp gain in communication efficiency and final model size. In summary,

Fig. 2 shows that our approach can identify sub-networks with generalization performance

on par with FedPM in non-IID settings too, while still providing moderate gains in com-

munication and memory efficiency. Moreover, it demonstrates that our algorithm allows for

flexible trade-off between accuracy and communication and memory efficiency if required by

tuning the regularization hyperparameter λ.

4.4 Conclusion

In this chapter, we demonstrate that state-of-the-art federated learning methods for sparse

random networks, which rely on consistent objectives, fail to uncover highly sparse sub-

networks within the over-parameterized random models. To address this limitation, we

propose and validate the incorporation of a regularization term within the local loss func-
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Figure 4.2: Trade-off between validation accuracy and communication efficiency (bpp) for
different regularization values λ in non-IID CIFAR10 settings. Higher λ prioritizes

communication-efficiency over accuracy, while lower value of λ prioritizes accuracy over
sparsity reduction.

tions to discover sparser sub-networks. The sparse models obtained through our approach

lead to significant improvements in communication and memory efficiency during federated

training on resource-constrained edge devices, without sacrificing accuracy. Through exten-

sive experiments, we show that our method outperforms existing state-of-the-art techniques

by a large margin in terms of the sparsity and efficiency gains achieved. Additionally, the

flexibility of our algorithm enables customizing the trade-off between accuracy and efficiency

as per application requirements.
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Chapter 5

Conclusion

In this thesis, we have explored three independent contributions that we hope to contribute

to the advancement of intelligent edge in future networks. Each chapter presents a novel

approach that addresses specific challenges in federated learning.

In the first chapter, we focused on the data heterogeneity challenge that is prevalent

among users’ datasets in a federated learning system from the lens of personalization. We

introduced a novel, user-centric algorithm that produces personalized models for each device,

tailored to their unique objectives. To mitigate the communication overhead associated with

the training of a distinct model for each device, we utilized a K-means clustering approach

that groups users with similar objectives and provides a single personalized model for each

group.

The second chapter focused on leveraging UAVs as federated learning orchestrators to

integrate remote IoT systems in the intelligent edge. Accordingly, an online path planning

problem has been formulated for the UAV tasked with coordinating the federated learning

training of different communities of devices, each with their own objectives. By quantifying

the training performance, channel conditions, and resource requirements of the different de-

vices, we established and solved a convex optimization problem to facilitate efficient pooling

of updates while ensuring learning fairness among the different communities. Our findings

are presented in the context of a single drone, and the optimized trajectory is determined

accordingly.

In Chapter 3, we focused on addressing the problem of excessive communication over-

head associated with transmitting the raw model updates used in federated learning. While

compression techniques such as quantization and sparsification exist, the provided com-

munication efficiency often comes at the cost of lower model accuracy. To overcome this

limitation, we leverage over-parameterized random networks [92,99] to approximate smaller

target networks, through pruning of parameters rather than optimizing the network param-

eters. This method has been shown to potentially require transmitting at most one bit per

model parameter in federated learning settings. We showed that existing state-of-the-art

methods fail to leverage the full potential for enhanced communication efficiency attainable

through this approach and proposed a regularized loss function that takes into account the

entropy of the transmitted updates, leading to significant improvements in communication

and memory efficiency during federated training on resource-constrained edge devices with
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minimal performance degradation in validation accuracy in some instances.

Future Directions

While the contributions in this thesis addresses key federated learning challenges, ample

opportunities remain for further exploration.

• One direction is to explore alternative metrics that can more accurately capture sim-

ilarities in user objectives while preserving privacy, as discussed in chapter 2. Despite

our solution effectiveness, the algorithm’s foundation is built upon a heuristic metric

that assesses the similarity between users’ learning tasks based on their gradients’

similarity. In this context, an interesting future direction would be to investigate al-

ternative metrics that can more accurately capture the underlying similarities among

user objectives while inherently preserving privacy.

• For the UAV-assisted federated learning framework in chapter 3, investigating scenar-

ios involving multiple drones and developing a jointly optimized trajectory while also

accounting to the energy expenditure of the devices are natural potential extensions,

building upon the results presented in this chapter. This area of research is still in

its nascent stages, primarily due to the prevalence of terrestrial based orchestration

approaches, the energy constraints and the computational constraints that prevent on-

device training of IoT devices frequently deployed in remote environments. However,

exploring the prospective applications of UAV-assisted learning that may emerge in

future use-cases warrants further investigation.

• Chapter 4 demonstrated the promise of communication-efficient federated learning via

sparse random networks. A natural extension would involve examining the fundamen-

tal limits of the potential communication gains in decentralized settings achievable

through such methods that approach training models via pruning, rather than param-

eter tuning, while preserving the model’s capacity for effective generalization.

For instance, the initial work [99] which showed the potential generalization per-

formance of sub-networks pruned from over-parameterized networks, required over-

parameterization that grows polynomially as a function of the target network depth

and width. This obviously is inefficient in federated settings in terms of the commu-

nication overhead when considering large target models.

Modern attempts managed to reduce the required over-parameterization needed. Par-

ticularly, [59] proved that logarithmic over-parameterization in terms of the target

network depth and width is sufficient.
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Another approach [100] showed that random re-sampling of a portion of the pruned

weights during training can provably be effective in reducing the required over param-

eterization while preserving the same generalization performance. As a result, they

show that the required width of the over-parameterized networks could be reduced to

twice as wide as the target network when the number of resampling operations is suf-

ficiently large, in contrast to the prior results without resampling assumption [59,99].

The proposed resampling technique involves periodically resampling a subset of the

pruned weights during training. Although this approach has shown promise in cen-

tralized settings, its direct application to federated learning poses challenges related to

the large number of communication rounds required to execute the necessary number

of resampling operations.

Finally, an interesting direction is to explore how the aggregation rules and hetero-

geneity imposed by user data in FL can affect the approximation performance of

sparse random networks. This could involve developing new theoretical frameworks

for analyzing the performance of such approaches in decentralized heterogeneous data

settings.
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Appendix of Chapter 1

Proof of Theorem 1

Denote by f ∗ the argminf∈F Ez∼Pi
[ℓ(f, z)] and bound the estimation error of f̂w⃗i

as

Exc(f̂w⃗i
, Pi) = Ez∼Pi

[ℓ(f̂w⃗i
, z)]− Ez∼Pi

[ℓ(f ∗, z)]

≤ Ez∼Pw⃗i
[ℓ(f̂w⃗i

, z)]− Ez∼Pw⃗i
[ℓ(f ∗, z)] + 2dF(Pi, Pw⃗i

) + 2γ

≤ Ez∼Pw⃗i
[ℓ(f̂w⃗i

, z)]− inf
f∈F

Ez∼Pw⃗i
[ℓ(f, z)]

+ 2
K∑
j=1

wi,jdF(Pi, Pj) + 2γ,

where γ = argminf∈F

(
Ez∼Pi

[ℓ(f, z)] + Ez∼Pw⃗i
[ℓ(f, z)]

)
. We recognize the estimation error

of f̂w⃗i
w.r.t to the measure Pw⃗i

that can be bounded following fairly standard approaches.

In particular,

Ez∼Pw⃗i
[ℓ(f̂w⃗i

, z)]− inf
f∈F

Ez∼Pw⃗i
[ℓ(f, z)] ≤ 2∆(G, Z),

where

∆(G, Z) = sup
g∈G

∣∣∣∣∣EPw⃗i
[g(Z)]−

K∑
j=1

wi,j

|Di|
∑
z∈Di

g(z)

∣∣∣∣∣ ,
is the uniform deviation term and

G = {Z −→ ℓ(f, Z) : f ∈ F} ,

is the class resulting from the composition of the loss function ℓ(·) and F . The uniform

deviation bound can be bounded in different ways, depending on the type of knowledge about

the random variable g(Z), in the following we assume that the loss function is bounded with

range B and we exploit Azuma’s inequality. In particular, the Doob’s Martingale associated

with the weighted loss will still have increments bounded by
wi,j

|Di|B depending to which loss

term the increment is associated. Recognizing this, we can then directly apply Azuma’s

concentration bound and state that w.p. 1− δ the following holds

∆(G, Z) ≤ EP [∆(G, Z)] +B

√√√√ K∑
j=1

w2
i,j

|Dj|
log

(
2

δ

)
.
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Finally, the expected uniform deviation can be bounded by the Rademacher complexity as

follows

EP [∆(G, Z)] ≤ 2Rad(G),

where

Rad(G) = Eσ⃗,D1,...,Dj

sup
g∈G

K∑
j=1

wi,j

|Di|

|Di|∑
i=1

σi,jg(Zi,j)

 .
By a direct application of Massart’s and Sauer’s Lemma we obtain

Rad(G) ≤

√√√√ K∑
j=1

w2
i,j

|Dj|

×

√√√√2VCdim(G)
(
log(e

∑
j |Dj|) + log(VCdim(G))

)
∑

j |Dj|
.

Combining everything together, we get the final result.

Proof of Theorem 2

Thanks to the upper bound on the target domain risk and the fact that the sum of two

sub-Gaussian random variables of parameter σ is also sub-Gaussian with parameter 2σ, we

can decompose the excess risk as

Exc(f̂w⃗i
, Pi) = Ez∼Pi

[ℓ(f̂w⃗i
, z)]− inf

f∈F
Ez∼Pi

[ℓ(f, z)]

= Ez∼Pi
[ℓ(f̂w⃗i

, z)− ℓ(f ∗, z)]

≤ Ez∼Pw⃗i
[ℓ(f̂w⃗i

, z)− ℓ(f ∗, z)] + 2βσ2 +
DJS(Pi||Pw⃗i

)

β
.

From the convexity of the KL-divergence, we can bound the Jensen-Shannon divergence as

follows
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DJS(Pi||Pw⃗i
) =

1

2
KL

(
Pi||

Pi + Pw⃗i

2

)
+

1

2
KL

(
Pw⃗i
||Pi + Pw⃗i

2

)

=
1

2
KL

(
Pi||

∑
j wi,j(Pi + Pj)

2

)
+

1

2
KL

∑
j

wi,jPj ||
∑

j wi,j(Pi + Pj)

2


≤ 1

2

∑
j

wi,j

(
KL

(
Pi||

(Pi + Pj)

2

)
+KL

(
Pj ||

(Pi + Pj)

2

))
=
∑
j

wi,jDJS(Pi||Pj).

Plugging it back into the previous expression and minimizing with respect to β we obtain

Exc(f̂w⃗i
, Pi) ≤ Ez∼Pw⃗i

[ℓ(f̂w⃗i
, z)]− inf

f∈F
Ez∼Pw⃗i

[ℓ(f, z)]

+ 2βσ2 +

∑
j w⃗i,jDJS(Pi||Pj)

β

≤ Ez∼Pw⃗i
[ℓ(f̂w⃗i

, z)]− inf
f∈F

Ez∼Pw⃗i
[ℓ(f, z)]

+ 2σ

√√√√2
K∑
j=1

wi,jDJS(Pi||Pj).

We identify the estimation error and we bound as previously done for Theorem 1 to obtain the

final result. Moreover, for B-bounded random variables, σ = B/2.
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Résumé

L’évolution omniprésente des réseaux 5G et des réseaux 6G à venir permet un nouveau paradigme

d’informatique périphérique intelligente. Avec l’augmentation spectaculaire de la vitesse des réseaux

et la diminution de la latence, davantage de traitement et d’intelligence peuvent être transférés à la

périphérie plutôt que de s’appuyer uniquement sur les centres de données en nuage. Cela permet un

traitement des données en temps réel et une prise de décision plus proche de l’utilisateur final ou de

l’appareil, en respectant les exigences futures du réseau. Dans les réseaux 5G récemment déployés,

le nuage informatique périphérique multi-accès permet de déployer des ressources de calcul et de

stockage à la périphérie du réseau. Dans la perspective de la 6G, la vision est celle de réseaux

intelligents hautement distribués avec un traitement basé sur l’IA directement intégré dans les

dispositifs périphériques des utilisateurs finaux. L’intégration des capacités d’IA et des dispositifs

périphériques englobe des tâches telles que la formation et l’inférence de modèles d’apprentissage

automatique au niveau local, ce qui permet des applications innovantes telles que l’automatisation

industrielle, les véhicules autonomes, la réalité augmentée et d’autres services nécessitant une la-

tence ultra-faible. Par exemple, le 3GPP s’efforce d’intégrer l’IA dans les réseaux sans fil et à la

périphérie. Dans la version 18, diverses techniques ont été étudiées pour améliorer les performances

et l’efficacité des réseaux sans fil, notamment la gestion des faisceaux, le retour d’informations sur

l’état des canaux et la précision du positionnement.

L’augmentation rapide du nombre d’appareils connectés motive encore davantage cette évolution.

Comme le montre la figure 1, le nombre estimé de connexions IoT dans le monde a augmenté de

plus de 140 % entre 2018 et 2023, pour atteindre près de 15 milliards de connexions [9,10]. La prise

en charge et l’exploitation de cet afflux massif d’appareils périphériques divers ne sont possibles

que par le biais d’une intelligence périphérique distribuée.

Ces dernières années, un changement de paradigme notable s’est produit dans l’intégration des

modèles d’apprentissage automatique dans les appareils périphériques. L’approche conventionnelle

consistant à transmettre les données des appareils à des serveurs centralisés pour l’apprentissage

ou l’inférence des modèles, puis à déployer les modèles appris ou les décisions d’inférence à la

périphérie, a perdu de sa popularité. Ce changement peut être principalement attribué à deux

facteurs essentiels : la protection de la vie privée et les frais généraux de communication.

La préservation de la vie privée est devenue une préoccupation majeure à l’ère des technologies

basées sur les données. L’approche conventionnelle consistant à transmettre de grands volumes

de données brutes des dispositifs périphériques aux serveurs centraux pour l’apprentissage des

modèles a suscité des craintes considérables quant à la protection des informations personnelles

sensibles. Cette préoccupation devient particulièrement prononcée dans les domaines qui traitent

des données confidentielles, comme les applications de soins de santé, où les dispositifs portables

collectent des informations spécifiques aux patients. Par conséquent, la protection de la confiden-

tialité des données est devenue une considération essentielle dans la conception et le déploiement

des méthodologies d’apprentissage automatique.
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Figure 1: L’essor de l’IdO connectée

En outre, le surcoût de communication associé au transfert de données entre les appareils et

les serveurs centraux est devenu un problème crucial. La transmission de grandes quantités de

données pour l’apprentissage centralisé ou l’inférence sur les réseaux n’introduit pas seulement des

problèmes de latence, mais impose également une charge sur les ressources du réseau. Dans les

scénarios où la collecte de données et la prise de décision en temps réel sont primordiales, tels

que les environnements industriels qui s’appuient sur des dispositifs IoT (Internet des objets) pour

l’acquisition de données de capteurs, les inefficacités introduites par la surcharge de communication

excessive peuvent entraver les performances globales du système.

Ce changement de paradigme a pris de l’ampleur grâce à la disponibilité généralisée de puissants

appareils périphériques dotés d’importantes capacités de calcul et de fonctionnalités sensorielles.

Ces progrès ont rendu possible l’acquisition de données, le traitement et l’apprentissage de modèles

directement sur l’appareil.

Cependant, un défi se pose lorsqu’il s’agit d’effectuer un apprentissage local sur l’appareil. Les

appareils périphériques tels que les smartphones et les appareils IoT sont généralement confrontés

à des ensembles de données limités échantillonnés dans leur environnement immédiat. Les limites

inhérentes aux ensembles de données peuvent être interprétées sous l’angle de leur qualité de

représentation et de leur taille. La qualité de représentation, qui est synonyme d’expressivité

des ensembles de données, mesure leur efficacité dans la formation d’un modèle spécifiquement

conçu pour chaque tâche de l’appareil. Cette efficacité dépend de facteurs tels que la résolution

d’échantillonnage et les capacités sensorielles des appareils. Ces limitations des données entravent
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le potentiel de l’apprentissage local à générer des modèles qui présentent une généralisation robuste

sur les tâches des appareils.

Apprentissage fédéré

En raison des limites mentionnées précédemment, l’apprentissage fédéré (AF) est apparu comme

une solution potentielle pour surmonter ces défis. L’apprentissage fédéré est un sous-domaine

naissant de l’apprentissage automatique qui offre aux appareils (également appelés ”clients” ou

”utilisateurs”) la possibilité de former des modèles en collaboration, sous la supervision d’un ”or-

chestrateur” central, sans qu’il soit nécessaire de partager leurs données d’apprentissage brutes.

Au lieu de cela, FL permet aux appareils périphériques de former collectivement des modèles qui

présentent une généralisation et des performances améliorées, tout en promouvant la confidentialité

des données par conception. La diversité des données entre les appareils permet aux modèles formés

de capturer un plus large éventail de modèles et de variations, améliorant ainsi leur capacité à gérer

les diverses préférences des utilisateurs et à mieux se généraliser par rapport aux modèles appris

localement. Ce paradigme d’apprentissage distribué réduit également la dépendance à l’égard des

serveurs centralisés, ce qui permet un traitement en temps réel et une prise de décision contextuelle

directement à la périphérie. Cela permet d’accélérer les temps de réponse, de réduire la latence et

d’améliorer l’expérience de l’utilisateur dans diverses applications. Dans sa configuration prototyp-

ique, le FL implique une formation distribuée exécutée de manière itérative sur plusieurs circuits

de communication. Un cycle de communication correspond à une itération ou à un cycle unique

du processus de formation entre l’orchestrateur et les dispositifs participants. Au cours d’un cycle

de communication, les étapes suivantes se déroulent généralement :

1. Distribution du modèle : Le serveur central envoie un modèle global de ML à un sous-

ensemble sélectionné de dispositifs sur un canal de liaison descendante (DL).

2. Formation au modèle local : Chaque appareil effectue un apprentissage local à l’aide de

son propre ensemble de données locales et du modèle global reçu. L’appareil optimise son

modèle local sur ses données locales.

3. Modèle de liaison montante Transmission : Les modèles formés localement par les

appareils participants sont renvoyés au serveur central par un canal de communication en

liaison montante (UL).

4. Agrégation de modèles : Le serveur central agrège les modèles reçus des appareils

périphériques pour produire un modèle global actualisé. Le modèle global mis à jour est

ensuite distribué à un nouvel ensemble de dispositifs pour le prochain cycle de communica-

tion.

La formation implique généralement plusieurs cycles de communication pour affiner et optimiser

de manière itérative le modèle global jusqu’à la convergence.
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L’apprentissage automatique peut être divisé en deux catégories principales : l’apprentissage

inter-silos et l’apprentissage inter-appareils. La formation inter-silos en FL fait référence au proces-

sus de formation d’un modèle d’apprentissage automatique sur des données provenant de plusieurs

silos ou domaines. Chaque silo représente une entité ou une organisation distincte (par exemple, des

hôpitaux ou des banques) qui dispose de ses propres données et souhaite collaborer avec d’autres

silos pour former un modèle partagé. Tous les silos de données participants sont fiables et sont

presque toujours disponibles pendant la formation. La formation permet à ces silos de travailler

ensemble pour former un modèle plus précis et plus robuste que ce qu’un silo individuel pourrait

réaliser seul. D’autre part, la formation inter-appareils en FL implique la formation d’un modèle

d’apprentissage automatique à l’aide de données provenant de plusieurs appareils, tels que des

smartphones, des appareils domestiques intelligents ou des appareils IoT. Dans ce scénario, chaque

appareil représente une source de données distincte avec un volume de données relativement faible

qui contribue à la formation d’un modèle partagé. Ces appareils sont naturellement moins fiables

en raison de facteurs tels que la disponibilité, la mauvaise connectivité réseau et les défaillances

matérielles.

En raison de ses garanties inhérentes en matière de respect de la vie privée, FL a été adopté

par plusieurs grandes entreprises industrielles. Par exemple, Nvidia a appliqué le FL dans divers

domaines tels que l’imagerie médicale et la recherche génétique [16]. En outre, Apple utilise

la FL dans le développement de systèmes d’identification biométrique tels que Face ID et de

commandes vocales pour des assistants numériques tels que Siri [17]. L’application de clavier de

Google, Gboard [18], en est un exemple frappant : elle utilise le FL pour améliorer son modèle

linguistique sans compromettre la confidentialité des données de l’utilisateur. En tirant parti de

la collaboration entre plusieurs appareils, Gboard peut former un modèle partagé qui s’adapte

aux habitudes de frappe et aux préférences des utilisateurs, améliorant ainsi la précision de ses

prédictions. Une autre application notable se trouve dans les communications sans fil, où FL a été

utilisé pour optimiser les réseaux d’accès radio. En tirant parti des capacités de calcul des appareils

périphériques, le FL permet l’apprentissage de modèles susceptibles d’optimiser les performances

du réseau, telles que l’allocation des ressources radio et la formation de faisceaux d’utilisateurs, sans

nécessiter un partage important de données entre les opérateurs de réseau. Ces applications sont

bien adaptées aux techniques collaboratives basées sur les données, telles que l’apprentissage fédéré,

plutôt qu’aux approches basées sur des modèles reposant sur des hypothèses simplifiées. Dans ce

contexte, les méthodes fondées sur des modèles imposent fréquemment des contraintes irréalistes

qui ne parviennent pas à saisir pleinement les subtilités de la complexité du problème et sont

souvent encombrées d’hypothèses théoriques idéalistes déconnectées des réalités pratiques [20–23].
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Formulation du problème

Définition des normes

L’objectif standard de FL [15, 24] est de trouver un modèle global θ ∈ Rd qui minimise la perte

pondérée des K appareils du système, sur leur distribution locale de données {Pk}Kk=1.:

min
θ∈Rd

[
L(θ) ≜

K∑
k=1

wkℓk(θ)

]
, (1)

où {ℓk} sont les fonctions de perte des dispositifs et {wk} représentent leurs poids correspondants,
de sorte que

∑
k wk = 1. Les pertes locales peuvent être définies comme suit :

ℓk(θ) ≜ Ex∼Pk
[ℓk(θ, x)] , (2)

où E [·] représente l’espérance mathématique. Dans le cas où les appareils sont dotés d’ensembles

de données finis notés {Dk} échantillonnés à partir des distributions de données locales avec une

cardinalité {|Dk| <∞} L’objectif global dans (1) est alors appelé minimisation empirique du risque

(ERM). En conséquence, les pertes locales peuvent être écrites comme suit :

ℓk(θ) =
1

|Dk|

|Dk|∑
j=1

ℓk(θ, xk,j), (3)

où |Di| représente la cardinalité de l’ensemble de données de l’appareil i, et xk,j représente le jth

échantillon de Dk. Généralement, les poids trouvés dans (1) sont basés sur des facteurs tels que la

taille des ensembles de données des appareils, et sont donnés par :

wi =
|Di|∑
k |Dk|

. (4)

De manière équivalente dans ce cas, l’objectif est de former un modèle paramétré par θ pour

minimiser les pertes pondérées, sur l’union des ensembles de données de l’ensemble du système

désigné par D =
⋃

k Dk. Cet ensemble de données est échantillonné à partir du mélange de

distributions désigné par P =
∑

k wkPk. Dans ce scénario, l’hypothèse est que tous les dispositifs

rencontreront des données échantillonnées à partir de la distribution cible P . Par conséquent, l’une

des principales préoccupations est que le modèle découvert présente une généralisation efficace sur

P .

Cadre personnalisé

Dans certains scénarios, les utilisateurs peuvent avoir besoin d’une expérience personnalisée. L’optimisation

fédérée prototypique (1) agrège les mises à jour de divers dispositifs pour former un modèle unique.
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Cependant, de graves divergences de distribution entre les distributions cibles Pk des appareils

peuvent rendre inefficace un modèle unique. Au lieu de cela, des modèles sur mesure répondant

aux préférences spécifiques des utilisateurs ou même à des utilisateurs individuels peuvent être

nécessaires. Par exemple, des approches de regroupement [61, 63] ont été proposées pour iden-

tifier les dispositifs ayant des distributions de données suffisamment similaires pour permettre la

collaboration. L’objectif global (1) est ensuite appliqué à chaque groupe homogène d’appareils.

Cependant, le partitionnement des appareils tout en tenant compte de la personnalisation présente

un défi supplémentaire : les divergences statistiques doivent être déduites sans accès direct aux

données afin de préserver la vie privée. Cela dit, pour faire progresser la FL personnalisée, il faut

mettre au point des mesures d’évaluation localisées afin de déterminer si l’optimisation globale ou

locale est appropriée en fonction du degré d’hétérogénéité.

Optimisation de l’apprentissage fédéré

Pour résoudre le problème (1), il est impératif de reconnâıtre que le gradient global peut être

exprimé comme la somme des gradients locaux pond

∇L(θ) =
∑
k

wk∇ℓk(θ). (5)

Une fois le gradient global calculé, il peut être utilisé pour optimiser l’objectif dans (1), en

appliquant la descente de gradient (GD) au cours de chaque cycle de communication t, conformément

à la règle de mise à jour suivante :

θ(t+ 1) = θ(t)− ηt∇L(θ(t)), (6)

où ηt > 0 représente la taille du pas d’apprentissage qui peut varier entre les différents cycles

de communication.

Dans le cadre de l’apprentissage fédéré, où les appareils ont accès à leurs données locales et reçoivent

le modèle global θ(t) sur la liaison descendante (DL) de l’orchestrateur, le modèle local GD peut être

utilisé pour calculer les gradients locaux. Compte tenu de la configuration en étoile qui prévaut

dans l’apprentissage fédéré, les appareils transmettent à l’orchestrateur les gradients locaux qu’ils

ont calculés sur la liaison montante (UL). Ces gradients sont ensuite pondérés et agrégés pour

obtenir la mise à jour globale décrite dans (5). Cette mise à jour globale est ensuite appliquée

au modèle global conformément à (6). Le modèle global mis à jour est ensuite envoyé à tous

les dispositifs pour lancer le cycle de communication suivant. Le processus de formation s’achève

lorsque la convergence est atteinte, ce qui indique que la norme du gradient global s’approche de

zéro avec une faible marge. Une illustration du processus FL est donnée dans la Fig. 2.

Malgré son applicabilité théorique et les recherches approfondies dont elle a fait l’objet, la

méthode GD n’est pas couramment utilisée dans les contextes pratiques de la FL. Cela est princi-

palement dû à la surcharge de calcul qu’elle impose, car elle nécessite le calcul de gradients locaux
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Figure 2: Illustration de l’apprentissage fédéré

complets. Cette exigence de calcul peut poser des problèmes, en particulier pour les appareils dis-

posant de ressources limitées. En outre, GD implique une seule étape de mise à jour locale par cycle

de communication, ce qui conduit à un taux de convergence relativement lent. Par conséquent, de

nombreux cycles de communication entre les appareils et le serveur central sont nécessaires jusqu’à

ce que la convergence soit atteinte. Cela augmente considérablement les frais généraux de commu-

nication, en particulier dans les réseaux à bande passante limitée. Des variantes stochastiques et

adaptatives de GD sont utilisées, telles que SGD et ADAM.

Défis

Étant donné l’applicabilité des FL dans des contextes multi-appareils, soutenue par leurs capacités

croissantes et leur omniprésence, elles sont confrontées à plusieurs problèmes critiques qu’il est

nécessaire de résoudre pour réaliser leur plein potentiel. En particulier, l’efficacité de la commu-

nication au cours du processus fédéré sur les réseaux sans fil doit être optimisée. Les appareils

présentent une hétérogénéité matérielle, logicielle et de données qui doit être conciliée. En outre,

même avec les dispositions de FL en matière de protection de la vie privée, il subsiste des problèmes

résiduels de protection de la vie privée qui justifient d’autres améliorations techniques. Dans les

sous-sections suivantes, chacun de ces défis clés est examiné plus en détail.
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Coûts de communication

Le goulot d’étranglement de la communication représente un défi important dans le contexte du

FL [101], principalement lorsqu’il est appliqué à des réseaux périphériques à ressources limitées.

Dans un cadre inter-appareils, FL nécessite l’agrégation fréquente des mises à jour de modèles

provenant de nombreux appareils participants. Toutefois, la transmission de mises à jour complètes

de modèles sur des réseaux sans fil à largeur de bande limitée peut souvent s’avérer irréalisable.

La taille des mises à jour de modèles bruts, en particulier pour les grands modèles d’apprentissage

profond, peut atteindre des centaines de mégaoctets, ce qui entrâıne une congestion du réseau et un

épuisement rapide des batteries des appareils. Cela peut entraver la participation des utilisateurs à

un système fédéré, les incitant à se retirer de la formation en raison de la limitation des ressources

sans fil ou du faible niveau des batteries [30].

Diverses approches ont été proposées dans la littérature pour atténuer le goulot d’étranglement

de la communication. Un ensemble de méthodes implique la compression des modèles par la

sparsification [31–33] et la quantification [34,35] afin de réduire la taille des mises à jour échangée .

Néanmoins, il en résulte souvent un compromis avec une diminution de la précision du modèle. Un

autre ensemble d’algorithmes se concentre sur la minimisation des frais généraux de communication

en limitant le nombre d’appareils impliqués dans chaque cycle de communication [36–38]. Pour ce

faire, des appareils fiables sont sélectionnés sur la base de critères spécifiques, tels que l’état du

canal sans fil, l’état de la batterie et le fuseau horaire. Le chapitre 4 et une partie du chapitre 2

sont consacrés à la prise en compte de la charge de communication de la FL.

Les dispositifs IdO déployés dans des environnements éloignés ou à ressources limitées sont

souvent caractérisés par une connectivité réseau restreinte et intermittente [40,41]. Néanmoins, leur

rôle en tant que générateurs de données les positionne comme des candidats très appropriés pour la

participation à la formation de modèles, contribuant ainsi au développement d’un bord intelligent

[39]. Néanmoins, l’accès sporadique au réseau qui prévaut dans les zones rurales constitue un défi

pour leur participation à la formation FL, étant donné l’exigence d’une communication cohérente

avec les serveurs centraux [42, 43]. L’apprentissage entièrement décentralisé peut être utile dans

ce contexte, en tirant parti de la communication de pair à pair entre les dispositifs IoT sans

qu’un orchestrateur centralisé ne soit nécessaire. Cependant, la gestion de la coordination dans ces

contextes reste un problème ouvert. Les approches modernes proposent l’utilisation de véhicules

aériens sans pilote (UAV) comme relais dynamiques capables de superviser FL à la demande [44].

Cette stratégie est particulièrement bien adaptée aux situations caractérisées par une connectivité

difficile, telles que celles couramment rencontrées par les dispositifs IoT dans les zones rurales. Le

chapitre 3 de cette thèse examine en détail ce problème et explore l’utilisation de drones comme

orchestrateurs de FL dans les zones reculées.

Hétérogénéité des données

L’hétérogénéité statistique constitue un défi important dans le domaine du FL, en raison des

ensembles de données locales non IID (distribuées de manière non identique ou indépendante) des
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dispositifs participants. Lorsque l’on parle de données non IID dans FL, on fait généralement

référence aux différences sous-jacentes entre les distributions de données locales Pi et Pj pour

les différents appareils i et j. Cette hétérogénéité des données se manifeste par des préférences

individuelles, des caractéristiques géographiques spécifiques capturant des traits localisés, et des

dynamiques transitoires spécifiques au temps [48]. Par exemple, les appareils IoT peuvent différer

dans leurs taux d’échantillonnage ou leurs fréquences de collecte de données ; certains appareils

peuvent collecter des données toutes les minutes, tandis que d’autres collectent des données toutes

les heures. Ces variations peuvent affecter la résolution temporelle des données et introduire de

l’hétérogénéité.

Il existe de nombreux scénarios typiques dans lesquels les données tendent à s’écarter d’une dis-

tribution identique. Si nous considérons les distributions locales soutenues par (X ,Y), comme dans

les environnements d’apprentissage supervisé, où X désigne l’espace des caractéristiques d’entrée

et Y désigne l’espace des étiquettes de la vérité de terrain, alors la distribution des données de est

définie comme Pi(x, y). Les formes les plus courantes d’hétérogénéité des données sont [14] :

• Déplacement des covariables : Les distributions de probabilité des variables d’entrée Pi(x)

peuvent différer d’une population de clients à l’autre. Par exemple, dans un système collab-

oratif de surveillance de la santé FL, certains clients peuvent utiliser des capteurs médicaux

haut de gamme, tandis que d’autres utilisent des dispositifs portables plus simples. Le bruit

entre les mesures capturées par les différents appareils modifie les distributions d’entrée.

• Label Skew (biais d’étiquetage) : La distribution des étiquettes, représentée par Pi(y), varie

d’un appareil à l’autre. Par exemple, dans un scénario d’analyse fédérée des sentiments, un

client disposant d’un ensemble de données important peut fournir des avis majoritairement

positifs, tandis qu’un autre client peut avoir davantage d’avis négatifs. Par conséquent, le

modèle global pourrait présenter un biais en faveur des étiquettes dominantes présentes dans

l’appareil disposant de l’ensemble de données le plus important, compte tenu du système

de pondération mentionné dans l’équation (4). Par conséquent, les performances du modèle

global peuvent être médiocres pour les étiquettes sous-représentées dans les ensembles de

données.

• Changement de concept : La distribution conditionnelle Pi(y|x) varie d’un ensemble de

données à l’autre. Les ensembles de données des appareils. Dans ce cas, les appareils

peuvent attribuer des étiquettes différentes aux mêmes vecteurs de caractéristiques d’entrée.

Par exemple, les étiquettes associées à la prédiction du mot suivant (par exemple, Gboard),

compte tenu d’une phrase de départ (c’est-à-dire la caractéristique d’entrée), peuvent varier

en fonction des choix personnels et des différences régionales.

Dans les scénarios pratiques, les ensembles de données comprennent souvent un mélange de ces

effets, et l’objectif FL typique (1) aboutit à des modèles sous-optimaux lorsqu’il est confronté à

ces effets. Alors que quelques algorithmes dans la littérature ont réussi à traiter la manifestation

combinée de ces effets à travers les données des utilisateurs [14], de nombreuses approches se sont
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concentrées sur le traitement de ces effets individuellement tout en négligeant l’interaction entre

eux []. Le chapitre 2 de la thèse étudie l’interaction entre les effets mentionnés qui favorisent

l’hétérogénéité et propose une approche de modélisation personnalisée comme solution potentielle.

Hétérogénéité du système

L’hétérogénéité du système FL entrâıne des divergences dans les capacités et les propriétés des

appareils clients. Cette hétérogénéité s’étend au matériel, à la connectivité et à la disponibilité.

Les différences matérielles entre les appareils mobiles, intégrés et les serveurs induisent un par-

allélisme de calcul variable, qui affecte les vitesses d’apprentissage locales. L’hétérogénéité de

la connectivité entrâıne des différences dans les conditions et la fiabilité des canaux de commu-

nication. L’hétérogénéité de la disponibilité survient lorsque des trâınards, définis comme des

nœuds plus lents qui retardent l’exécution globale, apparaissent en raison de problèmes tels qu’une

participation peu fiable, des limitations d’énergie et la mobilité. La multitude de divergences

en matière de matériel, de connectivité et de disponibilité pose d’importants défis systémiques

dans les environnements FL. Le chapitre 3 de la thèse présente une exploration approfondie de

l’impact de l’hétérogénéité des canaux parmi les dispositifs IoT de faible puissance dans un cadre

d’apprentissage fédéré orchestré par des drones.

Confidentialité de l’apprentissage

L’apprentissage fédéré a été initialement développé comme un moyen de répondre aux préoccupations

en matière de protection de la vie privée découlant du partage des données des utilisateurs avec

des serveurs en nuage pour l’entrâınement des modèles de ML. En échangeant des mises à jour

de modèles plutôt que des données brutes, l’apprentissage fédéré visait à fournir des garanties

de confidentialité aux utilisateurs pendant le processus de formation. Toutefois, des recherches

récentes ont mis en évidence des vulnérabilités potentielles dans lesquelles des adversaires pour-

raient exploiter les mises à jour de modèles pour déduire le contenu des ensembles de données des

utilisateurs. Pour résoudre ce problème, les recherches en cours se concentrent sur l’amélioration

de la confidentialité du FL grâce à des techniques telles que l’agrégation sécurisée, la confidentialité

différentielle et le cryptage. Les méthodes d’agrégation sécurisée visent à garantir que les mises

à jour de modèles provenant de dispositifs individuels sont combinées de manière à empêcher les

adversaires d’extraire des informations sur des échantillons de données individuels. Les techniques

de confidentialité différentielle introduisent un bruit aléatoire dans les mises à jour du modèle afin

de protéger contre les fuites de confidentialité. Des méthodes de cryptage peuvent être employées

pour sécuriser les mises à jour de modèles pendant la transmission, afin d’empêcher l’accès non

autorisé et la falsification.

Bien que la protection de la vie privée soit un élément essentiel de la formation en FL, cette

thèse n’explore pas les difficultés liées à la préservation de la vie privée au cours de la formation

en FL.
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Considérations sur la thèse:

Nous allons maintenant énumérer certaines hypothèses formulées dans les différents chapitres de

la thèse.

• Participation des appareils: Dans les chapitres suivants, notre analyse repose sur l’hypothèse

que tous les appareils sont disponibles pour la formation, sauf indication contraire. Cela sig-

nifie que le nombre total d’appareils disponibles pour la formation est fixe. Toutefois, le fait

que tous les appareils soient sélectionnés pour la formation ou que les mises à jour soient

transmises avec succès par les canaux de communication dépendra des hypothèses spécifiques

formulées dans chaque chapitre.

• Local Training: L’apprentissage local est une technique largement utilisée en FL pour

minimiser le surcoût de communication. Par conséquent, dans tous les chapitres, nous sup-

posons que les dispositifs utilisent des méthodes d’approximation stochastique du gradient,

telles que la descente stochastique du gradient par mini-lots, pour calculer les mises à jour

locales avant de les envoyer à l’orchestrateur sur la liaison montante. Ces approximations

stochastiques permettent de réduire les coûts de calcul locaux au niveau des appareils. Le

nombre d’étapes est déterminé par le nombre d’époques prédéfini par l’orchestrateur.

Contributions et plan de thèse

Cette thèse est divisée en trois parties distinctes, chacune abordant des défis spécifiques découlant

de l’intégration de l’apprentissage fédéré dans les réseaux périphériques sans fil.

• Dans le deuxième chapitre de cette thèse, nous abordons le problème de l’hétérogénéité des

données à travers les ensembles de données de dispositifs dans l’apprentissage fédéré. Nous

proposons une approche centrée sur l’utilisateur qui s’écarte du un modèle pour tous, souvent

peu performant dans ce contexte, et offre à la place des modèles personnalisés et adaptés aux

objectifs uniques de chaque utilisateur. Pour atténuer le surcoût de communication élevé as-

socié à l’entrâınement des modèles personnalisés, nous proposons une méthode de clustering

qui regroupe les utilisateurs ayant des objectifs similaires, ce qui leur permet de collaborer

pour produire un modèle personnalisé partagé. L’algorithme que nous proposons démontre

des taux de convergence supérieurs à ceux de plusieurs algorithmes de personnalisation de

pointe. Cette partie est associée au chapitre 2, et est basée sur les deux travaux publiés

suivants:

– Mohamad Mestoukirdi, Matteo Zecchin, David Gesbert, and Qianrui Li. ”User-

centric federated learning, Trading off wireless resources for personaliza-

tion. Minor Review phase, submitted to ”IEEE Transactions on Machine Learning in

Communications and Networking, 2023.
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– Mohamad Mestoukirdi, Matteo Zecchin, David Gesbert, Qianrui Li and Nicolas Gres-

set, ”User-Centric Federated Learning,” IEEE Globecom Workshop, Madrid, Spain,

2021, pp. 1-6, doi: 10.1109/GCWkshps52748.2021.9682003.

• Dans la deuxième partie de la thèse, nous nous concentrons sur l’intégration des disposi-

tifs à distance de l’IdO dans la périphérie intelligente en tirant parti des drones en tant

qu’orchestrateur d’apprentissage fédéré. Alors que les drones ont fait l’objet d’études appro-

fondies pour leur potentiel à agir comme des stations de base volantes ou des relais dans les

réseaux sans fil [56,57], l’application des drones dans la facilitation de la formation de modèles

reste un domaine naissant. Le déploiement de drones offre plusieurs avantages, notamment

la rentabilité et les capacités de formation à la demande. En outre, la mobilité des drones

permet d’établir des liens de communication LoS (Line-of-Sight) avec des appareils situés

dans des zones rurales, ce qui permet de contourner les conditions défavorables des canaux.

Cependant, le déploiement de drones dans de tels environnements pose des problèmes en

termes de programmation et de conception des trajectoires. Pour optimiser la trajectoire

des drones et la programmation des appareils, nous proposons une mesure heuristique qui

sert d’indicateur de la performance de l’entrâınement. Sur la base de cette métrique, nous

définissons un objectif de substitution qui permet l’optimisation conjointe de la trajectoire

du drone et de l’ordonnancement du dispositif à l’aide de techniques d’optimisation convexe

et de la théorie des graphes. Notre solution est plus performante que d’autres déploiements

statiques et mobiles sélectionnés, comme le démontrent les résultats de la simulation. Ce

segment résume le chapitre 3, qui est basé sur le travail publié :

– Mohamad Mestoukirdi, Omid Esrafilian, David Gesbert, and Qianrui Li, ”UAV-Aided

Multi-Community Federated Learning,” IEEE Global Communications Confer-

ence, Rio de Janeiro, Brazil, 2022 , pp. 1314-1319.

• Dans la dernière partie de la thèse, nous nous concentrons sur le défi que représente la charge

de communication associée à l’échange de mises à jour de modèles. Dans les algorithmes FL

archétypiques, lors de chaque cycle de communication, les mises à jour du modèle sont sou-

vent quantifiées ou réduites avant d’être envoyées sur les canaux UL ou DL, ce qui permet

d’améliorer l’efficacité de la communication. Toutefois, cette compression se fait souvent

au détriment de la précision du modèle. Pour remédier à ce problème, des recherches ap-

profondies ont été menées afin d’explorer d’autres algorithmes permettant de dissocier la

précision du modèle de l’efficacité de la communication en FL. Une approche prometteuse

récente consiste à élaguer un réseau aléatoire pour obtenir une approximation d’un réseau

cible, conformément au problème d’approximation de la somme des sous-ensembles, ce qui

a permis d’obtenir des gains significatifs en termes d’efficacité de la communication et de

généralisation du modèle. Cependant, nous montrons que les algorithmes de pointe existants

qui adoptent de tels schémas dans des contextes fédérés ne parviennent pas à exploiter pleine-

ment le potentiel d’amélioration de l’efficacité de la communication. En conséquence, nous
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proposons un nouvel algorithme qui permet d’obtenir des gains de communication nettement

plus importants. Notre approche favorise un élagage supplémentaire des réseaux aléatoires,

ce qui se traduit par des mises à jour de modèles plus clairsemées. Il est important de noter

que la solution que nous proposons garantit que cet élagage accru n’affecte pas négativement

la performance de généralisation du modèle produit.

Cette partie est couverte par le chapitre 4 et est basée sur :

– Mohamad Mestoukirdi, Omid Esrafilian, David Gesbert, Qianrui Li, and Nicolas Gres-

set, 2023. Sparser Random Networks Exist: Enforcing Communication-

Efficient Federated Learning via Regularization. arXiv preprint arXiv:2309.10834.

(to be submitted to IEEE Communication letters)
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jun Nitin Bhagoji, K. A. Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,

Rafael G.L. D’Oliveira, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett,
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Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi
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