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Abstract

Over the past decade, the telecommunication industry has undergone a profound transformation, witness-
ing substantial shifts in the design, deployment, and operation of network infrastructure. The advent of 5G
technology has set forth a new set of requirements and challenges for network operators. Predominantly,
these challenges are accentuated at larger scales of the network and the encompassed data, which are the
core facilitators for emergent use cases foreseen in the Beyond 5G and 6G. Despite this evolving landscape,
the prime objective for network operators remains to be the same: To optimize the cost-revenue problem, al-
beit in a substantially expanded dimension. This demands a transformation from the traditional, manual
network management approaches to the modern, and automated, cloud-native systems. This transforma-
tion has previously occurred with Self-Organizing Networks (SON) falling short in addressing the challenges
of 5G networks [1]. Now, with the surge of cloud-native technologies into the telecommunication domain,
this transformation has to be elevated further.

In the context of the cost-revenue optimization, a pivotal factor in network operation costs is resource con-
sumption, whereas revenue generation is primarily influenced by sustained quality of service and business
agility for a rapid service introduction. In the realm of cloud-native 5G and 6G, the former encompasses
concepts such as cost and energy optimization, resource sharing, and network slicing, while the latter lever-
ages a majority of DevOps practices, relatively new to the telecommunication industry. The advent of cloud
computing and virtualization technologies has empowerednetwork operators tominimizeCapital andOper-
ational Expenditures by consolidating Network Functions (NFs) onto commodity hardware. Advancements
in cloud technologies have facilitated the instantiation and decommissioning of NFs, shifting network man-
agement from lengthy, manual processes to agile, automatedManagement and Operation (MANO) systems.
This paradigm shift introduces a proactive network design strategy aimed at meeting service requirements,
rather than retrofitting services to fit a pre-established network architecture. It has also redefined problem
statements such as network slicing, transitioning from a resource division focus to a design approach aligned
with slice requirements and available resources. These dual formulations fundamentally alter how MANO
systems are designed and operated for the dynamic, software-oriented, cloud-native networks, necessitating
a new generation of MANO that adheres to the cloud-native principles like declarative reconciliation and
consistent automation.

On the other hand, both traditional and currentMANO systems have lagged behind the rapid advancements
in the IT industry, failing to fully exploit the capabilities of cloud-native environments. To bridge this gap,
this thesis introduces a specialized cloud-native MANO for next-generation mobile networks, conceptu-
alized under the TRIREMATICS project, which embodies cloud-native principles to redefine and revamp the
MANO stack fundamentally. Our newly proposed methods significantly outperform existing solutions in all
considered metrics, such as agility and overhead. Furthermore, a substantial number of operations become
scalable only when these modern methodologies are integrated.
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In the realm of research, these innovations have unlocked a new domain previously inaccessible due to the
inherent limitations of traditional MANO systems. This novel area merges insights from distributed systems,
cloud computing, and networking to design highly scalable and reliable systems. This thesis falls under the
category of experimental system design, where each idea presented is implemented and evaluated in a real-
world setting. This approach has garnered significant interest from researchers and engineers involved in
various global and European projects, fostering collaboration and exploration of new opportunities enabled
by this platform.

This thesis crystallizes significant contributionspivotedaround integral concepts suchasConsistentDevOps
and Declarative Automation to realize the envisioned cloud-native MANO. These principles are applied in
the context ofmulti-x systems, where ‘x’ represents various dimensions such as RAN vendor, OS, and cloud,
addressing the level of heterogeneity and diversity in the modern networks. Interpreting multi-x as a cloud-
native extension to the Open RAN ecosystem, the TRIREMATICS project is conceived and validated through a
concrete proof-of-concept prototype for multi-vendor 5G networks. This addresses the complexities of next-
generation private and public cloud-native MANO systems by incorporating advanced technologies such as
eBPF and recent developments in the cloud-native domain, including Kubernetes.
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Resumé

Au cours de la dernière décennie, l’industrie des télécommunications a subi une transformation profonde,
marquée par des changements importantes dans la conception ainsi que le déploiement et l’exploitation
des infrastructures réseaux. L’emergence de la technologie 5G a introduit un nouvel ensemble de défis et
d’exigences pour les opérateurs de réseau. Ces défis sont particulièrement accentués à l’échelle du réseau et
ses données associées, qui sont les facilitateurs principaux des nouveaux cas d’usages prévus pour les tech-
nologies 5G et 6G. Malgré cet évolution, l’objectif principal des opérateurs de réseau reste le même : opti-
miser le problème coût-revenu, bien que dans une dimension considérablement élargie. Cela nécessite une
transformation des approches traditionnelles de gestion de réseau manuelle vers des systèmes modernes
et automatisés, basés sur la technologie cloud. Cette transformation a déjà eu lieu avec les réseaux auto-
organisants (SON), mais ces derniers se sont avérés insuffisants pour relever les défis des réseaux 5G [1]. Au-
jourd’hui, avec l’essor des technologies cloud natives dans le domaine des télécommunications, cette trans-
formation est acceleré.

Dans le contexte de l’optimisation coût-revenu, un facteur clé dans les coûts d’exploitation du réseau est la
consommation des ressources, tandis que la génération de revenus est principalement influencée par le
niveau de qualité de service et l’agilité commerciale pour un deploiement rapide de services. Dans le do-
maine des 5G et 6G basées sur le cloud, le premier englobe des concepts tels que l’optimisation des coûts
et de l’énergie, le partage des ressources et la découpage du réseau (en anlgais network slicing). Le sec-
ond tire parti d’une majorité de pratiques DevOps, relativement nouvelles dans l’industrie des télécommu-
nications. L’emergence du cloud computing et des technologies de virtualisation ont permis aux opéra-
teurs de réseaux de minimiser les coûts d’investissement (CapEx) et d’exploitation (OpEx) en déployant des
fonctions réseau (NFs) sur des serveurs génériques. Les avancées dans les technologies cloud ont facilité
l’instanciation et la decommission des NFs, changeant ainsi la gestion manuelles et longues des réseaux de
télécommunication vers un systèmedegestion et exploitation (MANO) automatisés et agiles. Ce changement
de paradigme introduit une stratégie de conception de réseau proactive visant à répondre aux exigences de
service, plutôt que de rénovation les services pour les adapter à une architecture de réseau préétablie. Il a
également redéfini les énoncés de problèmes tels que le découpage du réseau, passant d’une approche axée
sur la division des ressources à une approche de conception alignée sur les exigences de découpage et les
ressources disponibles. Ces doubles formulations modifient fondamentalement la façon dont les systèmes
MANO sont conçus et exploités pour les réseaux dynamiques, orientées logiciel, et deployé nativement dans
le cloud, nécessitant une nouvelle génération deMANO qui adhère aux principes du cloud tels que la récon-
ciliation déclarative et l’automatisation cohérente.

D’un autre côté, les systèmes MANO existants ont pris du retard par rapport aux avancées rapides dans
l’industrie informatique, ne parvenant pas à exploiter pleinement les capacités des environnements cloud
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natifs. Pour combler cette lacune, cette thèse introduit unMANO spécialisé dans le cloud pour les réseaux

mobiles de nouvelle génération, conceptualisé dans le cadre du projet TRIREMATICS. Ce projet incarne les
principes du cloud pour redéfinir et revitaliser fondamentalement la pile MANO. Nos nouvelles méthodes
proposées surpassent nettement les solutions existantes dans toutes les métriques considérées, telles que
l’agilité et la surcharge. De plus, un nombre important d’opérations ne deviennent évolutives que lorsque
ces méthodologies modernes sont intégrées.

Ces innovations ont ouvert un nouveau domaine de recherche auparavant inaccessible en raison des limita-
tions inhérentes aux systèmes MANO traditionnels. Ce nouveau domaine fusionne les connaissances issues
des systèmes distribués, de cloud computing et des réseaux pour concevoir des systèmes hautement évolu-
tifs et fiables. Cette thèse s’inscrit dans la catégorie de la conception de systèmes expérimentaux, où chaque
idée présentée est mise en œuvre et évaluée dans un contexte réel et operationelle. Cette approche a suscité
un intérêt considérable de la part des chercheurs et des ingénieurs impliqués dans divers projets mondiaux
et européens, favorisant la collaboration et l’exploration de nouvelles opportunités permises par cette plate-
forme.

Cette thèse cristallise des contributions significatives articulées autour de concepts intégraux tels que De-
vOps cohérent et l’automatisation déclarative pour réaliser une pileMANO cloud natif, spécialisé pour des
réseaux de télécommunications . Ces principes sont appliqués dans le contexte des systèmesmulti-x, où «
x » représente diverses dimensions telles que le fournisseur RAN, l’OS et le cloud, traitant plusieurs niveaux
d’hétérogénéité et de diversité des réseaux modernes. Interprétant le multi-x comme une extension cloud
natif de l’écosystème Open RAN, le projet TRIREMATICS est conçu et validé à travers un prototype concret
et un pilot pour les réseaux 5G multi-fournisseurs. Cela répond parfaitement aux complexités des systèmes
MANO dans le contexte des deploiements dans des clouds privés et publics en intégrant des technologies
avancées telles que eBPF et des développements récents dans le domaine cloud natif, notamment Kuber-
netes.

Résumé du chapitre 1 : Introduction

Le chapitre 1 de la thèse établit la scene pour l’ensemble du travail académique en fournissant une intro-
duction complète et détaillée aux domaines de recherche abordé. Ce chapitre est essentiel car il donne au
lecteur une compréhension claire des objectifs, des motivations, et du contexte de la recherche ainsi que
l’organisation de la manuscrit dans son ensemble.

Objectifs et Motivations

La première section du chapitre se concentre sur les objectifs et les motivations qui ont guidé la recherche.
Il souligne l’importance du domaine de la télécommunication en cloud natif, et en particulier les défis et
les opportunités présentés par les technologies de réseau de cinquième et sixième générations (5G et 6G).
L’objectif principal est d’améliorer les systèmes existants et d’apporter des innovations dans ces réseaux, tout
en abordant les questions de évolutivité, de fiabilité et d’efficacité.
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Contributions de la Recherche

Le chapitre détaille également les contributions spécifiques apportées par l’auteur dans ce domaine. Il s’agit
notamment de l’élaboration de nouvelles méthodologies pour la gestion des réseaux, de l’optimisation des
processus d’automatisation, et de la création de solutions plus efficaces pour la gestion des réseaux à grandes
echelles. Chaque contribution est présentée avec un contexte suffisant et une justificationde son importance
dans le domaine global de la recherche.

Structure de laThèse et Publications

Enfin, le chapitre se termineenprésentant la structureglobalede la thèse, endonnantunaperçudes chapitres
suivants. Il inclut également une liste des publications académiques générées par la recherche, ajoutant ainsi
une couche de validation externe au travail effectué.

Résumé du chapitre 2 : Contexte et l’état de l’art

Le chapitre 2 sert de pierre angulaire à la thèse en établissant le contexte fondamental et le cadre générique
du domaine de recherche de cette thèse. Le principal objectif de ce chapitre est de fournir un panorama
complet des travaux antérieurs et des concepts clés qui influencent directement ou indirectement le sujet de
la thèse.

Structure et L’Architecture

Ce chapitre commence par une discussion sur la structure planétaire de 5G et les défis associés à la gestion
des réseaux à grande échelle du cloud. Après avoir présenté les plans de la 5G, le chapitre se concentre sur
l’architecture particulière deTRIREMATICS, qui est le projet de rechercheprincipal de cette thèse. En course de
cette introduction, nous présentons les comparaisons avec les stacks MANO existants, ETSI-NFV et O-RAN
SMO, et soulignons les différences clés.

Nomenclature et Terminologie

Cette section du chapitre se concentre sur la nomenclature et la terminologie utilisées dans la thèse. Il est
essentiel de définir ces termes dès le début, car ils sont utilisés tout au long de la thèse. En particulier, les ter-
mes tels quemulti-x, déclarative, idempotent, et les autres concepts clés du cloud computing sont également
définis en détail.

Evolution Chronologique et Générationnelle

Le chapitre poursuit avec une revue détaillée de l’évolution chronologique des technologies et des solutions
MANO et cloud. Cette section nous permet de définir quatre générations de solutions MANO qui s’appuient
sur les différentes technologies. TRIREMATICS est présenté commeunMANOde dernière génération, entière-
ment cloud natif et basé sur les principes DevOps et le plan des opérateurs logiciels.
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Les Dimensions et les Modèles de Conception

Dans ce chapitre, nous présentons également les dimensions dans lesquelles les solutions MANO peuvent
être comparées auxmodèles de conceptionqui peuvent êtreutilisés pour les concevoir. Denombreux travaux
précédents sont présentés dans le contexte de ces dimensions et modèles de conception, permettant au
lecteur de comprendre les différences et les similitudes entre les solutions existantes et les TRIREMATICS.

Résumé du chapitre 3 : DevOps Cohérent

Chapitre 3 aborde la conception et la mise en œuvre de plateforme DevOps de TRIREMATICS. Le concept
de DevOps cohérent est également introduit, en particulier dans le contexte des environnements multi-
x. Un DevOps cohérent fait référence à un pipeline de construction, de test et de déploiement qui fournit
des artefacts avec des résultats reproductibles et prévisibles dans différents environnements. En ayant à
l’esprit l’agilité commerciale, un DevOps agile et cohérent serait un véritable catalyseur pour tout opérateur
de réseau. De plus, le chapitre met en évidence les défis uniques que représente le DevOps dans le domaine
des télécommunications, en raison de la nécessité d’une grande échelle et d’une cohérence dans des scénar-
ios multi-x.

Preliminaries

Cette section sert d’introduction au concept de DevOps, qui regroupe un ensemble de meilleures pratiques
et d’outils permettant aux organisations de construire, tester et déployer leurs applications dans le cloud
d’une manière plus rapide et fiable. Les artefacts, principalement des images conteneur, sont définis de
manière exhaustive, ainsi que les complexités des différents environnements d’exécution de conteneurs et
formats d’image. La section critique également les malentendus et imprécisions actuels dans la recherche
en télécommunications, plaidant pour une approche équilibrée entre la sécurité et la performance dans les
systèmes de gestion de conteneurs, spécifiquement au sein du projet HYDRA.

Système de Construction (Build en anglais)

La section suivante du chapitre discute de la procedure entière de construction des images conteneur. Tout
d’abord, le mappage des NFs sur les artefacts est présenté, accompagné des critères de sélection des map-
pages en fonction des mesures de temps de construction et de taille d’image. Ensuite, les recettes de con-
struction sont définies, enmettant l’accent sur les dépendances et leurs expressions déclaratives. Après cela,
la stratégie de construction est présentée et comparée à trois autres systèmes en termes de cohérence, de
concurrence, et demise en cache. La présentation de la stratégie de construction contient également une for-
mulationmathématique duproblème. Dans unepartie séparée de la section, nous démontrons l’importance
de la cohérence dans DevOps, tout en respectant la concurrence et la mise en cache. En outre, l’impact de
la limitation des ressources sur la cohérence est évalué, en particulier dans le contexte des environnements
multi-x. Enfin, la section se termine par une discussion sur l’automatisation de la construction et le système
de gestion des versions.
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Système de Test et CI/CD

La section suivante du chapitre se concentre sur le système de test, essentiellement la procédure de test
des images conteneur dans un environnement multi-x. De plus, la section présente le système CI/CD (de
l’integration en continuee au deploiement en continue), qui est responsable de l’automatisation de la procé-
dure de construction des artefacts et de test. En particulier, nous discutons de nouvellesméthodologies pour
la gestion des tests en CD pour les réseaux de la prochaine génération. Ces méthodologies sont basées sur le
découpage du réseau et la gestion des ressources, et sont conçues pour répondre aux exigences de test des
réseaux 5G et au-dela dans un environnement multi-x.

La Structure des Images et les APIs

Le chapitre se termine par une discussion sur la structure des images conteneur et ses APIs. La structure des
images conteneurs est définie en détail, enmettant l’accent sur les différentes couches et leurs rôles. Ensuite,
les APIs sont présentées, en particulier celles qui sont utilisées pour la gestion de cycle de vie et le tolérance
aux pannes.

Résumé du chapitre 4 : Automatisation Déclarative

Le chapitre 4 aborde la conception et l’implémentation de la partie MANO de TRIREMATICS, qui est partic-
ulièrement responsable de l’automatisation déclarative de la gestion des NFs.

Le Plan de Opérateur Multi-x

Au début du chapitre, nous identifions les acteurs dans l’écosystème multi-x. Ensuite, nous définissons le
concept de plan de opérateur, qui est composé de trois couches. Dans chaque couche, plusieurs exemples de
opérateurs logicels sont proposés. Les couche basse et niveau-1 sont détailées en termes de fonctionnalités
et de responsabilités dans les sections suivantes du chapitre. Egalement, nous identifions les formulations
duals des problèmes de mise à l’échelle et de découpage du réseau ainsi que leur algorithmes associées, qui
apparaissent dans le contexte moderne du cloud natif.

Le Gestionnaire de Side-car

Cette partie du chapitre se concentre sur le gestionnaire de side-car et la composition de Pods. Nous in-
troduisons plusieurs nouvelles interfaces pour plusieurs opérations du jour-1 et du jour-2, y compris la (re)
configuration, la résolution des dépendances, le tolérance aux pannes, l’observabilité et la gestion fine d’un
NF. Nous définissons également les nouvelles mesures pour ameliorer l’efficacité energitique et la qualité de
service, qui sont utilisées par les décisions mentionnées ci-dessus.
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L’Evulation et les Resultats

Le chapitre se termine par une évaluation des performances du projet ATHENA. En particulier, nous com-
parons les performances de ATHENA avec OSM en matière de temps de déploiement, de consommation de
ressources, de agilité de réponses aux événements de jour-2, et l’effet sur les performances du réseau (latence
et débit). Les résultatsmontrent que ATHENA est surpasse considérablement OSMdans tous les aspects con-
sidérés, prouvant qu’il s’agit de la prochaine génération de MANO. Par exemple, notre solution montre une
améliorationminimale de 60 % de l’agilité et une réductionmoyenne de 90 % des ressources nécessaires par
rapport à l’état de l’art sans sacrifier l’efficacité ou la performance.

Résumé du chapitre 5 : Cas d’Usage

Chapitre 5 présente les cas d’usage de TRIREMATICS a travers trois scénarios différents:

1. L’optimization de coûts et d’énergie dans les réseaux privés 5G;

2. La planification et la prédiction de la consommation de ressources dans les réseaux 5G Open RAN;

3. La collecte de mesures énergétiques et le cloud computing vert dans le cadre de la 6G et MANO de la
prochaine generation.

Résumé du chapitre 6 : Conclusions

Le chapitre 6 conclut la thèse en résumant la vue d’ensemble du projet TRIREMATICS en form d’un problème
d’optimisation global. Ensuite, les travaux futurs sont présentés.
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Chapter 1

Introduction

This chapter would incorporate the motivations and contributions made by
the author in this area of research in a summarizedmanner. Furthermore, we
introduce the structure of the thesis and the publicationsmade by the author.

The project supporting the thesis material is called TRIREMATICS, which is a
portmanteau of the words Trireme and Automatics. The Trireme is a type of
ancient Greek warship that was used by the Athenians, and the Automatics is
a term used in the telecommunication industry to refer to the automation of
the network operations. The layered structure of TRIREMATICS is the reason
behind the name while mixed with the common courtesy of naming projects
relevant to the Greek or nautical terms in the cloud native landscape.

1.1 Motivation and Challenges

While 5G networks have been deployed for several years across various coun-
tries, anddiscussions about 6Gnetworks are alreadyunderway in the research
community, the promises of 5G networks remain elusive for network opera-
tors, both public and private. This issue is not extensively covered in existing
literature but is evident from the author’s interactions with multiple opera-
tors and companies in the telecommunication industry. We claim the pri-
mary challenge lies in the scale and complexity of 5G networks, making them
difficult to manage with the current tools and technologies available to net-
work operators. The central motivation and the overarching challenge of this
thesis are to address this gap and provide a viable solution.

The first layer of this complexity arises from the convergence of various tech-
nologies in 5G and anticipated 6G networks. Such a rich tapestry of tech-
nologies emerged from various vendors and technologies increases the het-
erogeneity of the network, creating amultitude of layers that requiremanage-

ment. Especially when one considers the long-term viability of the network in
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termsof the sustainability requirements for the futurenetworks, the complex-
ity of the networkmaintenance increases even further. Traditional manage-
ment tools are often siloed and not built to handle such diversified networks,
thereby leading to operational inefficiencies and increased downtimes. In
this backdrop, MANOs in general and cloud-native MANOs in particular of-
fer a harmonized and integrated approach, capable of unifying various layers
of the network, to manage resources, services, and applications seamlessly.
By leveraging cloud-native principles, this approach promises agility, scala-
bility, and resilience—qualities essential for handling the immense scale and
complexity inherent to 5G and 6G ecosystems.

Moreover, the commercial implications of an inefficiently managed network
can be severe, impacting not just the quality of service but also the rapid roll-
out of new features and services, a critical requirement in the rapidly evolving
telecom landscape. A cloud-native MANO solution can bring about automa-
tionand intelligence innetworkmanagementprocesses, thereby significantly
reducingoperational expenses and time-to-market for newservices. Theabil-
ity to adapt quickly to consumer needs and market trends could mean the
difference between leading the industry or playing catch-up. Therefore, the
motivation to delve into this research is not merely academic; it is critically
aligned with tangible, real-world challenges and opportunities that network
operators are currently grappling with.

These motivational remarks raise to certain challenges that are enlisted fur-
ther in the section. The challenges directly emerge from the motivations. For
instance, consistency directly addresses theneed for reliability andpredictabil-
ity in network operations, ensuring that the theoretical gains of 5G and 6G
are actualized in real-world deployments. Meanwhile, a multidimensional
sustainability underscores the imperative of long-term viability, emphasiz-
ing that the network solutions of todaymust be designedwith environmental
considerations and future scalability in mind.

The adoptedmethodology, as illustrated in figure 1.1, involves an experimen-
tal design and development of the problem’s premises on a comprehensive
realistic platform named TRIREMATICS, which later leads to the abstraction
and modeling practices for accurate problem formulation and algorithm de-
sign. The primary goal of the experimental design and development aligns
with the universally acceptedmotivation across enterprises: financial viabil-
ity. Insights obtained from this implementation and study enable us to ab-
stract the designs and identify the underlying mathematical models of the
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problem. Thesemodels span from simple graph theory to complex optimiza-
tion problems and are then leveraged to explore alternative solutions not ini-
tially considered in the implementation but have emerged due to the abstrac-
tionprocess. Through iterative comparison and refinement, this cycle contin-
ues until an acceptable solution is identified. In an ideal scenario, these ab-
stractions could be further dissected to discover potential solutions initially
overlooked by the experimental design and development.

Experimental Design and
Development

• Implementation
• Case studies
• Evaluation
• Comparison

Abstraction and Models

• Formalization
• Math Formulation
• System Design
• Algorithms

$

FIGURE 1.1: The study of this thesis follows the loop of experimental design and development and abstraction
to identify the problem and its solution. The Dollar sign ($) represents the financial viability of the solution as
the primary incentive of the optimizations.

The cost and revenue dynamics of a network are so complex that formulating
a comprehensive optimization problem and solving it throughmathematical
methods is impractical. This fact is revisited in the chapter 6 where we try the
formulation of the problem into an optimization problem, and it rapidly ex-
pands to a sophisticated non-linear optimization problem. This underscores
the importance of experimental design and development practices forming
an empirical analysis of the problem. On the other hand, this necessitates a
system design study, not only to establish a platform for empirical research
but also to implement the outcomes of the abstraction process. The follow-
ing fundamental challenges are identified and addressed in this thesis using
the aforementionedmethodology. These challenges are also accompanied by
key terms that serve as contributing responses to these challenges:

• An End-to-End (E2E) MANO platform is needed that supports the dy-
namic and diverse nature of modern 5G or 6G networks→Multi-x;

• The results produced from the deployments of such MANO should be
reproducible and predictable→ Consistency;
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• Theoperators should be able to define their networkwith high-level de-
sired outcomes instead of low-level complex configurations→ Intelli-

gent Declarative Automation;

• The MANO should be rapid and proactive to the events of the network
lifecycle→ Agile Day-𝑛 Reconciliation;

• Theartifactsused in theMANOneed todeliverbusiness agilitywith little
to no overhead→ Agile DevOps and Lightweight MANO;

• The platform needs to be scalable and extensible to support the future
needs of network operators→ Cloud Native.

• The MANO system needs to be ready for supporting sustainability for
the future networks, including observations for energy metrics, fine-
grained energy-aware decisions, and support for heterogeneous recy-
cled or reused compute and radio resources→Multi-x Sustainability.

1.2 Contributions

By the methodology and motivation discussed in the section 1.1, the author
has made the following major contributions:

Multi-x —Originating from the extension of the Open RAN concept, multi-
x offers freedom of choice at every stage of network design and implementa-
tion. Our design is not only agnostic to the hardware or software used but also
provides open interfaces for extensibility and while it itself remains fungible.

Consistent and Concurrent DevOps —This becomes particularly impor-
tant in the context ofmulti-x networks, wherepredictability and reproducibil-
ity are essential for minimizing supply chain risks. Consistency impacts the
network’s performance, security, and reliability. We have prioritized consis-
tency as a core constraint in our design, leading to a highly concurrent yet
consistent DevOps approach for multi-x 5G and 6G networks.

Intelligent, Agile, and, Declarative Automation —Leveraging distributed
and cloud-native system designs, we have revolutionized how networks are
designed, defined, andoperated. This paradigmshift has unlockednumerous
benefits and opportunities that were previously unattainable. For instance,
declarative automation enables agile and fault-tolerant reconciliation, struc-
tured observability, optimized and intelligent decision-making, newproblem
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formulations, and, ultimately, novel use cases. Thenetwork lifecyclemanage-
ment is an active process that evolves over time. The agility of the response
to the changes in the network while delivering observable and actionable in-
sights enables the operators to make informed decisions and optimize the
network in real-time. We show in this thesis a modern, cloud-native recon-
ciliation approach that is agile and fault-tolerant, outperforming the existing
solutions by a significant margin.

OperatorPlane —Anewlydefinedcloud-nativePlane for extending the ca-
pabilities of the platform for unforeseen and complex future use cases. This
plane is a structuredmulti-level abstraction that transcends the network con-
cepts to cloud-native API resources.

Multi-x Sustainability —Anovel approach to the sustainability of the net-
work, including the energy metric collection and formulation, fine-grained
micro-decisions andhigh-levelmacro-decisions, and support formulti-x het-
erogeneous clusters.

1.3 Publications

The following direct publications aremade by the author to support the thesis
material:

• A. Mohammadi, N. Nikaein; ATHENA: An Intelligent Multi-x Cloud Na-
tive Network Operator, IEEE Journal on the Special Areas in Communi-
cations (JSAC), Open RAN Special Issue, 2023 [2]; related to the context
of the chapters 4 and 5.

• C. Chen, M. Irazabal, C. Chang, A. Mohammadi, N. Nikaein; FlexApp:
Flexible and low-latency xApp framework for RAN intelligent controller,
IEEE International Conference on Communications (ICC), 2023 [3]; a
use case of the TRIREMATICS platform for the Open RAN systems.

1.4 Industrial Demos and Projects

Following themethodology represented in the figure 1.1, the author has been
involved in several projects and has demonstrated the results of the thesis in
the form of industrial demos in several events. These are a few notable men-
tions:
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• Next Generation Mobile Networks (NGMN) International Conference
andExhibition (IC&E), Paris, France, 2022; with a demo titledCloudNa-
tive Open RAN;

• Mobile World Congress (MWC), Barcelona, Spain, 2023; where we pre-
sented several demos includingoneonartifact upgrade in telcoDevOps
pipeline, multi-x observability, and cloud-native RAN sharing;

• Open RAN Workshop, Taipei, Taiwan, 2023; with a demo on network
slicing and sharing in Open RAN as well as a talk on the cloud-native
Open RAN;

• European Conference on Networks and Communications (EuCNC), in
Gothenburg, Sweden, 2023; with a demo on applications of private 5G
networks in the industry with TRIREMATICS as theMANOplatform; part
of the 5G-Victori project.

1.5 Structure

This project is the result of experimental research in the common intersec-
tion of the cloud native and telecommunication. Hence, the study method
is deeply intertwined with the implementation and the results of the experi-
ments. Themain flow of the project is based on twomajor concepts:

• Consistent DevOps; the core concept in the Chapter 3;

• Declarative Automation; the building block of the Chapter 4.

In each chapter, first the general design is laid out, then for each particular
choice in the design, supporting abstract reasoning alongside implementa-
tion considerations are provided. In chapter 3, weperformedempirical quan-
tified analysis on a group of mathematically well-defined problems that ap-
pear in a DevOps pipeline applied in the context of cloud-native 5G and 6G.
The result of this analysis is a set of practices that are incorporated in our
CI/CD platform. In chapter 4, we shift the focus to the MANO systems with
mostly a qualitative design journey to employ the best of cloud-native tech-
nologies in the MANO systems for 5G and 6G.

The thesis is structured as the following:

• Chapter 2 provides a brief background on the cloud native technologies
and discusses the related works, grouped into several generations;
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• Chapter 3 discusses the challenges and novelties for HYDRA and TRI-
DENT projects on the axis of the consistent DevOps, alongside several
evaluations of the defined approaches;

• Chapter 4 addresses ATHENA, the declarative automation of TRIREMAT-
ICS and its design and implementation details for an efficient and cloud
nativeMANO, with a set of evaluations and comparisons to the existing
MANO solutions;

• InChapter 5, weprovide several use cases and scenarios todemonstrate
the capabilities of TRIREMATICS in the real world scenarios;

• Chapter 6 concludes the thesis and provides a brief outlook on the fu-
ture work.

It should be noted even though this thesis by itself is not conclusive enough
to capture every other aspect of the discussed concepts, it paves the path for
the future research in the area of cloud-native telecom in its own influential
and innovative manner.
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Chapter 2

Background & RelatedWork

In this chapter, we lay the foundational context of the thesis through the pla-
nar structure introduced in section 2.1, which delineates the exact scope of
the project. Given this framework, we explore the chronological evolution
of Cloud Native1 telecommunications and its relationship with other models
and standards in section2.4. Wealso examine thenomenclature in section2.3
to establish a consistent terminology for the remainder of the thesis.

The chapter continues with a review of the dimensions along which various
MANO solutions can be compared, as discussed in section 2.5. These dimen-
sions, in conjunction with the design patterns outlined in section 2.6, serve
as the basis for introducing the four generations of MANO in section 2.7.

To fully comprehend the comparison logic for the related works, one has to
take into account that TRIREMATICS is tackling the underlying framework for
MANO by introduction of a whole new generational shift. In that sense, we
tend to examine the state-of-the-art with the same perspective, reaching out
to their underlyingarchitecture rather than the innovations theyhavebrought
on the top. Onemay even argue that thoseworks could be transplanted to the
new architecture with minor changes, but the contributions made there are
orthogonal to the discussion in this thesis.

2.1 Planes in 5G

To simplify the understanding and development of complex architectures, it
is standardpractice todivide them into logical components. In telecommuni-
cations, this practice dates back to the early days of cellular networks, where
the architecture was typically divided into the Radio Access Network (RAN)
andCoreNetwork (CN).This division serves to segregate the physical compo-
nents of the network and administrative domains. When visualizing a generic

1 The term may appear with dash as
cloud-native or in lowercase, espe-
cially when used adjectivally. How-
ever, the official spelling according to
the Cloud Native Computing Foun-
dation (CNCF) is Cloud Native.
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FIGURE 2.1: SDN’s three planes and their
interfaces. Alternative terminologies exist
for SDN that do not apply to the context of
this thesis, see [4]. TheManagementPlane,
defined out of the scope for the SDN, is
shown here too.
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FIGURE 2.2: In our design, the 5G Planes
could be roughly pictured like this figure.
The Orchestration Plane wraps around the
other Planes to provide infrastructure ac-
cess (south), synchronization (east), and
the communication medium between the
Management and Operator (north).

mobile network horizontally, as is commonly done in textbooks, this division
appears to bisect the diagram vertically.

With the advent of Software Defined Networking (SDN) in the early 2010s,
the concept of dividing a network into horizontal planes gained prominence.
Specifically, SDN specifies three distinct planes as illustrated in figure 2.1: the
Application Plane, Control Plane, and Data Plane. These planes differ in their
roleswithin thenetwork,whetherdirectly involved inpacketprocessing (Data
Plane), configuring the processing (Control Plane), or dictating the general
traffic behavior (Application Plane) [4].

The innovation in SDN’s planar architecture lies in its ability to enhance pro-
grammability, automation, and flexibility, while simultaneously improving
network performance and monitoring capabilities. The performance gains
are a direct result of decoupling control operations from the data path. SDN
has had a transformative impact on various forms of networking, including
cloud infrastructures and, subsequently, LTE and 5G networks [5], [6].

Although the terms plane and layer are often used interchangeably, we dis-
tinguish between them using specific formal definitions that will be consis-
tently applied throughout this thesis. The following subsections will explore
the planar structure of 5G, adhering to the terminology established here.

Definition 2.1 (Plane). A plane refers to the horizontal logical partitioning

of a system into distinct components based on their influence on data packets

within a network or their structural impact on other system elements.

We identify five distinct Planes in this thesis, as illustrated in figure 2.2: User,
Control, Management, Orchestration, and Operation. Subsequent sections
will elaborate on each Plane, detailing their internal structures and Layers

with specific examples from 5G networks where applicable. The particularly
new challenges and requirements of each Plane will also be discussed in the
context of cloud-native 5G and 6G networks.

Definition 2.2 (Layer). A layer constitutes a subdivision of a Plane (defini-

tion 2.1), grouped by either its functional attributes or the interfaces it con-

sumes or provides.

Contrary to Planes, there is no standardized definition of Layers within 5G
networks; we employ the term solely for categorization purposes in this the-
sis. While some researchers have proposed additional Planes such as the Ap-
plication Plane, Intelligence Plane, Cognitive Plane, and Analytics Plane, we
omit these fromour discussion as they fall outside the scope of this thesis and
do not present unique challenges in a cloud-native context.
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2.1.1 User Plane

3GPP adopts the concept of Control and User Plane Separation (CUPS) [7]
from the SDN architecture.2 The entire 5G network can be viewed as a com-
plex packet processing system that receives packets from theUser Equipment
(UE), processes them, and forwards them to the destination on the Data Net-
work (DN). The components of the 5G network directly involved in packet
processing, constituting the User Plane (UP), are as follows:

• Distributed Unit (DU) in the RAN;

• Central Unit User Plane (CU-UP) in the RAN;

• User Plane Function (UPF) in the CN;

• Data Network (DN);

Inmonolithic RANarchitectures, the RANcanbe considered as awhole entity
in both the User Plane and Control Plane. In LTE, the Serving Gateway (SGW)
and the Packet Gateway (PGW) serve the role of the UPF. It is noteworthy that
the O-RAN definition of Radio Unit (RU) combined with O-RAN’s DU aligns
with the 3GPP DU definition. Figure 2.3 shows the 5G UP with its interfaces.
The primary challenges for the User Plane in a cloud-native environment in-
clude:

1. Minimizing the disparity between nominal and actual throughput on
UP links;

2. Reducing the number of hops in packet transmission;

3. Mitigating unwanted latency overhead particular to the containerized
and cloud-native settings;

4. Ensuring the requisite level of reliability;

5. Implementing mechanisms to enhance security and privacy;

6. Dynamic service mapping for observability and troubleshooting.

These challenges are largely agnostic to theunderlyinghardware andaremore
influenced by the software stack. In TRIREMATICS, these challenges are pri-
marily addressed through the judicious selection of cloud-native tools in the
design of the cloud infrastructure. For example, incorporating Border Gate-
way Protocol (BGP) in TRIREMATICS allows for improved performance due to
lower overhead and no need for encapsulation, or the application of eXpress
Data Path (XDP) to reduce the number of hops in packet transmission from
container to container. Majority of these challenges are addressed in the sec-
tion 4.7.

2ThetermsUser Plane (UP) andData
Plane (DP) are interchangeably syn-
onymous in the context of 5G.

DU

CU-UP

I-UPF
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FIGURE 2.3: 5G User Plane with their inter-
faces. In this figure, we have also shown
the decompostion of the UPF into Inter-
mediate UPF and UPF PDU Session An-
chor (PSA). In that sense, we tried to de-
pict that I-UPF is closer to the RAN than
the UPF PSA.
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3 In this thesis, RAN components are
also referred to as NFs.

2.1.2 Control Plane

In the 5G network, the Control Plane (CP) is responsible for establishing and
configuring data sessions between the User Equipment (UE) and the Data
Network (DN). The CP primarily consists of the following components. The
Layers in this list follow the definition 2.2.

• Central Unit Control Plane (CU-CP) in the RAN;

• Network Layer, which includes the Access and Mobility Management
Function (AMF) and SessionManagement Function (SMF);

• Slicing Layer, featuring the Network Slice Selection Function (NSSF);

• Exporting Layer, comprising the Network Exposure Function (NEF);

• Data Layer, containing the Unified DataManagement (UDM) and Uni-
fied Data Repository (UDR).

The introduction of Network Data Analytics Function (NWDAF) [8] as well
as Management Data Analytics Function (MDAF) [9] by 3GPP has extended
the CP to include a Data Analytics Layer. The O-RAN Alliance has introduced
counterparts to NWDAF and MDAF through the RAN Intelligent Controller
(RIC) framework [10]. In this thesis, we consider both the RIC and the Data
Analytics Layer as components of the CP, albeit strictly limited to the con-
trol domain and not extending into the management domain. Our model
intentionally excludes MDAF and the FCAPS functionalities of the RIC from
its CP, as our Management and Operation (MAO) design pattern already en-
compasses these functionalities. Incorporating tasks outside their designated
Planes could not only blur the separation of concerns but also potentially in-
troduce system conflicts.

In TRIREMATICS, we adopt an inbound-outbound metric separation for each
Network Function (NF).3

Definition 2.3 (InboundMetric). Ametric that reflects specificmeasurements

about the internal state of anNF. Inboundmetrics are collected by the CP, either

through the Analytics Layer or the RIC, andare exposed via standard interfaces.

These metrics are termed inbound as they are specific to individual NFs and

require specialized invasive data extraction methods.

Definition 2.4 (Outbound Metric). A metric that provides a general external

measurement of an NF, treating the NF as a black-box application. Outbound

metrics are collected by the MAO and offer an external perspective on the NFs,

typically capturing generic metrics like CPU usage or energy consumption. As
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a general rule of thumb, these metrics are generally accessible from the kernel

or the container runtime and are not specific to the NF itself.

Figure 2.4 elaborates on the concept of inbound and outbound metrics to
clarify these definitions. Regardless of the source, the approach of TRIREMAT-
ICS is to aggregate all metrics into a unified data lake for each beneficiary,
subject to their access rights. See [11] for the formal definition of a data lake
and its benefits.

Themain challenges for the CP in a cloud-native environment are:

1. Supporting the wide range of NFs and the deployment options;

2. Slicing, scoping, migration, and isolation of the NFs;

3. Collectionof the analytics from theRANand theCN inaunifiedmanner
as of the other cloud metrics;

4. Access control policies in the Service Based Architecture (SBA) [12] of
the 5G CN.

Unlike the UP, where most of the challenges are addressed by the proper se-
lection of cloud-native tools, an intricate design of OAM is required to pro-
vide the required functionalities for the CP. For example, even though slicing
is majorly a concept in the CP, the OAM is ultimately responsible for the in-
stantiation of the NFs for each slice and guaranteeing the isolation between
them. For thatmatter, even though this thesis is neither about the UP nor the
CP, paying attention to their requirements in the OAM domain is what makes
the defined tasks in the other Layers possible. Some relevant discussions to
these challenges are made in the sections 4.5, 4.6.4, and 4.8.1.

2.1.3 Management Plane

Beyond the UP and CP, the Plane definitions are with respect to the defined
components in the UP and CP, not the stream of data. In that sense, the UP
and CP components are seen as an application entity that has a lifecycle and
the Management Plane (MP) is responsible for managing this lifecycle. The
lifecyclemanagement includesnot only the start and stopof the components,
but also the configuration, observability, and maintenance.

Definition 2.5 (Lifecycle). Any abstract construct in a system design that in-

volves certain manageable states and transitions between them has a lifecycle.

In that sense, a lifecycle is equivalent to a finite state machine, where a certain

special null state 𝜙 is as the starting state representing the non-existence of the

NF1 NF2 NF3NF3

Analytics Layer RIC

Management Plane

FIGURE 2.4: This figure shows the outside
boundary of an NF in blue and the inside
boundary in yellow. The APIs and metrics
provided for the internal configuration are
consumed by the CP and outer ones are
consumed by the Management Plane. The
black line shows where an NF is not re-
garded any more as an individual and be-
comes a generic application to be man-
aged.
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construct. Since naturally, a component could go back to the 𝜙 state at any

time by a deletion operation, the term cycle appears in the name.

As described in the table 2.1, each of the Planes partakes with respect to cer-
tain constructs and under certain domains. The UP is concerned with data
packets, flows, and streams, and it mostly operates on a per-slice basis. On
the other hand, the CP takes care of the actionsmade on the UP and works in
each scope of administration. In TRIREMATICS, one could define both slices
and scopes to separately manage the UPs and CPs. A scope defines the per-
meter ofwhich theNFs could access and communicatewith eachotherwhich
might include multiple slices. The MP takes care of the lifecycle of the UP
and CP components on a per-Workload basis. Inside a Workload (as defined
later in the section 4.6), multiple NFs could be present and configured at the
same time as NF is a construct belonging to the lower Planes. The Orchestra-
tor comes to the picture when there is a need for coordination, whether it be
the synchronization or infrastructure access. The Orchestrator takes care of
Cluster constructs such as Pods and Nodes. Each Cluster itself needs a sep-
arate orchestration. Finally, the Operator is responsible for the organization
and abstraction of the network End-to-End, perhaps spanning over multiple
Clusters and sites.

Plane Constructs Domain

User Data Slice

Control Action Scope

Management Lifecycle Workload

Orchestration Cluster Resources Site

Operator Network Abstractions End-to-End

TABLE 2.1: The Planes and their domains and constructs. The constructs are the main entities that the Plane
operates on.

TheManagementPlane (MP) in a cloud-native environment faces several crit-
ical challenges:

1. Ensuring agility and responsiveness in executingmanagement actions;

2. Accommodating a diverse set of configuration and observability mod-
els, including legacy systems;

3. Managing dependencies effectively in a distributed setting;

4. Implementing agile yet reliable fault-tolerance anddistributed recovery
mechanisms, aligned with the dependency graph;

5. Establishing a framework for fine-grained management decisions;
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6. Precisely gathering outbound metrics from Network Functions (NFs),
with a focus on compute utilization, cost-efficiency, and energy con-
sumption.

These challenges serve as the motivating factors for the design of ATHENA,
as elaborated in chapter 4. In particular, the section 4.6 discusses the de-
sign of the MP in detail, while the section 4.9.1 provides the results of our
experiments on theagility of thedesign. Section4.6.2discusses the configura-
tion management in ATHENA and section 4.6.1 puts forward the dependency
resolution mechanism. We study the effects of fault-tolerance and recovery
mechanisms in section 4.6.3, metrics collection in section 4.6.4, and micro-
decisions for the fine-grained management in section 4.8.3.

2.1.4 Orchestration Plane

The Orchestration Plane serves as a mediator that facilitates resource allo-
cation and communication between the Operator Plane (OP) and the other
Planes. In traditional parlance, this function is often encapsulated within
the Management and Orchestration (MAO or MANO) frameworks. However,
in modern cloud-native environments, Kubernetes has largely assumed this
role, extending beyond its original scope as a container orchestrator to man-
age the entire Orchestration Plane. In multi-site or multi-cluster network ar-
chitectures, the Orchestration Plane is defined on a per-cluster basis.

An Orchestration Plane design faces several challenges in a cloud-native set-
ting:

1. Efficient and secure discovery of diverse hardware resources, making
them addressable by the OP and consumable by the UP and CP;

2. Time synchronization across all hardware and software components;

3. Reliabledata transportmechanisms for configurationandobservability
between the OP andMP;

4. Automated handling of networking and storage requirements for other
Planes;

5. Implementation of robust isolation and security protocols;

6. Compatibilitywith various infrastructure types, includingpublic clouds
and on-premise bare-metal systems4;

7. Scalability and reliability under high-load conditions.

4 The term bare-metal would essen-
tially refer to non-virtualized infras-
tructure. In the public clouds, only
virtual machines can be instantiated,
making any bare-metal cloud inher-
ently a private, on-premise solution.
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5 In this thesis, the term Operator

with a capital ‘O’ specifically refers
to software entities within the Oper-
ator Plane, while the lowercase form
is used exclusively to discuss human
network operators.

Asdepicted infigure 2.2, theOrchestrationPlaneenvelops the rest of themen-
tioned Planes, providing essential functionalities. In simpler terms, it sand-
wiches the other Planes, both at the top and the bottom. The challengesmen-
tioned here are mostly addressed in Kubernetes itself and inherently any so-
lution that is built native to it, including TRIREMATICS. However, certain en-
hancements are needed to support the variety of telco hardware which are
discussed in the section 4.7. For the time synchronization, one could rely on
the Precise Time Protocol (PTP) [13] on the network cards which is supported
by a simple DaemonSet in Kubernetes.

2.1.5 Operator Plane

The Operator Plane (OP) serves as an overarching Plane built upon the Man-
agement Plane (MP) and the Orchestration Plane. It initializes the MP with
the system’s desired state and continually updates it based on changes made
by network operators.5

The OP offers network abstractions that allow network operators to interact
with the system using intents and policies, rather than low-level configura-
tions. These abstractions facilitate the creation of higher-level constructs like
network slices and services, someofwhichmay spanEnd-to-End (E2E) across
multiple clusters.

The OP is responsible for scheduling and deploying all required components
based on a given network description. While the OP issues commands, the
actual deployment of containers is carriedout by theOrchestrationPlane. The
OP oversees the lifecycle of not just individual Workloads but also the entire
network and its higher-level abstractions.

The primary challenges facing the OP in a cloud-native environment include:

1. Exposing suitable abstractions for building arbitrary higher-level net-
work constructs;

2. Efficiently scheduling and deploying Workloads and Managers across
multiple clusters through the Orchestrator;

3. Managing the lifecycle of the network and its abstracted higher-level
constructs;

4. Support a diverse range of network topologies, vendors, and hardware;

5. Implementing network policies and intents;

6. Providing the necessary APIs for both human network operators and AI
systems to interact with the network.
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Based on these challenges, we have introducedATHENAOperator Plane in the
section 4.2, where we discuss how this system of Operators could be struc-
turally extended for various, perhaps unforeseen, use cases. For scheduling,
ATHENA acts passively and simply exposes the original APIs from Kubernetes
to the network operators. Thematurity of these APIs is enough to address any
requirements expected from a cloud-native 5G and 6G perspective. However,
similar scheduling concepts are incorporated for the slices in the section4.4.2.
This concept is based on how ATHENA as an example enables slices to be an
abstract higher-level network construct.

2.2 Architecture

To address the complexities and challenges outlined in the preceding sec-
tions, the TRIREMATICS project is divided into multiple subprojects.

ATHENA focuses on implementing the Operator Plane (OP) andManagement
Plane (MP), offering new abstractions for network, terminal, and slice opera-
tions. It employs declarative automation to tackle the challenges associated
with the MP and OP.

ODIN serves as the intelligent control subsystem for both the RAN and CN,
incorporating xApps and rApps as defined by the O-RAN specifications. This
subproject is not the focus of this thesis.

GAIA augments Kubernetes with necessary plugins and extensions to form
a robust Orchestration Plane. This includes device plugins, networking and
storage configurations, time synchronization, andprovisioning. Since the de-
sign of GAIA involvesmostly implementation discussions, GAIA is only briefly
discussed in this thesis.

HYDRA and TRIDENT handle the project’s artifacts, including their construc-
tion, testing, and distribution through Continuous Integration and Continu-
ous Delivery (CI/CD) pipelines. These subprojects also implement DevOps
and GitOps practices to ensure artifact consistency.

This section mainly explores how each of these subprojects align with estab-
lished standards such as European Telecommunications Standards Institute
(ETSI)-Network Function Virtualization (NFV) and O-RAN Service Manage-
ment and Orchestration (SMO).
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FIGURE 2.5: This figure shows the ETSI-
NFV MANO architecture and how OSM is
placed in it.

2.2.1 Relation to ETSI-NFV

ETSI-NFV formally defines the Management and Orchestration (MANO) ar-
chitecture, as depicted in figure 2.5, with four key components:

1. VNFManager (VNFM): Manages the lifecycle of Virtual Network Func-
tions (VNFs).

2. Virtualized InfrastructureManager (VIM): Oversees the Network Func-
tion Virtualization Infrastructure (NFVI) virtualized resources.

3. NFV Orchestrator (NFVO): Coordinates the overall management and
orchestration of the NFVI.

4. WAN Infrastructure Manager (WIM): Extends ETSI-NFV with SDN ca-
pabilities.

Open Source MANO (OSM) [14] implements the NFVO and VNFM compo-
nents of theMANO architecture. It also provides structures for ElementMan-
ager (EM) and VNF definition, packaging, and onboarding. OSM further of-
fers Slice Management (SM) functionalities, collectively termed as End-to-
End (E2E) Network Service Orchestrator (NSO) in OSM parlance. These are
depicted in the figure 2.5.

In its latest release (Release THIRTEEN at the time of this writing), OSM sup-
ports OpenStack and Kubernetes as preferred VIMs and employs Juju charms
for EMs. The NFVI can be implemented using OpenStack or LXD containers,
provisionedby Juju. Newer releases also allowVNFs to be containerizedusing
Docker, thus qualifying as Container Network Functions (CNFs).

OSMadopts cloud-native terminology to define three lifecycle phases for net-
work services:

1. Day-0: Network service creation.

2. Day-1: Network service instantiation and initial deployment.

3. Day-2: Network service assurance, monitoring, and maintenance.

In the Day-0, one could design and create the network service packages and
onboard them to the OSM, then use them in Day-1 to instantiate the network
services.

If one aims to align the ETSI-NFV MANO architecture with TRIREMATICS, the
GAIA project would correspond to the VIM andNFVI components. This is be-
cause GAIA manages infrastructure provisioning and resource exposure. Ku-
bernetes complements this by filling the remaining part of the VIM, thereby
completing our Orchestration Plane. ATHENA serves as the NSO, focusing on
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Day-1 and Day-2 operations for Cloud-Native Network Functions (CNFs).6

ODIN supplements the Slice Management (SM) functionalities and adds ca-
pabilities not covered by the ETSI-NFV model. HYDRA and TRIDENT handle
Day-0 operations, with the latter also responsible for CI/CD and artifact au-
tomation.

In TRIREMATICS, the lifecycle days are redefined as follows:

• Day-0: Artifact creation, planning, and resource definition.

• Day-1: Scheduling, deployment, and configuration.

• Day-2: Healing, reconfiguration, upgrades, and observability.

All these phases are automated, secure, consistent, repeatable, and green.
Given that a process container starts directly with its primary process, lacking
an internal init system like a VM, Day-2 operations for a cloud-native CNF do
not involve procedures like installation or restart.

In terms of project roles, ATHENA performs tasks similar to an NSO for Day-
1 and Day-2 operations concerning CNFs. GAIA, in collaboration with the
Kubernetes ecosystem, takes care of the remaining structure. ATHENA is pri-
marily compared with the OSM as a reference solution in chapter 4, given the
similarity in their roles. Projects HYDRA and TRIDENT mainly focus on Day-0
operations.

2.2.2 Relation to O-RAN Architecture

TheO-RANSMOarchitecture is bifurcated into twoprimary components: the
Maintenance and Operation (MAO) and the Non-Realtime RAN Intelligent
Controller (Non-RTRIC). Figure 2.6 recreates a diagram from [15] that bridges
the O-RAN and ETSI-NFV architectures.

The Federated O-Cloud Orchestration and Management (FOCOM) parallels
the Network Function Orchestration (NFO) in its role of managing and or-
chestrating the O-Cloud. According to [15], FOCOM handles inventory and
alarmmanagement for theO-Cloud, whileNFOoversees lifecycle, alarm, and
performance management for NF deployments within the O-Cloud.

The VIM and the VNFM are subsumed into the Deployment Management
Service (DMS). A similar component, termed the InfrastructureManagement
Service (IMS), is designated for managing O-Cloud infrastructure elements,
including DMS instances and hardware accelerators. In the context of ETSI-
NFV, these hardware accelerators are considered compute resources. They

6The ‘C’ in the termCNF couldmean
either cloud-native or containerized,
depending on the context. Where the
NFs are simply packaged as contain-
erswithoutmuch regard to thecloud-
native principles, they are simply re-
ferred to as the containerized. While
theOSM ismore about containerized
workloads, in TRIREMATICS the NFs
are treated as truly cloud-native con-
structs.
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serve to offload radio processing tasks, either partially, as in look-aside accel-
eration for encoding and decoding, or entirely, as in inline acceleration for
full physical layer processing.

SMO

O-Cloud

SM Non-RT RIC EM
NFO

FOCOM

NFVO

VNFM VIM

DMS

IMS

FIGURE 2.6: This figure shows the O-RAN SMO andO-Cloud, recreation of a work by [15]. The figure also shows
the components carried from ETSI-NFV in blue and the new components in yellow.

Similar to themappingpresented for ETSI-NFV, one couldmap theTRIREMAT-
ICS to the O-RAN SMO. It should be noted that the mappings are not exact:
they only consider how functionally similar are the components in question,
not how exactly they are implemented or which interfaces they provide. In
most of the O-RAN SMO implementations, they incorporate ETSI-NFV based
tools such asOSMorOpenNetwork AutomationPlatform (ONAP) [16] to pro-
vide the required functionalities.

2.3 Nomenclature

This section elaborates on the new terms and concepts introduced in this the-
sis, as well as existing terms from the cloud-native ecosystem thatmay be un-
familiar to telecommunications researchers.

2.3.1 Cloud Native Terms

Cloud Native Computing (CNC) is emerging as a pivotal technology in an era
where the focus is shifting from operating individual computing entities to
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performing intelligent tasks on large datasets. The Cloud Native Comput-
ing Foundation (CNCF) defines Cloud Native* as an approach that empha-
sizes scalability and dynamic environments. It identifies containers, service
meshes,microservices, immutable infrastructure, and declarative APIs as key
enablers. The ultimate goal of a cloud-native system according to this defini-
tion is to create loosely coupled, resilient, manageable, and observable sys-
tems that can undergo frequent, high-impact changes with minimal toil.

In this thesis, we explore how TRIREMATICS enables 5G networks to become
truly cloud-native7.

Five cloud-native adjectives frequently appear in this paper, listed as the fol-
lowing: declarative, idempotent, immutable, stateless, and consistent.

Definition 2.6 (Declarative). A declarative system is completely defined by its

desired state, not the steps to reach that state. This contrasts with imperative

systems, which are defined by the steps to achieve a particular state.

Declarative systemsalignwith the conceptofOpenWorldAssumption (OWA),
which considers the system inherently incomplete and interprets the absence
of information as an unknown state rather than falsity.

Definition 2.7 (Idempotency). An idempotent operation can be appliedmul-

tiple times without changing the result beyond the initial application. Math-

ematically, an idempotent function 𝑓 satisfies 𝑓(𝑓(𝑥)) = 𝑓(𝑥), meaning every

value in the range of 𝑓 is a fixed point for 𝑓.

Idempotent operations facilitate the implementation of declarative systems
in distributed environments by allowing the same operation(s) to be contin-
uously applied to reach the desired state.

An immutable infrastructure is replaced rather than updated, enhancing re-
liability and resource scheduling. A stateless application does not maintain
internal state, allowing for horizontal scaling and seamless replacement. It
is noteworthy that in some scenarios, the internal state is hidden and non-
obvious. For example, any application that relies on the state of a TCPor SCTP
connection contains an implicit internal state. The same applies for the case
of context stored in attached devices. That is why it is very unlikely to have a
truly stateless application in the telco domain outside of the SBAdesign of the
5G CN. Consistency refers to reproducible and predictable outcomes across
different environments, a concept further elaborated in chapter 3.

* https://github.com/cncf/toc/blob/master/DEFINITION.md

7 We aim to quantify these qualities
for an objective comparison between
established practices and the innova-
tions introduced in TRIREMATICS

https://github.com/cncf/toc/blob/master/DEFINITION.md
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8 In literature, Kubernetes Services
are sometimes confused with other
types of services such as an applica-
tion service (in broad sense) or 5G
SBA services. None of these are re-
lated to Kubernetes Services.

2.3.2 Multi-x

The telecommunications environment is a complex and diverse amalgama-
tion of applications and use cases. With the advent of 5G, the list of special-
ized yet disparate target markets is expanding. Concurrently, network op-
erators are increasingly inclined towards open architectures to avoid vendor
lock-in. This dual demand for business application heterogeneity and system
interoperabilitymotivates the adoption ofmulti-x frameworks, where ‘x’ can
represent vendor, version, node, distribution, runtime, cloud, or instance.

As elaborated in [17], the essence of multi-vendor deployments lies in the
seamless interoperation of network functions from different vendors, rather
than merely having multiple vendor-specific stacks. While standard inter-
faces enforce some level of interoperation, particularly at theUP and partially
at the CP, they often leave the configuration, management, and monitoring
aspects to vendor-specific implementations.

The rise of various containerization technologies, each addressing different
performance, security, and isolation concerns, introduces another dimen-
sion of multi-x: multi-container technologies. This allows for the selective
use of containerization technologies basedon internal policies, business con-
tracts, or specific technological advantages. Advanced cloud-native tools like
Kubernetes have largely addressed other aspects of multi-x, such as multi-
node and multi-cloud, but these solutions are often dispersed and require
specialized treatment to meet the unique demands of the telecommunica-
tions sector.

2.3.3 Kubernetes Terms

A container in this context refers to a Linux process container, which is an
isolated environment for running processes, managed by Linux namespaces
and cgroups. A more detailed definition is given in the definition 3.2 in sec-
tion 3.1. Kubernetes has emerged as the standard de facto for orchestrating
these containers across a cluster of machines, known as nodes. The small-
est unit of deployment in Kubernetes is a Pod, which is a collection of one or
more containers sharing network and storage resources. A Service in Kuber-
netes serves as a software load balancer, providing a stable network interface
to a set of Endpoints.8 AConfigMap is a Kubernetes object that holds config-
uration data that can be consumed by Pods. A Secret is a Kubernetes object
that holds sensitive data such as passwords and API keys in base64 encoding.
The Secrets are mostly useful for binary data, while the ConfigMaps are more
suitable for text-based configuration.
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Kubernetes design patterns often utilize two key components: Controllers
and Resources. A Controller continuously monitors the state of Resources
andensures the cluster state alignswith thedesired state. TheseResources are
essentially sets ofOpenAPI endpoints in theKubernetesAPI server. Onecould
extend the list of the resources by adding a new Custom Resource Definition
(CRD) to the cluster which defines a Custom Resource (CR) and is controlled
by a Custom Controller (CC). Another common design pattern is the Sidecar
container, which runs alongside themain container in a Pod to extend or en-
hance its functionality. In the context of TRIREMATICS, the main container is
referred to as aWorkload, which encapsulates the primary application logic
along with auxiliary tools and APIs.

2.3.4 Operator Pattern

ATHENA bases its foundation upon the Operator Framework [18] to assist or
replace the human in the loop, approaching an intelligent, ultra-dynamic,
and flexible automation. Operator Pattern, as the foundation of the Opera-
tor Framework, defines Declarative Operators (DOs) as opposed to the im-
perative Event-Driven (ED) MANOs. The former method focuses on match-
ing the desired and observed state via idempotent actions without extracting
specifications of the trigger or maintaining a state machine [18], but the lat-
ter adds listeners to specific events and assumes the state is kept consistent
between the operations. In distributed systems, however, a consistent and
highly-available state machine is not a safe assumption [19]. When it comes
to deployments with Kubernetes, defining state machines not only involves
substantial overhead, but alsomeans the pre-existing cloud native tools need
to be reinvented, especially on lifecycle management and resource control.

TheOperator Pattern and inherently follows up the fundamental control logic
principles from Kubernetes.† In summary, this relatively novel class of the
control logics for the Operators relies on level-based designs rather than the
edge-triggered ones that are common with the EDs. On the other hand, these
control systems assume Open World conditions, meaning they acknowledge
the presence of uncertainty, variability, and unknown factors that can affect
the system’s behavior. The declarative nature of the Operators in ATHENA is
the manifestation of these principles. What, in particular, ATHENA offers on
top of that is to adaption and porting of thementioned designs to the specific

† https://github.com/kubernetes/design-proposals-archive/blob/main/
architecture/principles.md

https://github.com/kubernetes/design-proposals-archive/blob/main/architecture/principles.md
https://github.com/kubernetes/design-proposals-archive/blob/main/architecture/principles.md
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2005

2010

2015

2020

AWS

KVM

LXC

Heroku

OpenStack

Cloud Foundry

Docker

Kubernetes

CNCF

Helm 2

OCI

Helm 3

Operator Framework

CNI

FIGURE 2.7: Timeline of themain events in
the cloud native ecosystem. Amazon Web
Services(AWS) was the first cloud provider.
Kernel-based Virtual Machine (KVM) was
the first opensource hypervisor for VMs.
Linux Containers (LXC) was the first open-
source container runtime. Open Contain-
ers Initiative (OCI) released their first sta-
ble specification in 2017 and the first sta-
ble version of Container Network Interface
(CNI) specification was in 2021.

field of telco by introducing the concept of the OP. This Plane allows a struc-
tural and semantic extension of ATHENA for future use cases and scenarios.

2.4 Chronology

For the purposes of this thesis, we examine the concurrent evolution of both
the telecommunications industry and cloud-native technologies. In recent
years,markednotablyby theadventof 5G, the telecommunications sectorhas
undergone several transformative shifts that have fundamentally changed the
way radio networks are deployed. Four key trends can be identified in this
transition towards a 5G-centric design philosophy, applicable across various
system components including the RAN:

• Decomposition of larger systems into smaller, more manageable com-
ponents, either through disaggregation or microservices architecture;

• Generalization of deployment strategies, facilitated by advancements
in SDN, virtualization, or cloud-native technologies;

• A shift in focus from underlying network infrastructure to higher-level
abstractions, such as services;

• Clear delineation between different functional planes, including data,
control, management, and orchestration.

In parallel, virtualization technologies havemade significant inroads into the
telecommunications domain, offering hardware-agnostic, isolated environ-
ments. These technologies operate at various levels, be it hardware-level solu-
tions like Intel VTx, kernel-level implementations like the Linux Kernel-based
Virtual Machine (KVM), or operating system-level platforms like the Quick
Emulator (QEMU).

Three driving forces continue to propel these transformative changes in the
telecommunications sector:

• Financial incentives, primarily through the gradual reduction of the to-
tal cost of ownership;

• Enhanced elasticity, enabling quicker adoption of emerging technolo-
gies and novel use cases;

• The emergence of diverse markets that defy a one-size-fits-all deploy-
ment model.

Despite the rapid pace of these transitions, themomentum shows no signs of
slowing, largely because these driving factors remain relevant.
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Automation has proven to be an axis for growth and revenue across various
industries, and telecommunications is no exception. To capitalize on this,
the industry has pivoted fromhardware-centric networks to software-defined
NFs. These software-based NFs were subsequently encapsulated in virtual-
ized environments, allowing for deployment on general-purpose hardware.
This shift laid the groundwork for the ETSI to establish the NFV standard [20],
offering a unified framework for NF vendors. This standard was later aug-
mented with SDN to create a fully software-defined network ecosystem. So-
lutions likeOSM[14] andONAP [16]were introduced toautomate the lifecycle
management ofNFswithin this framework. Following the advent of OSMand
ONAP, research focus shifted towards higher-level operations such as multi-
clustering [21], service onboarding andmanagement [22], andmulti-domain
orchestration [23], leaving the coreMANO architecture largely untouched ex-
cept for minor adaptations to accommodate CNFs.

The CNFs were the telco industry’s response to the cloud-native revolution in
the IT sector. Prior to CNFs, the industry’s engagement with cloud technolo-
gies was confined to the virtualization and cloudification of NFs. While vir-
tualization allowed NFs to be deployed on general-purpose hardware, cloud-
ification transformed NFs into flexible resource pools that could be dynami-
cally allocated and deallocated. Initially perceived as lightweight alternatives
to VMs, containers have been repositioned by the cloud-native paradigm as
foundational building blocks for cloud systems. As a result, cloud-native de-
sign patterns and technologies have evolved with containers at their core. As
demonstrated in studies such as [26], simply incorporating Kubernetes as a
virtual infrastructuremanager or naively converting VMs into containers falls
short of realizing the full potential of cloud-native capabilities. Furthermore,
dismissing thedifferences between the containers andVMs, in termsof lifecy-
cle, runtime behavior, and management has led to inefficient and ineffective
solutions.

Concurrently, the rapid pace of technological evolution has rendered much
of the pre-2015 research on cloud-native andMANO (coinciding with Kuber-
netes’ rise to prominence) either irrelevant, inadequate, or obsolete, yet being
referenced in recentworks such as [27], [28]. This has resulted in a fragmented
and often misleading terminology and taxonomy, exacerbating misconcep-
tions about cloud-native technologies. As the research community contin-
ues to evolve, these inconsistencies become increasingly glaring, often due to
the irregular intakes of cloud-native principles and technologies scatterd over
time.

2010

2015

2020

Open Flow (SDN)

ETSI-NFV

OSM Release 1

ONAP Amsterdam

JOX [24]

OSC Amber

Kube5G [25]

TRIREMATICS Azure

nephio

TRIREMATICS Bronze

FIGURE 2.8: Timeline of the major release
events in the MANO. Nephio was intro-
duced inApril 2022, and its first releasewas
in July 2023. The first release of TRIREMAT-
ICS was introduced in February 2022, and
its second major release is due in October
2023.
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Approaching cloud native telco in 3GPP standardization of 5G CNhasmainly
led to Helm-based solutions such as OpenAirInterface (OAI) Helm charts‡

or Robin Smart Helm.§ Even though the standard aims for dynamicity, the
resulting designs and implementations are of static nature, even for simple
matters such as IP address assignment and resolution. This ignorance impels
these setups to rely on human operators while they continue to flounder at a
large scale. Suchmalpractices are often justified asminor engineering issues,
but they are in fact a reflectionof carrying over a commonpractice fromeither
legacy Physical NFs (PNFs) or comparably outdated design architectureswith
little to none regard to the nature of the cloud native and cloud deployments.

Several designs and architectures were born in the last few years, with 5G or
as a part of it, especially for the RAN. Open RAN, private networking, network
slicing, and sustainable andgreennetworkingare a fewnoteworthy examples.
Various communities have been formed around these topics, and O-RAN Al-
liance to date remains one of the most prominent ones, with active partici-
pation from major vendors and operators. The O-RAN Alliance iteration of
MANO, revived as Operation and Maintenance (OAM) [29], builds upon the
same disputable amalgamation of ETSI-NFV without addressing any of the
issues discussed in this thesis. In fact, all the existing O-RAN stacks use either
OSMor ONAP as their OAM, including but not limited to the O-RAN Software
Community (OSC) version of the O-RAN SMO. The core concepts are often
renamed and recycled, proving them to be valid recurring ideas, but they are
not manifested properly in the modern context of cloud native telco.

2.5 Comparison Dimensions

Before delving into this section, it’s crucial to underscore that an effective
MANOsolution should not only address the challenges outlined in section 2.1
but also offer added value beyond existing IT solutions. Container orchestra-
tors, by their nature, are not designed to handle tasks specific toMANOs, such
as telco-optimized operations, semantic understanding of the network, or
specializedNF lifecyclemanagement. Given this criterion, Kubernetes and its
various distributions that solve generic problems should not be rebranded as
MANOsolutions. This also excludes solutions likeOpenShift¶ andRancher�

from the competition.

‡ https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-fed
§ https://robin.io
¶ https://www.redhat.com/en/technologies/cloud-computing/openshift
� https://rancher.com/

https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-fed
https://robin.io
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://rancher.com/


2.5. Comparison Dimensions 27

Since most leading container orchestrators are either Kubernetes variants or
built upon it, they could serve as the VIM in an ETSI-MANO architecture or as
the foundation for the TRIREMATICS Orchestration Plane. TRIREMATICS is de-
signed to be chiefly agnostic to the underlying orchestrator, focusing instead
on providing the missing MANO functionalities.

In line with this argument, we should emphasize a MANO solution must of-
fer more than just the installation or instantiation of NFs, tasks that can ar-
guably be accomplished with a few lines of script atop an existing container
orchestrator. Therefore, Helm-based solutions like those offered by OpenAir-
Interface (OAI) Software Alliance (OSA) or Robin (Smart) Helm charts do not
qualify as properMANO solutions. Helm serves as an effective yet straightfor-
ward package manager for Kubernetes, providing a packaging format for Ku-
bernetes manifests to simplify their distribution and installation. However, it
lacks the specialized intelligenceand featuresonewouldexpect fromaMANO
solution. In this context, Kubernetes can be likened to an Operating System
(OS), and Helm to its package manager. As such, this thesis does not include
comparisons betweenMANOsolutions like TRIREMATICS andKubernetes dis-
tributions or enterprise or individual Helm charts. Table 2.2 elaborates more
on this analogy.

MANO solutions can be evaluated along various dimensions, some of which
are qualitative and dependent on specific use cases or user preferences, while
others are quantitative andmeasurable. Often, even quantitative dimensions
are conflatedwithmarketing terms, rendering comparisonshighly subjective.
However, there are certain universally positive characteristics for aMANO so-
lution. In this section, we aim to outline a list of dimensions that can serve as
a basis for comparing different MANO solutions.

Like any business, network operators aim to continuously optimize their net-
works tominimize costs andmaximize revenue. These twomotifs influence all
other dimensions, whether qualitative or quantitative, directly or indirectly.
Examples of such relationships are illustrated in table 2.3. Typically, costs
are categorized into Capital Expenditure (CapEx) and Operational Expendi-
ture (OpEx). CapEx encompasses the initial investment costs, such as hard-
ware, software licenses, and installation, while OpEx covers ongoing opera-
tional costs like maintenance, energy, and human resources. The drive to re-
duce CapEx has led operators to consider transitioning to public clouds, uti-
lizing commodity hardware, and adopting open-source software. This trend
has given rise to a plethora of software claiming to be carrier-grade, asserting

OS MANO

Linux Kubernetes

Ubuntu OpenShift

APT Helm

Systemd TRIREMATICS

Daemons Containers

TABLE 2.2: This table shows the analogy be-
tween the Linux OS and the MANO solu-
tions. Linux is the foundation for a lot of
modern servers, Kubernetes is the founda-
tion for the modern MANOs. Ubuntu is
a Linux distribution, and likewise, Open-
Shift is a Kubernetes distribution. APT is
a package manager for Linux, and Helm
plays the same role for Kubernetes. The
services in Ubuntu are distributed as dae-
mons that are installedwith APT andman-
aged by Systemd. Analogously, the NFs
are distributed as containers that are per-
haps installed with Helm and managed by
TRIREMATICS.

Dimension Cost

Flexibility Hardware

Openness Software

Resilience Operation

Lightweight Energy

Intelligent Human

TABLE 2.3: This table shows for an exam-
ple set of features, how they have emerged
from actual costs.
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FIGURE 2.9: A rough timebreakdownof the
DevOps phases for the case of non-cloud
native (pink) and the agile DevOps (blue).
The times are in percentage of TtM. Look-
ing at this bar chart shows how an agile
DevOps transforms the dominance of the
TtM to the coding and testing phases and
reshapes the distribution. In either case,
the majority of the TtM is spent on coding
and testing: UsingCNFs is the only remedy
out of this.

readiness for production networks while maintaining openness and simplic-
ity.

Qualitative dimensions often stem from requirements set forth by network
operators and expected from MANO solution providers. Many of these re-
quirements are inspired by the experiences of enterprises in the IT industry
and have yet to be rigorously defined within the context of network opera-
tions.

Time-to-Market (TtM) is a crucial metric that measures the time required
to introduce a new service to the market. Adopting cloud-native technolo-
gies, particularly those aligned with Development and Operations (DevOps)
practices, can significantly reduce TtM. However, this reduction is most pro-
nouncedwhenoperators employmodern constructs likeCNFs. Without such
modernization, the choice of MANO solution will have a limited impact on
TtM, as illustrated in figure 2.9 using arbitrary values.

TRIREMATICS enables DevOps by its Container Development Kit (CDK), offer-
ingNF developers the possibility to createmulti-x artifacts that can be imme-
diately and automatically integrated into the TRIREMATICS ecosystem. This
approach allows developers to concentrate on the logic of theNFs rather than
the intricacies of packaging and deployment. Additionally, TRIREMATICS in-
cludes built-in CI/CD automation, streamlining the build and test processes.
As elaborated in chapter 3, these DevOps practices are specifically tailored to
meet the unique requirements of the telco industry, rather than being a direct
adoption of existing IT practices.

Minimizing vendor lock-in is an important strategic objective for network
operators, since it enables them to negotiate more competitive prices from
vendors. Figure 2.10 illustrates the transition from a vendor lock-in state to
amulti-x deployment. While intermediate states offer some cost advantages,
achieving a multi-x state is the ultimate goal for maximizing cost-efficiency.

When multi-x strategies are combined with DevOps practices, a variety of
CDK platforms can be employed, as summarized in table 2.4. However, HY-
DRA offers a comprehensive solution tailored specifically for telco use cases.
Moreover, the structured Planes in TRIREMATICS make the components fun-
gible. This means that components can be easily replaced with equivalent
solutions from other vendors, further mitigating the risk of vendor lock-in.

The design of TRIREMATICS is primarily geared towards Private 5G use cases, a
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Solution Domain DevOps

Red Hat CDK Environment dC--

JFrog Artifactory App build and hub -c-P

CNCF Buildpacks App build model dC-P

CDF Shipwright Container build description -CeP

HYDRA Consistent artifacts methodology DCEP

TABLE 2.4: Comparison between the different CDK platforms. The data in the table is encoded for fitting in
the page. The letters D, C, E, and P stand for the Design, Creation, Evaluation, and Publication of the artifacts,
where the dash (-) means the platform does not provide the functionality while the lowercase letter defines a
rather partial support. None of the solutions other than HYDRA fully supports multi-x for the telco use cases.

domain where the ecosystem is still in its nascent stages. As a result, the tran-
sition from PNFs or VNFs to CNFs is not a primary concern. This allows pri-
vate operators to directly adopt CNFs without the need for transitional steps.
This focus on CNFs is a strategic choice, aimed at meeting the specific needs
of emerging Private 5G networks.

Numerous industrial efforts, such as those by Rakuten** and Telenor†† , aim
to address the challenges of themulti-vendor 5G services in cloud-native en-
vironments. However, none have fully achieved the multi-x state as depicted
in figure 2.10. The authors in [30] elaborated on supporting the cloud na-
tive vision for Openstack, while supporting NFs from different vendors. The
authors in [31] propose a cloud-native solution for scaling the 4G Mobility
Management Entity (MME) for handling the control signaling overhead from
RAN. Another work [32] presents a cross-domain slice orchestration, where
the main focus is on allowing transparent interoperability between different
domains,while eachdomainuses adistinct orchestration solution. In [33], 5G
network slicing in the cloud native environments is considered without any
attention on multi-x aspects. The proposed cloud native 5G service delivery
platform in [34] fails to support the heterogeneity required in 5G cloud native
environments too. The works in [35] propose a cloud-native 5G service plat-
form for orchestrating the deployment in cloud-native environment, without
a specific focus onmulti-x. All the above-mentioned works lack of a concrete
design and prototype for multi-x containerization, and do not address prop-
erly the level of heterogeneity demanded in a telco-grade cloud environment.

** https://symphony.rakuten.com/products/open-ran-5g
†† https://techblog.comsoc.org/2021/04/20/telenor-trial-of-multi-vendor-5g\

-standalone-sa-core-network-on-vendor-neutral-platform/

Locked-in
D1 D2
Multi-stack

Multi-vendor Multi-x

FIGURE 2.10: This figure shows the evolu-
tion from the single-vendor locked-in sce-
nario to a multi-x solution. It is important
to note that the multi-stack case is often
mistaken with the multi-vendor case. In
a multi-stack scenario, over multiple de-
ployments, you realize multiple vendors.
However, in themulti-vendor case, the op-
erators could have a singleMANO stack si-
multaneouslymanagingmultiple vendors.
Multi-x takes this one step further and al-
lows themix-and-matching of the vendors
to give an ultimate flexibility to the net-
work operators.

https://symphony.rakuten.com/products/open-ran-5g
https://techblog.comsoc.org/2021/04/20/telenor-trial-of-multi-vendor-5g\-standalone-sa-core-network-on-vendor-neutral-platform/
https://techblog.comsoc.org/2021/04/20/telenor-trial-of-multi-vendor-5g\-standalone-sa-core-network-on-vendor-neutral-platform/
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In terms of automation, a range of qualitative dimensions exist, but themost
crucial aredeclarative design andactive reconciliation. These concepts are rel-
atively new to the telco industry and serve as modern replacements for older
constructs like zero-touch or intent-based systems. An intent-based system
aims to understand the operator’s intent and translate it into actual config-
urations. This nebulous concept is more straightforwardly realized through
a declarative design. Moreover, a declarative approach enables more intelli-
gent automation, potentially leading to faster convergence compared to im-
perative designs. Therefore, the realization of a true zero-touch system,where
network operators need not intervene, is most feasibly achieved through a
declarative design.

Self-Healing, Fault Tolerance, and Agility are three interrelated terms that
TRIREMATICS integrates into its automation framework. A self-healing system
is of little use if it is not agile and fault tolerance is essential to make self-
healing less frequent. These concepts are elaborated upon in sections 4.6.3
and 4.9.1.

In TRIREMATICS, we insist on the deployments that are reusable, repeatable,
and reproducible. These attributes ensure that deployments remain consis-

tent and predictable, irrespective of the vendor or environment, across mul-
tiple iterations. Consistency is well studied in section 3.2.4 with a use case on
predictability in the section 5.2.

Lastly, Scalability is a critical quantitative dimension for network operators.
Unlike traditional IT services, where scaling often involves simple replication
behind a load balancer, telco services present unique challenges due to their
stateful nature as defined by 5G standards. TRIREMATICS addresses this by of-
fering slicing as an alternative scalingmechanism. By combining slicing with
replication, TRIREMATICS provides a consistent and compliant scaling solu-
tion for 5G networks, as discussed in section 4.5.

2.6 Design Patterns

TRIREMATICS employs five major design patterns that distinguish it from ex-
isting solutions:

1. Vendor-neutral DO pattern (see section 2.7);

2. Sidecar management pattern (see section 2.7);

3. Definition of first-class citizens from the telco domain;
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4. Exposure of telco devices as addressable and securely assignable re-
sources;

5. Multi-planar augmented analytics and unified actions.

In its OP, ATHENA treats network constructs like NFs, slices, and terminals
as first-class citizens. A first-class citizen construct enjoys separate lifecycle
management, instead of being a hidden subcomponent. Unlike other solu-
tions such as OSM, where slices are merely collections of Network Services
(NSs), ATHENA allows for independent definition and lifecycle management
of slices. These slices can then be assigned and scheduled to various NFs, in-
cluding the RAN, and can be scaled as needed. This results in a simplified, yet
powerful, slicing mechanism.

The conventional understanding has long held that there is a trade-off be-
tween isolation (and by extension, security) and performance. This belief has
beenperpetuated by the inefficiencies of virtualization technologies andmis-
conceptions about containers. TRIREMATICS challenges this notion by offer-
ing a design thatmaintains high performancewhile ensuring robust isolation
and security. This is achieved through device plugins in the Orchestration
Plane, which automatically detect and advertise device resources like radio
units and network terminals. As a result, the containers in TRIREMATICS are
unprivileged. Aprivilegedcontainerdoesnot respectany knownsecurity bar-
riers on the system because it would be executed as a root process, but this
bad habit is practiced everywhere on deployment of RAN workloads, includ-
ing theHelm charts, Docker Compose, or Operator-based deployments rang-
ing over all the providers. Virtualizing the execution environment would help
to mitigate to some extent, but it significantly lowers the performance which
is not desirable. These resources can then be requested by containers from
a resource pool, eliminating the need for root privileges and enhancing both
isolation and security, particularly in public cloud deployments.

The analytics and actions in TRIREMATICS are quite diverse and unique. We
consider the analytics from multiple Planes and combine them to provide a
unified view of the network. The right choice of technology for each Plane
is used to provide the best performance and scalability. For the DP and CP,
we use the xApps that extract the inboundmetrics and send them right away
to the data lake, while for the rest of the Planes, we use the Prometheus that
continuously scrapes the outboundmetrics and stores them in the same data
lake. The E2E metrics are calculated at the OP including the energy and cost
footprints with their respective breakdowns to the level of UEs, slices, and
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NFs. This allows for coordinated and unified actions to be taken across the
Planes with low granularity while enabling advanced business intelligence.

ATHENA considering energy efficiency for decision-making while being light-
weight. A minimal overhead is a necessity for a green MANO. However, the
state-of-the-art is focused either on algorithmic perspectives [36], [37] or on
physical To elaborate on the benefits of CNFs compared to the VNFs, one
could mention the work in [38] where the authors have pointed our merely
assuming NFV is green by design may not be true in all cases. ATHENA not
only induces minimal overhead, but also provides extra means to optimize
and save energy.

One notable observation about the metrics is the nature of their definition.
It is common to define improper and useless metrics that do not reflect the
actual state of the NFs. For example, knowing howmany successful network
attachmentshavebeendone in theAMF isnot asuseful as knowinghowmany
active subscribers are currently using that instance of the AMF. Wherever
needed, we have defined the rather useful metrics that are not necessarily
available in the existing MANOs.

2.7 Generations

Looking into the architectural evolution of theMANOs aswell as the advance-
ment of the cloud native technologies, we have identified four generations
of MANOs, as shown in table 2.5. Since the second generation, the support
for the CNFs has been added to the MANOs and is becoming the dominant
type of the NFs. TRIREMATICS orients itself around supporting CNFs that are
packaged with the particular wireframe provided in HYDRA enabling multi-x
artifacts compatible with the cloud-native models [39], with improved lifecy-
cle in terms of agility, scalability, greenness, downtime, and cost. This align-
ment is in favor of the Private 5G use cases that this thesis is concerned with.
Even though the initial definition of the VNFs was not necessarily bound to
the VMs but rather the virtualization of the hardware requirements for the
NFs on top of general-purpose hardware, the VNFs are nowmostly associated
with the VMs. This connection predominantly has slowed down the adaption
of the CNFs in the solutionswith VNF favoritism like OSM [14] andONAP [16]
and eventually has made them over-complicated. O-RAN’s specifications on
SMO [40] portray a similar issue, and in several cases, the defined interfaces
and services are inapplicable or obsolete for the CNFs. Examples of such ser-
vices are those concernedwith changes in thenetwork interfaces. In common
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cases, the containers do not have the permissions to modify the network in-
terfaces, and they are indeed configured externally via the network plugins in
the orchestrator.

Leaving the VMs aside not only lowers the complexity of the architecture but
also allows for a true cloud-native solution. It is worth noting that due to the
hardware virtualization in the VMs, they show lower performance compared
to the containers. Furthermore, since in private 5G there is little to none in-
frastructure in place, the network operators could directly benefit from a fully
CNF-based environment without an interim VNF adaption step.

One noticeable pattern after the release of OSM [14] and ONAP [16] is that
the research community turned its emphasis to higher level operations such
asmulti-clustering [21] or serviceonboardingandmanagement [22], ignoring
theMANO itself with otherwise adding support for Kubernetes or CNF work-
loads that never made their way into seminal works. Thus, we have grouped
all the OSM-based solutions under the same group in table 2.5 as they do not
exhibit significant variations in the scope of MANO itself.

Foundation Examples Idiosyncrasies

OpenStack Open Baton VNF-centric, ED Triggers

Juju OSM, JOX [24] ED Sidecar charms

Operators Kube5G [25] CRDs, Application DOs

Operators TRIREMATICS, Nephio Vendor-neutral Logical DOs

TABLE 2.5: This table introduces four generations in order of their appearance. Each generation is mounted on
top of a foundation from the cloudnative ecosystemwhile offering a different idiosyncrasy. Examples are given
for each generation. The last two generations are built on top of the same foundation, though offer significantly
different idiosyncrasies.

ATHENA as the OAM component of TRIREMATICS, realizes the concept of Op-
erators differently from those of the two well-known Operator Patterns, i.e.,
Redhat Operator Framework* and Canonical Charmed Operators† . These
patterns are intended to be generic, allowing for onboarding of any appli-
cation. In their design pattern, usually each application from each vendor
is associated with its own Operator, in contrast with the vendor-neutral ap-
proach of ATHENA. This is the difference between simply incorporating the
Operator Pattern and making it native to the design of 5G and 6G MANOs.
ATHENA provides Operators for logical entities that are formulating concepts
such as network terminals, functions, or slices. This implementation fits our

* https://operatorframework.io/what
† https://ubuntu.com/engage/collection-of-charmed-operators-whitepaper

https://operatorframework.io/what
https://ubuntu.com/engage/collection-of-charmed-operators-whitepaper
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definition of the OP in the section 2.1.5 and allows vendor-neutral mix-and-
matches which are otherwise impossible or troublesome to achieve if each
vendor is providing its own Operator. Solutions like Kube5G [25], [41] suffer
from the exact same issue as the IT Operator Patterns.

TRIREMATICS approach to intelligence is also different from the other solu-
tions. When it comes tobuilding intelligence on topof theMANO,Trirematics
as awhole is the enabler andprovider for various types of intelligence, includ-
ing the business intelligence, traffic optimization, energy and cost efficiency,
and allocation and assignment algorithms. This is achieved by ATHENA pro-
viding the declarative definition and operation of the networks. TRIREMAT-
ICS also provides the required data and analytics for the intelligence through
its multi-plane architecture. The data is collected from several Planes as effi-
ciently as possible and stored in a label-based, descriptive data lake.

In the MP, ATHENAManager is onboarded in each pod as a sidecar container,
similar in concept to the sidecar containers in Kubernetes [39] and ETSI-NFV
Element Manager (EM) [14]. However, the sidecar pattern in Kubernetes [39]
is barely used for management purposes in terms of controlling the lifecycle
of an internal application and ETSI EM [14] performs arbitrary operations,
someofwhich are out of the scopeof ourManager (e.g., billing), or they are re-
lated to VM environments (e.g., installation commands). O-RAN has recently
adapted the sidecarpattern for synchronization services [42]. While theyhave
recognized the values of the pattern, it seems its application remains lim-
ited to the synchronization. ATHENA Manager performs agile sub-lifecycle
operations, observability proxying, configuration management, and depen-
dency resolution. It should be noted that unlike network proxy sidecars, the
sidecar model for the Manager in ATHENA is not abolished by the advent and
adaption of the extended Berkeley Packet Filter (eBPF) and Xpress Data Plane
(XDP) [43] technologies. However, if the functionalities of the Manager are
implemented otherwise, it could be discarded for a particular NF. ATHENA
remains agnostic to theway theManager functionalities are provided, and in-
deed, theManager is intended to aid rather traditional and non-cloud-native
applications to be aligned with the cloud-native paradigms.

O-RAN SMO uses the FCAPS model to define the functional requirements of
the MANO. FCAPS is a well-known acronym for Fault, Configuration, Ac-
counting, Performance, and Security in the context of networking and has
been around for decades. ATHENA approaches the FCAPS differently than O-
RAN SMO. Various levels of abstraction (Operation, Management, and Or-
chestration) could be involved in each of the FCAPS functionalities and the
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means to achieve them are based on cloud native principles applicable only
to CNFs. Same as the ETSI-NFV, FCAPS is simply too outdated to properly be
applied in a cloud-native context.
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Chapter 3

Consistent Telco DevOps

In this chapter, we dig deeper into the design and implementation of the HY-
DRA and TRIDENT projects while delving into the concept of the consistent De-
vOps in the context ofmulti-x environments. Theseprojects together form the
DevOpsplatformof TRIREMATICS,whereHYDRAdefines theartifacts and their
attributes while TRIDENT focuses on the automation and delivery of the said
artifacts. After a review on some of the most important concepts related to
the containers and DevOps in the section 3.1, we discuss creation, building,
testing, and releasing the artifacts with their associated results.

The cloud-native 5G and 6G network designs rely on the software implemen-
tations of the NFs, dominantly packaged as containers into the CNFs. These
containers like any other modern software artifacts could enjoy from the De-
vOps best practices to improve the development, testing, and deployment
processes. Most importantly, with having the business agility in mind, an ag-
ile and consistent DevOps would be an absolute game-changer for any net-
work operator. Furthermore, any 5G network would have a dozen of hetero-
geneous NFs from different vendors, raising the scales of the DevOps tech-
nologies to their limits. As summarized later in the table 3.4, a network oper-
ator might need to maintain hundreds of different container images.

The extreme scale of the artifacts, the necessity of consistency in multi-x sce-
narios, direct influence on the business agility, and the need performance re-
quirements of the NFs, all make the DevOps for telecommunication a com-
pletely unique challengewith respect to the ITDevOps. With these challenges
in mind, we meticulously journey through the whole DevOps ecosystem to
formally define each of its stages and components, and find the most proper
choices with respect to the 5G and 6G systems. Throughout this journey, we
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harvest thebest practices established in the IT andmake themnative and spe-
cialized for the telco. For example, in the section 3.4.2 we set forth the differ-
ences betweenCD in IT andCD in telco and howamerger between known 5G
protocols and concepts with the DevOps practices could lead to substantial
improvements in the business agility.

This chapter goes through three phases of Build, Test, and Release from the
DevOps cycle displayed in the figure 3.1, in consequent sections, prepended
with the preliminaries to understand the concepts and appendedwith the re-
sulted structure of the container which would be deployed, Operated, and
monitored in the chapter 4. At each stage of DevOps, there are certain chal-
lenges to support consistency in multi-x environments while minimizing the
overhead andmaximizing the agility via concurrent automation. These chal-
lenges are in terms of design questions that are responded with empirical
analysis over multiple solutions, one of which is the novel solution proposed
in this thesis. The table 3.1 summarizes the novelty of each section in this
chapter, while the table 3.2 showswhich challenges are addressed in each sec-
tion in terms of the affected metrics or qualities.

Section Novel Designs or Algorithms

3.2.1 Image Set NFs to artifact mapping

3.2.2 Declarative build recipes

3.2.3 Consistent TRIDENT pipelines

3.2.3 Telco multi-x container image caching

3.2.5 Styx GitRegOps versioning and automation

3.3.3 Multi-x integration tests

3.4.2 Slice and Dice deployment strategy

3.4.2 Handover Rolling deployment strategy

3.5.2 Continuous probing and fault detection

TABLE 3.1: The novelty of each section in the chapter 3 with respect to the state of the art.

TRIDENT provides a general framework for theDevOps automation and deliv-
ery of the artifacts that could be used by any vendor or integrator to provide
artifacts in a multi-x environment. Of course, to protect intellectual proper-
ties, some vendors may prefer to limit the multi-x dimension to not incorpo-
rate the vendors, yet still the other dimensions of multi-x are applicable and
make the discussion of this chapter relevant. Nevertheless, HYDRA provides
a containerization skeleton that remains valid across multi-x dimensions, al-
lowing even the artifacts built by different vendors to be interoperable and
consistent.
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Section AddressedMetrics, Qualities, or Designs

3.1 Security

3.2.1 Build time, Build resources, Image size

3.2.2 Declarative build description

3.2.3 Consistency, Concurrency factor, Caching gains

3.2.4 Consistency, Concurrency factor with limited resources, Security

3.2.5 Build automation and checkpointing

3.2.6 Cloud-native build automation

3.3.1 Artifact policies

3.3.2 NF testing SDK, Security

3.3.3 Integration E2E testing

3.4.1 Time-to-market

3.4.2 Zero-down-time upgrades

3.4.3 Zero-down-time upgrades

3.5.1 Unified multi-x containers

3.5.2 Management APIs, Status probing and fault detection

3.5.3 Unified multi-x containers

TABLE 3.2: The challenges addressed in each section in the chapter 3 with respect to the metrics and qualities
defined in the section 3.1 or design questions.

One of the dimensions of multi-x covers different classes of containerization
and container runtimes. Even though the VMs share some similarities with
thecontainers,HYDRAdesign isnotnecessarily compatiblewith theVMs. This
limitation does not come as a downside, but rather as a design choice to focus
on the most performant and efficient cloud-native technologies.

Thediscussion in this chapter, in particular in sections 3.5 is focused on single
NFs and how the day-1 and day-2 operations are performed on them. The
evolution of this discussion on network services formed frommultiple NFs is
discussed in the chapter 4.

3.1 Preliminaries

DevOps is a collection of best practices and tools that enable organizations to
build, test, and release their applications faster and more reliable. There are
several extensions for DevOps thatmight appear in a similar context, three of
which are the most relevant to the scope of this thesis:
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• DevSecOps, which also applies the security best practices to the De-
vOps.

• NetOps, the DevOps best practices in the network infrastructure.

• GitOps, to center Git version control as the main source of truth for all
the artifacts.

When we are referring to the DevOps in TRIREMATICS, we are implicitly refer-
ring to the DevSecOps and GitOps as well, while most of the NetOps opera-
tions are defined in GAIA project. All the DevOps practices in TRIREMATICS
are with the security in mind and the Git is the only source of truth for all the
artifacts. The figure 3.1 shows the DevSecOps cycle in TRIREMATICS in con-
junction with the GitOps and NetOps.

Most of the definitions in this chapter are formed around the term artifact.

Definition 3.1 (Artifact). An artifact is any deployable component of a soft-

ware system, in themost generic sense. It can be a binary, a library, a container

image, or a configuration file, or even a collection of other artifacts.

Unless it is explicitly mentioned, the term artifact in this chapter would refer
to the container images. A container image itself, in the most general case, is
any package of a root filesystemwith the necessary metadata, manifests, and
configurations to run the software inside the container. There are several con-
tainer image formats depending on the container runtime. For example Snap
offers a SquashFS image format, whileDocker and Podmanuse theOverlayFS
image format. A container runtime is a software that is responsible for run-
ning the container image as a container. The container runtimes would only
fork the process tree of the container image and manage the lifecycle of the
container without any virtualization or instruction translation.

Defining the term container itself is not straightforward, however, all the dif-
ferent kinds of the containers rely on the sameprinciples and toolchains from
Linux, most importantly the concept of namespaces.

Definition 3.2 (Container). A container is a running instance of a container
image that has been isolated from the other processes in the system using one

or more Linux kernel namespaces.

The Linux kernel exposes the system differently in each namespace to form
a unique perception of the system for each of the processes in those names-
paces, allowing themto share the samekernelwithdifferentperspectives. The
list of the Linux kernel namespaces are the following:

• PID that isolates the process trees.
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FIGURE 3.1: The DevSecOps cycle in TRIREMATICS in conjunction with the GitOps and NetOps. The figure also
depicts the stages in the CI/CD pipeline in the middle. The vetical features of Continuous, Automated, and
Observable apply to all the stages of the DevOps.

• Network that isolates the network interfaces, routing, and firewall.

• Mount that isolates the mount points.

• UTS that isolates the hostname and domain name.

• IPC that isolates the inter-process communication resources.

• User that isolates the user and group IDs.

• Cgroup that isolates the resource usage and control.

Cgroups are another commonmechanism used in the containers tomeasure
and limit the resource usage of the processes and their access to the system
resources. Kubernetes uses the same mechanism to limit the resource usage
of the Pods. Prometheus node exporter also exploits cgroups for the metrics
collection.

Unlike theVMs, containers share the samekernelwith thehost andother con-
tainers and there is no virtualization layer between the instruction sets in the
container and the host. It is crucial to understand that unlike a hypervisor, a
container runtime does not directly intervene in the execution process of the
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container. Some exceptional container runtimes that implement sandboxed
containers might have a syscall interception layer in their interface with the
host kernel, that provides more security and slows down the execution pro-
cess, though still there is no virtualization or instruction translation. A similar
argument applies to the unikernel containers aswell, where the application is
compiledwith all the required kernel libraries to reduce thenumber of system
calls made to the host kernel without defining a virtualization and instruc-
tion translation layer. These hugemisconceptions have significantly polluted
the current researchmaterials in telco. For example, noticeable survey works
such as [44] are prone to these mistakes, leading to improper taxonomy and
conclusions.

Asmentioned before, there are several types of containers, but themost com-
mon groups are the following:

• System containers, for example LXD and Sysbox

• Process containers, for example containerd and CRI-O

• Application containers, for example Snap, Apptainer, and Flatpak

In a system container, the container runtime executes a system init process
such as systemd as the first process to imitate a lightweight VM. However,
still the kernel is shared between the host and the container(s). These con-
tainer systems commonlynamespace all thenamespaces. In theprocess con-
tainers, the process tree starts with the main process in the container image
and follows its lifecycle. This class also commonly namespace all the names-
paces, but there are configurations in which one could share the network or
the IPC namespaces to enable direct communication between the containers
or host. Finally, the application containers are designed to simply package
the binaries and their dependencies and normally only namespace the User
and Mount namespaces. Definition of cgroups for the containers varies de-
pending on the container runtime and the level of isolation and security.

Each container runtime provides different security features and isolation lev-
els, such as AppArmor, SELinux, cgroups, and seccomp. These would affect
the performance and the security of the container. For a moderate telecom-
munication workload, there needs to be a balance between the security and
the performance. As such, we have chosen four container management sys-
tems inHYDRA, namely Snap, Docker, Podman, and LXD. Other stacks of con-
tainerization are either not performant enough or do not offer the required
level of integration with the rest of the TRIREMATICS platform. Still the critical
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security practices are applied in TRIREMATICSwhich to the time of this writing
remains unique to TRIREMATICS.

The Open Container Initiative (OCI) is a standardization effort to define the
container image format, storage, runtime, and distribution. From the four
container runtimes in HYDRA, only Docker and Podman are OCI-compliant.
Being OCI-compliant is the only requirement for a container runtime to be
supported by Kubernetes. Hence, the workloads using Snap and LXD are not
running on Kubernetes environment and are designated for the bare-metal
scenarios in TRIREMATICS.

To clear up some terms, we briefly explain the structure of a typical (OCI-
compliant) container management system. A container management sys-
tem is a collection of tools for building, running, and distributing container
images. The two dominant container management systems are Docker and
Podman. Each container management system has a high-level and low-level
runtime for the containers, where thehigh-level oneperformsall themanage-
ment tasks and the low-level one is responsible for the execution of the con-
tainer and communicating with the kernel or systemd. In Docker the high-
level runtime is containerd and the low-level runtime is by default runc. How-
ever, containerd supports other low-level runtimes such as Kata Containers
(runv), gVisor (runsc), Sysbox, andNabla Containers (runnc). In Podman, the
high-level runtime is (a variation of) CRI-O and the low-level runtime is runc
or crun.

The main difference between the Podman and Docker system is at the high-
level runtime, where Docker uses a system daemon service to manage the
containers while podman simply executes the commands in the user space.
This allows Podman to execute containers without root privileges and lowers
the escalation risk. It should be noted that when it comes to security compar-
ison of the container management systems there are four users involved:

• The user that executes the low-level runtime, which in case of contain-
erd is the root user and for CRI-O is the user that executes the Podman
commands.

• The mapped root user from the container to the host, determining the
maximum privilege escalation achievable in the container with respect
to the host. Unless the container is executed as privileged, the root user
in the container ismapped toanon-rootuser in thehostwithmaximum
access level as the user who executed the low-level runtime.

Current

User Root

Runtime

User Root

Rootless Rootful

Privileged Container

Daemon

Container

Host

FIGURE 3.2: Each process in the container
could potentially escalate itself to the level
of the main process in the container that
could be root or non-root. A privileged
container could escalate itself to the level
of its runtime user that could be root or
non-root.
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FIGURE 3.3: A schematic representation of
themapping between theNFs, application
binaries, artifacts, and containers in run-
time. The relationships between theNFs to
apps as well as apps to artifacts is many to
one, while the relationship between the ar-
tifacts to containers is one to many.

• The user executing the main process in the container in terms of the
user namespace inside the container. By default, this user is a root user,
however, it can be changed to a non-root user.

• The user executing the current process in the container in terms of the
user namespace inside the container.

These users could escalate to each other by the criteria shown in the figure 3.2.
Even though the most secure case is the topmost one in the figure, for an av-
erage telco workload this mode is infeasible. The NFs normally require full
control over their own namespaced environment with some extra capabili-
ties to access certain resources on the host. Hence, themost suitable security
type for an arbitrary NF is the one in green: rootful, unprivileged container
with carefully selected capabilities and no syscall interception or translation.

Most of the container management systems use a Filesystem in Userspace
(FUSE) driver to mount their container images. Snap uses the SquashFS and
Docker and Podman use the OverlayFS driver. The OverlayFS is a type of
union filesystem that allows mounting multiple layers of filesystems on top
of each other, where each layer is a read-only diff of its parent layer, except
the topmost layer which is read-write. The container builders use this lay-
ered filesystem to cache the results of the previous builds and reuse them in
the subsequent builds. Also, when the images are distributed, the layers are
distributed separately and the container runtime would only download the
layers that are not already available in the local cache. OCI defines the way
these images are stored and distributed.

Docker offers Moby Buildx and Buildkit for building the container images,
while Podman relies on buildah. Podman builds, distributes, and stores the
containers in strict compliance with the OCI standard, however, Docker uses
a relaxed extensionof theOCI standard knownas theDocker Image Specifica-
tion v2. The recipes for building the container images in Docker Image Spec-
ification v2 are called Dockerfiles while OCI prefers the more generic term of
a Containerfile.

3.2 Build System

In this section we discuss the build system of HYDRA and TRIDENT, starting
from how the NFs aremapped to the artifacts, to how the recipes are defined,
and finally how the artifacts are built and automated. Along the path, we use
abstract models where applicable to elaborate on the concepts.
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3.2.1 Artifact Mapping

The first question that HYDRA needs to answer is how it maps the NFs to the
artifacts that are going to be built and deployed. The specifications normally
leave the technical details of implementation for each NF to the vendors, in-
cluding how the NFs should perhaps be grouped into a group of application
binaries or a single application binary. At one extreme, each NF could be a
set ofmicroservice application binaries and at the other extreme, all the NFs
could be implemented in a single application binary. For example, Open5GS
has a separate binary for each of the 4G and 5G core NFs, while Amarisoft im-
plements all the functionalities of both the 4G and 5G core together in a single
program. Themapping from theNFs to the application binaries is amatter of
design preference and openness of the NFs.

Further down the path, the application binaries could be grouped into a sin-
gle container image or each of them could be in a separate artifact. This is
totally different from actually running the binaries in separate containers or
a single container. The mapping between the applications to the containers
is separate from the mapping of the network services and the containers. For
example, a single container image might have the binaries for both the AMF
and the SMF, however, there would be separate containers using the same
image to run the AMF and the SMF. The figure 3.3 depicts these concepts.

The criteria that we picked for HYDRA is to have a single image set per vendor.
The image setswould contain one image for theCN, one for theRAN, andpos-
sibly one for the UEs, if available. As the time of this writing, HYDRA supports
Amarisoft, Open5GS,OAI, SRS andUERANSIMas the vendors. Weperformed
analysis on the mapping between the application binaries and the container
images both in termsof thebuild timeand the image size toprove that our cri-
teria is the best choice for HYDRA. This means given the savings on the build
time, it makes sense to have extra overhead on the image size. Theoretically,
one might imagine container images that cherry-pick the required files from
the artifacts to reduce the size of image, but due to its practical complexities
we have not considered it in HYDRA. The results are shown in the table 3.3.
Due to the particular build strategy in TRIDENT, we only performed the anal-
ysis on building Snap packages.

The data in the table 3.3 is obtained by building theOAI core network artifacts
on amachine with 40 virtual CPU cores of type Intel(R) Xeon(R) CPU E5-2640
v4@2.40GHz and 64GBof RAM. TheSnapcraft version for the test is 7.5.2 and
the overhead introduced by HYDRA on all the images is balanced. The builds
for the Microimage approach are done in sequence to have all the machine
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FIGURE 3.4: From the 223MB compressed
image size of theOAI corenetwork, 662MB
of uncompressed data is extracted, from
which only 78 MB is the total share of the
NFs binaries and the rest are the shared li-
braries or utilities. This figure shows con-
tribution of eachNF to that 78MB in sorted
descending order.

Metric Image Set Microimage

Parallel Build Time 31m22s 17m19s

Resource-based Time 24.510s 165.009s

Image Size 223 MB 831 MB

Number of Artifacts 1 15

TABLE 3.3: Themetrics for image set andmicroimage approaches for the special case of OAI core network. The
build times are measured as the maximum across all the different artifcats, while the image size incorporates
the sum of the sizes of all the artifacts. This is due to the fact that potentially all the build jobs could be run in
parallel.

dedicated, but assumed to be done in parallel. From this table we conclude
that the Image Set approach saves 73.16% of the disk space and potentially
download time of the images. The figure 3.4 shows the contribution of each
NF to the total image size for the Image Set approach.

Before analyzing the build time, we need to introduce twometrics.

Definition 3.3 (Parallel Build Time). Thebuild time in wall clock time assum-

ing all the jobs could be running in parallel on infinite instance of the same

machine. Hence, the Parallel Build Time is defined per artifact mapping for

each different setup of themachine. In case ofmultiple artifacts, themaximum

of their build times is considered.

Definition 3.4 (Resource-based Build Time). The Resource-based Build Time

is total CPU time of a build, assuming all the jobs are running in sequence on

a single instance of the same machine. Hence, the Resource-based Build Time

is defined per artifact mapping for each different setup of the CPU. In case of

multiple artifacts, the sum of their build times is considered.

The Resource-based Build Time is proportional to how many CPU cores it
uses, which directly translates howmuch cost and energy it would incur. This
cost could considered as part of the CapEx for the NFs. Given the definitions,
the Image Set approach takes 44.80% longer to build the artifacts on the Par-
allel Build Time. However, the Resource-based Build Time is actually 85.15%
shorter for the Image Set approach. Thismeans a direct cut of CapEx down to
one seventh of the Microimage approach.

Thismapping is notwithout consequences though. In a sparse cloud environ-
ment where no twoNFs sojourn on the same host, the image set approach in-
troduces an overhead of downloading a larger artifact without sharing it with
any other NF. However, there are two delicate points to consider in this argu-
ment. First, since TRIREMATICS is aiming for green computing, the scheduling
of the Pods to the nodes is done with preference of a dense cloud rather than
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FIGURE 3.5: This figure shows the logarithmic decay of the build time versus the number of CPU cores for
building the OAI core network artifact with the Image Set mapping. The measure on the left y-axis is the real
clock time, while the measure on the right y-axis is the CPU time. The green line is for the user time and the
blue line is for the system time, summed together to form the Resource-based Build Time.

a sparse cloud. Moreover, the images are cached for the subsequent deploy-
ments, allowing agile flexibility in changing the node assignment inDay-2 op-
erations. Hence, the overhead defined in the table 3.3 for the image set is in
the worst case scenario where the deployment is completely sparse and no
caching could be used for running the containers. On the other hand, for the
microimage approach we have the extra build time and number of artifacts
to consider and maintain. The main practical challenge for maintaining the
Image Set style is the cross-compatibility of the libraries used in the same ar-
tifact for different NFs. Expectedly, vendors keep the NFs compatible with
each other, hence, the issue is not as severe as it might seem.

It is worth noting that not all the CPU cores could be utilized for all the kind of
jobs. Hence, the value would fluctuate depending on the type of the job and
the CPU architecture. For example, the figure 3.5 shows the build time of the
same OAI core network artifact with the Image Set mapping on the samema-
chine for different number of CPU cores. From this figure, one could notice
that the build time is not linearly proportional to the number of CPU cores.
Above 5 CPU cores, the build time reduces below 10% by adding each CPU
core, which we consider as a decent cut-off point for the CPU cores. Fur-
thermore, wenotice that the Resource-basedBuild Time remains almost con-
stant, regardless of the number of CPU cores. This is due to the fact that the
build jobs are not CPU-bound and the bottleneck is the disk I/O or network-
ing.
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3.2.2 Build Recipes

Generally speaking, the telco artifacts are very complex, composed of several
parts to build and lots of dependencies to install. To define a build recipe for
such artifacts, currently most of the existing solutions rely on the imperative
approaches in which you have to specify the exact steps to be taken for build-
ing the artifact. These steps either are realized as a complicated shell script
(e.g., OAI) or Dockerfiles or perhaps a combination of both. An imperative
build definition is extremely hard to maintain and extend, prone to human
errors or inconsistencies, and difficult to parallelize. HYDRA uses a declara-
tive approach based on the Snapcraft build recipes. Each Snapcraft recipe is
a YAML file defining the artifact as union of several parts. The parts need to
define the sources to be fetched, the plugin to be used for building, the pack-
ages requiredduring thebuild, thepackages requiredduring the runtime, and
any other environment variable or metadata needed. The parts might define
dependency on other parts to dictate certain build order. This simple act of
redefining the build recipes as a declarative Snapcraft file completely solves
the obscurity of the shell scripts, addresses the maintenance challenges, and
minimizes the errors in the build recipes.

It should be noted that Snapcraft does not allow the parts to be built in par-
allel, hence following the same logic, we define the build units in HYDRA per
artifact not per part. This does not mean that for example a Make job for the
part would be using only one CPU core, but merely that the the other parts
would not be built in parallel.

Definition 3.5 (Build Unit). A build unit is the smallest manageable unit of

the build process that could be issued for a parallel build. Each build unit is

assigneda certainamountofCPUcores andmemory that areused for thewhole

build process.

By definition, the build units inHYDRA are the artifacts themselves, defined in
separate Snapcraft files. These build units are carefully assigned to the system
resources to maximize the concurrency and utilization of the system. Care-
lessly scaling the build units would actually result in a longer build time due
to the overhead of the context switching and the resource contention. We dis-
cuss more on the topic of isolation and concurrency in the subsection 3.2.6.

Each artifact might have several variants as defined below:

Definition 3.6 (Artifact Variant). An artifact variant is a variation of the same

artifact with different attributes. The attributes could be the CPU architecture,
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the CPU flags, the base image, the container management system, or the host

OS.

For the sake of consistency and lower build time, TRIDENT builds all the vari-
ants of the same artifacts based on the same Snapcraft recipe. Furthermore,
the skeleton of the artifacts and the Snapcraft recipes all follow the exact same
structure to allowautomatic instantiationof newartifacts and systematic lint-
ing and testing. After the Snap packages are built on a certain CPU architec-
ture, they are extracted from the Snap package format and then copied into
the container images for the same CPU architecture. The Dockerfiles and the
Containerfiles define how and in which order the files need to be copied into
the container image tomaximize the cache hits andminimize the build time.
There are multiple base images available for each artifact to allow the users
to choose the most suitable one for extending and customizing the artifact.
Also, each of the images are built and tested on various host OSs tomake sure
the users can indeed build and run them on their desired OS, without any
unattended degradation in the performance. The extracted and copiedmate-
rials for the container images are regardless of the base image or the host OS,
and they only depend on the CPU architecture. In fact, if the Snapcraft files
are defined properly and without any dependence on the Snap Core pack-
ages, the resulted artifact could simply be lift-and-shifted to any other con-
tainer management system and using any other base image. There are only
two exceptions to this lift-and-shift strategy. The target base image needs to
have the libc library of the version greater than or equal to the one in Ubuntu
Core 20 (GLIBC 2.31) to allow dynamic linking of the libraries. Due to this
constraint, the HYDRA artifacts cannot have base images in Redhat UBI 8 or
older, CentOS 8 or older, Ubuntu 18.04 or older, Alpine Linux (since it does
not use GLIBC), or the Scratch image. Also, the target run environment needs
to have a matching CPU architecture as well as the flags. For example, an ar-
tifact built for amd64 architecture with AVX2 flags cannot be run on an arm64
architecture nor on an amd64 architecture without AVX2 flags.

3.2.3 Build Strategies

In the context ofmulti-x build systems, each variant of an artifact is attributed
by its base image, container management system, container image builder,
and the host system that it was built on. The official set of the base images
supported in HYDRA are Ubuntu 20.04, Ubuntu 22.04, Redhat UBI 9, and the
GoogleDistroless base variant. TRIDENT builds the Snappackages onUbuntu
Core 20 and with both the Multipass and LXD builders. For the Dockerfiles,
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Statistics Value

Vendors 5

NFs 30

Artifacts 130

Variants 2730

Base Images 4

Host Systems 3

Snap Packages 13

Docker Images 52

OCI Images 52

LXD Images 13

Architecture 3

TABLE3.4: Somegeneral statistcs about the
HYDRA and TRIDENT projects. The NFs in-
clude the RAN (eNB, gNB, CU, DU), RIC,
xApps, and the UEs.

it uses the Moby Buildx builder and the Docker Buildkit builder, while for
the Containerfiles it uses the Buildah in the script mode, Buildah in the bud
mode, and the Podman builder itself which are all slight different variants of
the same builder. The official host systems include Ubuntu 20.04 with amd64
with SSE4.2 and AVX2 flags, Ubuntu 22.04 with amd64 with SSE4.2 and AVX2
flags, Redhat Enterprise Linux 9 with amd64 with SSE4.2 and AVX2 flags, and
Ubuntu 22.04 with arm64. It should be noted that not every combination of
these attributes is possible and some NFs are infeasible to be built on top of
some system architectures. Furthermore, the images are built on different
hosts or builders are not expected to be any different. They are built as part of
fluke tests tomake sure the artifacts are indeedportable and reproducible. For
this reason, the not every artifact is graduated to release phase in TRIDENT.

To build these large number of variations of artifacts for several vendors, we
have analyzed a few systematic build strategies based on build time, concur-
rency, consistency, and declarative automation. If we represent the directed
graph of how different variants of artifacts are built from each other, we have
defined a build strategy.

Definition 3.7 (Build Strategy). A build strategy is directed graphwith vertices
representing the stages for building variants of the artifacts and the edges indi-

cating the destination vertex could be built by only inheriting all the files from

the source vertex, except the base image or configurations The feasible build

strategies are directed forests in the graph theory terminology.

The vertices in different connected components or of the same depth in a
tree component rooted from the first artifact variant could be built in parallel.
Hence, we could declare the concurrency factor 𝑐 of a build strategy using the
following formula:

𝑐 =
𝑛

𝑖=1

argmax
𝑑,𝑖

|𝑉𝑑,𝑖| (3.1)

where 𝑛 is number of connected components in the graph and 𝑉𝑑 is the set
of vertices in the depth𝑑,𝑖 of the component 𝑖. Another interpretation of the
concurrency factor would be by dividing the number of independent variants
of the artifacts by the total number of variants of the artifacts. This should
approximate the mathematical definition of the concurrency factor.

A consistent build strategy is the one which the variants in the same con-
nected component have the exact same binaries other than the base image.
Hencemathematically speaking, a consistent build strategy for𝑛 artifacts has
exactly𝑛 connected components. In this thesis we consider four build strate-
gies, namely the Separated, Matryoshka, Jigsaw, and TRIDENT, as depicted in
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the figures 3.6 and compare them in terms of the concurrency and consis-
tency.

In a Separatedbuild strategy, each artifact is built separately and independent
of the other artifacts. This strategy is represented with a null graph and for
obvious reasons, it has the maximum concurrency but the minimum consis-
tency. In theMatryoshka (Russian doll) build strategy, the artifacts are built in
a hierarchical manner, where the images are built as layers within each other
to maximize the cache hits. Designing such a strategy is not trivial and re-
quires a deep understanding of the dependencies between the artifacts. For
the general, multi-vendor case of HYDRA, this strategy is simply infeasible.
The Jigsaw build strategy does not limit the layers to be hierarchical, but one
could cherry-pick the required files from several artifacts to build a new arti-
fact. This ismainly donebasedon themulti-stage builds inDockerfiles. Using
this method has the downside of missing the caches compared to the Ma-
tryoshka strategy, and it could be as complicated as it to design for a generic
case. The concurrency of aMatryoshka and Jigsawbuild strategies is the same
as its number of artifact variants. Neither of them could be considered con-
sistent build strategies, unless each artifact has only one variant.

The TRIDENT build strategy builds Snap packages for all the possible variants
first, then prunes the build tree by selecting one candidate per CPU architec-
ture. These candidates then are used to generate the Docker, OCI, and LXD
images all in parallel over several variants.

A third dimension to consider beyond the concurrency and consistency for a
build strategy is the caching factor. In Docker or OCI images, practically each
line in theDockerfile or Containerfilewould result in a new layer in the image,
where the layers are cached and reused in the subsequent builds. The caching
is also usedwhile pulling the images from the registry. Tomaximize the cache
hits, we carefully design themapping between Snap packages and theDocker
or OCI images, while at the same time leveraging the caches in the registry
using the Styx build flow scheme, defined in the section 3.2.5. The optimized
images first copy the commonfiles between all the artifacts including generic
libraries, then the unique files for each vendor, and finally the unique files for
each artifact. This gives us the maximum cache hits and the minimum build
time.

As an example, if we apply this caching strategy to the OAI RAN image, taking
into account caches fromOAICN image (vendor-level caching) andAMRRAN
image (NF-level caching), we have the pie chart shown in the figure 3.7. This
chart indicates that from the 500 MB of the total Docker image size, 73 MB
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Base
14.6

Vendor
40.8

NF
13.8

Unique
30.8

FIGURE 3.7: Cachig pie chart for the OAI
RAN image with the decompositon into
the base image, vendor-level cache, NF-
level cache, and theuniquefiles for theOAI
RAN.

base build amf

base build amf

(a). Two connected components from aMatryoshka build
strategy. The different colors are for different variants of

builds. This is used in practice for OAI AMF container images
released by OAI. Each of the vertices is actually a container

image saved during the build process.

base build

eNB

gNB

(b). One connected component of a Jigsaw build strategy
that is used in practice for the OAI RAN images published by
OAI. Each of the vertices is actually a container image saved

during the build process.

Snap

Docker Docker Docker

OCI OCI OCI

(c). TRIDENT build strategy.

FIGURE 3.6: As shown in this figure, the build strategies could be represented as directed graphs. The nodes are
the variants of the artifacts and the edges are the dependencies between the artifacts. The colors are used to
differentiate the variants of the artifacts.

is the shared base image, 204 MB is the vendor-level cache, 69 MB is the NF-
level cache, and only 154 MB is the actual unique files for the OAI RAN. This
would induce a reduction of almost 70% in the build time, image size, and the
network traffic.

3.2.4 Consistency and Concurrency

To demonstrate the points made on consistency we have devised a simple,
but slightly exaggerated example to surface the issue. In the figure 3.8, we
have used two separate base images namely Ubuntu:16.04 and Alpine:3.14 to
build two similar artifacts, each of them containing only the OpenSSL pack-
age. First of all, notably the versions between the packages are different: in
Ubuntu is 1.0.2g, while in Alpine is 1.1.1t. This causes a significant perfor-
mance difference between the two artifacts. The test has beenperformedon a
machine with 12multithreaded Intel(R) Core(TM) i9-10920X CPU@ 3.50GHz
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CPUs in two independent time slots (to avoid CPU frequency scaling varia-
tions). The test command is openssl speed md5 and the results are shown
in the figure 3.8. As it is depicted in the figure, depending on the block size,
we could have up to 70% performance difference between the two artifacts.
Since OpenSSL is a critical library that is used frequently in programs, this
performance difference results in significant unexpected performance varia-
tions in theNFs. Furthermore, we observe that someoptions are not available
in the older Ubuntu image, which could be used to further accelerate the per-
formance of the NFs.
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FIGURE 3.8: The performance unpredictability in the case of OpenSSL installed on Ubuntu 16.04 image (hash
b6f507652425) and Apline 3.14 image (hash 9e179bacf43c).

A similar issue exists for the vulnerabilities. In the table 3.5, we have listed the
number of vulnerabilities found in installing Apache2 server onUbuntu 22.04
and CentOS 7. The results are obtained using the Trivy* project and are lim-
ited only to the httpd package. As it is shown in the table, the number of vul-
nerabilities is different between the two distributions, reflecting completely
different security postures. This issue makes the planning for the security in
a multi-x environment very difficult.

As a result of the two previous experiments, we conclude that the consistency
of the environment is a crucial to make the performance and security of the
NFs predictable. In TRIDENT, consistency is achieved without much of sac-
rifice on the concurrency. There are four stages of build in TRIDENT, one for
each of the container management systems. The first stage is the Snap build
stage, which is the most time-consuming stage. All the variants for the Snap

* https://github.com/aquasecurity/trivy

S Ubuntu CentOS

C 0 0

H 0 0

M 5 16

L 24 5

U 0 0

TABLE 3.5: This table shows the difference
between vulnerabilities found in the sim-
ilar packages in Ubuntu 22.04 and Cen-
tOS 7. The vulnerabilities are categorized
based on the severity level indicated in the
columnS,whereC stands for Critical, H for
High, M for Medium, L for Low, and U for
Unknown.

https://github.com/aquasecurity/trivy
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packages are built in parallel, then the rest of the artifacts could all be built in
parallel.

As pointedout earlier, the concurrency factor is derivable from thebuild strat-
egy graph. In case of TRIDENT, given the statistics in the table 3.4 and the
formula 3.1, the concurrency factor is 117, resulted from summing up all the
Docker, OCI, and LXD variants. However, it should be noted that the concur-
rency factor is only the theoretical maximum number of parallel builds. In
face of limited resources, the actual concurrent build rates needs to be ad-
justed to avoid the thrashing, context switching, and the memory pressure.

To address the concurrency in a limited resource environment, TRIDENT re-
serves the resources for each build job, complementing Jenkins† scheduling,
as its build automation system. As discoverednumerically from the figure 3.5,
5 cpu cores per build unit is a good cut-off point. Hence, for each 5 vCPU of
the physical node agents, we define one executor in Jenkins, while reserving
at least two CPU cores for the host processes, Kubernetes services, and the
Jenkins agent process. The basic tasks such as triggers are executed with the
no node option inside Jenkins’ JVM to avoid occupying the executors on the
agents. Additionally, we define a set of lockable resources in Jenkins present-
ing each of the executor slots with the same label. Each build job requests
one of these resources to reserve the executor slot, which the actual reserved
resource name indicates the exact CPU set to be used. This allows us to de-
fine specific CPU sets for each Snap or Docker build job, enabling a proper
concurrent build system.

3.2.5 Versioning and Styx

Versioning is a crucial part of the DevOps to track the changes in the artifacts
and to allow the users to keep a consistent environment. In TRIREMATICS, we
use the Semantic Versioning (SemVer) v2.0.0 for every artifact or project. In
particular, in HYDRA we use the following format:

<major>.<minor>.<patch>-<app>-<builder>-<base>-<suffix>

The major, minor, and patch are from the earliest git release tag parent to
the current commit and the app-version is the version of the main artifact
or repository packaged inside the artifact. The builder is the name of the
builder used to build the artifact, the base is the name of the base image used
to build the artifact, and the suffix is an optional suffix to differentiate the
artifacts built with the CI pipline, patched via the CDK, or built locally. In

† https://www.jenkins.io/

https://www.jenkins.io/
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case of release artifacts, the suffix and builder are omittedwhile a separate
tag containing only the major, minor, patchm and the app would point to
the artifact with the Ubuntu 20.04 base image. Since our DevOps is based
on GitOps practices, all the files used for building and testing the artifacts,
including the build recipes, the Jenkinsfiles, and the test scripts are versioned
in the same repository as the artifacts.

In our CI pipline, we have defined barriers to prevent faulty artifacts to affect
the downstream artifacts. This feature that is called Styx forces the different
build stages to push their resulted artifacts to the registry first and the down-
stream stages would pull the artifacts from the registry. The pushed artifacts
must be versioned, tested, and signed to be accepted by the registry. This al-
lows us to have a consistent pipeline with several checkpoints to follow if the
build fails abruptly. The fingerprint of the artifacts is stored in Jenkins and
the build history checks the freshness of the artifacts. The images are signed
using Cosign and the signatures are stored in the registry.

Git Registry

Snap Create Snap Evaluate

Docker Create Docker Evaluate

Jenkins

sign

version

scan

pro
mot

e

sig
n

ver
sio

n promote
scan

fingerprints
+

test
results

FIGURE3.9: Styxpipeline examples for SnapandDocker. Thecurved lines show theStyxbarriers and thedashed
lines show transfer of metadata or triggers. This figure only shows the CI pipelines.

The figure 3.9 shows how a Styx pipeline is defined in TRIDENT. In this par-
ticular example the Snap and Docker pipelines are shown, but the similar ar-
rangement applies to the other two pipelines. First a trigger in Git repository
initiates the pipeline for Snap Creation. The resulted build artifacts of differ-
ent variants are versioned and signed, then pushed to the registry. In the case
of Snaps the registry points both to the Snap Store and our Harbor‡ OCI reg-
istry inTRIDENT. The images are scanned for vulnerabilities and the results are
stored in the registry. If necessary, the registry would replicate the images to
the other registries. Then the Snap Evaluate pipeline is triggered, which pulls
the artifacts from the registry and runs the tests. If the tests are successful, the
artifacts are promoted to edge channel in the Snap Store and beta repository
in the registry.

‡ https://goharbor.io/

https://goharbor.io/
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The Docker, OCI, and LXD pipelines are only triggered if the Snap Evaluate
pipeline is successful and there is anewartifact in thebeta repository. A corre-
sponding set of pipelines for Create andEvaluate happens for eachof the con-
tainer management systems, while similarly respecting the Styx barriers, by
submitting the signed and versioned artifacts to the registry, pulling it back,
running the tests, and promoting the artifacts to the beta repository. They
Evaluate pipelines store the resulted fingerprints and test results in Jenkins
database. Those are later used for reference and checkpointing the pipelines.
If the next trigger has no changes for a certain image set, the pipeline would
be skipped for them. If one of the pipelines downstream fails, it retries the
pipeline using the same artifact from that point in Styx. After all the pipelines
are finished in the CI, the CD stages are triggered to promote the artifacts to
the stable repository.

Essentially, Styx goes beyondmerelyGitOps into amore sophisticatedGitReg-
istryOps. Every source should come from the Git repository and every artifact
should be pushed to the registry, while the artifacts in the registry have ver-
sions linking them back to the Git repository.

3.2.6 Build Automation

We incorporate GNUMakefiles in HYDRA to define build commands for each
of the variants. Some of the options could be defined as environment vari-
ables. The Makefiles provide enough abstraction to allow any build automa-
tion system to be used with HYDRA, however, not every build automation is
alignedwithHYDRAgoals. Mostly thebuild automations aredefined forbuild-
ing and testing the source code, while HYDRA is just about the artifacts them-
selves, not their origin source codes.

For an arbitrary software, the maintainers of its source code repository use a
build automation system to build and test their source code, most likely in-
side a container. As a result of a successful pipeline, the source code alongside
a reference container image are released. In HYDRA on the other hand, we
are maintaining the recipes for building tens of artifacts themselves and the
tests are about how the containers behave as a whole, alongside with the APIs
added, not just the particular application binaries inside them. Then the con-
tainers are deployed and tested in a real environment where all together they
form a complex system. In other words, what would be called perhaps a CD
pipeline for anormal codebase turns into theCI stage forHYDRA,while theCD
stage forHYDRA gets out of the scope formost of the traditional build automa-
tions. For thismatter, we have chosen Jenkins as the build automation system
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used in TRIDENT. Jenkins allows bare-metal builds and tests that are specially
useful for building the Snap packages and LXD images. It also provides the
right type of automation for building large number of multi-x artifacts that
have the TRIDENT strategy in mind. Of course, one could use hacks on other
build systems tomake them comfortable with Snappackages or building con-
tainers for telecommunication systems, but it usually demands workarounds
lowering the security of the build system.

In Jenkins, we use shared customworkspaces that follow the flow of TRIDENT
to minimize number of pulls from the Git repositories. Beyond that, as we
discussed earlierweuse the lockable resources to provide execution isolation.
The lockable resource are also to throttle jobs for building the same image set
variant or accessing some system resources such as radio devices attached
for testing. The variants of an artifact are defined usingmatrix jobs in Jenkins.
All the Jenkinsfiles are defined in declarative syntax where usage of the shell
commands are minimized down to mostly calling the makefiles.

3.3 Test System

A proper DevOps platform needs to have a comprehensive test system to en-
sure the quality of the artifacts. In this section we discuss the test system of
HYDRA and TRIDENT. The section is divided based on each of the test cate-
gories and the tools used for each category.

3.3.1 Linting, Validation, and Compliance

Linting is a process of static analysis of the source code to find the potential
errors, bugs, and stylistic issues. It makes sure the source code remains con-
sistent and readable, while the git history stays clean. In TRIREMATICS we use
the Mega-Linter§ project to lint all the source codes. The Mega-Linter is a
Docker image that containsmore than 70 linters and analyzers for more than
20 programming languages. It is a single Docker image that could be used to
lint the source code of any project. TheMega-Linter is integrated with the CI
pipeline of HYDRA and TRIDENT to lint the source codes before building the
artifacts. Beyond that, the Mega-Linter is integrated with the CDK to lint the
source codes before committing them to git. Using the git hooks, some of the
basic checks are performed before committing the changes to git too.

InTRIREMATICS terminology, validationmeans statically checking for errors in
the configuration files and the build recipes. For example, the YAML files are

§ https://github.com/oxsecurity/megalinter

https://github.com/oxsecurity/megalinter
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validated against their schemas and the Dockerfiles are validated against the
Dockerfile Linter. Thevalidation is performed in theCI pipeline of HYDRA and
TRIDENTbeforebuilding the artifacts, aswell as in theCDKbefore committing
the changes to git.

Compliance is a process of checking the artifacts against a set of rules to en-
sure the artifacts are compliantwith the licensing policies. In TRIREMATICSwe
use the FOSSA¶ project to check the artifacts against the licensing policies.
The FOSSA is a Docker image that could be used to check the artifacts against
the licensing policies. Furthermore, certain security and reliability guidelines
about building and running containers are validated too.

3.3.2 Unit Testing

Unit testing is a process of testing the smallest testable parts of the software,
called units, to ensure they are working as expected. The units in HYDRA are
each individual variant of the artifacts. TRIDENT uses the Bash Automated
Testing System (BATS)� to unit test the artifacts. These tests include basic
functionality tests as well as smoke tests for each application inside the ar-
tifact. In a smoke test, the application is run with a simple configuration to
make sure it is runningwithout errorsorwarnings for a certainpredetermined
amount of time.

As the final stage of the unit testing, the artifacts are statically analyzed us-
ing the Trivy project for any security vulnerabilities or misconfigurations. It
should be noted that Trivy does not simplyworkwith amultistage builds such
as the one used in HYDRA. To mitigate this issue, we copy the required meta-
data to the container and use a customized version of Trivy which is pointed
out to the right files.

3.3.3 Multi-x Integration Tests

The integration testing is a process of testing a combination of artifacts work
together as expected to deliver a particular scenario. The integration tests in
TRIDENT are limited to the Docker images, where by the consistency assump-
tion, the rest of the artifacts should work the same. The tests are done using
constant configurations defined in several Docker Compose files. These tests

¶ https://fossa.com/
� https://github.com/bats-core/bats-core

https://fossa.com/
https://github.com/bats-core/bats-core
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are the reference scenarios for guaranteed performance with particular ap-
plications in the loop. The test results in terms of throughput, latency, and
resource usage are generated and reported.

Since the compositionmodels inHYDRAaredistributedviaHelmcharts, some
minor integration tests are defined in the Helm charts to make sure the com-
positionmodels are working as expected. Beyond that, in the CD pipelines of
TRIDENT, the multi-x and interoperability tests performed on randomly gen-
erated feasible scenarios. These tests cover more application scenarios, and
their results are recorded via the observability stack in ATHENA. A particular
Operator in ATHENA Operator Plane is responsible for running the tests, col-
lecting the results, and reporting them back. Discussions on the composition
models and Operators are deferred to the chapter 4.

3.4 DevOps Continuum

The DevOps practices incorporate one form or another of the three contin-
uums: Continuous Integration (CI), Continuous Delivery (CD), and Contin-
uous Deployment (CD). Both delivery and deployment continuums are ab-
breviated as CD. Depending on the type of the final artifact, the CD is either
delivery or deployment.

3.4.1 Continuous Integration

TheCI journey inTRIDENT starts from theCDKwhere the artifacts are defined,
then continues to Gitlab where we use to store the source codes. In terms of
git workflow, we use the Feature Branch Workflow where each feature is de-
veloped in a separate branch, but a singlemain branch is used for integration.
This branch is tagged for the releases. This strategy simplifies the CI pipeline
and the source code management. The commits in Trirematics source codes
are done using the Conventional Commits specification with scopes defined
for each artifact.

The CI pipeline in TRIDENT is defined and executed in the Jenkins, with one
pipeline verifying every push to themain or develop branch and another one
building, testing, and releasing the artifacts for every tag or merge request.
The pipelines are defined in the Jenkinsfiles in the Jenkins declarative syntax
and stored in the TRIDENT repository, while the source codes themselves are
stored in the HYDRA repository. The pipelines are triggered by the webhooks
from the Gitlab via the Jenkins Gitlab integration plugins.
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Due to massive number of variants in the table 3.4, the push pipelines result
into no artifacts and are done only for the changes made in the last commit.
This is to minimize the time required to verify the changes and make the de-
velopment cycles agile. For the tag pipelines, every image set is built, tested,
and released in the beta channel of the registries. The tag cycles are no shorter
than once a month.

3.4.2 Continuous Delivery

TRIDENT uses Semantic Release** to automate the versioning and releasing
of the artifacts in a continuous manner. The Semantic Release is a tool that
analyzes the commit messages to determine the next version of the artifact
and automatically releases the artifact to the registries. It also generates the
changelog and the release notes for the artifact. The Semantic Release is in-
tegrated with the CI pipeline in TRIDENT to release the artifacts to the beta
channel of the registries.

The resulted artifacts that managed to pass the Styx barriers become candi-
dates for the release and are listed in the release notes. The images are dis-
tributed via a private Harbor registry that synchronizes the images with the
public Docker Hub, Artifact Hub, and the partners’ Harbor registries. The
Snap packages are also distributed via the Snap Store. The rule of thumb in
TRIREMATICS is that every artifact needs to be stored in the registries.

The CD tests are then executed on the artifacts in the beta channel of the
registries to tag them for a stable release. These tests start with the multi-
x integration tests via Docker Compose as mentioned earlier. The artifacts
graduated from the integration tests are release candidates. Then we use the
ATHENA to run the multi-x and interoperability tests on the artifacts in a Ku-
bernetes cluster.

For rolling an update on a running system, we need to define a deployment
strategy.

Definition 3.8 (Deployment Strategy). A deployment strategy is a set of rules

and procedures for deploying the new version of an artifact while minimizing

the downtime and the scope of the effect.

There are several common deployment strategies in CD, namely blue-green,
canary, rolling, and A/B testing . TRIDENT uses different strategies depending
on the type of the NFs.

** https://github.com/semantic-release/semantic-release

https://github.com/semantic-release/semantic-release
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For the DP in the CN, the best strategy to use is a mixture of the blue-green
and canary deployments, boosted by slicing. We call this deployment strategy
Slice and Dice.

Definition 3.9 (Slice and Dice). In a Slice and Dice deployment, 𝑛 new in-

stances with the new version of the NFs are deployed alongside the 𝑜 ≥ 𝑛 older
existing instances. Then a new slice is created for the set of new instances which

gradually the users of 𝑛 randomly selected older instances are migrated to that

slice, hence being served by the new 𝑛 instances. Then the older 𝑛 instances

are decommissioned. The process is repeated until all the older instances are

decommissioned.

The value 1 + 𝑛
𝑜 is the surge factor, indicating how much more resources is

required for rolling out the new version. Let us review an example of this de-
ployment strategy with theUPFNFs: The new version of UPF is deployed first
alongside the older version, then using slicing, the traffic is gradually shifted
to the new version, while measurements are taken to ensure the new version
is working as expected.

For the rest of CN, if the NF is stateless, the rolling deployment is used, other-
wise, the blue-green deployment is used tominimize the downtime and con-
text loss. For the RAN, however, it is almost always impossible to deploy two
versions sharing the same radio at the same time. In result, we have defined
the new deployment strategy calledHandover Rolling.

Definition 3.10 (Handover Rolling). In a Handover Rolling deployment, the

UEs are handed over to a neighboring cell, while then the older version is being

replaced with the newer one, and finally the UEs are handed back to the new

version. This in a larger scale would look like a rolling deployment.

Themessage sequence chart for this deployment strategy is shown in the fig-
ure 3.10 for the example of only one UE connected to a single gNB instance.

After incremental deployment tests are done on the artifacts, the correspond-
ing composition models are updated and a stable release is made. The stable
release is then distributed to the customers via the registries alongside the
step-by-step upgrade guide.

3.4.3 Continuous Deployment

Thefinal deployment in TRIDENT happens in production environments. After
a stable release ismade, the corresponding artifacts receive updates following
the same deployment strategies done during the testing phase. Alternatively,
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FIGURE 3.11: The structure of theWorkload
container in HYDRA. The BOSUN and BEA-
CON repsectively provide theWMI and CPI
interfaces. The CAULK controller is to pro-
vide unifiedmulti-x key-value backend for
storing the configuration and state of the
applications.
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FIGURE 3.10: The message sequence chart for the Handover Rolling deployment strategy. For simplicity the
RIC is removed from the figure and the connection between the xApp and the gNBs is show directly. From the
figure, the lifecycle of theHomeOld gNB ends after theHandOver (HO) and then the lifecycle of theHomeNew
gNB could start with the same resources as the Home Old gNB. Themessage flows for HO are simplified.

theendusers coulduse rollingupdatesor complete re-deployments toupdate
their artifacts.

3.5 Container Structure

HYDRA defines a default preferred container structure for the artifacts. This
architecture could be violated as long as the artifacts maintain the interfaces
with the MANO as defined in the chapter 4. Of course, TRIDENT would only
fully support the artifacts that follow the default container structure inHYDRA
and it provides no promises for the artifacts that violate the structure.

The default structure is shown in the figure 3.11. In this figure the term Ap-

plication refers to the NF binaries, while Workload is the collection of tha
applications, their dependencies, configuration files, and the files and APIs
imposed HYDRA. In this sense, the Workload’s perimeter matches the ones of
the container image.

3.5.1 Frontend Scripts

HYDRA provides a set of basic shell scripts named frontend to unify the struc-
ture of initialization and starting up the application binaries in the container.
In particular, they provide the following multi-x functionalities:

1. A unified initialization script for each of the Applications in the Work-
load.

2. A set of utilities for logging, NUMA policies, device detection, interac-
tive sessions, and environment variables.
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3. A configuration script for assigning configuration files to the applica-
tions, modifying them using an editor, or generating them from tem-
plates.

4. A run script for starting the Applications in the workload with signal
trapping and cleanup.

5. A test SDK script for testing the Applications in the workload, used reg-
ularly in TRIDENT pipelines.

In terms of lifecycle of the Applications, the most important script is the run
script. It allows the Applications to gracefully respond to the signals sent by
the container runtime or theManager and performs all the required cleanup
before exiting, including closing the file descriptors, removing the temporary,
closing the pipes, and killing any (zombie) child processes. The exit status
of the Applications are collected and reported to the Manager, alongside a
matching against a long list of known exit codes. Using the Linux pipes, this
scripts enables access to the internalCLI ofmultipleApplications in theWork-
load too.

The test SDK allows definition of any custom tests in BATS format as long as
they are placed in the tests directory identified by the TESTS_DIR environ-
ment variable. Themulti-x nature of the frontend allows it to execute the Ap-
plications in any environment, including Snap andDocker. The frontend also
incorporates some metadata files in JSON format to be used mostly by TRI-
DENT. The importance of using the test script instead of running tests directly
is tomake sure the tests are executed in the exact same environment, security
context, and configuration as the Applications are run in the production

For the Snap execution environment, frontend also provides a set of hooks to
be used by the Snapcraft. These hooks are defined for the installation, refresh,
and configuration of the Snap. Snap provides its own backend for keeping a
set of key-value pairs for the configuration of the Snap. To make this com-
patible with our multi-x design, we have defined a minimal controller script
named CAULK that implements the same interface as the Snap backend for
other execution environments, hence the frontend scripts could load and set
those pairs regardless of the execution environment in the exact same way.

3.5.2 Application Programming Interfaces

HYDRA defines two set of Application Programming Interfaces (APIs) for the
Workload:
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1. TheWorkload-Manager Interface (WMI), implementedasBOSUNserver
in the current release.

2. The Container Probing Interface (CPI), implemented as BEACON server
in the current release.

Beyond that, HYDRA allows definition of any customary APIs for the Applica-
tions in the Workload and exposes them to the MANO. The APIs are declared
in the api.jsonfile in the CONF_DIRdirectory of theWorkloads. TheManager
with the right supporting plugins could use these APIs to control the Applica-
tions in the Workload in a custom manner. This method for example is used
to implement O-RAN O1 interface plugins in ATHENA.

A WMI implementation needs to provide at least these five simple API end-
points:

1. init for initializing the applications in the workload.

2. start for starting the applications in the workload.

3. stop for stopping the applications in the workload.

4. status for checking the status of the applications in the workload.

5. info for getting the informationabout the applications in theworkload.

These endpoints are defined using a HTTP/1.1 REST API, where the URL for-
mat is as the following:

<host>:<port>/api/v1/wmi/<endpoint>/<?app>?<arg=val>

Thescheme, host, andport aredefined in theapi.jsonfile,while theoptional
app parameter is to run the endpoint on a specific Application in the Work-
load. If not specified, the endpoint is runonadefault applicationnamedmain
provided by the frontend scripts. Custom arguments could be passed to the
endpoint using the query string as key-value pairs.

BOSUN operates in three possible modes: autonomous, managed, and stan-
dalone. In the autonomous mode, the API automatically calls itself to initial-
ize and start the main application, while in the standalone mode, it waits for
theuser to interactwith theAPI toperform the actions. In themanagedmode,
the API server is not started until theManager has provided the api.jsonfile.
Essentially, in this mode, it is the Manager who decides where and when it is
expecting the API server to be running and BOSUN lifecycle explicitly starts
after the Manager initialization. The autonomous mode is used in TRIDENT
pipelines for testing, while the standalone mode could be used for running
the scenarios manually.
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WMIdefines a statemachine for eachApplication theWorkloadasdepicted in
the figure 3.12. The Manager uses this state machine to manage the lifecycle
of the Applications in the Workload. BOSUN is also responsible for gathering
the exit codes of the applications and reporting them to the Manager when
requested using the status endpoint.

Unknownstart Initialized

Exited

Running

Killed

init

init

*

start

start

*

stop
Ended

*

**

init

init

FIGURE 3.12: The state machine for the Applications in the Workload. The states are shown in circles and the
transitions are shown in arrow. The transitions are labeled with the corresponding API endpoints. The special
character * is used to indicate the rest of the calls. A green color means a successful call and a red color means
a failed call.

The CPI is a simple HTTP/1.1 REST API that provides a single API for prob-
ing the container status. It provides all the common endpoints for health
and readiness checks, including health, healthz, healthy, live, liveness,
ready, readyz, and readiness. The URL format is as the following:

http(s)://<host>:<port>/api/v1/cpi/<endpoint>/<?app>

The scheme, host, and port are defined in the api.json file, while the op-
tional app parameter is to run the endpoint on a specific application in the
workload. If not specified, the endpoint is run on adefault applicationnamed
mainprovided by the frontend scripts. Docker andKubernetes use these end-
points as reference for the health and readiness checks of the containers.

The difference between the CPI interface and simply checking the status of
the applications using theWMIor the state of the processes using the ps com-
mand is that the CPI is continuous.

Definition 3.11 (Discrete and Continuous Probing). A discrete probing is a

probing that only takes into account the exact moment of the probing. A con-

tinuous probing is a probing that takes into account the time interval between
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two probes.

A discrete probing is very common in Kubernetes. In a continuous probing
using the CPI, if the application was not running at any point between two
probes, it is considered as unhealthy. Hence, beyond the basic endpoints,
the CPI also provides two special endpoints namely dp and cp for discrete
and continuous probing respectively. The discrete probing gives an overesti-
mationof the health of the application, while the continuous probing gives an
underestimation of the health of the application, hence the true availability
of the application is sandwiched between these two values.

To elaborate on these notions, let us formalize the problem. If in a discrete
probing, we probe the container at regular intervals with inter-probing inter-
val of 𝐼, to detect a fault, theprobingneeds tobeperformedwhen theApplica-
tion is indeed in a faulty state. The Application might be restarted before the
probing has the chance to detect the failure. This is a byproduct of how agile
Management works in ATHENA, where the Manager is continuously check-
ing the application status and restarting it if needed, as reviewed later in the
chapter 4.

Take the example of figure 3.13, where the application is in a faulty state be-
tween 𝑡 = 3.5 and 𝑡 = 4.5. The discrete probing with 𝐼 = 3, starting from 𝑡 = 0
would have no samples in the faulty state. In general, if we define the Fault
Interval 𝐹 as the length of a continuous failure interval, in this case 𝐹 = 1. If
𝐹 < 𝐼, it might be cases like the example that the detection of error is impos-
sible. Since 𝐹 is random and 𝐼 is constant, finding the right probing interval
is a difficult task.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Failure

Restart

Failure Period

CPI-DP WMI CPI-CP

FIGURE 3.13: The discrete and continuous probing of the Application for the example provided in the text.

In the continuous probing, the Application needs to remain healthy for a pre-
definedperiodof time,𝑇 > 𝐼. In this example 𝐼 = 5 and𝑇 = 6. This safetymea-
sure underestimates the Application’s health, but it nevermisses a failure. The
Manager locally performs periodic calls to status endpoint in the WMI and
records the time of the last successful probing in intervals of 𝑆 units of time,
where 𝑆 < 𝐼 < 𝑇. Since the Application is not restarted unless WMI detects a
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failure, there could not be any failure that is not detected by theWMI and con-
sequently not reported by the CPI of theManager. The reported failure period
is at least 𝑇+𝑆, in this case from 𝑡 = 4 to 𝑡 = 15. Assuming an availability met-
ric 𝐴 for the application, the discrete probing would always overestimate the
actual value while the continuous probing would always underestimate it. If
the ratio of the successful probes over the total probes in the discretemode is
𝑅𝐷 and for the continuous mode is 𝑅𝐶 , then the equation 3.2 is satisfied.

𝑅𝐶 ≤𝐴≤𝑅𝐷 (3.2)

3.5.3 Parts and Layers

It worth mentioning that all the artifacts in HYDRA have some common parts
in their Snapcraft definitions. These include the bats, api, and panaceaparts
which are for testing, API server, and the configuration utilities respectively.
The frontend part is also included in every Snap, but with slight variations
depending on the NFs.

Using this information, tomaximize the caching inDocker andOCIbuild pro-
cesses, we define the layers of the containers as the following, shown in fig-
ure 3.14:

1. Base: This layer is the base image of the container.

2. Meta: Metadata and environment variables depending on the builder
might be included as a single or a set of separate layers.

3. Common: Files related to the three common parts are included in this
layer.

4. Vendor: Vendor-shared files are included in this layer, for example the
common libraries used in OAI images.

5. Shared: The NF-shared files are included in this layer, for example the
UHD images and libraries that are used for every RAN artifact.

6. Specific: Any other files or layers that are not shared between the arti-
facts.

As mentioned earlier, this saves 50% on the build time and 30% on the total
aggregated size of the images.

Base

Meta
Common

Vendor

NF

Specific

FIGURE3.14: The layers of the containers in
HYDRA. The layers are shown in rectangles
with rough height correlated with their ex-
pected sizes. The layers are ordered from
bottom to top.
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Chapter 4

Declarative MANO

In this chapter, we dig deeper into the design and implementation of Man-
agement and Operation in the ATHENA project as the cornerstone of the au-
tomation in TRIREMATICS platform. ATHENA is majorly based on the concept
of the declarative automation.

As we laid out earlier in section 2.7, there have been several new design prin-
ciples emerged with cloud-native that demand a revolution of theMANO de-
signs. The novel designs are so foundational that a mere refactoring of the
older MANO solutions would not be sufficient. The key to all of these prin-
ciples is the declarative automation which has lead to the novel definition of
the Operator Plane in ATHENA in section 4.2.

Unlike chapter 3, the method of study in this chapter is to propose a design
alongsidewith a concrete implementation of a cloud-native,multi-x, declara-
tiveMANO. Section 4.3 defines the internal design of the BaseOperator, while
the section 4.4 dives deeper into the design of the level-1 Operators.

The required level of agility is then realized by the introduction of the sidecar
management in the section 4.6 alongside all the internal components of the
Manager. Weevaluate this agility aswell as day-2operations and theoverhead
of ATHENA in the section 4.9.

The concepts of this chapter are largely influenced by the concept of multi-x.
On one hand, multi-xMANOs aremotivated by the development of the Open
RAN systems, and on the other hand, they are supported by the cloud-native
principles. Furthermore, thenewcloud-native trends in the telco industry are
in favor of the multi-x MANOs. For example, the majority of the telco oper-
ators would define somewhat a portion of their infrastructure as a set of pri-
vate clouds. Unlike homogeneous public clouds, these private clouds could
be extremely heterogeneous in terms of the hardware, OS, or the container
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runtime, since each of them have been independently deployed and man-
aged earlier for particular sites. Moreover, with having recycling of the older
or spare compute resources as a contributing factor in sustainability, the het-
erogeneity of the private clouds would even increase over time. In that sense,
perhaps a multi-x MANO is a feature for today but a necessity for the future.

This chapter goes through three phases of Deploy, Operate, andMonitor from
the DevOps cycle displayed in the figure 3.1 using the MANO concepts. Es-
sentially, we define theManagement andOperator Plane in ATHENAwhile as-
sessing it forDay-1 (Deploy, Configure) andDay-2 (Observe, Reconfigure, Up-
grade) operations. At each part of the design, whether inManagement or Op-
eration, there are certain challenges to support a declarative, efficient, agile,
and sustainable cloud-nativeMANO. These challenges are addressed in terms
of sophisticated, yet extensible andwell-defineddesignpatterns emerged from
the coalition of the cloud-native and telco principles, with significant novel-
ties in each part of the design. The table 4.1 summarizes the novelty of each
section in this chapter, while the table 4.2 shows which challenges are ad-
dressed in each section in terms of the affected metrics or qualities.

Section Novel Designs or Algorithms

4.2 Multi-x Operator Plane

4.2 Network resources as cloud-native constructs

4.3.1 Declarative cloud-native network Operation, Network scoping

4.3.1 Network scoping via role-based SBA

4.3.3 MANO programmable policy enforcement

4.4.1 E2E Operation for the UEs and their applications

4.4.2 Declarative first-class citizen slices

4.5.1 Dual formulation of slicing with assignment

4.5.2 Scaling stateful NFs by slicing

4.6.1 Distributed multi-stage network dependency resolution

4.6.4 Inbox and outbox observability

4.6.4 Green metrics for MANO

4.7 Radio devices as cloud resources

4.7 Unprivileged secure CNFs

4.8.1 Multi-source data lake for telco observability

4.8.1 Idempotent and auto-healing MANO

4.8.3 Micro-decisions andMacro-decisions

TABLE 4.1: The novelty of each section in the chapter 4 with respect to the state of the art.
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Section AddressedMetrics, Qualities, or Designs

4.1 Complex multi-x ecosystem

4.2 Cloud-native MANO, Extensibility

4.3.1 Declarative, Cloud-native, Multi-x Operations

4.3.2 Cloud-native, Extensibility

4.3.3 Edge services, Policies in MANO

4.4.1 E2E Operations including the UE and application

4.4.2 Declarative E2E slicing, Slice scheduling and assignment

4.5.1 Slice scheduling and assignment

4.5.2 Stateful scaling

4.6.1 Circular dependencies, Dynamic infrastructure, Agility

4.6.2 Service continuity, Day-2 reconfiguration

4.6.3 Fault tolerance and recovery, Agile lifecycle

4.6.4 Green Observability, Low overhead

4.7 Security, Device discovery and inventory

4.8.1 Fault Recovery, Multi-source observability

4.8.2 Zero-downtime reconfiguration, NF upgrades on-the-fly

4.8.3 Agility, Fine-grainedManagement

TABLE 4.2: The challenges addressed in each section in the chapter 4 with respect to the metrics, qualities, or
design questions.

4.1 Multi-x Operator Ecosystem

ATHENA is formed around the idea of multi-x as its motivation, whereby ‘x’
stands for vendor and radio in telco context and container runtime, OS, or
cloud provider in the cloud context. Standing at their meeting point, ATHENA
covers all the mentioned dimensions from the both realms. It embeds sup-
port for simultaneous deployment of workloads from different vendors rely-
ing on the different radio devices (exemplified in the section 5.2), while sup-
porting multi-node, multi-cluster, multi -tenant, and multi-runtime deploy-
ments on top of K8s. Multi-clustering is supported by using the Border Gate-
way Protocol (BGP) networking both internally and externally in each cluster.
This allows the Pods to be routable from the other clusters. Other common
methods are either specific to HTTP (like ingress/egress gateways) or are less
efficient due to the encapsulation overhead (like VPNs). Furthermore, multi-
networking is added toATHENAusing theMultusCNIplugin* . Multi-tenancy

* https://github.com/k8snetworkplumbingwg/multus-cni

https://github.com/k8snetworkplumbingwg/multus-cni


72 Chapter 4. Declarative MANO

in ATHENA is supported by the Kubernetes namespaces and the correspond-
ing Role-Based Access Control (RBAC) policies. Kubernetes networking poli-
cies defined on the top enforces the isolation of the namespaces.

We have foreseen multi-x as the natural generalization of Open RAN which
seeks beyond RAN to CN and MANO/OAM itself. Thus, we believe ATHENA
as a multi-x Operator would enjoy the same positive expectations of Open
RAN as briefed for example in [17], [45]. This includes the reduction of the
vendor lock-in, the reduction of the cost, and the increase of the innovation
pace. In the figure 4.2, we have demonstrated the variety of vendors as the
most important dimension of multi-x by different shapes. This also includes
interaction with external elements, not directly under the control of ATHENA
(marked by the External label in figure 4.2).

Telecom industry has a very complex andmultiplayer ecosystem that compli-
cates development and innovation by posing challenges in terms of interac-
tion with other providers for establishing a functional deployment. The exis-
tence of the standardization bodies is to address this issue, at least in UP and
CP. In accordance to the multiplayer ecosystem of telco, we have separated
the concerns on the network parameter, including radio, identity, and slicing
with the ones about the composition of the network and how it scales. In this
way, the vendors and integrators could evolve and upgrade their software, in-
dependent of the network operators. The networks are declaratively defined
as aNetworkCR inKubernetes, whereas the compositionof suchnetworks are
described in Composition Model CRs that abstract the cloud-related param-
eters, such as images, resources, and networking as well as the configuration
of the workloads. The Composition Model CRs also define the observations
that need to be collected from theWorkloads as well as the scaling policies for
the NFs.

This separation distinguishes between synthetics and semantics of (multi-x)
logical networks. The synthetics defined in the Composition Models govern
how a network deployment corresponds to a deployment of Pods in Kuber-
netes and their interconnections. On the other hand, the semantics of the
network in the Network CR assign telco attributes and configuration to those
generic deployments, for example, in terms of the radio parameters, the iden-
tity, or the slicing. The adaptation of simple yet extensible CompositionMod-
els would enable the vendors and the service operators to independently in-
novate on top of ATHENA.

On this regard, we have detected five major classes of players that might in-
teract with our ecosystem, depicted in the figure 4.1.
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Service Owner
Interacts at the Semantic Level
(Logical Network or Entity definition)

Integrator or CNF Vendor
Interacts at the Synthetic Level

(Composition Models)

Operator Providers
Interacts with Operator Plane

(Operators)

(P)NF Vendor
Interacts with Management Plane
(Plugins, images, and configurations)

Infrastructure Provider
Interacts with Orchestration Plane

(Advanced hardware integrations, radio devices, networking, and storage)

FIGURE 4.1: Themajor players in TRIREMATICS ecosystem.

1. An Infrastructure Provider who primarily provides orchestration exten-
sions to the hardware control mechanism on the Orchestrator Plane;

2. A PNF Vendor contributes plugins and configurations to the Manager
at the Management Plane;

3. An Integrator or CNF Vendor would package and onboard new work-
loads to TRIREMATICS by defining the new Composition Models;

4. An Operator Provider builds new Operators on top of ATHENA OP;

5. An entity with the Service Owner role would simply use TRIREMATICS
and all of its extensions as a turnkey solution to realize another concept
on top of it.

4.2 ATHENA and the Operator Plane

ATHENA, according to the figure 4.2, transforms presentations of network re-
sources, network functions, and containers from a traditional Kubernetes re-
source such as Pod or Service to a logical network via a Base Operator capa-
ble of controlling and abstracting the networks and their elements. The ab-
stracted format incorporates the network operators’ primary concerns, cus-
tomized to telecom language and use cases, without the underlying infras-
tructure’s complexity. Vendors supply the recipe to compose a network in
the standardized format of Composition Models in the artifact registry. Each
Composition Model is a CR in Kubernetes containing a simple list of Work-
loads declaring their images, required plugins for configuration, roles in the
network, and hardware resources associated with them, without specifying
any network-level definitions. The abstraction in the Composition Model is
specified independently of how it is deployed or configured, which are logical
entities and parameters defined in network design and planning should be
represented on top of the synthesized workloads.
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The notion of the Operator Plane, in which many Operators cooperate han-
dle logical presentations and network entities in various aspects, is one of the
main innovations of ATHENA. The functionality in the Operator Plane might
be enhanced in two levels. Operators at Level-1 consume logical network CRs
to reveal a new set of CRs targeting a logical item such as a slice or network
terminal. The level-2 is built on top of those logical entities, to enable sophis-
ticated and perhaps E2E Operations, like cost optimization. Through the Op-
erator Plane, concepts and functionalities are transcended from physical to
logical, abstracting both the network itself and the related concepts.

Kubernetes Control Plane

ATHENA Base Operator (Network + Element) Composition Models

OperatorCatalogs
ContainerIm

ages

Artifact
Registry

Slice Operator Terminal Operator ⋯

Cost
Optimizer
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⋯
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(Fig. 4.9)
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FIGURE 4.2: ATHENA overview of the OP in a nutshell presenting the multiple levels of the OP.

In the figure 4.2, we have shown the two levels of theOperators discussed ear-
lier, with some examples. On the first level, the Slice Operator and Terminal
Operators are examples of transition of an inherent concept in telco to a first
class citizen CR in Kubernetes. These Operators not only would consume the
functionalities provided by the Base Operator, but might have their own in-
dependent interaction with the other Operators or Kubernetes. This Service-
Based Architecture (SBA) allows arbitrary extensions in the Operator Plane,
without the need to modify the Base Operator. On the second level, three
kind of examples are presented:

• The Cost Optimizer and Energy Optimizer Operators are the examples
of End-to-End business-oriented optimizations providing cloud native
solutions to the active industry problems;
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• TheSliceScheduler showshowaconcept introducedat the level-1 could
itself introduce a whole dimension of new Operators on the level-2;

• TheMobility Control Operator is an example of how theMP/OP and CP
could interact with each other by defining a new Operator on the OP
that would also interact with the RIC.

Each Operator should define new concepts via the CRs and take care of the
lifecyclemanagement of those CRs via implementing the logic in of the corre-
sponding concepts. TheOperators are themselves Pods in Kubernetes, hence
they need to respect the guidelines and limitations of the Pods in terms of ac-
cess control or resource management. These combined criteria define when
one should define a new Operator and when it is sufficient or required to de-
fine a client of existing Operators’ APIs, perhaps external to the cluster. Each
Operator is composed of a few CRs and the Custom Controllers (CCs) which
upon invocation by the requests from the orchestrator would reconcile the
corresponding CRs.

The (Non-RealTime)RICplatformcouldalsopotentiallyparticipate in theOp-
erator Plane to connect the Control Plane to the Operator Plane. In result the
RIC could request and observe xApps or rApps using the CRs provided by the
Base Operator. Beyond that, the logics of the other Operators could be influ-
enced and extended jointly by the RIC. For example, the Energy Optimizer
Operator would not only consider the RAN as a mere CNF, but it could also
trigger control loops in the RIC for fine-grained optimizations. In this situa-
tion, from the RIC perspective, the Energy Optimizer Operator behaves as an
rApp. The said approach is used in the ODIN project which is out of the scope
of this thesis.

One should note that ATHENA also provides themeans and SDKs to build and
distribute the Operators for the Operator Plane through OCI-based Opera-
tor Catalogs andOperator LifecycleManager (OLM)† . By relying on the OLM
functionalities of the Operator Framework, the dependencies of the Opera-
tors on the ATHENA Base Operators could be explained and a reliable Catalog
of them aremade and distributed. Onemajor rule in the dependencies is that
for eachCR, it shouldbeatmost oneCCand theOperators should try avoiding
implementation of the same functionalities. For example, by definition, with
the Base Operator, there should be no other Operator that tries to establish
Pods or Services independently.

† https://olm.operatorframework.io/

https://olm.operatorframework.io/
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9 A network terminal is a UE in the
modern 5G terminology.

10 A replica is an exact copy of a Pod
with the same configuration. For ex-
ample, one cannot provide different
slices to two replicas of the same Pod,
since it would not be an exact copy
anymore.

4.3 Base Operator

As the first level of abstraction, the Base Operator transforms the Kubernetes
objects into expressive logical presentations of networks and their associa-
tions with each other and the cluster, linked by the provided Composition
Models. This Operator hence could deploy and manage end-to-end 4G/5G
networks that are requested via declarative intents in the form of CRs. The
base Operator itself includes two CCs:

1. TheNetwork CC defines and governs the logical networks (access, core,
or edge) as a group of Elements with their associated slices;

2. TheElementCCmaps the Elements to theNFsusing Pods, Services, De-
ployments, andConfigMaps inKuberneteswhile controlling the scaling
and lifecycle of the Elements.

This distinction affects observability, management, and scaling of the net-
works. It helps to abstract and aggregate the observability of a network as a
whole, while being able to observe individual components. Also, the Opera-
tors on the Operator Plane could utilize the Element CC directly bymanaging
the network and creating the Element objects on their own. This approach is
indeed used in the Terminal Operator to manage network terminals9. In that
sense, the concurrent instances of the CCs in the Base Operator are adapted
to address the unbalanced number of requests processed by the Element CC
compared to the Network CC. The separation also defines how a network
needs to respond to scaling and slicing. Based on the slices, different num-
ber of Elements might be needed to be deployed, while each of the Elements
might create multiple replica10 instances of the NFs.

4.3.1 Network Controller

ATHENANetwork CC consumes aNetwork CR that contains the description of
the slices as well as the list of access, core, and edge networks, possiblymulti-
ple instances of each. In the access networks definition, the radio parameters
including the device and signal features and the cell parameters including the
center frequency, the band number, subcarrier spacing and the bandwidth
are defined.

Each of the network sections might have a custom networking based on the
Multus CNI plugin for each of their network interfaces. The Domain Name
System (DNS) records could also be appended and customized for the whole
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Network CR, applicable to all the containers in that network as well as the ter-
minals. The network sections incorporate configuration profiles, post config-
uration assignments, and means for providing extra keys for the configura-
tion. These utilities are used to tweak the configuration of particular NFs or
the network as a whole.

Upon invocation, the CC looks up for the Composition Models of each net-
work. Based on the obtained information, the CC builds a topology of the
network which later is used by the Management Plane to resolve the depen-
dencies in a distributed manner. ATHENA uses a Role-based SBA approach
for the network topology, where each NF is enlisted for several roles in a par-
ticular scope of the network. The scopes are assigned labels to the network
sections defining an access control mechanism for the managers to resolve
the dependencies. The Base Operator would use scopes in association with
the slices to build the configuration for each Element. Each Element receives
the list of all the roles implemented in its scope with the corresponding fully
qualified names of the NFs playing that role. The precedence of the NFs in
the list is defined by the slices associated to them and is resolved by theman-
agers. This topology is scoped andmergedwith the anyprovided customDNS
records to forma localized viewof thenetwork for eachNFand supportMulti-
Access Edge Computing (MEC) applications. Finally, the Network CC issues
Element CRs to be later picked up by the Element CC that works in parallel.
For the observability, the Network CC aggregates the status of all of its wrap-
ping Elements to indicate the status of the network itself.

TheNetwork CR also defines the scheduling properties of the Pods of the net-
work. Each network section has optional fields for assigning particular Pod
scheduler, specifying the priority and preemption policies, and defining the
affinity and anti-affinity rules.

4.3.2 Element Controller

TheElement CC builds the corresponding Pods and Kubernetes Services with
the proper configuration. During this process, it complies with the best prac-
tices of Kubernetes and connects the Pods to the proper container scheduling
parameters that are defined for the Element. Element CC supports four types
of backend for deployment of actual Pods:

1. RawPods, the fastest optionwhere theElementCCwould simplydeploy
the Pods directly;
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2. Deployment, the most compliant with the Kubernetes best practices,
where the Element CC would deploy the Pods using a Deployment ob-
ject, providing extra scaling via replication;

3. StatefulSet, similar to the Deployment, but with the extra support for
the stateful NFs;

4. DaemonSet, where the Element CCwould deploy the Pods using aDae-
monSet object, spanning over the whole range of the cluster nodes.

In each of the backends, the Element CC could be managing the object di-
rectly or simply observe it passively for the sake of the observability.

This CCwould also continuously probe the Pods for customKubernetes Con-
ditions that are provided by the Composition Models. These custom Condi-
tions use the Kubernetes Probe interface andmight be used to determine the
readiness of the Pod, if marked in the Composition Model. The Element CC
also records and aggregates the Conditions exported by the Pods for the ob-
servability. From the Composition Models, the Element CC would resolve all
the storage volumes, customnetworks, or additional devices that are required
by the Element to assign them properly to the Pods.

4.3.3 Support Services

TheBaseOperator provides a set of support services that arenot implemented
asCCs. These services include the customDNS server and the policy agent. In
ATHENA every NF is assigned a unique Fully QualifiedDomainName (FQDN)
that properly represents its identity. TheDNS records are of the following for-
mat:

<element-name>.<section>.<network-name>.<namespace>

Since the Kubernetes Services are not allowed to be named as such with sub-
domains, the Base Operator then translates these records to a unique hash
that is used to create the corresponding Kubernetes services named Shadow
Services. The Shadow Services are used for the internal communication be-
tween the Managers.

The policy agent is responsible for enforcing the policies and licenses defined
in the Composition Models or in the Operators themselves. The policies are
defined in the Rego language and are processed by the Open Policy Agent
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(OPA)‡ integration in the Base Operator. Each policy is queried for a prede-
fined policy action, for example data.policy.deny, to determine if a partic-
ular deployment should be denied or not. By the default, all the deployments
are allowed.

The Base Operator is also responsible of resolving any conflicting decisions
made by the Operators on the higher levels, by simple priority assignments
using Kubernetes annotations and authorizations. Each Operator is anno-
tated with a priority number and a level number, which they need to provide
with their requests to make sure the decision overriding is done properly. By
default the lower the level of the Operator, the higher is its priority.

4.4 Level 1 Operators

In this section, we summarize the internal structure of two of the Operators
on the level-1 of the Operator Plane, namely the Terminal Operator and the
Slice Operator.

4.4.1 Terminal Operator

TheTerminalOperator is defined tohandle thenetwork terminals andachieve
an E2E control loop that also contains theUE and the applications associated
with them. It supports four types of the terminals or UEs:

1. The simulator mode where deploys a simulated 4G/5G UE to connect
to the corresponding simulated eNB/gNBs, regardless of the level of the
simulation (RF, L2, S1/NG, etc.);

2. The external mode where it is just a presentation of a handset outside
the cluster and no container would be deployed in this mode;

3. The internal mode where a container is deployed attached to a physical
UEmodule on the cluster;

4. The backhaul mode to support external network formations that shall
use this terminal as a backhaul. The identity of the UE is automatically
injected into the databases of the corresponding core networks, given
their identification.

The Terminal requests are given to the Operator in the form of a Terminal CR
that contains the identity of the UE and the network it should connect to. Via
the network identification, the UE’s identity is automatically injected into the

‡ https://www.openpolicyagent.org/

https://www.openpolicyagent.org/
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UE (Client) UPF Server

UE (Server) UPF Client

UE (P2P) UPF UE (P2P)

UE (Client) UPF

UPF UE (Server)

FIGURE 4.3: Application modes in the Ter-
minal CR. The curly lines are to show the
connection is not indeed direct and goes
through the RANs not shown in the image.

databases of the corresponding core networks. In case of the simulators, a
proper placement of the UE is done by the Terminal Operator to minimize
the latency and undesired effects of the simulation. For the internal mode,
the Operator would request for the corresponding Quectel module that con-
tains the SIM with the exact same IMSI as defined in the Terminal CR. The
placement of such UEs then is dependent on where the physical modules are
connected to the cluster.

The Terminal Operator also could receive a BatchTerminal CR where it con-
tains a list of identity information that should be added to the database and
a selection of the number of active UEs. Then the Operator would randomly
pick UEs and connect them to the network and report back their overall sta-
tus. This enables large scale simulations and testing of the network. A Ter-
minal Scheduler Operator or a Mobility Control Operator on the level-2 of
the Operator Plane could exploit geographical metadata of ATHENA Work-
loads alongside the collected metrics to optimize the placement of the UEs
and their preferred registered network tomaximize the availability of the net-
work for batch deployments. The result would be an adaptive and optimized
placement of the UEs in the cluster under any customized strategy, useful for
testing the equipments or mobility algorithms.

The Terminal CR also provides means by which an application could be on-
boarded with the UE. In the simulator or internal modes, a set of application
containers could be defined to be deployed in the same Pod as the UE, hence
enjoying the same 5G network in their network namespace. These applica-
tion containers are not managed by ATHENA and could be any arbitrary nor-
mal application containers. Four classes of applications are definable in the
Terminal CRs as shown in the figure 4.3:

1. Uplink applications where the server-side is located behind the UPF
and the client-side is located in the UE’s network namespace;

2. Downlink applications where the server-side is located in the UE’s net-
work namespace and the client-side is located behind the UPF;

3. Peer-to-Peer (P2P) applicationswhere both the server and the client are
located in two different UEs under the same UPF;

4. Multi-UPF scenarios where the server-side and the client-side are lo-
cated in two different UEs under two different UPFs.

Depending on the scenarios, the Terminal Operator would create the corre-
sponding Services and routes to connect the applications to the network. The
part of the application is deployed behind the UPFs need to be deployed by
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the user on the same cluster. Then Terminal Operator would create a unique
Kubernetes Service named after each IMSI that routes the traffic to the corre-
spondingUPFs responsible for thatUE. TheUPFswould then route the traffic
to the corresponding UEs. In the Uplink scenario, no special configuration
is needed and the application could be deployed anywhere in the cluster. In
the P2P case, theUEs can connect directly or use theDNS names, however, in
themulti-UPF, theUEs need to be configured to access to each other’s Service
names created by the Terminal Operator.

4.4.2 Slice Operator

Slicing in 5G enables sharing the same infrastructure for varieties of E2E ser-
vices that mostly have incompatible requirements. We respect this service-
oriented outlook of the network by including slices at the highest level of ab-
straction. On the Base Operator, each Network CR has a list of slices with
their corresponding Public LandMobile Network (PLMNs) andDataNetwork
Names (DNNs)11. Thenetworkdefinitionson the samefile are allowed tofilter
their slices based on PLMN, DNN, Slice Service Type (SST), or an exhaustive
list of the slice indices. Theslicepickingprocess is independentof the connec-
tion between the access and core networks and the Basic Operator performs
no checks for feasibility of the slice allocations.

On contrary, the Slice Operator assigns slices to the networks based on the
schedulingmechanisms defined for it, which results to aNetwork CRwith ex-
haustive listing of the slices at the end. Having slice assignment at theMANO
level enables optimized compute, network, and radio resources all together.
We recognized the assignment problem for slices to virtual networks is anal-
ogous the problem of assigning pods to the nodes. Thus we devised a slice
scheduling framework based on the Kubernetes scheduler design§ to assign
slices to the networks, depending on the provided filtering and scoring crite-
ria defined in the CR, following these steps:

1. Sorting out the slices for assignment;

2. Filtering feasible allocations based on the criteria in the CR;

3. Scoring and sorting the eligible assignments;

4. Admission of the assignment with possible extra actions regarding co-
ordination with controllers, high-availability, or scaling.

§ https://kubernetes.io/docs/concepts/scheduling-eviction/
scheduling-framework/

11 DNNs are equivalent to the con-
cept of Access Point Names (APNs) in
4G.

https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
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Each of these stages could be extended with plugins in a similar fashion that
Kubernetes allows for the scheduler extensions, and they could include affin-
ity and anti-affinity rules. Even though this method compared to the original
filtering would be capable ofmore complex allocations, still by itsmathemat-
ical formulation, this method is limited to the results achievable by a form
of greedy algorithm (matroids to be exact). Open interfaces on the Operator
Plane allows for a fully customized scheduler in terms of another Operator on
level-2.

ATHENA assigns a global readiness status to the slice to indicate its availabil-
ity. Modifying or deleting a slice object would trigger the corresponding ac-
tion to be called on the controllers’ APIs. Managing these events as well as
how the rest of statistics would be collected and organized is dependent on
the controller and out of ATHENA scope. We consider ATHENA slice CRs the
best anchor point for marrying the similar concepts in the RAN, the CN, and
the RIC to a single slice object. Actions on this object would trigger the cor-
responding actions on the RIC or NSSF, for example, to enable a declarative
E2E slicing in the network.

4.5 Slicing, Scaling, and Replication

In ATHENA the concepts of slicing, scaling, and replication are related to each
other. As mentioned earlier, each Network CR defines a list of slices and how
they are filtered for each of the access, core, or edge networks. The filtering
could have been done by the assignments from the Slice Operator. At this
point the Base Operator reads the Composition Model to create the corre-
sponding Elements of that network section. However, depending on the pref-
erences defined in the CompositionModel, each of the Elements listedmight
be scaled to support the assigned slices. There are four types of slice scaling
that could be defined in the Composition Model:

1. Scale per uniquePLMN,useful for theNFs that cannot supportmultiple
PLMNs at the same time;

2. Scale per uniqueDNN, to perhaps have separate UPFs supporting each
of the applications;

3. Scale by the SSTs, to separate the needs of the NFs for their services;

4. Scale per slice index, to have a separate instance of theNF for each slice.
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In this sectionwemodel and study both the assignment and the scaling prob-
lems for the slices in ATHENA. We exemplify the approaches using a simple set
of slices provided in the table 4.3.

ID PLMN Type Differentiator DNN

1 00101 eMBB 0x000001 operator

2 00101 eMBB 0x000002 internet

3 00102 eMBB 0x000001 operator

4 00102 uRLLC 0x000001 internet

5 00102 mMTC 0x000001 operator

TABLE 4.3: Example details of 5 slices filtered for an access network section.

4.5.1 Slice Assignment

If we imagine each slice definition has a few attributes much lower than the
number of slices that would be assigned to the networks, and likewise, the
number of attributes of the networks is an order lower than the number of
the networks in question, thenwe could consider the efficiency of the assign-
ments too. Following the table 4.3, and the figure 4.4, the slices are sorted by
their SSTs and DNNs. The figure reflects the filtering and scoring procedures
aswego through that sorted list for fourRAN instances identifiedby their ven-
dors and radio devices as example attributes that could be used for filtering
and scoring. The four instances are OAI running on B200 SDR, OAI running
on N300 SDR, Amarisoft (AMR) running on B200 SDR, and AMR running on
the Amarisoft SDR50 devices.

At the filtering stage, due to limitations ofOAI in supporting non-eMBB slices,
we filter it out for both IDs 4 and 5. This knowledge is provided as part of
the scheduling logic in the Slicing Operator. For a delay-critical uRLLC slice,
usage of SDR50 on PCI interface is preferred over UHD-B200 on USB, and for
mMTC, the presence of ID 4 on the fourth RAN, lowers its score due to anti-
affinity rule. The Slice Operator would intelligently perform this filtering and
scoring based on the Network CR and the logic implemented in the Operator.

On the other hand, for eMBB slices the supported bandwidth of the device
becomes the deciding factor which for both IDs 1 and 3, the N300 instance
could support more bandwidth resources (50MHz each in fair assignments)
than a single B200 instance (56MHz). At this stage, an energy efficient action
is to colocate the IDs 1 and 3 on the same machine to reduce the power us-
age by lowering the number of active nodes. Finally, the ID 2 is marked with
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high availability to serve all the users of PLMN 00101 with basic connectiv-
ity, hence it is assigned to all the RAN instances but the fourth one that has
received negative score due to the anti-affinity of uRLLC.

Filtering Scoring

OAI
B200

OAI
N300

AMR
B200

AMR
SDR50

OAI
B200

OAI
N300

AMR
B200

AMR
SDR50

ID

4

5

1

3

2

4

4 5 4

5 4 1 5 4

1 5 4 1,3 5 4

1,3 5 4 2 1,3,2 5,2 4

FIGURE 4.4: Slice scheduling example for 5 slices over 4 RAN instances. This figure shows how a sample filter-
ing and scoring procedure could resolve into a complicated assignment of the slices to the RANs by the Slice
Operator.

Based on our assumptions and considering 𝑛 slices with 𝑐 core networks, 𝑎
access networks, and 𝑒 edge networks, then we could conclude the following
theoretical bound for the algorithm’s execution time

Θ(𝑛𝑙𝑜𝑔(𝑛))+Θ(𝑐+𝑎+𝑒)+𝑂(𝑛(𝑐+𝑎+𝑒))+𝑂(𝑛(𝑐+𝑎+𝑒)) (4.1)

where the first term comes from sorting 𝑛 slices, the second on is filtering
all the networks, the third for scoring them, and the last one for admission
of the slices. Even though in the filtering phase, we need to consider all the
networks (exact bound), the next two phases may have lower number of net-
works. Thus, according to the equation 4.1, we haveΘ(𝑛𝑙𝑜𝑔(𝑛))+𝑂(𝑛(𝑐+𝑎+
𝑒)) as the order of execution time for our algorithm. This bound shows the
algorithm scales very well with the number of networks (linear) and slices.

We could compare slice allocation algorithms according to two extremes:

1. Defining a new dedicated network per slice;

2. Assigning all the slices to all the networks.

Both of thementionedmethods involve higher resource usage, where the for-
mer is obviously doing so by having unnecessary networks provisioned and
the latter is vulnerable to the peak provisioning by allocating resources for
the sum of the slice demands. For instance, consider the case of the example
slices in the table 4.3. Provisioning all the RAN instances for uRLLCmeans all
of them should perhaps be deployed with a commercial CNF that supports
this kind of slice, which significantly increases CapEx. On the other hand for
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the first option, we need at least one other RAN instance which adds up to
OpEx and we loose the functionalities like high availability of the slices.

4.5.2 Scaling and Replication

To elaborate the mentioned capabilities on the scaling, let us consider a RAN
CompositionModel, containing a CU and a DU Element, where the CU is set
to scale withDNNs perhaps to connect separately to individual UPFs for each
DNN and the DU is set to scale with the SSTs to optimize the resources for
each service type. Given the sample slices defined in the table 4.3, we need
two instances of CU and three instances of DU, with the connections given in
the figure 4.5.

Each of the circles in the figure 4.5 represents a separate Element, however,
since they have been emerged from a single description in the Composition
Model, they would be assigned to the same Shadow Service. It is by the Man-
agement Plane tomake sure each of the Elements is actually connected to the
right instance of the Element served under the same Shadow Service. This
concept is elaborated in the section 4.6.1.
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FIGURE 4.6: The theoretical gain of scaling definition in ATHENA compared to scaling per slice definition. 𝑘 is
the number of different DNNs and 𝑛 is the number of slices.

Since ATHENA allows each individual NF scaled in accordance to the slices,
then scaling procedure would be simple and efficient. For example consider
a specific core network design that has a User Plane Function (UPF) capable
of supporting only one slice at a time. If by for example NFV definition [20],
one tackles this setup, then he needs to either consider a new NS for the UPF
and scale it independently, or scale the core network as whole. The first ap-
proach would need a complexmanagement with the resource waste of a new

1,3,5 2,4

1,2,3 4 5

FIGURE 4.5: How the slicing defined in the
table 4.3 would affect the scaling of the
CUs and DUs in an imaginary composi-
tion model. The hollow circles are the DUs
scaled up to three instances connecting to
the two CUs shown by the gray circles. The
numbers in the circles show which slices
are supported by each instance.
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NS definition and the second one demands significantly more and unneces-
sary resources to scale other parts of the NS as well. Consider the example of
the figure 4.5, where each NF is scaled based on the provided option. If taken
the approach of scaling the entire RANNS defined as one CU and one DU in-
stance, supporting the same slices, we would have used twice the instances.
Thus, ATHENA offers 50% resource reduction in this specific example.

We could generalize this example by considering 𝑘 different DNNs for 𝑛 slice
definitions in ATHENA. The same generalizationmay be used for the other pa-
rameters. Denoting the number of CUs which would be equal to the number
of DNNs with the random variable𝑋, we could write the equation 4.2, where
𝑋𝑘 is an indicator random variable for each DNN.

𝑋 =
𝑘

𝑖=1

𝑋𝑘⇒𝔼{𝑋} =
𝑘

𝑖=1

𝔼{𝑋𝑘} =
𝑘

𝑖=1

ℙ{𝑋𝑘 = 1} (4.2)

Each indicator variable is fromaBernoulli distributionwith the success prob-
ability of 1− (1−1/𝑘)𝑛, thus we end up with the value in the equation 4.3.

𝔼{𝑋} = 𝑘−𝑘(1− 1
𝑘)

𝑛 (4.3)

In the figure 4.6, we have plotted this value and comparing it with 𝑛, standing
for a scaling per slice definition, for three different value of 𝑘. The plot shows
that if𝑘 ismuch smaller than𝑛, the gainwouldbe significant. A goodexample
for that scenario is to consider SSTs instead of DNNs which could practically
take only three values. In any case, the saving is absolute and clear by the plot.

Beyond this scaling, since each instance of the Elements creates a Deploy-
ment in Kubernetes, the Pods assigned to that element might be scaled by
replication. This type of scaling is ignorant to the slices and is done by the
Kubernetes itself. The resulted Pods are supposed to be exactly the same and
the scaling is done to increase the availability of the NFs. Each of the Pods
in this case should be equally capable of serving all the slices assigned to the
Element.

4.6 Sidecar Manager and Pod Design

ATHENA Management Plane works as an extension of its Operator Plane, but
in a distributedmanner to take local, short-termdecisions rather than global,
longer-term ones. The former supports macro-decisions whereas the latter
defines micro-decisions. A distinguishing example of these oppositions is
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captured in the green capabilities of ATHENA, marked with a star in the fig-
ure 4.2. TheEnergyOptimizerOperatorwould takedecisions concerningday-
long Operations using perhaps AI/ML algorithms, whereas theManager sup-
ports micro-decisions to control fine-grained, semantic lifecycle of the NFs
for energy savings. The energy saving capabilities, whether observation or
control, are integrated to the ATHENA design, perfectly fitting in the distinc-
tion of theManager and Operator. In definition of the interfaces between the
Manager and Operator or the Manager and the Workloads, we use open in-
terfaces with simple, yet strict protocols that are less prone to protocol os-
sification [46] while being modernized and cloud native, preferring de facto
standards over the post facto practices12.

Pod

Logging Sidecar Agent

Application

Frontend Scripts

BOSUN API Server

Observatory

Dependency Unit

Configuration Unit

PLG

SVM PLG

Lifecycle Manager

Unformatted Logs Processed Events

WMI

MCI

OMI
CPI

CPI

FIGURE 4.7: Sidecar Manager and Agents in ATHENA. The interfaces are shown by the double lines with their
names on top.

ThePod in our proposed sidecar design depicted in the figure 4.7 is composed
of up to four types of containers, two of which are mandatory and two are
optional.

1. TheWorkload containers that have theApplicationswith some frontend
helper scripts, depending on the applications, that are with a generic
API server that implements the WorkloadManager Interface (WMI);

2. A single Manager sidecar container;

3. Optional utilities agents such as for logging or collectingmetrics, many
of these agents could be replaced with their eBPF counterparts;

4. An optional set of sidecars for loading the external applications or the
test suites, which are not managed or used by the Manager.

Compare the figure 4.7 with the figure 3.11 to understand how the container
structure in HYDRA emerges into the Pod design in ATHENA. BOSUN is the

12 De facto refers to a situation that
exists in reality, even though it may
not be officially recognized or legally
established, wheras post facto refers
to something that occurs or is done
after the fact, usually referring to laws
or rules that are applied retrospec-
tively.
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name of the default implementation of the WMI server in the Workload con-
tainer. TheWorkload andManager containers share a commonvolumewhere
the Manager would place the configuration files for the application to con-
sume.

ATHENAManager, depicted in the figure 4.7, is actually the distributed part of
theMANOwith several new interfaces required to facilitate Day-2 operations
and observability. There are several options to choose for where to locate the
Manager. For example, the Managers could have been placed as node dae-
mon services, hence a more traditional approach of managing the NFs per
node. However, we chose the sidecar pattern for the Manager to:

• Decouple the Management Plane from the other planes, common in
cloud native designs;

• Accelerate adaptation to cloud native for the rather traditional NFs;

• Keeping the workloads lightweight and portable to any environment
by keeping the cloud-specific interfaces independent of the NFs.

This approach is similar to the ETSI-EM model, with cloud native adapta-
tions. On the other side of spectrum, solutions such as Facebook’s Magma¶

Converged Core try to deeply integrate the cloud native services into the NFs
themselves. For that matter, for example, the codebase adapted from OAI
MME to Magma MME has been polluted with a lot of dependencies from
gRPC, Protobuf, Prometheus, andRedis,making it less portable andmore dif-
ficult to maintain.

The Manager is chiefly responsible for performing seven tasks, each of them
discussed in one of the following subsections.

4.6.1 Dependency Resolution

The Managers of each Element may communicate with each other through
theManagementandComposition Interface (MCI) in theManagementPlane.
Each Manager is given a discovery list from the Base Operator, by which it
could resolve each of the roles to a set of potential FQDNs. Each FQDN is re-
solved to a Shadow Service by the Base Operator’s DNS server, which is then
resolved to the IP address theKubernetes Service behind it. Dependingon the
scaling policy defined in the Composition Model, the Base Operator might
have created multiple instances of the Element that only differ in the slices
they support. In that sense, all of these Elements would be under the same

¶ https://magmacore.org/

https://magmacore.org/
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Shadow Service. An indifferent Manager, could then resolve the DNS only
once and get assigned to an arbitrary load-balanced instance of the Element.
However, in the general case, the Managers would discover all the endpoints
behind that Shadow Service to process the entries according to their slicing.

TheMCI is a simple JSON-based REST API with two endpoints:

1. resolve/{interface-name} to resolve the IP address of a particular
interface of that Element such as resolve/xn or resolve/e2;

2. depends/{interface-name} works similar to the resolve endpoint,
but it would wait for the readiness of the dependee and would return
an error if the dependee is not ready;

Optionally, in each request the Manager could send a slice matching tem-
plate. The slice matching template is a list of slice definitions similar to what
is defined in the Network CR, however with regular expressions instead of the
exact values. If this template is provided, theMCI would only return success-
fully if the the template matches with the slices served in the dependee and
would provide the resulted matched slices in the response.

The Dependency Unit in the manager is responsible for implementing both
the client and server side of the MCI. Beyond that, it continues querying the
same MCI endpoints to make sure the dependency is still valid. If the de-
pendency has failed for any point in time, the Dependency Unit would react
depending on the time of the original call made to that Element.

Definition 4.1 (Strong and Weak Dependency). A dependency is considered
strong if the dependant needs the dependee to be on ready state continuously.

On the other hand, a weak dependency is a mere dependence on the IP address

or other parameters of the Pod from another Element, used to fill in the details

in the configuration.

Weak dependency is represented by a call to the resolve endpoint. If the
original call wasmade to the resolve endpoint, the Dependency Unit would
only trigger a reconfiguration if the IP address or the slice response list of the
dependee has changed. On the other hand, a strong dependency means the
dependant needs the dependee to be on ready state, so the call is not re-
turned successfully, until the managed is running and healthy. This is rep-
resented by a call to the depends endpoint. If the original call was made to
the depends endpoint, the Dependency Unit would trigger a reconfiguration
and potentially a restart regardless of the change in the IP address or the slice
response list. A readiness in theMCI context means the application was run-
ning healthy and the conditions were met for a continuous period of time, 𝑇,
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DB
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xApp
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FIGURE 4.8: A practical example of a de-
pendency graph in a 5G network. These
graphs like this are solvable by the Depen-
dency Unit. The network is a sample Open
RANwith aminimal 5GCdeployment. This
figure’s graph matches the actual deploy-
ment requirements from OAI. The green
arrows are strong dependencies and the
red ones are indicators of weak dependen-
cies.

without any interruptions. The default reaction to a failed dependencymight
be changed by a policy defined in the annotations in the CompositionModel.

Having the strong and weak dependencies enables the Managers to resolve
even circular dependency graphs, conditioned that every cycle has at least
one weak dependency edge. This means if we consider an arbitrary directed
graphwith edges coloredeither strongorweak, then the graph is solvablewith
the Dependency Unit if and only if it does not contain any cycle fully colored
with strong edges. To prove this, we could just remove the weak edges from
the graph and the remaining graph would be a DAG. Every DAG could be
solved by a topological sort, which is exactly what the DependencyUnit does.
The weak links could all be resolved at the same time as the first stage before
traversing the DAG.

Figure 4.8 shows a practical example of a dependency graph in a 5G network.
In this figure, optimally, DB, RIC, and SMFwould become ready first, followed
by AMF, UPF, and xApp at second stage, then CU at third stage and finally DU
has all the dependencies resolved and becomes ready at the last stage. The
length of the longest directed path in the dependency graphwould determine
the maximum number of stages. However, in practice, each of the Elements
would take some time to become ready. To figure out the maximum latency
we should consider longest weighted path in the dependency graph.

4.6.2 ConfigurationManagement

The Manager essentially generates the configuration files for the Workload
and its Applications by calling the right configurator plugins (indicated by
PLG in the figure 4.7) and placing them in the shared volume between the
Workload and Manager container. A configurator plugin must implement at
least three functions:

1. configure is called via the corresponding input files to generate the
configuration for the Applications in Day-1;

2. reconfigure is called upon detection of changes in the inputs or de-
pendencies, it should update the configuration files and report back if
it would be necessary to restart the Application via the WMI.

3. dep-check is called regularly to ask the plugin to verify validity of any
of the dependencies it used for the configuration in Day-1 or Day-2.

The Manager listen for the Linux filesystem notifications via Shared Volume
Manager (SVM) and calls for reconfiguration and restart if necessary, based
on the decision in the plugins. The SVM uses Linux inotify to detect changes
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introduced in the filesystem. In that sense, the reconfigure call combined
with SVM is the first mile towards the genuine Service Continuity in 4G /5G
networks by enabling Day-2 actions that require no restarting of the network
using specific plugins develop for each vendor. However, still restarting the
Application should take considerably shorter time than restarting the con-
tainer by avoiding the initialization for the containers.

The Composition Models define which configurator plugins should be used
for each of the Applications in the Element. In these Composition Models,
ATHENA supports various type of input sources for the configurations, includ-
ing downloading them from a remote location, using a ConfigMap, or using a
Secret. Theplugins are called after theManager hasmade all the required files
locally available. The ConfigurationUnit would call the plugins separately for
each configuration index defined in the Composition Model and passed to
theManager. The Base Operatormakes sure that theManager has all the nec-
essarymount points and permissions for the Configurations Unit to function
properly.

The Manager is shipped with a default set of plugins that are generic enough
to be sufficient for most of the use cases. Onemajor plugin that could poten-
tially be used to implement any arbitrary configuration file is based on the
Go text template engine� . Using this engine, the input files to the plugin
are just templates with placeholders. Since a Go template engine is a Turing-
complete language, it couldbeused to implement any arbitrary configuration
logic via a sequence of if and range statements.

The O-RAN’s alternative ATHENA configuration management approach is to
use the O-RAN O1-CM interface to configure the NFs. O1-CM is largely built
around the idea of static configurations that don’t change frequently. Man-
ual configurations or batch updates are too slow and can create bottlenecks.
Including all the other features that we discussed in this section, it seems that
O1-CM is not a competent candidate for the configuration management in
ATHENA. Nevertheless, the O1-CM as a plugin for the Manager is supported
to enable configuration of legacy Applications.

4.6.3 Lifecycle Management and Fault Tolerance

TheManager is essentially responsible for the lifecycle of the Applications in-
side theWorkload container. The lifecycle control is done via simple calls such
as init, start, status, and stop for the corresponding Application in the

� https://golang.org/pkg/text/template/

https://golang.org/pkg/text/template/
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Workload container via the WMI in form of an infinite observe -decide-act
loop acting on the state machine shown in the figure 3.12. Evident by the re-
sults in the section 4.9.1, this method has the maximum agility for managing
the lifecycle of an Application in a containerized cloud native environment.
The Manager implements a client for the WMI server in the Workload con-
tainer as defined in the section 3.5.2.

The faults in ATHENA are grouped into the direct and indirect faults. A direct
fault is when one of the components would crash or fail to start. This compo-
nent could be either of the followings:

1. If theApplication inside theWorkload fails, this failure is captured via its
exit code in the Frontend Scripts and thenbecomes available to observe
via the WMI interface, where the Manager would respond by restarting
the Application almost immediately (subject to the validity of the de-
pendencies);

2. If the WMI server inside the Workload fails, since it is the initial en-
try point to the Workload, the Workload container as a whole would
crash, being restarted by the Kubernetes (or more accurately the CRI
in Kubelet via the container runtime);

3. If the Manager fails, a similar scenario to the previous one would hap-
pen, with the difference of the Manager would just silently be restarted
without forcing the Workload container to restart;

4. If the Pod fails, gets evicted, or its nodebecomes drainedor unavailable,
the Pod would be perhaps restarted or rescheduled by the Kubernetes,
accelerated by the Base Operator.

Probes and CPI would ascend the visibility of the faults to the Operator Plane
from the Management Plane. The time to detect and resolve the direct faults
are studied in the section 4.9.1.

The indirect faults are the cause for service degradation and disruption. They
appear in the logsor themetrics of theworkloads andare left for theOperators
in theOperator Plane tohandle. ATHENAdoesnot directly react to the indirect
faults, but it provides themeans for the other Operators in theOperator Plane
to do so via its observability stack.

In the O-RAN’s traditional FCAPS model, the fault management is based on
the O-RAN O1 interface. For a generic Workload, this interface seems to be
irrelevant and inefficient in the cloud native context. O1 is simply too slow
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to adapt to the rapid instantiation, scaling, and termination of CNFs, lead-
ing to false alarms or missed issues especially considering the agility offered
by the WMI. Additionally, they often rely on centralized, heavyweight moni-
toring solutions that can introduce latency and are antithetical to the decen-
tralized,microservices-based architecture of cloud-native applications. Con-
sequently, using traditional FM for CNFs can result in inefficiencies, higher
operational costs, and reduced agility in responding to faults.

4.6.4 Observatory

The Observatory is a unit of the Manager responsible for the consumption
of the events from the logging agent and Condition plugins (PLG) and expose
the overall and detailed status of the Pod for probing via Container Probing
Interface (CPI). It alsoneeds to gather, group, andpre-processmetrics defined
for theworkload and expose them tometric collectors such as Prometheus**

using OpenMetrics Interface (OMI).

The conditioner plugins implement probe and metrics functionwhere given
the parameters, they generate a related Condition object (exposed via CPI) or
metrics (exposed via OMI) respectively. These plugins are used to transform
the traditional monitoring information to the cloud native equivalents. The
plugins are fed with the observation queries that define a source and a drain
for the informationwith a certain data format. Theplugins are responsible for
the data collection and conversion, while the Observatory would periodically
call them to get the latest metrics and conditions for feeding back to the CPI
or OMI.

In termsofmetrics, O-RANoffers theO1-PM interface. Theperformance indi-
cators monitored by traditional O1-PMmay not provide comprehensive vis-
ibility into the health and efficiency of cloud native functions. Furthermore,
they are not compatible with the native monitoring tools used in cloud envi-
ronments. The O1-PM also suffers from scalability issues due to its reliance
on the traditional protocols with a centralized approach.

Accounting in ATHENA depends on observability and collecting the metrics
that is coordinated by the Management and Orchestration Planes. The pro-
cessed metrics are consumed by the Operator Plane to take actions such as
Cost Optimization or Energy Optimization. All the metrics in ATHENA are
grouped into the outbox and inbox metrics. The inbox metrics are collected

** https://prometheus.io

https://prometheus.io
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from inside the boundaries of the application and differ from one NF to an-
other. Example of inbox metrics are those which are mainly collected and
processed by the controllers such as RICs. The outbox metrics are collected
fromoutside theboundaries of theapplicationandare common for all theAp-
plications, such as the CPU and memory usage. Some of the outbox metrics
like energy or cost are composite, second-ordermetrics that could be derived
from several other inbox or outbox metrics. ATHENA unifies these metrics to
Prometheus, ready to be consumed by the Operator Plane. Similar to the Ac-
countingManagement, the PerformanceManagement in ATHENA is based on
themetrics and is collected and coordinatedby theManagement andOrches-
tration Planes.

Methods of performance or accountingmanagement that like O-RANO1-PM
fully or partially delegate the task of the measurement to the NFs themselves
are potentially biased, inaccurate, and prone to the side effects of the mea-
surement itself. Moreover, operating legacy NETCONF-based interfaces at
scale becomes inefficient and challenging in themedium to large scale cloud-
native applications, due to limitations of its transport protocol and improper
data models.

ATHENA does not directly involve itself in key managements, authentication,
or authorization. For most cases, the orchestration plane, Kubernetes in this
context, provides themeans to handle these issues. However, ATHENA device
management and secured, isolated, and rootless containers are the corner-
stones of a secure network. Otherwise, any kind of security barriers could be
breached by a faulty or malicious workload.

ATHENA introduces newmetrics for the green decision-making that is are ac-
tionable insights of the network. In that regard, we define some new terms.

Definition 4.2 (Decision Projection). We define a decision projection resulted
from a decision made in system is represented by the sequence of periodic ob-

servation of the interested metrics in a particular SLA.

For example, if we consider the DL goodput and the RTT as the metrics of
an SLA, any sequence of pairs (𝑡,𝑟) of non-negative real numbers could be
potentially a decision projection. For simplicity, in the rest of the section we
assume one-dimensional projections, i.e., only one metric is in question for
the SLA. Multidimensional projections should be a straight extension of the
discussion.

Definition 4.3 (Quality Reduction Metric). Quality Reduction Metric (QRM)
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metric is defined by the average of point-by-point ratio of an alternative deci-

sion projection𝐷𝑎 over the null decision projection𝐷0.

To bemore verbose, if𝐷0 = (𝑑01,𝑑02,⋯) and𝐷𝑎 = (𝑑𝑎1,𝑑𝑎2,⋯), then we have
the equation 4.4, where𝐷∗ = (𝑑∗1,𝑑∗2,⋯) is the SLA desired values.

QRM=
𝑛

𝑖=1

𝑑0𝑖−𝑑𝑎𝑖
𝑑∗𝑖

(4.4)

Since QRM is defined as a ratio, it is a dimensionless number with no unit
of measurement. Thus, the values over several dimensions of the decisions
could be easily averaged over the dimensions to form a single metric that
presents how bad the alternative decision is.

Definition 4.4 (Power Saving Score). The Power Saving Score (PSS) is defined

by the average of point-by-point ratio of the null decision projection 𝐷0 over

the alternative decision projection𝐷𝑎, where themetric of interest is the power

consumption.

If we define the power metric equivalents of 𝐷0, 𝐷𝑎, and 𝐷∗ as 𝐷′
0, 𝐷′

𝑎, 𝐷′
∗

then we have the equation 4.5.

PSS=
𝑛

𝑖=1

𝑑′0𝑖−𝑑′𝑎𝑖
𝑑′∗𝑖

(4.5)

The power replaced as themetric is relative, without considering the base us-
age of the system. PSS is dimensionless as well. Consequently, we could ad-
just the balance between the QRM and PSS in a meaningful manner.

In most cases, the QRM needs to be normalized to give a more sensible view
of the quality reduction. If we define the estimated ratio of affected users of
a group of interest as the Affected Users Ratio (AUR), then the comparison
should be made between QRM×AUR and PSS. For example, if the group of
interest is the users of an operator in a town, then the AUR is defined as the
ratio of the average number of the users experiencing the quality reduction
over all the population of the users in the town. The metrics presented here
are with simplified assumptions to demonstrate how the Observatory works.
Extensive studies using similar yet more sophisticated and accurate metrics
given on other works, for example [47] now could be verified with ATHENA on
real physical setups rather than mere mathematical studies.
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4.7 Devices, Networks, and Volumes

In TRIREMATICS, GAIA is responsible for completing the Orchestration Plane
and provide the utilities demanded by the other Planes. In that regard, GAIA
unifies the device management for telco devices in a cloud native manner.
What makes this device management particularly outstanding is its level of
automation and consecutive isolation that it actually brings to the access net-
work workloads. The abstraction in the device management is based on the
device capabilities to make pools of homogeneous devices that are distin-
guished by their geographical locations.

GAIA defines addressable and assignable resources for any form of device re-
sources such as radio devices (whether hot-plug, or network-based, or PCI-
based) or accelerators (e.g., GPU, FPGA). These resources are exposed as Ku-
bernetes node resources via a device plugin and could be allocated to any of
the Pods upon request. Defining a device plugin improves the isolation and
the security of the containers by following the Kubernetes security structure,
and on the other hand opens up a whole spectrum of possibilities for the log-
ics to be implemented in the Operator Plane.

For a device to be allocated for a container, it should be requested in the Pod
description. ATHENA takes care of defining the device requests and limits that
are processed by Kubelet on the nodes containing the right node resources to
allocate them for the containers. A device plugin communicates with Kubelet
on a UNIX socket exposing the devices that are made available via systemd,
as shown in the figure 4.9. Systemd is the most-commonly used init daemon
across all the Linux distributions which comes with a device management
mechanism called udev. Given specific rules to udev, we govern the nam-
ing, management, and initialization of the devices on the nodes, to achieve a
harmonized representation of the resources. Later the GAIA device plugin au-
tomatically and dynamically detects the devices and advertise them as node
resources in Kubernetes.

Linux Kernel Linux cgroupKernel space

Systemd udevRules kubeletPrivileged user space

Device PluginConfigs ContainerNormal user space

sysfs on /sys cgroup on /sys/fs/cgroup/systemd

devtmpfs on /dev request and limitunix socket

FIGURE 4.9: Device management stack in GAIA based on udev.

The physical devices in GAIA are transformed to logical software devices by
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Linux systemd and udev in the smallest operational units for each device.
These units are categorized by their capabilities into homogeneous sets of de-
vices. The compatability of the devices with the NFs are left for the vendors
to decide in the Composition Models. Similar to the NUMA topology, we de-
fine neighborhood metadata for the devices that are used in the container
scheduling. The neighborhoods could refer to the physical connections be-
tween the devices, such as belonging to the same physical device, sharing the
same PCI bus, and having the same RF ports and antennas. They could also
refer to the geographical proximity or synchronization.

Two particular set of devices are in our interest: First, the radio unit devices
such as USRPs or SDR cards that could be hot-plugs (throughUSB, like UHD-
B2xx), on-the-network devices (through Ethernet or SFP, like UHD-N3xx or
AW2S), or on-the-board (through PCI or PCIe, like Amarisoft SDR50). Sec-
ondly, the network terminals in particular Quectel LTE modules connected
either through USB or PCI. For each of the classes, specific rules are defined
to name the devices in a consistent manner, regardless of the kernel version
or the device ports that they are connected to. For the network terminals in
particular, the devices are named after the IMSI of the SIM card in their slot,
hence the UEs are uniquely identifiable across the cluster. At the same time,
each network terminal is also advertised as a unified resource to provide a
pool of UEs.

GAIA also detects the extra devices that are listed in the Composition Models
automatically during the deployment and exposes them via the same inter-
face. It should be noted that radio devices are defined in the Network CR not
the Composition Model CR following multi-x definition. TheManager would
configure the corresponding Workloads to operate on the specified device.

ATHENA utilizes the Multus plugin to support multiple network interface as-
sociation with the containers, including the SR-IOV plugins for faster net-
working. In the Network CRs, for each network protocol interface such as Xn,
F1, E1, or NG, one could use a different Multus network attachment defini-
tion name that should be configured externally. In addition to Multus, the
Managers on the Management Plane recognize and respect these network
interfaces and during the distributed resolution processes for depends and
resolve API calls, they respond with the proper interface addresses.

Moreover, we have used cutting-edge networking technologies in the cloud
such as Calico †† to establish incredibly fast data planes while advertising

†† https://projectcalico.docs.tigera.io/about/about-calico

https://projectcalico.docs.tigera.io/about/about-calico
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pod IPs using BGP. In this way, ATHENA workloads are allowed to communi-
cate effectively and efficiently with physical deployments or workloads exter-
nal to ATHENA domain. We also use Calico’s eBPF dataplane to speed up the
networking and reduce the CPU usage while providing the monitoring capa-
bilities for the Operator Plane.

To further improve the performance, ATHENA supports NUMA topologies on
the cluster when it is assigning the computing resources to the workloads.
The NUMA regions are selected carefully by the Base Operator to optimize
caching. Also Linux eBPF is used to monitor and control the network traffic
and energy consumption of the workloads without a need for a proxy, a side-
car container, or any other invasive or intrusive methods for that purpose. In
particular, we use KEPLER‡‡ for energy monitoring and control.

4.8 Day-2 Operations

In this section we discuss the Day-2 Operations in ATHENA and how they are
supported by the Management Plane and Operator Plane.

4.8.1 Observability, Auto-healing and Idempotency

The declarative design of ATHENA avails the Base Operator of auto-healing
properties, i.e., whenever an Element or Pod is deleted or evicted, it would
reconsider the topology and adjust the associated parameters. The healing in
action ismerely repeating the deployment, since the control loops of ATHENA
are designed to be idempotent. Thus, the effect of applying them repeatedly
or under failure should result in the exact desired state.

In ATHENA, we incorporate theReadinessGate feature of Kubernetes* to han-
dle complicated cases of readiness. This feature is designed to be used for
events that are not resolvable directly by the Pod itself, like readiness of an
external volume or cluster job. However, in telco workloads, readiness is a
multistage eventwhichmight not necessarily be expressible as a binary readi-
ness status. The readiness could rely on various internal state changes that are
reacted to by the other elements as a dependency. For example, an arbitrary
DUmight incorporate different threads to handle F1 and F2 connections, and
while not ready for serving the UEs over radio, it could be ready for F1 setup.
Thus, exposing different readiness levels not only improves the observability

‡‡ https://github.com/sustainable-computing-io/kepler

* https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle.

https://github.com/sustainable-computing-io/kepler
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle.
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but helps the Management Plane to handle complicated, multistage depen-
dency matrices. We have overloaded this capability through Base Operator
custom probes. The custom probes defined for the container in the Compo-
sition Model are individually probed by the Base Operator and patched as a
Kubernetes Condition resource to the Pod.

As we discussed earlier, ATHENA categorizes the metrics into the inbox and
outbox, where the inboxmetrics are collected from the interior of the bound-
aries of the application, while the outbox metrics are collected from its exte-
rior. Each of those metrics could be either in a local or global scope, depend-
ing on how many NFs are involved in that metric. There are six producers of
the metrics in a typical Open RAN scenario in ATHENA.

E2Metrics These inbox local metrics are collected via the E2 interface from
each individual NF or E2 node in this context. A specializedmonitoring xApp
targets each of the E2 nodes and subscribes for various monitoring service
models such as O-RAN KPM and caches the collectedmetrics in a small local
storage. The xApp gradually pushes the pre-processed metrics as a time se-
ries to the database backend of Prometheus, where they are stored for further
processing or visualization using Grafana† . Since the xApp might have sig-
nificant amount of data to push, it uses compression techniques tominimize
the network traffic. In that sense, the bottleneck of the E2 metrics collection
is the network bandwidth between the xApp and the RIC. Even though all the
metrics would scale by the number of NFs, the E2 metrics would remain as
the dominant size.

Manager Observatory TheManager’s Observatory is tasked to perform lo-
cal outbox measurements that are scraped by Prometheus (pull-based) and
they finally would end-up in the same backend data lake. Due to their pull-
based nature, the minimum interval between the scrapes is 1 second.

Base Operator TheOperator Plane has a global scope and the Base Opera-
tor exports some metrics about the topology of the network and its compo-
sition via Prometheus pull-basedmechanism. Thesemetrics are also consid-
ered outbox.

Non-RT RIC Unlike the metrics collected from E2, Non-RT RICmay export
global inboxmetrics that are later scraped by Prometheus. All themetrics are
merged into the same backend and grouped by the NF identity.

† https://grafana.com

https://grafana.com
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eBPF In ATHENA, weuse eBPF to collect some local outboxmetrics from the
NFsmainly concerning with their energy consumption. Also, eBPF is used to
generate global outboxmetricsbasedon thenetwork traffic. TheeBPFmetrics
are scraped by Prometheus and stored in the same data lake.

Node Exporter The Node Exporter is a Prometheus exporter that collects
metrics from the underlying host machine. The process of collecting metrics
is the default Prometheus implementation. The data are mixture of cAdvi-
sor‡ and Kubernetes metrics server§ . The metrics from the Node Exporter
are considered local outbox.

4.8.2 Reconfiguration, Upgrade, and Immutability

Each CR has mutable and immutable constructs. Changes in structure of the
containers, such as their image or resources as well as changes in the radio
device or identity of the networks would result to recreation to preserve the
immutability of the setup. Keeping the building blocks immutable is crucial
tomake scaled instances consistent andpredictable [48]. We call such actions
an upgrade and ATHENA minimizes the down-time of the NFs during an up-
grade as proven by example in the section 5.2. The agility of ATHENA and con-
tainers combined is the key to achieve the low down-time. However, a recon-
figuration action, triggered by changes inmutable constructs are handled by
the distributed processing of the Management Plane with zero down-time.
An example of changing the network topology and its effect on the service
quality is given in the section 5.2. Reconfiguration in day-2 is of paramount
importance in telco to achieve service continuity and flexibility at the same
time.

4.8.3 Micro-decisions and Agility

TheManager in ATHENAprovides the support for performingmicro-decisions
including, but not limited to, short-term green optimizations via WMI.

Definition 4.5 (Micro-decision). A micro-decision is a decision that is con-

cluded and intended for a short period of lifecycle and could be invalidated

and overwritten by another decision in a short time.

Thesemicro-decisions could be used to perform short-time optimizations, in
particular significant in the green computing [47], [49]. To elaborate on an ex-
ample of micro-decisions, we have considered an extension to the WMI with

‡ https://github.com/google/cadvisor
§ https://github.com/kubernetes-sigs/metrics-server

https://github.com/google/cadvisor
https://github.com/kubernetes-sigs/metrics-server
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two new API calls. A freeze endpoint in theWMI intends to freeze the corre-
sponding workload. By default, it is pointing to the stop endpoint internally,
though each vendor could provide customized actions that would not neces-
sarily stop the instance, but just put it in the sleep or freeze mode. Likewise,
the thaw endpoint implements the awakening action and by default is point-
ing to start.

4.9 Evaluations

Wehave completely implemented thementioned design of ATHENA at all lay-
ers. The code is mostly written in Golang with over 10k lines of code for the
Operators in total, 3k lines of code for the Manager and its plugins, and an-
other 3k for the extensions to orchestrator. For the evaluation of ATHENA, we
have used this implementation and onboarded Amarisoft (AMR), OAI, and
Software Radio Systems (SRS) already as vendors. The cluster under the test
contains 9machineswithRedhat Enterprise Linux 8, CentOS8,Ubuntu 20.04,
orUbuntu18.04 installedon them. The radiodevices supportedon the cluster
are USRP B210, USRP N300, AW2S RRH, AMR SDR50, and AMR SDR100.

4.9.1 Lifecycle Improvements and Agility

To simulate the effects of a failure and analyze how the observe-decide-act
loop of the Manager would behave, we have onboarded OAI gNB workload
on ATHENA then performed the following experiments:

1. Stop theRANprocess inside thecontainer to simulate aworkload failure
where in ATHENA, the Manager would detect the issue and act accord-
ingly by restarting the application process;

2. Stop themainprocess of the container to simulate a full-scale container
failure where Kubernetes intervenes to detect the error and then goes
through crash loop back-off that takes considerable amount of time for
recovery;

3. Finally we stop the Pod’s sandbox container to simulate an overall pod
failure that causes all the containers in the Pod to restart.

As reflected in the figure 4.10, ATHENA approach is considerably faster on
each part. Besides, the main process of the container is chosen carefully to
be the stable BOSUN API server for WMI that exhibits very low chance of fail-
ure, hence no transition to the longer recovery cycles of Kubernetes. It should
be noted that time for observation is composed of the minimum number of
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probings with the standard period of one seconds each to reach the conclu-
sion about the failure. Killing a container causes a faster detection since it
would be triggered with one failed probe but for the Pod the minimum failed
probe becomes two. Decisions or acting on the containers takes longer than
pods since Kubernetes categorizes the container failures as application fail-
ure and goes into crash loop backoff, but a pod failure is counted as of Kuber-
netes and is recovered faster. This comparison is not to show Kubernetes is
slow, but to indicate in this particular setup, ATHENA is able to provide more
agile recoveries compared to the generic-purpose vanilla Kubernetes.
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FIGURE 4.10: Comparison of observe-detect-act cycles in ATHENA and vanilla Kubernetes.

To reflect on the agility of thedeployments inATHENA,wehavedone a concise
analysis of lifecycle of an E2E deployment of CNFs on both ATHENA and ETSI-
OSM [14] release 11. This data is gathered in the table 4.4, where one could
observe ATHENA is farmore agile than theOSM. Thedata is averaged over sev-
eral deployment scenarios with the sameKubernetes version (v1.24). The two
clusters have the same machines running Ubuntu 18.04.1 (kernel 5.4.0-107-
generic) over 8 virtual CPU cores of Intel Core i7-8550U, at 1.80 GHz baseline,
scalable upto 4 GHz and with RAM size of 32 GBs. The data is collected by the
timestamp of the corresponding objects or logs. Since Kubernetes does not
record timestamps of shorter than one second, for some actions in ATHENA,
we could just give the upper bound of 1 second.

We have performed the comparison with Charmed deployment of OSM and
for onboarding a Charmed unit to have a similar structure ofMANO. We have
taken the OSM control plane components such as LCM, VCA, or RO as Op-
eration Plane and the Model Operator and the Charms as the Management
Plane. The data is collected for onboarding a single CNF workload, regard-
less of image pull times, and after both Operation Planes running and ready.
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Phase Delay in OSM Delay in ATHENA Improvement

MANOGen. #2+ MANO Gen. #4

Operator to Pod Creation 4 second < 1 second 75%

Management Tasks 13 seconds 3 seconds 77%

Status Propagation < 1 second < 1 second -

Day-2 Operations 5 seconds 2 seconds 60%

Deletion and Clean Up 52 seconds 5 seconds 90%

TABLE 4.4: ATHENA and OSM timeline compared.

On deletion phase, OSM uses long graceful shutdown timeouts by default (30
seconds), but in ATHENA the API server gracefully terminates the process in-
ternally by detecting the terminate signal from Kubernetes, hence it does not
need to wait for the timeouts. Note that, for the numerous iterations of a de-
ployment, the ratio is more important than the difference, because in large
number of sequential deployments the small differences grow to a lot.

4.9.2 Performance and Overhead

To form a conclusive image of our platform, we demonstrate the E2E 5G net-
work throughputUDP and TCP throughput achievable in ATHENA, compared
to a fully PNFdeployment onbaremetal andadeploymentwith Snaps, shown
in the figure 4.11 for OAI on B210 (SISO), AMR on SDR50 (MIMO 2x2), and
AMR on SDR100 ( MIMO 2x1). All the tests are performed on the same ma-
chine running RedHat Enterprise Linux 8 with 12 cores of CPU of type In-
tel Core i9-10920X at 3.50GHz base frequency and 64GB of RAM. The fig-
ure shows the data OAI gNBmonolithic as the RAN andminimal deployment
model of OAI 5GC (only AMF, SMF, and UPF) as the CN, where the UPF is
deployed using OAI SPGW-Umodule, all on containerd as the container run-
time. The configuration of the RAN is the same over all the setups: 5G-SA FR1,
106 PRBs, 40 MHz bandwidth, TDD band 78 with pattern of 7DL:2UL slots
and 6DL:4UL symbols. For the FR2 setup we used 5G-NSA where the LTE cell
is configured with 20MHz bandwidth in FDD band 66 and the NR cell is con-
figuredwith 100MHz bandwidth, 120 kHz subcarrier spacing, and TDDband
261 with the pattern of 3DL:1UL for the slots 10DL:2UL for the symbols. In
this case the results show the aggregated throughput of the two cells that are
running with MIMO 2x1. The data shows negligible difference between the
throughput on different setups and the slight variation could only be caused
by minor aerial differences.
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Plane Resource
ATHENA

Charmed OSM Improvement
REQUEST LIMIT

Operator
CPU 10m 500m 151m 93.38%

Memory 64MiB 128MiB 1.8GiB 96.45%

Image Size - 61.3MB 719.97MB 91.49%

Management
CPU 10m 30m 135m 92.59%

Memory 15MiB 64MiB 50MiB 70%

Image Size - 145MB 183.52MB 20.99%

Orchestration
CPU 10m 50m 100m 90%

Memory 30MiB 64MiB 2.67GiB 98.88%

Image Size - 21MB 694.30MB 98.88%

TABLE 4.5: Overhead comparison between ATHENA and Charmed OSM.

We have evaluated the total resource usage of ATHENA Manager and Opera-
tors (Base, Terminal, and Slice Operators all together), as the table 4.5. Do-
ing some calculations will lead us to the estimated energy consumption of
ATHENA as theMANO energy overhead in long term. Of course this overhead
would scale linearly with the number of deployed networks, but the constant
factor is small enough to be negligible compared to the resource and energy
usage of the network components themselves. Gathered in the table 4.5, one
finds a comparison betweenCharmedOSMandATHENA in terms of the com-
puting resources, as well as the corresponding total image sizes. Unfortu-
nately, OSM does not define limits for its resource usage, so we relied on K8s
top command. The limits definedwould ensure ATHENA cannot consume be-
yond the defined resources by which it receives improved QoS control in Ku-
bernetes. For OSM we have considered the Model and Charmed Operators,
LCM, PLA, and POL as the necessary parts of the Operator Plane, while tak-
ing into account an average for CharmedOperators for workloads as replace-
ment for the Management Plane, The observability stack of OSM is consid-
ered optional for fair comparison. It contains Prometheus andGrafanawhich
are available for ATHENA as well but are not considered as our contribution
to the observability stack. The RO, databases, messaging system (Kafka and
ZooKeeper), and authenticationmanagement (Keystone) are counted as part
of theOrchestration Plane. We have not counted in the extra overhead of hav-
ing Juju, LXD, and MicroStack installed as underlying parts of the Charmed
OSMsetup, butATHENAneedsnothingmore thanaminimalKubernetes stack
to Operate on top of it.
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FIGURE 4.11: Comparison of the throughput between baremetal, Snap, andKubernetes deployments of TRIRE-
MATICS.





107

Chapter 5

Use cases

Though TRIREMATICS design model encompasses the support for numerous
use cases in 4G, 5G, and beyond, we emphasize on three use cases foreseen
in 5G and beyond, which are in particular attention of TRIREMATICS too.

5.1 Private Networking and Optimization

Todemonstrate the capabilities of aplatform forprivatenetworkinguse cases,
one should consider at least the following three substantial domains:

• Network Customization by defining customized, multi-x stacks with
possibly network sharing;

• Cost and Energy Optimization across variations of deployment deci-
sions, constrained by the desired Key Performance Indicators (KPIs);

• E2E capabilities including observability and automation with the UEs
in the loop, since in many cases, the UEs would be deployed and con-
trolled by the owner of the private network.

In commonusecases in5GPrivateNetworking, suchas Industry 4.0, a specific
range of the UEs would be deployed by the owner of the network itself, unlike
the traditionalpublicnetworkswhere theUEbelongs to theendcustomerand
is out of the deployment loop. Furthermore, theDevOps platform introduced
in the chapter 3 enables consistent network customization by patching the
artifacts.

To further develop these ideas, we consider an illustrative example of a private
network operator. Consider the scenario of an event in a museum to exhibit
recently found relics for a short period of 10 days in a town. The network op-
erator wishes a short-lived private network to serve some augmented media
to the visitors, demanding 80Mbps downlinkUDPpayloads inside the venue.
The goal is to optimize the cost of the deployment while trying to respect the
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regulations imposed by the city hall for the energy efficiency with 50 Watts
power budget per base station. Peeking the data from table 4.4 and 4.5, it
can be seen that the overhead incurred by ATHENA and the agility of its op-
erations makes it suitable for short-lived networking including network leas-
ing and temporary service boosts following the user demands. Measuring the
agility of ATHENA on deployment of a simple, E2E network including theUEs,
we have observed that the UE gets network service in less than 2 minutes in
total, yielding around 0.01% of the total time of the service lifecycle in this
example.

Due to its declarative design, ATHENA simplifies tailoring and enables cus-
tomization of the networks. This includes network sharing capabilities aswell
as relying on the external network components, outside the ATHENA domain
of control. Network sharing in ATHENA happens in two levels: Network-level
and Composition-level. At the network-level we address the Multi-Operator
Radio Access Network (MORAN) and Multi-Operator Core Network (MOCN)
scenarios while at the composition-level, how the internals of an access or
core network should be scaled based on the sharing options in accordance
to the slice definitions. This would ultimately result in other sharing options
like sharing DU or CU in RAN as demonstrated earlier in the section 4.5. One
could also incorporate RAN or CN instances that are external to the cluster or
alien to ATHENA, but it should be noted that 3GPP standards should still be
respected by the deployer and ATHENA would not enforce a connection that
would otherwise be rejected in the standard. Events are issued in these cases,
and the element status could change to the failed status, depending on the
vendor’s preference.

ATHENA Cost Optimizer Operator is an optional Operator on the Operator
Planewhich given a Service-Level Agreement (SLA) object as well as cost con-
straints, it would iterate on various options in the network deployment to find
the minimum cost deployment that still satisfies the SLAs. The Composition
Models are incorporated with metadata that is particularly useful for pricing
and cost optimization. The DevOps platform generates parts of this meta-
data as how many resources were consumed to produce the images in that
particular Composition Model. The total cost of a network then is calculated
by simple summation over the cost of each Composition Model used. These
would be computed into the CapEx while the OpEx is estimated by the re-
source consumption over a period of time.

As an instructive example, consider a private network operator who intends
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to set up a network chosen from one of the four setups as provided in the ta-
ble 5.2, with the minimum monetary cost. Indisputably, many more setups
and variations over different dimensions could be explored and compared in
the same manner via ATHENA. Given the scenario, Cost Optimizer Operator
sweeps the four options with a tolerable range of [0,100]Watts for the power
usage (twice the regulation, but still fair penalty) and [0,2%] for maximum
packet loss to improve the QoS. Noticeably, as seen from this example, the
Cost Optimizer Operator defines hard constraints and soft constraints, allow-
ing explorationof theoptions outside theoriginal SLA space. Since essentially
the SLAs themselves indirectly translate into the generic cost-revenue prob-
lem, their violation as long as it yields a better total revenue over the cost, is
acceptable. Hence, for example, if allowing power consumption out of the
valid regulation range, enables usage ofmuch cheaper radio equipment, per-
haps the total cost of the radio plus the penalty would still be less than the
cost of the more expensive radio equipment.
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FIGURE 5.1: CPU and RAM usage of option 1 in table 5.2. The CPU time does not have a unit, and it is mea-
sured by howmanymiliseconds of CPU time are consumed by the container at a 1-second interval. Hence, the
normalized concumption would reach the maximum value of 1000 as visible from the graph.

Using its observability capabilities on top of Prometheus over theOMI, essen-
tially ATHENA gets the computing resource consumption of the deployed sce-
narios in real time. Each scenario for the Cost Optimizer Operator is unique,
hence a set of pre-defined, static measurements would not be helpful more
than giving some approximate intuitions in general. The figure 5.1 shows re-
source consumption of the first option in the table 5.2, where the CPU con-
sumption is summed over the 10 CPU cores of type Intel Core i9-10920X at
3.50GHz, andaveraged for intervals of 10 seconds for smoother plotting. Then
the overall cost of the scenariowould be calculated via an integral over a stan-
dard interval of 5minutes, where the last 3minutes have a singleUEdeployed
transmitting on 80Mbps downlink via iperf3, placed in a Faraday cage.
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Resource Cost

CPU $0.0108/h

RAM $0.0044/h

Disk $0.0004/h

Network $0.0001/h

TABLE 5.1: The linear pricing model of the
Google Cloud Platform (GCP) as an exam-
ple reference. The values are defined as
USD per hour, however, before being used
in the integration of the equation 5.1, they
have to be converted to USD per second
to match the time interval used for the
approximation of the CPU resource con-
sumption.

The integral would include the pricing model specified to the Cost Optimizer
Operator as possibly non-linear function. In general, if we consider a cost
function 𝐶𝑟 ∶ ℝ→ℝ+ for a time-varying resource 𝑟(𝑡), the cost of the resource
over a period of time [0,𝑇]would be calculated as the equation 5.1.

𝐶𝑟 =
𝑇

0
𝐶𝑟(𝑟(𝑡))𝑑𝑡 (5.1)

In this terminology, 𝐶𝑟 does not need to be linear, but it should be a mono-
tonically increasing function. Themajority of current costmodels used by the
public cloud providers are linear, described by a mere constant coefficient.
Hence, in this model, the function 𝐶𝑟 is of the simple form of 𝐶𝑟(𝑥) = 𝛼𝑥.
However, we expect in the near future, non-linear cost models, which penal-
ize higher usage of, for example, energy, would replace the traditionalmodels
to encouragemore sustainable and green computing. For the sake of simplic-
ity and proper reference, we have used Google Cloud Platform (GCP) pricing
policy as an example reference in the table 5.2, by extracting the cost of the
resources as given in the table 5.1.

In the table 5.2, the CapEx is calculated based on the cost of the hardware and
the software licenses. The average OpEx reflects the average cost per hour
for the entire 5-minute duration, whereas the peak OpEx only considers the
portion of the iteration where the UE is active. The power measurements are
collected by the Cost Optimizer Operator from a digital Watt-meter deployed
on the machines and connected to their power supplier, and it factors out
the idle usage of themachine. It should be noted that radio devices consume
power even on standby; hence the idle power is measured with no cards or
devices connected to the motherboard.

# Setup CapEx Avg OpEx Peak OpEx Power
(k$) ($/h) ($/h) (W)

1 AMR SimpleRAN + SDR50 15 73.04 91.87 8

2 AMR SimpleRAN + B200 14 100.25 112.54 9

3 OAI Monolithic + B200 2 141.18 171.20 10

4 OAI O-RAN + AW2S 8 211.69 235.10 90

TABLE 5.2: Example of 4 iterations for Cost Optimization. The costs are calculated in the 5-minute interval and
then extrapolated for an hourly cost.
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The total cost 𝐶 for the whole 𝑛 days of deployment could be then simply cal-
culated via the formula in the equation 5.2.

𝐶 = CapEx+𝑛×24×OpEx (5.2)

where 24 is the number of hours per day, and the units are taken from the ta-
ble 5.2. This gives the cost for a single node, however; considering the range
of each deployment and the space to cover, the number of the nodes might
change which is left to the network operators to decide. As a naive approxi-
mation, onemight consider that the cost shouldperhaps simplybemultiplied
by their count.

ATHENA Cost Optimizer Operator closes its loop by involving ATHENA Termi-
nal Operator through the Operator Plane via injection of a Terminal object,
which also provides the required live testing utilities. This triggers the Termi-
nal Operator to inject the UE identity to the CN database, create the Element,
and provide the required testing facilities to measure KPIs, including Round-
Trip Time (RTT) and throughput. Reacting to the corresponding event that
Terminal Operator would issue after successful attachment and setup of the
UE to the network, the Cost Optimizer Operator starts measuring the KPIs of
the E2E deployment. In result, we have the figure 5.2, where the best choices
are indicated by their numbers in the table 5.2.
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FIGURE5.2: If theminimumcost is calculated, considering themaximumpacket loss, thedominant best option
wouldbe the fourth for the ranges below9%,while for higher than this value, dependingon thenumber of days,
the best choice would change from the third to the first. The small white region at the bottom of the graph is
an infesible region, unachievable by any of the options.

The figure 5.2 shows the regions of optimization for the packet loss criteria
using the formula in theequation5.2. The temporaldimension is important in
this kind of region graphs, since it helps to flatten the CapEx over OpEx in the
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long term. Insteadofproducing just the single-point result for𝑛= 10, theCost
Optimizer Operator produces these region graphs. As a result, new options
could be explored by the operator, for example, if the event is extended to 20
days, the best choice would be changed from the third to the first option. This
example clearly demonstrates how the novel designs in TRIREMATICS open up
new possibilities that have never been considered in a traditional problem
definition.

On the figure 5.3, the plot presents the variation of best option based on the
cost of average usage (60%of time in the peak) depending on the period of de-
ployment and power consumption constraints. On the right, we considered
the packet loss reported on the iperf3 measurements with the cost of deploy-
ment on peak usage. Due to the given time period and SLAs of our scenario,
the best choice for a single node setup is to have the first option which could
guarantee less than one percent packet loss. It has to be noted that the con-
ditions and scenario are relaxed for the sake of simplicity, but the procedure
is valid for any arbitrary scenario.
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FIGURE 5.3: If the minimum cost is calculated, the choice would be down between the first and third options,
depending on the number of days.

It isworthnoting thatATHENA is reproducible andconsistentbydesign, hence
the whole process of each iteration could be completely automated. Other-
wise, the results of the experiments could not be trusted. Besides, the agility
of the platform indicated in the table 4.4 is crucial since the deployment time
would determine the time for each individual iteration, yet still the reconfig-
uration capabilities of ATHENA could be exploited to reduce deployment time
from two highly correlated network deployment options. Unlike the deploy-
ment of the final result, for each iteration of the test, almost 30% of the time is
spent for the UE to get fully attached and ready to transmit. This then brings
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the question of how the arbitrary periods of 5 minutes and 3 minutes used
in this example would be chosen in practice. One option is to let the Cost
Optimizer Operator continuously calculate its estimations in table 5.2 until
they converge to a stable value. Hence, the experiment continues as long as
the calculated hourly cost values based on the interpolation of the data are
unstable, capped by the maximum of actual one hour.

5.2 Open RAN and Emerging Networks

Open RAN is an initiative led by operators to break from vendor lock-ins and
mix-and-match components of the network, even beyond the 3GPP specifi-
cations through the newly defined open interfaces. We have built the idea of
multi-x as the extension to the same doctrine mixed with the fundamental
goals of cloud native, which goes beyond the RAN itself to the MANO/OAM.
ATHENA defines open interfaces in between its components that allow them
to be replaced at any time with any customized implementation of the same
API,making its design fungible. Weneed to emphasize that simplyusingopen
source tools does not correspond to an open interfacemulti-x solution, since
not only all the open-source licenses could be applied to commercial applica-
tions, but also there could be preferences to use one solution over the other,
simply due to relations of their maintainers. ATHENA is agnostic to the cloud
provider, Kubernetes distribution, container runtime, or OS. Taking ETSI-
OSM again as an example, one immediately notices the maintainers of OSM
have taken irreplaceable design decisions, for example, in picking how their
DevOps stack should be deployed.

Alignedwith theOpenRAN, as a cloud-nativeO-RANOAM, ATHENA supports
concurrent deployment of Open RAN components as well as dynamic transi-
tion between any of the options for deploying the RAN with minimal down-
timeandhuman intervention. To illustrate this, wehave composeda scenario
inwhichATHENAprogressively deploys a complex network of varying vendors
and splits in multiple requests to resemble a growing network of an operator.
The figure 5.4 shows how the CPU usage of the whole cluster as an example of
computation resources changes during the growth of the network and its cor-
relation with the scale of newworkloads introduced. Based on the number of
Elements and networks deployed in each phase, we have done an extrapola-
tion of the resource consumption.

In thefigure5.5,wehave tried toperforma linear regressionon thedatapoints
of the figure 5.4, to predict the resource consumption based on the number
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FIGURE 5.4: The CPU usage of the cluster as an example of computation resources changes during the growth
of the network and its correlation with the scale of newworkloads introduced. ‘AN’ stands for Access Network,
‘CN’ for Core Network, and ‘EN’ for Edge Network.

of Elements and networks. The results have higher correlation score with Ele-
ments, due to the fact of variations in the network compositions and vendors
used in the setup. This means to predict and provision resources for an Open
RAN deployment; one should rely on the number of Elements to be deployed
rather than the number of networks. The 𝑅2 value for fitting the data linearly
to the Elements and networks are respectively 0.9876 and 0.9672, which for
these sample sizes are acceptable13. For the figure 5.6, we have usedOAI RAN
in RF simulator mode, and in intervals of 5 minutes, one 5G SA RAN and UE
simulators havebeen introduced. Thepredictionhasbeenmadebasedon the
number of elements which indicates higher non-linearity, despite the larger
sample size.
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FIGURE 5.5: Linear regression on the data points of the figure 5.4, to predict the resource consumption based
on the number of Elements and networks. CPU time in this figure essentially translates to the number of CPU
cores used by the containers.
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We hypothesize in the Open RAN scenario depicted in the figure 5.4 the vari-
ations offered by different deployment models and vendors have absorbed
some uncertainty caused by the distribution of nodes in the cluster. How-
ever, in a more homogenous scenario of the figure 5.6, other factors become
moredominant. On theotherhand, in thefigure5.7,wehaveadjusted thePod
scheduling via ATHENAMobility Control Operator to place the simulated UEs
on the same machine with the simulated gNB. This has drastically changed
the resource usage regime into a highly linear but significant CPU time. The
RTT experienced by the user drops from an abnormal amount of 88ms to
17ms on average, showing the effect of placement on the QoS as well. In con-
clusion, a multi-x platform is the key enabler to unlock the Open RAN poten-
tial not only for deploymentof tailorednetworks, but also for performing valid
and reliable measurements.

5 15 25 35 450

0.2

0.4

0.6

0.8

1

Time (min)

CP
U
Ti
m
e

Prediction
30s Average
5min Average

FIGURE 5.6: The CPU usage of the cluster as an example of computation resources changes during the growth
of the network. The figure also shows the predictions made for the amount of resources based on the number
of Elements and the averaged CPU usage over a period of 5 minutes.

With these examples of predicting resource consumption, we have arguably
demonstrated the capabilities of ATHENA to be used as a platform for Open
RANandemergingnetworks. ATHENAallows theoperators topredict andpro-
vision the right amount of resources even for the heterogeneous ecosystem
of Open RAN. Furthermore, the support for multi-x and multi-vendor de-
ployments, as well as the ability to perform valid and reliable measurements,
makes ATHENA a suitable platform for Open RAN.

These progressive growth examples are not the only ways an Open RAN net-
work could evolve. A large set of those evolutions are grouped on the term of
Day-2 operations, which are the operations that happen after the initial de-
ployment of the network. To reflect on the day-2 operations of ATHENA, we
present two operations in the figures 5.8 and 5.9, respectively.
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FIGURE 5.7: Whether the UEs are placed on the same machine with the gNB or not, the regimes of prediction
are different. Compared to the figure 5.6, the CPU time is significantly higher, but the RTT is much lower.

• A zero down-time reconfiguration of AMR RAN in response to topology
change and addition of a new core network;

• An upgrade procedure, where the AMR CN that was connected to an
AMR RAN instance gets upgraded to a newer version, and in response,
the UE performs a connection reestablishment procedure.
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FIGURE 5.8: A zero down-time reconfiguration of AMR RAN in response to topology change and addition of a
new core network. The arrow points out the effect of the reconfiguration to a peak in the RTT values.

For the first trial, the figure 5.8 shows the E2E RTT of the UE, which with-
out a down-time, experiences only 3 seconds of service degradation. This
shows how ATHENA enablesmajor network reconfigurations without any ser-
vice outage or restarting any of the containers, Pods, or applications. The
changes made in the network description are propagated in the matter of a
few seconds to the affected Elements, portraying an extremely dynamic and
agile network deployment
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FIGURE 5.9: An upgrade procedure, where the AMR CN that was connected to an AMR RAN instance gets up-
graded to a newer version, and in response, the UE performs a connection reestablishment procedure. The
phases of the transition are shown in the figure.

The second trial in the figure 5.9, plots the SNR values observed in the RAN
for one particular UE. We have chosen the SNR values as a reference to show
the changes at the lowest level of the RAN, in the PHY layer. When the SNR
gets abnormally low, theUE is transitioning between phases. Since the bearer
between the RAN and the CN gets lost, the UE tries a service connectivity re-
quest. The request is rejected due to the context loss in the CN, but the UE
tries again by establishing a new NAS session over a new RRC. The NAS re-
quest fails because the UE tries SUCI instead of SUPI, but the CN is unable
to reveal the concealed identity of the UE. Finally, a second reestablishment
is successful, and after 12 seconds of lack of E2E service, the UE is back on
again. For upgrades of the service once each month, 12 seconds of service
outage is equivalent to 99.9995% service reliability. Thus, ATHENA is one of
the few platforms able to continuously deliver (CD) with the required service
reliability of 5-nines or 6-nines.

5.3 GreenMANO/OAM

Sustainability and energy efficiency have been listed already in the require-
ments for 6G [50], [51], while the foundations to achieve them are already
established by the lean-design, fine-grained controlling, and variety of op-
timizations in 5G. The design of ATHENA is solicitous to sustainability and
green computing, by providing built-in features in its observability and con-
trol mechanisms. To realize greenMANO/OAM one should consider two fac-
tors:
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1. The extra overhead introduced by theMANO/OAMspecifically in terms
of computation resources should be minimal;

2. TheMANO/OAMshould providemeans bywhich algorithms on energy
optimizations could be applied.

One particular concern that gains significance on transition from a simple,
all-in-one access or core network to disaggregated solutions that are of inter-
est to OpenRAN is the overhead that aMANO design introduces which scales
with thenumber of deployedunits inmost cases. Theflexibility andDay-2 op-
eration offered throughmacro-decisions andmicro-decisions in ATHENA are
the key to resolve over-provisioning and achieve a sustainable deployment.
These decisions span over the whole spatio-temporal dimension as demon-
strated in the following examples.

Thefigures 5.10 and 5.11 demonstrate a tradeoffbetweenQoS and energy sav-
ing in general; the solid black lines are the optimizations made by ATHENA,
and the doubly white lines are the baseline. The area in between the graphs,
colored in green, is the actual power saved. The decisions, either micro or
macro, would affect user performance, either in terms of service outage or
QoS drops. Either way, one could encapsulate this as a Quality Reduction
Metric (QRM) as discussed in the section 4.6.4. The former metric should be
normalized by the number of affected users to form a more accurate picture
of the impact. The Power Saving Score (PSS) shows the ratio of average nor-
malized power consumption where the baseline power is deducted from the
average values to show only the difference. The operator defines these two
metrics based on the observed raw data as well as his desired balance be-
tween them. TheEnergyOptimizer Operator configures its decision as well as
Manager’s to resolve the tradeoff accordingly. Themetrics are ratios and have
no dimensional units, hencemathematically comparable. Both the following
experiments on power consumption are done with OAI gNB over USRP B210.

To showcase an example of a micro-decision in ATHENA specifically for green
MANO/OAM,weprovide a scenario inwhich the tradeoffbetweenavailability
and energy-efficiency stands out. Imagine aUE that ismoving around a facil-
ity to collect and upload some data. A few gNB nodes are deployed along the
path, but since the data collection from the devices is frequent yet geograph-
ically scattered, the energy optimization becomes important. The required
UL throughput is 5 Mbps, and any value below it counts as violation of SLA.
When theUE’s uplink channel gets worse enough to toss the balance between
the mentioned metrics, the UE is dropped from the RAN side; otherwise the
bad uplink would require heavy computation to provide a weak service. This
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FIGURE 5.10: This figure shows two examples of micro-decisions in ATHENA. The first one concerning a drop-
off of the UE in favor of energy saving, whereas the second one is a freeze decision to temporarily set a RAN
instance to standby.

decision, as shown in the figure 5.10, saves on average 1.74W (17.4% PSS) per
UE with 61.54% QRM. Also, an unused RAN instance would be temporarily
set to standby and remain in sleepmode for the duration onwhich there is no
apparent activity from the UEs. The RAN is awakened at the moment that a
UE is activated in its vicinity on a proximate node, and the whole process of
detection and activation of the dormant instance all together takes less than
1 second, but it allows us to have on average 7.83 W (78.3% PSS) power sav-
ing per gNB. In this case, QRM could be considered almost zero for an agile
MANO/OAM.
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FIGURE 5.11: This figure shows an example of macro-decisions in ATHENA. The decision follows the daily pat-
tern of traffic and changes the bandwidth of the gNBs accordingly.

This could be used to intelligently remote-control very far away sites, where
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for a significant portion of time there might be no user activity, and for ex-
ample, the start trigger could also be based on a handover signal. ATHENA
Base Operator incorporates the geographical distribution of the nodes in its
decision-making by using the Kubernetes region and zone labels that could
provide metadata about the geographical location of the nodes in the clus-
ter. Thus, one could use this metadata to extract the list of potential UEs in
the vicinity of a RAN instance and take actions accordingly. Evidently, this
information could be enriched by deploying specific utilities on each site to
measure and report real-time radio signal levels in its proximity or even by
the statistics extracted from the network instances themselves. To view this
in scale, we have considered three different RAN instances deployed on dif-
ferent sites and the UE traverses from one site to another continuously and
randomly. The total power usage of the sites as well as the baseline (with-
out micro-decisions) are plotted in the figure 5.10, where one could observer
significant power saving of around 60% in total. Even though we have just
considered freeze micro-decision, the WMI could be expanded to take more
effective actions such as reducing the bandwidth to handle variations in the
presence of the UEs, not just by their disappearance.

Moreover, ATHENA exposes some Workload-dependent statistics via its OMI
interface in Manager where later could be processed by an Energy Optimizer
Operator on the Operator Plane to take decisive actions with respect to en-
ergy saving and green computation for longer cycles, like day and night shifts,
exploiting patterns discovered by AI/ML [52], [53]. For example, in the fig-
ure 5.11, we have shown a saving of on average 2.24 W (22.4% PSS) per gNB
for lowering the bandwidth from 40 MHz to 10 MHz during the second half
of the trial period due to the pattern enforced by the Energy Optimizer Op-
erator, causing 77.36% QRM during the nighttime. If we consider 20% active
users during the nighttime, normalized QRM becomes 15.47%. As a result of
our macro-decision, to save 20% power consumption, the users will lose 80%
of the throughput, however, normalized with the number of users at night-
time, say 20%; we get a more reasonable loss of 16%. Of course, AI/ML could
be handy in processing this information and adjusting the Energy Optimizer
Operator’s parameters, to make sure the decision is desirable. Weighting the
QRMand PSS the samemakes this particular decision favorable. Utilizing the
delegated interfaces to the access and core network controllers, these actions
span to compute, radio, and network resources across thewhole deployment.

The micro- and macro-decisions may be combined to maximize the energy
efficiency as shown in the table 5.3. TheEnergyOptimizerOperator considers
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a green budget per user as part of its SLA, indicating the maximum tolerable
QRMoverPSS value. Thisbudgetwouldbefirst spent onmacro-decisions and
then for micro-decisions. Since theManager observes RAN state directly and
the QoS in real-time, it could by itself decipher the remaining budget from
the tradeoff parameters andmonitoring the RAN. Because of their timescale,
the micro-decisions could adapt very fast to the side effects of the macro-
decisions.

During our experiments in the figures 5.10 and 5.11, we noticed commonly-
used tools like powertop * are incapable of capturing true power usage of the
RAN,because their scope is limitedonly to theACPI interfaceof theCPU, even
though the RAN could include RF devices and accelerators that are not re-
ported via the same interface. Thus, we used a battery-poweredmachine that
provides power readings from the battery. The setup is done via USRP B210
which takes all thepower from theUSBport of themachine. Thesemetrics are
exposed to themanager container via SysFS by the devicemanager formicro-
decisions and another node agent reads the coarser data, with higher periods,
exposing them to the Prometheus for the usage in the Operator Plane.

We believe by adaptation of ATHENA, since now there are means to analyze
andOperatebasedonenergyconsumption; the infrastructureproviderswould
graduallyprovidebetter energymeasurement equipment in their cluster,which
enable sophisticated green Operations on ATHENA.

* https://github.com/fenrus75/powertop

Decision PSS per UE QRM

Micro-only 17.4% 61.54%

Macro-only 22.4% 77.36%

Together 39.8% 71.46%

TABLE 5.3: The table shows the effect of
combining micro- and macro-decisions
on the power saving score (PSS) and qual-
ity reduction metric (QRM).

https://github.com/fenrus75/powertop
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Chapter 6

Conclusion

In this chapter, we reveal the final optimization problem that makes the flow
of the thesis connected. Based on this problem statement and the materials
provided in the earlier chapters, we discuss the future work. In chapter 3, we
performed empirical quantified analysis on a group of mathematically well-
defined problems that appear in a DevOps pipeline applied in the context of
cloud-native 5G and 6G. The result of this analysis is a set of practices that are
incorporated in our CI/CD platform. In chapter 4, we shift the focus to the
MANO systemswithmostly a qualitative design journey to employ the best of
cloud-native technologies in theMANO systems for 5G and 6G. The nature of
these studies are completely different from one another, but they both con-
tribute to the same optimization problem and the same level of qualities in
the final solution.

This thesis signifies a monumental step in addressing the unique challenges
that 5G and 6G network operators face, particularly in the realm ofMANO. By
focusing on cloud-native principles and practices such as consistent DevOps
and declarative automation, this research not only responds to the pressing
need for reliable and efficient networkmanagement but also acts as a founda-
tion for further innovations. The introduced specialized cloud-nativeMANO,
presents a viable, scalable, and fundamentally redefined solution that fills ex-
isting gaps in traditional and current MANO systems. The efficacy of this ap-
proach is validated through a real-world proof-of-concept, offering not just
theoretical insights but also practical tools andmethodologies that drastically
outperform existing solutions in terms of agility and overhead.

By aligning the design of MANO systems with cloud-native tenets, this work
sets the stage for a unified, sustainable approach to network management.
In particular, principles like consistent automation echo the crucial need for
reliability, while the focus onmulti-x systems captures the essence of diverse
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andheterogeneousnetworks. Theresearchnotonly contributes valuable knowl-
edge to academia but also delivers actionable solutions that are used in its
empirical evaluation.

6.1 Global Optimization Problem

Concisely speaking, during this thesis, we have studied a global optimization
problem for cloud-native 5G and 6G. As stated earlier, this optimization is in
the formof a cost-revenue problem for the network operators. A generic cost-
revenue problem calculates the difference between the revenue and the cost
across the whole network, for all the services. In this thesis, we model the
revenue as a direct function of business agility: The faster the new services
are built, tested, and deployed, the more revenue the network operator can
generate. Meanwhile, the cost is modeled as a function of the resources used
to realize the services.

Thus, if we consider the revenue for the service 𝑖 as 𝑟𝑖 ∶ ℝ+ →ℝ+, it would be
a monotonically decreasing function of 𝑡𝑖, the time it takes to build, test, and
deploy the service 𝑖. This variable 𝑡𝑖 itself is the sumof theDev portionof time,
𝑑𝑖 and the Ops portion of time, 𝑜𝑖, where the former could be improved by
introducing better concurrency and more resources, but the latter is mostly
agnostic to the resources used. The chapter 4 optimizes 𝑜𝑖 independently;
since regardless of the valueof𝑑𝑖, a lower𝑜𝑖would increase the revenue,with-
out introducing cost. The problem statement of chapter 4 essentially breaks
down 𝑜𝑖 to multiple Day-1 and Day-2 operation timers and empirically im-
proves them over the state-of-the-art. Furthermore, in chapter 4, we reduce
the overhead introduced by the Ops which results into constant reduction of
the resources, hence the cost.

The optimization of 𝑑𝑖 is more delicate though. First of all, as introduced in
chapter 3, we have tomaintain consistency while addressingmulti-x concur-
rent build jobs. This is introduced as a condition for the optimization prob-
lem. Secondly, we take into account four decisions as given in the table 6.1.
The Artifact Mapping would determine howmuch Resource-based Time and
Image Size would be used, which directly translate to the compute and stor-
age costs. We also discussed that a proper mapping could potentially reduce
the time needed for some of Day-2 operations, hence reducing the 𝑜𝑖. We
compared our mapping with the commonly used Microimage approach and
demonstrated that our approach is more efficient. The Build Strategy affects
the consistency and concurrency ofmulti-x artifact variants, which is studied
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for four different types of strategies, proving TRIDENT build strategy gives the
best consistency and concurrency. Consistency is our condition of the opti-
mization problem, and concurrency is themain factor that affects the𝑑𝑖. The
Caching Strategy sets the storage and download time, which directly translate
to storage andnetwork costs. We demonstrated the caching and compressing
factors of our build system in chapter 3. Finally, the Job Assignment affects
the parallel build time, the most important factor in 𝑑𝑖. The effects of this
decision only become visible if we consider the realistic scenarios in which
the total resources are limited. This limit is introduced as a condition for the
optimization problem.

Var Decision Effect Reference

ℳ Artifact Mapping Resource-based Time and Image
Size

3.2.1

𝒮 Build Strategy Consistency and Concurrency 3.2.3

𝒞 Caching Strategy Storage and Download Time 3.2.3

𝒜 Job Assignment Parallel Build Time and Concur-
rency

3.2.3

TABLE 6.1: Summary of decisions in DevOps optimization problem and how they affect the cost and revenue.

Eventually, by definingℳ as the Artifact Mapping, 𝒮 as the Build Strategy,
𝒞 as the Caching Strategy, and 𝒜 as the Job Assignment, we can define the
optimization problemcould be formulated as the equation 6.1. It is not noted
in the equation, but the term 𝑐𝑖 for the cost of the service 𝑖 depends also on
the overhead introduced by theOps which is minimized in chapter 4.

max
ℳ,𝒮 ,𝒞,𝒜

𝑛

𝑖=1

𝑟𝑖(𝑜𝑖(ℳ)+𝑑𝑖(ℳ,𝒮 ,𝒞,𝒜)))−𝑐𝑖(ℳ,𝒮 ,𝒞,𝒜)

subject to Consistency(𝒮 )

Limited Resources(𝒜)

(6.1)

Since still this formulation is overly complex, we approximate the problemby
assuming that the objective is linearly separable by its variables. Hence, in
each section of the chapters of the thesis, wemostly pay attention to optimiz-
ing the objective with respect to one of the variables regardless of the others.
To justify this format of formulation, we could replace the costwith a constant
driven from the design of the system andmerge the cost function as a condi-
tion for the optimization problem into the limit the resources. This results
into the equation 6.2 with the objective function further reduced to include
the argument of the revenue function since it is a decreasing function of the
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time.

min
ℳ,𝒮 ,𝒞,𝒜

𝑛

𝑖=1

𝑜𝑖(ℳ)+𝑑𝑖(ℳ,𝒮 ,𝒞,𝒜)

subject to Consistency(𝒮 )

Resources(ℳ,𝒮 ,𝒞,𝒜) ≤Threshold

(6.2)

Now in this formulation, 𝑜𝑖 would reduce to the agility of the MANO system
while𝑑𝑖 represents theDevOps agility. Theoptimization of𝑜𝑖 is done in chap-
ter 4 by employing a novel designwhereas for𝑑𝑖 we used the best practices of
DevOps fine-tuned for an agile telco multi-x environment with the empirical
analysis of the chapter 3.

6.2 Cloud Native Qualities

In this thesis, we have introduced a set of qualities that are essential for a
cloud-native 5G and 6G network. These qualities are in fact derived from the
decisions that we made in the overall design of the platform as listed in the
table 6.2.

Decision Consequence Reference

Privileges Security 3.1

Build Recipes Declarative DevOps 3.2.2

Versioning Model Security and Consistency 3.2.5

Operator Plane Extensibility andDeclarative Rec-
onciliation

4.2

Sidecar Management Agility 4.6

Multi-Source Data Lake Observability 4.8.1

TABLE 6.2: Summary of decisions in DevOps optimization problem and how they affect the qualiities of the
platform.

6.3 Future work

A considerable contribution of this thesis is forming a foundational proto-
type for the full lifecycle of a cloud-native 5G and 6G network. A wide range
of future work could be built on top of this prototype, whether on top of the
Operator Plane or as just use cases on top of the platform.
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Furthermore, we have introduced several interesting research questions, es-
pecially forDevOps that couldbe studiedeither in the specific context of cloud-
native 5G and 6G or in general. There are four categories of extensions that
could be studied in the future.

• Defining new use cases on top of the platform and evaluate them in dif-
ferent environments or dimensions of multi-x;

• Introduction of new Operators to the Operator Plane, support for new
types of resources, or onboarding new set of NFs;

• Defining new metrics, algorithms, and strategies to replace the ones
that we have used in this thesis;

• Find new models and abstractions on the current design of the plat-
form.

As an example, the following questions could be immediately driven from the
current work:

1. Optimal caching strategy for a multi-x pipeline considering the avail-
ability; related to the section 3.2.3.

2. Study of the general formulation for the limited resource allocation for
concurrent and consistent build jobs; related to the section 3.2.4.

3. Dynamic non-uniform resource allocation for concurrent and consis-
tent build jobs; related to the section 3.2.4 and the section 3.2.1.

4. Optimal schedulingalgorithm forOpenRANandslicingwithprediction
and trending analysis; related to the section 4.5 and the section 5.2.

5. Integrated energy metrics with breakdown to the level of UEs, applica-
tions, and NFs, considering all the explicit and implicit contributors to
the energy consumption; related to the section 5.3.

6. AI/ML-aided intelligent for OAM oriented with business goals by ex-
tending the Operator Plane, perhaps using the novel technologies such
as Large Language Models (LLMs); related to the section 4.2.
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