
Detecting and Mitigating the New
Generation of Scraping Bots

Dissertation
submitted to

Sorbonne Université
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Author:

Elisa Chiapponi

Publicly defended on 07/11/23 before a committee composed of:

Examiner/Reviewer Prof. Roberto di Pietro RC3, CEMSE, KAUST, SA
Examiner/Reviewer Prof. Benoît Donnet Université de Liège, BE
Examiner Prof. Davide Balzarotti EURECOM, FR
Examiner Dr. Leyla Bilge NortonLifeLock, FR
Examiner Dr. Olivier Thonnard Amadeus IT Group, FR
Examiner Prof. Xianghang Mi USTC, CN
Thesis Director Prof. Marc Dacier RC3, CEMSE, KAUST, SA

The research has been conducted in the Digital Security Department at
EURECOM (Sophia Antipolis, FR) in collaboration with Amadeus IT Group
(FR) from April 2020 to August 2023.

Abstract

Every day an invisible war for data takes place between e-commerce websites
and web scrapers. E-commerce websites own the data at the heart of the
conflict and would like to provide it only to genuine users. Web scrapers
aim to have illimited and continuous access to the above-mentioned data
to capitalize on it. To achieve this goal, scrapers send large amounts of
requests to e-commerce websites, causing them financial problems. This led
the security industry to engage in an arms race against scrapers to create
better systems to detect and mitigate their requests.

At present, the battle continues, but scrapers appear to have the upper
hand, thanks to the usage of Residential ip Proxies (resips). In this thesis,
we aim to shift the balance by introducing novel detection and mitigation
techniques that overcome the limitations of current state-of-the-art methods.
We present two new detection techniques based on network measurements that
identify scraping requests proxied through resips. We propose a deceptive
mitigation technique that lures scrapers into believing they have obtained
their target data while they receive modified information. Thanks to an
ongoing collaboration with Amadeus it Group, we validate our results on
real-world operational data.

Being aware that scrapers will not stop looking for new ways to avoid
detection and mitigation, this thesis provides additional contributions that
can help in building the next defensive weapons for fighting scrapers. We
propose a comprehensive characterization of resips, the strongest weapon
currently at the disposal of scrapers. Moreover, we investigate the possibility
of acquiring threat intelligence on the scrapers by geolocating them when they
send requests through a resip. Finally, we provide future research directions
to build upon the contributions of this thesis as well as ideas to exploit these
contributions in other security use cases.

i

Résumé

Chaque jour, une guerre invisible pour les données se déroule entre les sites
de commerce électronique et les acteurs qui,en siphonnent les données, sont
appelés “scrapers” . Les sites de commerce électronique détiennent les données
au cœur du conflit et souhaitent les fournir uniquement aux utilisateurs
légitimes. Les scrapers veulent un accès illimité et continu aux données
susmentionnées pour en tirer profit. Pour atteindre cet objectif, les scrapers
envoient de grandes quantités de requêtes aux sites de commerce électronique,
ce qui leur cause des problèmes financiers. Cela a conduit l’industrie de la
sécurité à s’engager dans une course aux armements contre les scrapers afin
de créer de meilleurs systèmes pour détecter et contrer leurs activités.

À l’heure actuelle, la bataille se poursuit, mais les scrapers semblent avoir
le dessus, grâce à leur utilisation de Proxies ip Résidentiels (resips). Dans
cette thèse, nous visons à rééquilibrer la balance des forces en introduisant
de nouvelles techniques de détection et d’atténuation qui surmontent les
limitations des méthodes actuelles. Nous présentons deux nouvelles techniques
de détection basées sur des mesures de réseau qui identifient les requêtes
émanant de scrapers cachés derrière les infrastructures resip. Nous proposons
une technique inspirée des “pots de miel” qui piège les scrapers en leur
faisant croire qu’ils ont obtenu les données visées tandis qu’ils reçoivent des
informations modifiées. À travers un partenariat en cours avec Amadeus it
Group, nous validons nos résultats en utilisant des données opérationnelles.

Conscients que les scrapers ne cesseront pas de chercher de nouvelles
façons d’éviter la détection et l’atténuation, nous offrons des contributions qui
peuvent aider à élaborer les prochaines armes défensives pour lutter contre
les scrapers. Nous proposons une caractérisation complète des resips, la
plus puissante arme actuellement à la disposition des scrapers. De plus, nous
examinons la possibilité d’acquérir des renseignements sur les menaces liées
aux scrapers en les géolocalisant lorsqu’ils envoient des demandes via un resip.
Enfin, nous proposons des orientations de recherche futures pour s’appuyer
sur les contributions de cette thèse ainsi que des idées pour exploiter ces
contributions dans d’autres cas d’utilisation de la sécurité.

iii

Contents

Abstract i

Résumé iii

List of Figures x

List of Tables xii

1 Introduction 1
1.1 Problem Statement and Research Questions 3
1.2 Main Contributions and Thesis Outline 4

1.2.1 Part I: Server-side Detection of Residential ip Proxies
Connections . 5

1.2.2 Part II: Web Scraping Mitigation Through Deception . 6
1.2.3 Part III: Residential ip Proxies and Scrapers Ecosystem

Analysis . 6
1.2.4 Publications . 6

2 Background and Related Works 9
2.1 Introduction . 9
2.2 Web Scraping . 9

2.2.1 Web Scraping and E-commerce Websites 9
2.2.2 Web Scraping Detection and Mitigation 11
2.2.3 Web Scraping in Amadeus it Group 13

2.3 Residential ip Proxies . 15
2.3.1 Residential ip Proxies and Web Scraping 15
2.3.2 Past Works in resip Analysis and Detection 17

2.4 Honeypots . 20
2.5 Geolocation . 21

2.5.1 Background . 21
2.5.2 Past Works in rtt-based Geolocation 23

v

vi Contents

2.6 Summary . 24

I Server-side Detection of Residential ip Proxies
Connections 25

3 Identification of Scrapers Exploiting Residential ip Proxies 27
3.1 Introduction . 27
3.2 Residential ip Proxies Infrastructure 28
3.3 Confirmation of Working Assumptions 30
3.4 Detecting resips with Round Trip Time Measurements 31
3.5 Residential ip Proxies Identification based on Retransmission

Protocols . 34
3.6 Summary . 36

4 Round Trip Time Measurements to Identify Scrapers behind
Residential ip Proxies 39
4.1 Introduction . 39
4.2 Ground Truth Experiment Setup 40

4.2.1 Residential ip Proxy Providers 41
4.2.2 Clients and Servers . 42
4.2.3 Network Measurements 43
4.2.4 Timeline and Data Storage 47

4.3 Analyses of the Ground Truth Experiment Dataset 50
4.3.1 Packet Average Speed Analysis 50
4.3.2 δRT T Values Distribution 52
4.3.3 Network Delays Impact 55
4.3.4 Machines Proximity Impact 58
4.3.5 The Impact of tls Versions on the Threshold 59
4.3.6 δRT T Distribution Shapes 60
4.3.7 Ground Truth Experiment Discussion 61

4.4 Client Environment Analysis 62
4.4.1 Preliminary Client Environment Analysis 64
4.4.2 Detection on Real-World Scrapers Connections 67

4.5 Summary . 72

5 Scraping Detection through Retransmission Protocols 75
5.1 Introduction . 75
5.2 Experimental Setup . 76
5.3 Communications Analysis . 78
5.4 Detection of Second mrp Discussion 81

Contents vii

5.5 Summary . 82

II Web Scraping Mitigation Through Deception 85

6 Web Scraping Mitigation through Redirection to a Honeypot 87
6.1 Introduction . 87
6.2 Setup and Methodology . 88
6.3 Honeypot Results . 90

6.3.1 http Payload Analysis 90
6.3.2 ip Addresses Characterization 93
6.3.3 Luring Attackers as a Mitigation 98

6.4 Summary . 100

III Residential ip Proxies and Scrapers Ecosystem
Analysis 101

7 Analysis of the Residential ip Proxies Ecosystem 103
7.1 Introduction . 103
7.2 Findings about resip Inner Functioning and Relationships

Among Providers . 104
7.2.1 f1: Assignation of gateway ips to Minimize Repeti-

tions per Path . 105
7.2.2 f2: Non Correlation between gateway ip and Desti-

nation Server Locations 107
7.2.3 f3: Non Uniform Distributions of gateways ips . . . 108
7.2.4 f4: Different Management of superproxy ips among

Providers . 109
7.2.5 f5: ol and sm most likely Share Part (or all) of their

Pools of gateway ip Addresses 110
7.2.6 f6: gateways of Different Providers support Different

oses . 111
7.2.7 f7: Diurnal Patterns in the gateway ips Availability

depend on Provider . 112
7.3 Assessment of resip Pool Sizes 113

7.3.1 Pool Estimation thanks to Cumulative Curve Fitting . 114
7.4 Lessons Learned Analyzing resip Connections 116
7.5 Summary . 118

viii Contents

8 Geolocation of Scrapers behind a Residential ip Proxy 119
8.1 Introduction . 119
8.2 Multilateration of the Original Client 121
8.3 The rttlocator technique . 125
8.4 Evaluation . 129

8.4.1 Datasets . 129
8.4.2 Parameters Tuning . 130

8.5 Discussion and Limitations . 137
8.6 Summary . 139

9 Future Works and Conclusion 141

Author’s Publications 145

References 147

List of Figures

2.1 Multilateration using 3 landmarks. 21

3.1 Common internal structure of resip providers. 28
3.2 tcp and tls sessions in a direct (a) and resip connection (b). 31

4.1 Infrastructure used to validate the rtt_detection technique. 40
4.2 tcp and tls packet exchanges used in the rtt_detection

technique for a) direct and b) resip connections. 44
4.3 Distribution of the mean speed of packets for each resip

provider and direct connections. 50
4.4 δRT T distribution for each resip provider (interval 0-2000ms)

and direct connections (interval 0-20ms). 52
4.5 Cumulative Distribution Function of the δRT T of the resip

and direct connections for the intervals 0-2000ms. 53
4.6 Cumulative Distribution Function of the δRT T (interval 0-150ms

for resip connections and 0-60ms for direct ones) of the con-
nections when the minimum and maximum rttT CP are used
to compute the δRT T . 55

4.7 Comparison of the Cumulative Distribution Function of the
δRT T for connections with tls1.2 vs tls1.3 (interval 0-2000ms). 59

4.8 δRT T values distribution for three representative client-server
paths (Proxyrack). 60

6.1 Flow of actions performed when a User/Bot searches flights
using Product x. 89

6.2 Count of requests grouped by segment over each research
interval. 91

6.3 Count of requests grouped by request date over each re-
search interval. 92

6.4 Analysis of the repetitions of the honeypot ips. 97

7.1 Unique gateway ips registered by each server. 105

ix

x List of Figures

7.2 Hilbert curves of the gateway ips distribution of resip
providers in rtt_ds. 107

7.3 Distribution of the gateway ips per country. 109
7.4 Diurnal patterns of gateway ips connections. 112
7.5 Cumulative curve (a) and projection in time (b) of new unique

gateway ips. 114

8.1 Common internal structure of a resip provider and rtt values
among the involved parties. 121

8.2 Example of multilateration from 3 gateways using the corre-
sponding δRT T values. 122

8.3 Multilateration using multiple average packet speeds. 123
8.4 Example of two scraping campaigns initiated by different clients

and running at the same time. 124
8.5 Example of visual outcome of the gbl algorithm. 125
8.6 Example of multiple client locations as visual outcome of the

gbl algorithm. 126
8.7 Maximum radius and corresponding percentage of closeness to

the minimum error for different speeds, using the gbl algorithm
standalone. 131

8.8 Error in geolocating using rttlocator with single speeds. . . . 134
8.9 Outcome of the gbl algorithm for Airline w Dataset. 135

List of Tables

4.1 Monthly subscriptions of the resip providers used in the ex-
periment. 41

4.2 Technical description of the machines in the experiment. . . . 42
4.3 Attributes of a connection in the rtt_ds dataset 48
4.4 Percentages of connections for different δRT T values. 53
4.5 Analysis of the connections in which client, server, gateway

and superproxy are not further than 1000km from each other. 57
4.6 Tested combinations to assess the impact of different factors

on false positives. 66
4.7 False positive ratio and mobile δRT T of analyzed airlines. . . . 70

5.1 Attributes of a communication in the unacked_ds dataset. . 77
5.2 Mean value and standard deviation of attributes (unacked_ds).

. 79
5.3 Mean value and standard deviation of the average number of

distinct countries and continents in unacked_ds. 79
5.4 Median intervals between requests of different ips in the same

communication . 80

6.1 Honeypot ips matches with ips in external datasets. 94
6.2 Analysis of the honeypot ips with ipqualityscore. 95

7.1 ips distribution statistics per provider 104
7.2 ips repetitions per provider 105
7.3 Shared ips among providers (rtt_ds). 110
7.4 Distribution of gateways with respect to the initial ttl value

and the associated oses (rtt_ds). 111

8.1 Total time and median error of the gbl algorithm standalone
using different Grid Size values. 132

8.2 Points assigned to each tested speed. 140
8.3 Results of rttlocator with the Set of Speeds {60,70,120,130}. . 140

xi

Chapter 1

Introduction

In today’s world, the advancement of technology and the Internet have
led to the digitization of numerous tasks that were traditionally performed
physically. Among these tasks, we find going shopping and performing
bookings. Nowadays, indeed, everyone can buy all kinds of goods, from shoes
to books, from events to airplane tickets with a simple click on their devices.
There is thus a proliferation of e-commerce websites1 listing goods available to
purchase and their corresponding prices. While these websites are appealing
to genuine users interested in buying goods, the information available there
is also attractive to another kind of actors, called scrapers.

Scrapers are individuals or entities that have an interest in continuously
extracting information from a website. This activity is called web scraping
and is performed to gain a business advantage.

An example of scrapers is those actors that provide the best price on the
Internet for specific goods (e.g. sneaker bots [1]). After scraping the prices of
the goods on different websites, they present the best ones on their web pages.
They then generate revenues thanks to user interactions within the page, e.g.
advertisement, or obtaining a commission when users proceed to purchase
the goods using the links provided by them. Another example consists of
e-commerce websites that want to attract customers by proposing cheaper
prices with respect to their competitors. To achieve this goal, these platforms
need to know the original prices on the websites of the competitors and they
commonly obtain this information through scraping.

In all scenarios, scrapers need to obtain accurate and up-to-date infor-
mation to effectively gain a business advantage. Consequently, web scraping
is carried out with high frequency and generates large amounts of requests.

1We define e-commerce websites as those platforms in which goods owners show their
products and customers can perform online purchases. We aggregate together different
industries (e.g. retail, travel, tickets) in the concept of e-commerce.

1

2

To produce these requests, scrapers usually leverage networks of bots. Bot,
short for robot, indicates a software application that performs automated
tasks. Bad bots, those that perform malicious activities, have been a plague
of the Internet since the 2000s with the early Distributed Denial of Service
attacks against Yahoo!, Amazon.com, CNN.com, and other major websites
[2]. Since then, bots have continuously evolved from relatively rudimentary
pieces of software to very sophisticated components, performing various kinds
of attacks and making it harder and harder to distinguish their requests from
the ones of genuine users [3]–[6].

The substantial amount of requests initiated by scraping bots carries
significant business implications for e-commerce platforms. These websites
need to answer scraping requests, incurring operational costs but having a
low probability of obtaining any revenue from them. Furthermore, scraping
can result in a loss of customers because of the induced degradation of the
quality of service. Finally, the amount of requests generated by scrapers can
cause Distributed Denial of Service on e-commerce platforms.

Hence, an invisible war takes place every day between the e-commerce
websites, which would like to stop scrapers from accessing their data, and
scrapers, which, naturally, do not want this to happen. Over the years,
the security industry has engaged in an endless technological arms race
with scrapers to protect e-commerce websites. This has led to a continuous
production of detection and mitigation techniques followed by evasion ones.

As of today, the battle is still ongoing, but scrapers are on the winning side.
Current detection is performed on parameters that scrapers can easily modify.
Regarding mitigation, scrapers can infer that they have been detected due to
the side effects of the current techniques used for this task. In this scenario,
scrapers simply identify the parameters (e.g. user agent, tls fingerprint) used
to detect them and they change their value to avoid the mitigation. Then,
they continue their activity until they are detected again. At that point, they
change again the value of the identifying parameters and the process repeats
itself.

Moreover, nowadays scrapers have at their disposal a new weapon, Resi-
dential ip Proxies. These proxies enable scrapers to send out requests from
residential devices shared with genuine users. This significantly complicates
the process of distinguishing between genuine and scraping requests.

On the security industry side, there is a need for new methods to detect
and mitigate scraping connections that enable a better defense of scraped
websites.

The above-mentioned information tells us that there exists a mutual
relationship between the detection and mitigation of scraping bots. Moreover,
it is illogical to prioritize the enhancement of one task without simultaneously

Chapter 1. Introduction 3

finding a viable solution for the other. Successfully identifying scraping
requests is futile if an efficient mitigation technique is absent. Possessing
a robust mitigation technique would offer little assistance if the accurate
identification of scraping requests remains unsolved.

For these reasons, in this thesis, we contribute to helping the security
industry win the war against scrapers by investigating and finding new
solutions for both scraping detection and mitigation techniques. Furthermore,
we are well aware that the ever-evolving and dynamic nature of scraping bots
poses challenges in achieving a definitive win against them. It is necessary
to constantly refine our defense methodologies and study our adversaries to
adapt to their evolution. For this reason, we provide a characterization of
Residential ip Proxies, the latest technology leveraged by scrapers, and early
results in geolocating the area of the world from where scrapers exploiting
them originate their requests. These contributions can help us build the next
defensive weapons for fighting scrapers.

1.1 Problem Statement and Research Ques-
tions

Thanks to an in-depth study of the scraping detection and mitigation state-
of-the-art, as well as real data obtained from a company actively fighting real-
world scrapers targeting their domains (Chapter 2), we had the opportunity
to have a complete view of the issues that the security industry is facing
nowadays in this scenario. We identified two main problems, detailed as
follows:

• Problem (pr1) Current identification techniques for scraping requests
rely on elements that scrapers can conveniently alter (e.g. browser
settings). This allows scrapers to swiftly adjust these parameters and
evade detection once they realize they’ve been identified. As a result,
the process of detecting scraping activities becomes a repetitive and
time-consuming task. Analysts and dedicated applications tasked with
detecting scraping requests must repeatedly identify new parameters
around which they can group the requests associated with each scraping
campaign. Moreover, while there is an increasing usage of Residential
ip Proxies, current detection techniques cannot distinguish between
requests sent directly from a residential device or proxy through it.
This increases the probability of having false positives when differenti-
ating scraping and genuine traffic and forces the defender to be more
conservative in the detection process.

4 1.2. Main Contributions and Thesis Outline

• Problem (pr2) Scrapers can infer their detection from the side effects
of the current mitigation techniques. This makes it easy for them to
understand that they have been detected and act on it.

From the identified problems, we can derive two corresponding research
questions:

• Research Question 1 (rq1) How can we identify scraping requests
without relying on easily changeable parameters even when they origi-
nate from residential ip addresses?

• Research Question 2 (rq2) How can we mitigate scraping traffic
without letting the scrapers know that they have been identified?

In this thesis, we aim to answer these questions. In the first part of the
thesis (Part I) we address rq1, showing that it is possible to differentiate
requests sent directly by a device from the ones proxied through it by exploiting
differences at the transport layer of the two types of connections. Moreover,
while technically feasible, evading these detection techniques would require
major changes in the infrastructure leveraged by scrapers.

In the second part of the thesis (Part II), we aim to address rq2 thanks
to a new deceptive mitigation technique that lures scrapers into believing
they have reached their target while serving them modified but plausible
information. In this way, scrapers receive no information about being detected
and, at the same time, we poison their data collection process.

Furthermore, we recognize the ever-changing nature of scraping bots, which
makes it challenging to achieve a definitive victory against them. Therefore,
in the third part of the thesis (Part III), we conduct a comprehensive analysis
of the Residential IP Proxies and scrapers ecosystem. This analysis aims
to provide insights and assist the security community in developing new
strategies to detect and counter evolving tactics of scrapers.

In the next section, we describe the different contributions of each part of
this thesis as well as the detailed outline of the manuscript.

1.2 Main Contributions and Thesis Outline
The manuscript starts with an introductory part, which comprises this chapter
and the following one (Chapter 2). In this second chapter, we describe the
background knowledge necessary to understand the main contributions of the
thesis. Moreover, we position our contributions with respect to the current
state-of-the-art.

Chapter 1. Introduction 5

Afterward, the manuscript continues with three technical parts. The first
part (Part I) investigates new detection techniques for scrapers leveraging
Residential ip Proxies. The second one(Part II) studies a new way to mitigate
scraping traffic without providing any indication of detection. The third part
(Part III) studies the resip and scraping ecosystem.

We conclude the manuscript in Chapter 9, where we provide future research
directions to build upon the contributions of this thesis as well as ideas to
exploit these contributions in other security use cases.

In the following, we present the content available in each technical part
and corresponding chapters, underlying the main contributions of each part.

1.2.1 Part I: Server-side Detection of Residential ip
Proxies Connections

Chapter 3 explains the ideas behind rtt_detection and mrp_detection,
two novel server-side detection techniques based on network measurements
for scraping connections proxied through Residential ip Proxies (resips).

rtt_detection leverages the fact that resip providers break the tcp
session between client and server but they maintain the end-to-end encryption
between the two parties. This is measurable at the server side through the com-
parison of the Round Trip Times at the tcp and tls layer. mrp_detection
exploits a machine retransmission protocol used by specific resip providers
when the contacted server does not acknowledge ack packets.

In Chapter 4, we provide experimental results demonstrating the feasibility,
validity, and practicality of our first detection technique (rtt_detection).
We present our 4 months-long measurement campaign performed with ma-
chines scattered all over the world and its successful results. Moreover, we
study when specific client environments could result in false positives and
propose solutions to reduce these false positive cases.

In Chapter 5, we present our 88 days measurement campaign to validate
our second detection technique (mrp_detection). Moreover, we disclose
the peculiar common behavior that all studied resip providers use when
contacting a non-acknowledging server. It consists of leveraging multiple exit
points, located in different areas of the world, to possibly overcome geographic
restrictions or connectivity problems.

6 1.2. Main Contributions and Thesis Outline

1.2.2 Part II: Web Scraping Mitigation Through De-
ception

In Chapter 6, we present a new deceptive mitigation solution that consists
in redirecting the scraping requests to a web application honeypot and its
implementation in a real-world scraping scenario. In the honeypot, scrapers
receive pages with the same structure as the original website but with modified
content. In this way, scrapers cannot understand that their requests have
been mitigated and, at the same time, they do not access the real content of
the website. Moreover, the honeypot enables us to poison the information
they scrape and which they monetize, causing financial damage on their side.
Furthermore, with this platform we can study the semantics of the payloads
and the distribution of the ip addresses of specific bots, providing new insights
into their ecosystem.

1.2.3 Part III: Residential ip Proxies and Scrapers
Ecosystem Analysis

In Chapter 7, thanks to the accumulated data regarding resips in the previous
chapters of the thesis, we provide novel insights about the inner working of
resips in terms of geographic distribution, types, management and amount of
their machines. We show the similarities and differences among providers and
we suggest a possible new ip-based approach for a resip detection technique.
Furthermore, we present a mathematical model that does not confirm the
claims of resip providers about the volume of ips2 available as their exit
points.

Chapter 8 investigates the possibility of geolocating scrapers sending
requests hidden behind resips . It discusses the multiple challenges of the
problem at hand and proposes rttlocator , a geolocation algorithm that ex-
ploits the Round Trip Time differences in resip connections and multiple
packet speeds to find the scraper location(s) behind a set of requests. Early
results suggest that geolocation is possible when the parameters are optimized
for a specific set of requests.

1.2.4 Publications
The work explained in the different chapters resulted in a number of publica-
tions. We present here a high-level view of which content corresponds to each

2In this thesis, we use the terms "ip " and "ip address" interchangeably to refer to an
Internet Protocol address.

Chapter 1. Introduction 7

publication, while we refer to the introduction of each chapter for a detailed
explanation.

The industrial analyses presented in Chapter 2 were published in [C1].
Two patents were filed to protect the ideas presented in Chapter 3 ([P1], [P2]).
Chapter 4 is based on [C2]–[C4]. The results in Chapter 5 and Chapter 7
were published in [C5]. Chapter 6 content was published in [C6], [C7], [J1].
Chapter 8 initial idea was introduced in [C3] and preliminary work was
conducted in [C8]3. The rest of the chapter is based on ongoing work. The
full list of publications is provided in Author’s Publications.

3In this work, the author of this thesis supervised the first author work and directly
contributed to the tasks of study concept, data collection and interpretation of results,
while the study design and implementation were performed by the other authors.

Chapter 2

Background and Related Works

2.1 Introduction
The goal of this thesis is to find new ways to detect and mitigate scraping
traffic. In this chapter, we provide background information about web scraping
and its usage against e-commerce websites (Section 2.2.1). Moreover, we
discuss the state-of-the-art techniques for identifying and stopping scraping
requests (Section 2.2.2). Thanks to a collaboration with Amadeus it Group,
we present data and statistics about web scraping campaigns targeting real-
world domains and the insight we obtained from them (Section 2.2.3).

In Section 2.3, we focus in particular on one of the technologies most used
by advanced scrapers nowadays, Residential ip Proxies. In Section 2.4 and
Section 2.5, we offer background information about the technologies that we
leverage to reach our goal, honeypots and geolocation. For both of them, we
provide information about the previous works on that topic and we position
ours with respect to them.

The industrial analyses presented in Section 2.2.3 were published in [C1].

2.2 Web Scraping

2.2.1 Web Scraping and E-commerce Websites
Web scraping consists of the periodical or continuous retrieval of accessible
data contained in web pages to use elsewhere [7]. Scrapers usually conduct
this activity behind a network of bots that, under their control, perform the
actual action of reaching the website and harvesting the content.

On the security industry side, the Open Worldwide Application Secu-
rity Project (owasp) recognizes web scraping as an automated threat that

9

10 2.2. Web Scraping

produces “one or more undesirable effects on a web application” [7].
However, web scraping is legally categorized as a grey area. Indeed, the

generic action of collecting publicly available data by itself is not illegal
and there are no direct laws addressing it. However, if the website owner
explicitly prohibits web scraping activity in their terms of service, this results
in legal repercussions (e.g. LinkedIn vs HiQ [8]). Moreover, the illegal side
of web scraping is mostly linked with the afterward usage of the scraped
information to gain business advantage. Web scraping is performed for
different reasons, among which are monetization of data aggregation, content
reselling, statistics modifications and competitors’ monitoring. The scraping
actor can use directly the information gathered through this practice or sell
it for an income.

Scrapers target a wide range of markets [9] and in particular e-commerce
websites where they retrieve the price and availability of the goods on sale.
Moreover, scrapers change their activities according to the global situation
[10]. With the covid-19 pandemic reducing incomes from the traditional
sectors, e.g. tickets for events, scrapers modified their actions by targeting
websites selling medical devices, such as masks. Furthermore, bots profit from
peaks of traffic due to holidays, e.g. the Lunar New Year [11], to increase
their traffic without being noticed.

E-commerce websites provide prices of the goods they sell. Displaying
this information comes with costs, such as maintaining the servers in which
the information resides, retrieving the data, performing calculations, and
rendering the final page to the client. Usually, the business model of these
websites takes into account that only a few items among the displayed ones
will end up being bought. Hence, the revenue for the sale of an item covers the
costs associated with the maintenance of the whole infrastructure. Naturally,
scraping affects this business model. According to DataDome, an anti-bot
company [12], the loss could be up to 10% of the revenue of a website.

The income reduction can be direct and/or indirect. The direct one is
caused by the dramatic rise in the number of requests which is not followed
by an increase in the number of purchases. Moreover, scraping interferes with
the metrics used to evaluate e-commerce business.

The indirect loss of revenue is caused by scraping bots representing large
portions of the traffic towards a website and causing congestion and slow
connections. This situation can reduce the number of legitimate users reaching
the website and/or downgrade their user experience. In both cases, the
company could lose a potential client. Finally, when the amount of traffic
produced by these bots goes beyond the capacity of the scraped website, it
results in a Distributed Denial of Service that makes the website completely
unavailable.

Chapter 2. Background and Related Works 11

For all these reasons, e-commerce websites aim to detect and mitigate those
requests coming from scrapers while answering correctly the ones originated
by genuine users. In the following section, we will provide an overview of all
the techniques used to reach this goal.

2.2.2 Web Scraping Detection and Mitigation
Initially, scraping detection was performed based on ip blocklists with in-
house solutions. Then, scrapers started to leverage larger networks of bots to
send out their requests. This made the usage of ip blocklists ineffective [10].
Moreover, scrapers techniques evolved from simple scripts to browser emula-
tion frameworks (e.g. Scrapy [13], Phantom JavaScript [14]) and complete
automated browsers (e.g. Selenium [15]) able to run JavaScript, store cookies
and imitate a real human interaction (e.g. mouse movement) [16].

Specialized anti-bot companies emerged to counter scraping activities.
They position their products in front of scraped websites and investigate
each incoming request. While we refer to [17] for a thorough explanation
of the features of the most used anti-bot solutions on the market, we can
categorize anti-bot solutions in two main detection approaches, the knowledge-
and behavior-based ones [18].

The first approach consists of recognizing scrapers from their so-called
bot signatures, the fingerprints of their requests. The most common types of
fingerprints are browser and tls fingerprints. Browser fingerprints consist
of a set of information about hardware, operating system, and browser
configuration of the used device [19]. This information is obtained thanks
to application layer tests. Examples of browser fingerprint approaches can
be found in [20]–[24]. We obtain tls fingerprints studying the transport
and network layers and capitalizing on the differences between browsers
and environments at this layers [25]. Examples of such tls fingerprinting
approaches are [26], [27].

In the knowledge-based detection approach, custom rules associate miti-
gation techniques to requests matching a bot signature. The main problem
with this approach is keeping these rules up to date. Current state-of-the-art
mitigation techniques, as discussed in the following paragraphs, have the
drawback of revealing that matching requests have been identified as coming
from a bot. Thus, scrapers can understand they have been detected and
react by simply rotating some parameters to modify their bot signature.
This nullifies the previously imposed rule. Analysts need to identify a new
signature and associate it with a mitigation technique. However, once again,
scrapers can change their parameters and this results in a never-ending arms
race.

12 2.2. Web Scraping

Moreover, sophisticated scrapers rotate regularly their parameters before
receiving any mitigation. In this way, even the process of constructing the
initial bot signature becomes more challenging.

In a behavior-based approach, machine learning is privileged and the
detection is performed by detecting outliers. Requests in which http headers
and/or payloads differ significantly from the ones issued by known human
beings are considered to be coming from bots and are answered with a
countermeasure ([20], [21]). However, the usage of automated browsers
running JavaScript and imitating real human interactions makes detecting
outliers a much more difficult task.

In terms of mitigation, the most straightforward method involves block-
ing identified scraping requests. Another widely used strategy, which can
help mitigate the impact of potential false positives in detection, is serving
captchas [28]. These tests necessitate a human interaction to be solved.
However, the effectiveness of captchas decreased with the emergence of
captcha farms [29]. Scrapers redirect these tests to such infrastructures,
where real individuals are compensated to solve them. captchas farm work-
ers are required to solve the tests within a timeframe comparable to that
of regular users, preventing anti-bot systems from flagging them. Another
evasion approach involves redirecting the captchas to unsuspecting users
on other websites and letting them solve them [30]. Additionally, in recent
years, there has been a surge in the popularity of captcha-solving websites
(e.g. [31]). These platforms operate as virtual captcha farms, enabling
individuals to earn money by solving captchas on these websites.

Lately, a common mitigation approach consists of wasting the scrapers’
time, hoping to decrease their revenues. New solutions are crypto challenges
that make bots waste cpu cycles in solving them [32]. Other techniques, such
as tarpits [33], consist of slowing down the bot connections or giving them
open connections with no responses.

Nonetheless, as anticipated when discussing scraping bot detection, these
mitigation strategies inadvertently signal to scrapers that their activities have
been identified. Indeed, when requests are blocked, met with a captcha
challenge, or encounter unanticipated delays, the scraper becomes aware of
the enforcement of a rule and can easily modify his bot signature to evade
detection. In Chapter 6, we propose a new mitigation technique that, by
leveraging a honeypot (Section 2.4), overcomes this limitation.

Recently, scrapers have begun employing Residential ip Proxies (resips),
which add complexity to the detection process due to the possible increase
in the false positives ratio. In Section 2.3, we provide detailed background
information about these parties, but first, in the next section, we study the
problem of web scraping in one of the largest players in the it travel industry

Chapter 2. Background and Related Works 13

and we show the impact of resips in this scenario.

2.2.3 Web Scraping in Amadeus it Group
Amadeus it Group, later referred to as Amadeus, is a Global Distribution
System (gds) and one of the world’s leading technology companies for the it
travel industry. In 2019, more than 646 million bookings were processed by
Amadeus and 1.9 billion passengers were boarded thanks to its portfolio of it
solutions [34]. In the context of this thesis, we worked in close collaboration
with their Security Operation Center (soc).

Among the various products offered by Amadeus, there are solutions
specifically built for airlines to let passengers make bookings on airline websites.
These products share a common back-end, in which Amadeus calculates for
each customer request the possible flight routes and their corresponding
price. These fares are computed in real-time and based on a large number of
parameters e.g. origin-destination, departure and arrival dates, travel classes,
passenger types, etc, but also the availability of seats, the period of the year,
and many other business rules. Thus, every generated response comes with a
high computation cost.

Clearly, web scraping increases dramatically the costs for providers like
Amadeus and its customers. Moreover, one of the Key Performance Indicators
for an airline is the look-to-book ratio. This value is the ratio between the
number of searches made by website visitors and the actual number of bookings
made on the airline website. The high volume of traffic generated by scraping
bots toward airlines’ websites is degrading this important indicator. As
highlighted by the anti-bot company Imperva [35], the travel industry is one
of the most targeted sectors and the one in which the percentage of advanced
scraping bots is predominant: 70.3% of the overall bot traffic.

Since 2015, Amadeus has used a knowledge-based Bot Detector from a
third-party company to protect more than 80 airline companies, corresponding
to more than 200 websites. This product detects bots thanks to fingerprinting.
It defines the bot signatures, a series of parameters that identify requests
coming from different ip addresses but associated with the same source scraper.
Each bot signature can be linked to a countermeasure, producing a custom
rule.

Every week more than 100 new custom rules are put in place by the
Amadeus soc to mitigate the scraping traffic and, every month, around
140 million requests trigger these rules. In a representative month (February
2022), on average, 8 intense bot investigations on specific airlines were running
every week to mitigate the huge amount of bot requests. In the same month,
considering all the domains protected by the anti-bot solution, that product

14 2.2. Web Scraping

adjudicated that 41% of the attempted connections to the Amadeus servers
were issued by bots.

After observing the efforts of the Amadeus soc team in fighting scraping,
we have gained the following insights:

• Blocked bots die: As soon as a certain type of bot is blocked, the
traffic associated with that bot disappears. In other words, the Bot
Detector has no match anymore against that signature. This means
two things about the bot operators. First, they continuously verify the
stealthiness and efficacy of their bots. They do not waste their resources
by sending requests that do not bear fruits. Second, they can modify
their bots extremely rapidly (within minutes, or even seconds) to avoid
the detection mechanisms put in place against them. We assume that
they have at their disposal analysts and/or systems that monitor the
bots 24/7 and act swiftly to bypass the custom rules as soon as the
countermeasure is put in place.

• Scrapers verify the harnessed information: If the information provided
to a bot is completely different from the real one, e.g. a different web
page, the traffic associated with that bot disappears, almost immediately
(within minutes). This means that the bot operators deduce from the
feeding of incorrect information that their bots are now identified and
mute them to become stealthy again.

• The risk of having a false positive is high if scrapers use residential
ips: When scrapers take advantage of residential ips shared with real
users, the risk of blocking a connection from a genuine customer is high
and this prevents the soc to put in place strict policies against those
requests.

Scrapers gather residential ips thanks to Residential ip Proxies (resip)
providers and this practice has increased in the last years [36]. We have
identified this problem in Amadeus as well. A growing fraction of their
traffic flagged with bot signatures is coming from residential Internet Service
Providers (isps). In representative 30 days (February 13th - March 15th
2022), Amadeus blocked more than 22M connections, considering all the
protected airlines. Dividing these connections by isp of origin, we see that a
few providers account for the majority of the blocked connections. There are
43 isps of which more than 50K connections are blocked. This corresponded to
84% of the blocked traffic. Among these providers, we identify 13 organizations
as mostly providing ip addresses belonging to residential use. Their traffic
amounts to 12% of the blocked traffic of the period. This percentage could

Chapter 2. Background and Related Works 15

look small, but we have to keep in mind that Amadeus’ goal, like other
e-commerce websites, is to reduce to zero the probability of false positives.
A decision to block a connection from a residential ip is only taken when
the confidence is very high that it is a malicious (e.g. scraping) one. This
data implies that the traffic received by scrapers through residential isps is a
larger portion than this and thus shows how wide their usage is.

Moreover, we have personal experience of resip forwarding requests to
Amadeus. During an investigation, a member of the soc team found out that
many bot requests were produced from ip addresses registered by one specific
resip company. Most likely, there had been a problem in their setup and
they were using their machines instead of residential ones to proxy the traffic.

The data in this section explains the practical limitations that analysts
encounter in their day-to-day jobs. In particular, it shows evidence of the
large usage of resips to perform scraping and the challenges that this raises.
In the next section, we focus on these parties, offering an overview of their
characteristics and how scrapers leverage them.

2.3 Residential ip Proxies

2.3.1 Residential ip Proxies and Web Scraping
In the past, scrapers leveraged datacenter and compromised machines to
perform their activities. Recently, this trend has changed and scrapers take
more and more advantage of Residential ip Proxies (resip) providers. These
companies offer access, for a fee, to a network of residential and mobile
devices, e.g. phones and laptops, shared with real users. Scrapers can use
these devices as exit points for their requests. In this way, they send requests
showing residential4 ip addresses.

As displayed in a blog post of DataDome [36], a company dedicated to
detecting bots, resip ips counted for almost 30% of the malicious bot traffic
at the end of the year 2019. In [25], Li et al. show that more than half of the
bot ip addresses that they collected with their honeypots belong to residential
networks. Imperva, an anti-bot company, explains that in 2021 more than
half of the bot traffic (54.9%) originated from residential and mobile isps [35].
This data shows how resip connections became an important party in the
bot ecosystem.

Scrapers take advantage of resip for multiple reasons. First, using resip
networks, they do not need to privately build or maintain a distributed

4In the rest of this work, we call residential ips those belonging to residential and mobile
isps.

16 2.3. Residential ip Proxies

infrastructure to send requests from multiple ips. This reduces the efforts on
their side. Moreover, they share an infrastructure, that they do not own, with
other parties. This lowers the possibility of directly tracing back a, possibly
illegal, activity to them.

Furthermore, real users share the usage of their devices with resip
providers. At the same time, they perform legitimate activities on the Internet
with them. Scrapers leverage the good reputation built with these activities
to evade detection. Indeed, bot detectors privilege reducing false positives
over false negatives to not lose potential customers of the protected websites.
When a request shows a residential ip, bot detectors need to identify if the
source device sends the query directly or proxies it out. This is a difficult task
because both queries are indistinguishable at the application layer, where the
majority of detection techniques act. Thus, in most cases, these requests do
not receive a countermeasure to prevent false positives. This enables scrapers
to perform their activities without mitigations.

Finally, some resip companies offer automated services to show human
activity (e.g. automated captcha [28] solving and JavaScript rendering) and
to reduce the correlation among requests in the same campaign (e.g. rotation
among different fingerprints) [37]. This helps in overcoming detection and
enables not proficient developers to easily conduct their scraping campaigns.

resip providers advertise to have at their disposal tens of millions of
residential ips. Mi et al. experimentally confirmed this, showing that 95.22%
of the resip ips they collected (6M+) was indeed residential [38]. Contrary
to datacenter ips, residential ones are dynamically assigned by isps. Thus, a
user proxying out a request through the same device in different moments,
especially a mobile one, could end up sending requests with different ips.
Moreover, different devices part of a resip network can obtain the same ip
address. This happens if a device changes ip and a second one takes the
previous ip or if the two devices are behind the same Network Addresses
Translator (nat) device. For these reasons, there is no 1-1 correspondence
between the number of devices and the number of ips involved in a resip
network.

resip companies claim to legally have access to the devices they use as
proxies. However, their device recruitment processes raise concerns. Some
resip providers build their infrastructures taking advantage of mobile Soft-
ware Development Kits (sdks). Developers can include these sdks in their
applications and obtain a fee per installed app. Device owners voluntarily
download these applications and implicitly give consent to be part of the
network [39]. In theory, resip providers require developers to inform end
users about the resip sdk in the terms of service. However, there is no proof
that they strictly implement or monitor this policy [40]. On the other hand,

Chapter 2. Background and Related Works 17

there is evidence that some providers lure device owners. Frappier et al. [41]
explain that a provider makes end users install software that looks legitimate
in exchange for a free vpn service and uses their devices as proxies without
their informed consent.

Furthermore, infected devices, such as IoT ones, represent a consistent
percentage of resip devices [38]. resip providers also use browser extensions
as a vehicle of proxy activity and a recent approach consists of building mobile
proxy networks using dedicated hardware. In this way, resip providers create
large clusters of sim cards and use them to route the traffic towards mobile
networks [42]. In recent years, researchers have performed studies on the
resip recruitment process and have proposed different approaches to detect
if a device is part of the networks [39], [40], [43].

Besides web scraping, the ips of resip exit points have been associated
with other malicious activities while part of these networks. resip networks
provide anonymity when doing automatic ad clicks on commercial platforms,
generating new accounts, performing credential stuffing attacks as well as
producing social media spam [44]. resip ips have been involved in malicious
website hosting [38] and IoT botnet campaigns [45]. Moreover, some resip
providers use “potentially unwanted program” to relay traffic and their ips has
served as fast flux proxies [38]. resip ips have been involved in cryptojacking
activities [45] and cyber criminals exploited this type of ips to masquerade
their identity in political contexts [46]. Finally, known vpn providers leverage
resips to avoid geolocation blocking of streaming services [47].

This data clearly reveals the malicious usage of resip networks and their
ips. It shows why it is important to have a complete understanding of these
new actors and why we need new methods to identify when they are used
in communications. In the rest of the section, we will provide an overview
of the works performed so far in this context. Moreover, we position the
contributions we provide in this work with respect to the state-of-the-art.

2.3.2 Past Works in resip Analysis and Detection
resip Analysis

In 2019, Mi et al. proposed the first comprehensive study of resip services
[38]. They created an infiltration framework and they used it in 2017 to
collect 6M+ unique ips from 5 resip providers. To obtain one of the resip
datasets studied in this work (rtt_ds), we use an infrastructure similar to
theirs. With it, we obtain a much larger dataset than the one collected in
their work (13M+ unique ips).

Mi et al. disclosed internal features of resip services, but they focus

18 2.3. Residential ip Proxies

more on investigating the involvement in malicious activities of resip ips
and studying if these addresses are residential, as advertised by the providers.
Differently from them, we examine with much more depth geographic distri-
bution, types, management and amount of resip ips in rtt_ds. This enables
us to obtain original findings about the internal functioning of resips.

After this initial work, different studies about resip services have been
proposed. In 2020, Choi et al. [48] used the dataset of Mi et al. to compare
resip gateways and open proxies. The authors study the locality distribu-
tion of these parties and check the reputations of the collected ips. In the
same year, Hanzawa et al. [49] used the same dataset to better characterize
resip gateways in Japan and identify connected malicious activities to those
gateways. Differently from those two past works, we consider completely
new datasets, our work does not focus only on one specific region of the world
and our analyses concern repetitions and assignation patterns of our ips.

In 2022, Yang et al. [45] proposed a characterization of the resip ecosystem
in China. They investigated how many different resip services exist and
how they work. To study the back connected resip providers, they use an
infrastructure similar to the one in [38], as we do. With it, they have collected
a smaller dataset with respect to ours (9M+ ip addresses). After a short
analysis of the ecosystem, whose techniques we share to find one out of our ten
findings about the resip ecosystem (Chapter 7), they focus on understanding
the security risks associated with resip ips. In comparison, we propose a
worldwide approach and collection. Furthermore, we perform a much deeper
analysis of the ecosystem.

Finally, in this thesis, we propose a novel dataset (unacked_ds) that
has been collected with a brand-new setup with respect to all previous
works. Thanks to this dataset, we disclose additional new insights about the
algorithms resip services use.

resip Detection

In this thesis, we propose two new different approaches to identify resip
connections, rtt_detection and mrp_detection.

In 2022, a blog post from the anti-bot company DataDome [50], proposed
a ml based approach to identify resip connections. They claim that resip
ips exhibit a different behavior compared to residential ips used only by
humans, even when the ips are shared by the two categories. Thanks to an
infrastructure similar to the one in [38], they collect resip ips. Every time
they detect one of these ips sending them requests, the ml model checks if the
request exhibits resip behavior. This approach, different from ours based on
network measurements, might prove to be effective. However, the author only

Chapter 2. Background and Related Works 19

proposes a high-level overview of the used behavioral features and this method
most likely requires a large dataset of connections to be effective. On the
contrary, our methods can systematically and deterministically detect a resip
connection by only analyzing a single request. Furthermore, mrp_detection
is able to identify connections from specific resip providers.

Proxy Detection based on Round Trip Time

While resip detection is a recent topic, researchers have studied in depth the
broader field of proxy detection. One of our detection methods, rtt_detection,
relies on the comparison of the tcp and tls rtt, measured between packets
that are exchanged within a tls session. To the best of our knowledge, we
are the first to implement this technique.

Using some form of rtt measurement for proxy detection was proposed
before, though. For instance, Hoogstraaten [51] suggests that comparing
the rtt at the application layer and the transport layer could potentially
indicate the presence of a proxy. He advises calculating the application rtt
by retrieving consecutive elements from the server (e.g. html page and
associate image) using http. As far as we know, this technique was not
implemented and this approach is different from the one we propose. Indeed,
this method requires changes in the application code and only works if some
specific assumptions hold (no caching in the proxy, no parallel requests to
retrieve both objects, etc.). Our technique, on the other hand, does not
require any modification of the original server code because it leverages the
exchanges that normally take place in a tls connection.

In a blog post [52], the author suggests a proxy detection based only on
the measurement of the rttT LS (ignoring the rttT CP) which could, possibly,
work thanks to an implementation issue in chromium-based browsers. His
technique takes advantage of JavaScript code running on the client side. The
code queries 5 times both 127.0.0.1 and 0.0.0.0 with https. In the case of
direct connections, the rtt of the two connections are comparable. When
the connection is proxied, there should be a relevant difference between the
two measurements. This technique is different from ours for various reasons.
Our detection method does not require any code running on the client side, is
independent of the client application or operating system, and is solely based
on measurements obtained on the server side. No additional url needs to be
queried and the comparison of rtt values is performed between the tcp and
tls rtts of a single connection.

Other works leverage similar approaches to that blog post. In [53], a
rtt at the application layer is calculated by fetching an http object that
cannot be cached. A patent [54] performs the detection with the comparison

20 2.4. Honeypots

of the rtts obtained when fetching a cached and a non-cached object. Our
approach, in contrast to the described ones, works completely on the server
side, does not require fetching any object and uses the more stable tcp and
tls rtts as opposed to the ones at the application layer.

In summary, previous works have considered using some form of rtt
measurement to detect proxied connections. However, they all require either
modification of the server code and/or some JavaScript to be executed on
the client side. Our proposal, in contrast, is exclusively based on passive
measurement made on the server side, which does not need to be modified
in any way. Furthermore, contrary to our work, none of the previous works
compares the tcp rtt to the tls one.

2.4 Honeypots
In Chapter 6, we present our deceptive approach, based on the redirection to
a web application honeypot, to mitigate scraping requests.

The idea of deceiving an attacker to win him over is certainly not new
and deception has proven to provide valuable information to defenders in
the past. When it comes to computer security, one of its first incarnations
dates back to 1986 with the famous Cuckoo’s Egg story by Clifford Stoll.
It recounts the true story of Stoll’s investigation into a hacking incident at
Lawrence Berkeley National Laboratory. The author leverages a system under
his control to study the actions of the hacker and unmask him. A few years
later, in 1992, B. Cheswick told us about his “evening with Berferd” [55]. The
author observed and analyzed the actions of the hacker to shed light on his
methods and motivations. After that, W. Venema created tcpWrapper [56], a
network access control system for Unix systems that enables administrators to
control which clients are allowed or denied access to various network services.
tcpWrapper made it possible for everyone to play with the idea of deceiving
attackers.

In [57], Cohen formalizes the notion of deception in computers. He writes
that it is about exploiting errors in the cognitive systems of attackers for
advantage. Moreover, he reviews the early works on honeypots. Honeypots
are security deception mechanisms that reproduce a part of or a whole real
system. They lure attackers reaching them into believing they are on the
real system they want to exploit. Honeypots are used to detect, mitigate and
study attacker behaviors. Depending on the level of interaction an attacker
can have with the system, we classify it as low/mid/high interaction honeypot
[58].

In the latest years, honeypots, honeynets and honeytokens [59] have been

Chapter 2. Background and Related Works 21

l1
r1

l2
r2

l3
r3 Real

location

Figure 2.1: Multilateration using 3 landmarks.

widely used to perform deceptive activity against attackers. Some honeypots
simply collect information about attackers to learn their modus operandi [60],
[61] or derive actionable knowledge about them [62], possibly leading to attack
attribution applications [63]. Others take an active role in slowing down the
attackers. They are then usually called sticky honeypots, tarpits, or crawler
traps [64], [65]. These honeypots aim to prolong attackers’ engagement to
make them lose time and gather more information about their methods at
the same time.

In the past, Bait&Switch Honeypots [66] and the Intrusion Trap Systems
[67] already proposed to redirect malicious traffic to a honeypot that mirrors
the real site under protection, as we do in Chapter 6. The limitation of
these approaches is the creation of simplistic versions of the real website as
honeypots. The main differences, concerning the work we propose, lie in the
complexity of the system we have to mimic, the sophistication of the attackers
to lure, and our objective to provide plausible, yet inaccurate information.

2.5 Geolocation

2.5.1 Background
Geolocation consists of using technologies to obtain the geographical location
of the initiator of an Internet activity [68]. We can divide geolocation into two
categories, based on the techniques leveraged to achieve the goal: registration-
based and measurement-based.

Registration-based techniques take advantage of one or more databases

22 2.5. Geolocation

in which blocks of ips are associated with a specific location. Once the ip
of the machine to geolocate is known, we can query the database for that
ip and obtain the location of the corresponding block. These databases can
be both public (e.g. ripe [69]) or proprietary (e.g. MaxMind [70]). The
process behind building the proprietary databases is generally not public.
However, from the available information, they should leverage whois services,
dns loc records and Autonomous System numbers to perform geolocation
[71]. Different works investigate the reliability of these databases and show
their reliability at different granularity [72]–[76].

Measurement-based techniques, as the name suggests, leverage measure-
ments from landmarks whose location is known, to the machine to geolocate.
Thanks to this, they obtain information about the location of the machine.
Generally, measurement-based geolocation is performed through multilater-
ation. This is the “process of locating an object by accurately computing
the time difference of arrival of a signal emitted from that object to three
or more receivers” [77]. As displayed in Figure 2.1, given three landmarks
(the receivers) l1-l3, we can build a circle centered in each landmark whose
radius (r1-r3) refers to the distance between the landmark and the contacted
object. The object to localize can be at any point on this circumference. The
intersection of the circumferences created from each landmark reveals the
position of the object. Ideally, the intersection is a point. However, due to
measurement errors and delays, in practice, the intersection corresponds to
an area of the world. Geolocation algorithms mainly rely on the rtt delay
between machines on the Internet.

In this work, we leverage a registration-based geolocation dataset (Max-
Mind [70]) to retrieve the location of the resip gateways, whose ip addresses
are collected in rtt_ds. In Section 4.2.4 and Section 8.5 we discuss the
reliability of this database relative to our use cases.

Moreover, in Chapter 8, we try to solve a geolocation problem: geolocating
the original client sending requests through a resip. In this context, the
server does not have any information about the ip address of the original
client but only has information about the rtts between it and a set of
gateways. Thus, only measurement-based techniques based on rtt can be
used to perform geolocation.

However, the problem we want to solve is more complex than simply
geolocating a machine that contacts directly a set of landmarks through rtt
(Section 8.2). No previous measurement-based technique has addressed this
scenario. Moreover, previous works needed more information and/or made
assumptions that do not hold in our use case. In the following, we describe
the state-of-the-art regarding measurement-based techniques based on rtt
and we explain why each of them cannot be directly applied to our proposed

Chapter 2. Background and Related Works 23

scenario.

2.5.2 Past Works in rtt-based Geolocation

Different past works have used the rtt to geolocate the location of a machine.
In [78]–[83], the rtt geolocation is restricted to specific regions of the world
(e.g. connections in one continent) and need network topology information
to decide which speed to apply in order to convert millisecond (rtt, time)
into kilometers (distance). In our use case, connections are performed from
locations all over the world and we do not have any information about the
topology of the network. We geolocate a machine hidden behind a resip
infrastructure, composed of an unknown number of machines. In our approach,
we leverage the usage of a combination of speeds to try to model the different
situations and topologies that could be found on the path of the packets.

Other works ([84], [85]) do not work on a global scale because of their
need to have landmarks close to the solution. In our use case, the original
solution is unknown. Furthermore, resip machines could be anywhere in the
world and we do not have any control or information about their location.
For this reason, these methods are not appropriate for our use case.

There are works that perform geolocation without the above-mentioned
constraints ([86]–[88]). However, they apply their algorithm only in conditions
of well-connected machines (Planet-Lab nodes, ripe anchors) and perform
multiple measurements from the same landmark to find the most accurate
rtt value i.e. the least impacted by transient network latencies. In our setup,
we do not have any control over the connectivity of the landmarks and we
usually have only one connection from each of them. Indeed, we passively
acquire the rtt values between the landmarks and the machine to geolocate
and we cannot directly produce multiple measurements. Thus, we can not
apply these methods.

In [C8], we created a rtt geolocation method for machines directly
connecting with each other. The technique works for connections all over the
world, without constraints about the connectivity or location of the landmarks
and does not need multiple measurements from each of them. The results of
the technique tell us that considering multiple speeds helps in refining the
accuracy of the geolocation. This is a central point of our new algorithm. We
leverage the work proposed in [C8] and modify it to better apply to our new
setup. We use a novel algorithm as a preliminary phase to identify the sole
connections that mostly contribute to the solution and to remove the ones
that only add noise, due to the problem at hand. Moreover, we expand it to
possibly identify multiple clients behind a resip.

24 2.6. Summary

2.6 Summary
In this chapter, we explored background information about web scraping
and the techniques we use to detect and mitigate the corresponding traffic.
Studying this scenario, we understood the limitations of the current approaches
and the problems raised by the significant usage of Residential ip Proxies.
Overcoming these limitations is the motivation for this thesis.

In the next chapter, we start addressing the problems we identified in the
detection process by proposing two new identification techniques for scrapers
exploiting Residential ip Proxies.

Part I

Server-side Detection of
Residential ip Proxies

Connections

25

Chapter 3

Identification of Scrapers
Exploiting Residential ip
Proxies

3.1 Introduction
Web scraping techniques keep evolving to enable scrapers to bypass any
new detection and mitigation action against them. Recently, scrapers have
started to take advantage of Residential ip Proxies (resip) to facilitate their
operations.

In the previous chapter, we learned that resips usage can be malicious and
that we need new detection methods for this type of connection. Section 2.3
displayed how widely, and why, scrapers use resip. Moreover, it showed the
resip involvement in other malicious activities (e.g. cryptojacking, credential
stuffing attacks and many more).

Section 2.2.3 illustrated the growing impact of resip ips in scraping one
of the leading companies in the travel industry. It showed the challenges that
analysts experience while fighting scrapers behind resips. Current detection
techniques have difficulties in discerning when a device sends directly a request
from when it is used as a resip proxy. To reduce false positives, analysts
tend to not block requests coming from residential ips. In this way, scrapers
exploiting resip services, get easy access to the contents they want to obtain.

In this chapter, we present the intuition behind two new server-side detec-
tion techniques, rtt_detection and mrp_detection. These techniques,
based on network measurements, enable us to overcome the limitations of cur-
rent scraping detection tools and they successfully identify resip connections.
As discussed in Section 2.3, in 2022 DataDome proposed another method [50]

27

28 3.2. Residential ip Proxies Infrastructure

Client Serversuperproxy ...

gw1

gwn

Figure 3.1: Common internal structure of resip providers.

to identify resip connections. This approach, based on machine learning,
might prove to be effective. However, it needs to be trained with a likely
large dataset of connections to have a good detection rate. Differently from
it, our techniques can systematically and deterministically detect a resip
connection by only analyzing a single request. Furthermore, we can exploit
one of them to identify connections from specific resip providers.

Our two techniques leverage features of the resip infrastructure. Thus,
we first provide an overview of the internal functioning of these parties
(Section 3.2). We take as assumptions that the tcp sessions between different
parties of a resip connection are not synchronized among them and that
resip machines do not break the https end-to-end encryption between client
and server. Section 3.3 shows that these assumptions hold after experimenting
with four among the most used resip providers. Finally, Section 3.4 and
Section 3.5 explain the rationales behind respectively rtt_detection and
mrp_detection.

The ideas underlying our techniques are protected in two filed patents [P1],
[P2].

3.2 Residential ip Proxies Infrastructure
resip services do not share details about their internal infrastructures. From
the available information, we know they generally work in, so-called, back
connect mode. Fig. 3.1 shows the schema of a back connected resip, as
discussed in previous works [38], [89], [90]. In this setup, the client sends
a request to the so-called superproxy. The superproxy forwards this
request to one of the residential gateways (gw1,...,gwn).

In [38], the authors found that there is a series of backend servers interme-
diating between the superproxy and the gateways for specific providers.
It is not clear if this is a common behavior among other providers. While
this is not an important point for the outcome of the detection techniques
we present hereafter, we take this into account in Section 8.2 when geolocat-

Chapter 3. Identification of Scrapers Exploiting Residential ip Proxies 29

ing the original client behind the resip. Finally, the request arrives at the
server with the ip of the gateway as source ip and does not contain any
application-level information that could indicate that it has been proxied.

resip clients can specify the location of the gateway to use for their
requests. Furthermore, they can decide if the same ip must be used for a
series of requests or if, instead, a new one must be provided for each new
request they want to send. Different resip providers implement various proxy
protocols, but generally, they all support http/https. In this case, the
client contacts the superproxy with a http connect to establish the
communication.

Studying resips, we have reached some conclusions about their functioning.
resip machines have to perform ssl tunneling to enable https connections.
This means that they do not decrypt and re-encrypt the packets they receive.
They simply act as a circuit gateway by forwarding packets back and forth
between 2 (or more5) distinct tcp sessions while changing ip addresses.
Moreover, these tcp sessions are not synchronized among them. In the next
section, we experimentally confirm this description.

In [45], the authors discover that some resip providers offer a second
operating mode called direct. In the case of direct resip, the client acquires
the ips of the gateways and contacts directly the one(s) chosen to proxy
requests out. This type of resip looks popular mostly for Chinese providers
but it does not appear to be widely used globally.

Considering both resip operation modes, we can conclude that resip
infrastructures are merely instruments in the hands of parties exploiting them
(e.g. scrapers). These parties do not own the network or the superproxy
machines, they can just rent the provided service and use it through a well-
defined api. They cannot access the internal parts of the infrastructure and
change their functioning.

Similarly, resip providers take advantage of devices belonging to real
people. resip providers do not own these devices and cannot access them
directly. Thus, they cannot alter the hardware of the devices and they can
only use their application-level features.

These constraints create a fixed environment in which scrapers send their
requests. As explained in the next sections, we can exploit some of its
features to create identification methods for connections traversing such an
environment.

5Depending on the setup and the number of backend servers that are part of the
infrastructure, the number of tcp sessions built by the resip can vary.

30 3.3. Confirmation of Working Assumptions

3.3 Confirmation of Working Assumptions
In the previous section, we have made two assumptions about the functioning
of resip infrastructures:

1. resips build distinct tcp sessions among the parties taking part in a
connection and these tcp sessions are not synchronized among them

2. resip providers do not break the tls session but just perform ssl
tunneling

We experimentally confirmed this behavior using four of the most used resip
providers (Bright Data6 [91], Oxylabs [92], Proxyrack [93], and Smartproxy
[94]).

To check their validity, we first consider a server that does not send any
ack packet. In this scenario, a client sending a syn packet to this server does
not receive any answer and can not complete the tcp three-way handshake.
If the resips simply forwarded the tcp packets and changed the source ip
address, a client sending requests through them would never complete the
handshake. The same outcome would take place if the resips built distinct,
yet, synchronized tcp sessions. In such case, the client would receive an
ack packet from a resip machine only if another machine in the resip
infrastructure had previously received an ack packet from the server. Hence,
since our server does not send any ack packet, the client should not be able
to complete the tcp handshake.

We tested connections passing through the four resip providers in the
scenario just discussed. From one client, we tried, with each of the four
providers, to connect to the server that does not send ack packets. On the
client, the three-way handshake was always completed successfully. This
means that the superproxy sent the ack of the tcp handshake to the client
without having received any answer from the server. In other words, multiple
tcp sessions are built asynchronously between the client and the server.

To confirm the second assumption, we checked the encryption and Session
ids of the tls packets passing through a resip infrastructure. If the resips
broke the tls connection, the same tls packet sent between client and server
would show different encryption and/or different Session ids when analyzed
at the client and at the server.

From a client machine, we performed tls connections to a server passing
through the four resip infrastructures. We analyzed the packets containing
the "ClientHello" and "ServerHello" tls records both on the client and server

6Previously known as Luminati.

Chapter 3. Identification of Scrapers Exploiting Residential ip Proxies 31

Client
tcp session

tls session
Server

White

(a)

Client
tcp session

tls session

Server
tcp session

resip

(b)

Figure 3.2: tcp and tls sessions in a direct (a) and resip connection (b).

sides. We did not see any mismatch regarding encryption and Session ids
between the packets sent from one party and the corresponding ones received
by the other party. This confirms that the tls packets are not decrypted and
re-encrypted by any of the machines on the path.

These results tell us that in the studied scenario, the tcp session is broken
while the tls one is not. It is possible that resips are not the cause of this
situation. Other network proxies could break the tcp session while only
forwarding the tls packets (e.g. tcp terminating proxies [95], [96]). However,
all the resip connections we tested in this preliminary test, as well as the
69M+ of the experiment described in Section 4.2, result in this outcome. This
enables us to make the reasonable statement that, even if there exist multiple
proxies able to produce this situation, resips are the most likely explanation
for this result.

3.4 Detecting resips with Round Trip Time
Measurements

As explained in the previous sections, when a client behind a resip connects
to a server, the client creates a tcp session with the superproxy. Then, the
gateway creates a different tcp session with the server. These two sessions
are not synchronized. By contrast, there is only one unique tls session built
between the client and the server.

In the case of a direct connection between a client and a server, both tcp
and tls sessions take place between the same parties. Fig. 3.2 displays this
difference between the two types of connections.

Let us consider what happens when a server sends a tcp packet7 and
a tls one to a client behind a resip. The tcp packet has a much shorter
journey than the tls one. While the tcp packet stops at the gateway,
the tls one arrives at the same machine, traverses the resip infrastructure,
reaches the superproxy and then arrives at the client. Moreover, client,
gateway and superproxy could be far from each other, increasing the
difference in distance traveled by the tls packet in comparison to the tcp
one.

32 3.4. Detecting resips with Round Trip Time Measurements

Let us now consider a scenario in which no resip is involved. In this
scenario, we make the reasonable assumption that there is no route change
between different packets of the same connection that are sent in a short
amount of time. Moreover, we assume that, if the route changes, the length of
the new path is comparable to the previous one. In both these cases, there is
no noticeable difference in the distances traveled by the tcp and tls packets.

We can exploit this difference at the transport layer to identify resip con-
nections reaching a server. Our intuition consists in leveraging the distances
traveled by tcp and tls packets. If the difference is high, we infer that the
connection traversed a resip infrastructure. Otherwise, we consider it as
coming directly from a client.

On the server side, we can identify this difference thanks to the Round
Trip Time (rtt). The rtt measures the time between when the server sends
a packet a to the other machine in the session and when packet b, which is
the answer to packet a, arrives at the server. Thus, the rtt, a measure of
time, exhibits a higher (resp. lower) value if a packet travels a longer (resp.
shorter) distance.

We can then consider the rtt as an approximation of the measure of
distance between the two parties involved in a session8. For direct connections,
the rttT CP informs about the distance between the client and the server. In
the case of a resip connection, this value represents the distance between
a resip gateway and a server. Indeed, since the tcp sessions are not
synchronized, the gateway answers to the tcp packets before receiving any
other packet from the client.

In both direct and resip scenarios, the rttT LS represents the distance
between a client and a server. When scrapers use resip services, the tls
packets take a much longer journey than the tcp ones. Hence, we expect the
rttT LS at the tls layer (rttT LS) to be much larger than the one at the tcp
layer (rttT CP).

We can check the δRT T , defined as the difference between the rttT LS and
the rttT CP , of each connection. If the δRT T presents a value above a chosen
threshold, we detect it as proxied through a resip. We call this technique
rtt_detection.

Naturally, the path taken by the packets is not the only factor that

7In the rest of this work, for the sake of conciseness, we write "tls packets" for the tls
packets generated by and exchanged between the client and the server. We write "tcp
packets" for the tcp packets generated and exchanged between a gateway and a server.
In case of a direct connection, the gateway corresponds to the client itself.

8For the sake of concision, in the rest of the paper we take the liberty of using the
expression "measure of distance" instead of "approximation of the measure of distance"
when referring to the rtt.

Chapter 3. Identification of Scrapers Exploiting Residential ip Proxies 33

influences the rtt. Client processing time, packet speed, network delays,
server tls version and other factors could impact this measurement. Hence,
we need to test this technique on connections between real machines on the
Internet to be able to assess the validity of the method and the extent of the
impact of these factors.

Moreover, other proxies in the network behave as resips at the transport
layer, as mentioned in Section 3.3. In this case, the designed detection method
categorizes them as resip. It is important to understand in which percentage
of connections this scenario takes place and if we can tune the method to
avoid false positives.

We have designed experiments to test the validity of our method and
assess the impact of the above-mentioned factors. Chapter 4 presents the
setup and discusses the results of these experiments.

The designed detection technique presents some limitations. The key
concept of the technique is measuring rtts at the tcp and tls layers. Hence,
an intrinsic limitation of the technique is to work only for https connections.
One easy way for scrapers behind resip to evade detection is to downgrade
the connection to http. For this reason, http connections should not be
allowed when using the detection technique.

The rtt_detection assumes that resips do not break the tls session at
the gateway. By all means, resips could evade detection by producing this
break. This scenario is technically feasible but implies a substantial change
in the resip model.

To break the tls session at the gateway, resips need to establish a tls
connection between gateway and server and another one between gateway
and client. This last session could be broken into two additional sessions,
one between client and superproxy and one between superproxy and
gateway. In any case, the break implies that the gateway must handle
two distinct tls connections and decrypt/re-encrypt in both directions.

resip providers leverage as gateways home devices, mobile phones, etc.
which they do not own and, thus, they do not control. One effect of breaking
the tls session is that gateways could monitor and/or modify the exchanges
between the clients and the servers. It is improbable that resip customers
would let a third party observe and possibly modify the contents of their
communications since this could damage their web scraping activity.

Furthermore, resip software on gateways must consume as few resources
as possible to remain unnoticed by the owners of these devices. Users accept
(consciously or not) to run resip software on their machines when they do not
need them (e.g. when they are not using them and they are being charged).
The additional burden of having to manage two distinct tls sessions plus the
decryption/re-encryption in both of them is likely to be a deterrent for device

343.5. Residential ip Proxies Identification based on Retransmission Protocols

owners.
Lastly, to be able to impersonate any possible end server, the resip needs

to establish certificates on the fly and push them to the gateway. Moreover,
the client needs to accept a resip-onwed root certificate to make this possible.
While technically feasible, this would add a level of complexity and latency
that would hurt the resip business and would be a significant threat to the
client once this root certificate is installed.

For all these reasons, we believe resip would unlikely break the tls
session. If resip providers were to do that, we could still measure the rttT LS

to the end client by serving specifically crafted html pages. These pages
would contain objects that the client needs to retrieve from the server. We
define these objects in a way that resips can not cache them. In this scenario,
we could obtain an approximation of the rttT LS by measuring the time
between the sending of the page to the client and the arrival of the request for
the additional object. This solution is similar to solutions already proposed to
identify generic proxies [51]–[54]. To defeat this new scenario, resips would
need to run a browser-like application on the gateway itself. This would
increase even more the complexity of resip systems and for this reason, this
solution is unlikely to be implemented.

Finally, the rtt_detection assumes that gateways build a tcp session
with the server that is not synchronized with the one between client and
superproxy. We could wonder whether resip providers could produce
delays at the tcp layer in the gateway-server session to synchronize with
the client-superproxy one. However, this operation is not feasible. resip
providers do not own the devices to proxy the requests. They simply leverage
them at the application level. Hence, they cannot alter the connection settings
of the device and/or do kernel-level modifications to increase the rttT CP .

3.5 Residential ip Proxies Identification based
on Retransmission Protocols

In Section 3.3 we performed tests to confirm two working assumptions about
the internal functioning of resip providers. In the first test, a client initiates
a connection, passing through a resip infrastructure, to a server not sending
any ack packets. Generally, when a client sends a syn packet and this is not
acknowledged, its kernel keeps retransmitting the syn packet from the same
port using the exponential backoff behavior of the retransmission timeout.
This continues until a higher timeout threshold is reached [97].

In the case of a resip connection to such server, the gateway sends a

Chapter 3. Identification of Scrapers Exploiting Residential ip Proxies 35

syn packet and the server does not acknowledge it. We observed that, after
a delay, new gateways, machines different from the original one, start to
send syn packets to the server. This results in multiple gateways trying
to connect to the server. Our intuition is that the resips believe the chosen
gateway has a connectivity problem. They then try to perform the request
with other machines in their network.

The multiple gateway connections can be sequential or partially parallel.
In the first scenario, a new machine starts to query the server only after the
previous machine has ended sending packets. In the second one, there is an
overlapping window of time in which two machines, used by the same resip
provider in the same communication, send syn packets to the server. We
believe that this second scenario takes place when providers try to improve
their response time to the client. In the first case, the provider waits for a
gateway to terminate all attempted connections before choosing another
machine. In the second one, there is a fixed delay after which, even if the
chosen gateway has not terminated yet its attempts, the resip provider
chooses a new gateway to perform the same operation. Section 5.4 shows
in which percentage these approaches take place in the connections of the
considered providers.

Moreover, independently of the above-mentioned behavior, each gateway
machine performs some kind of retransmission. Every time a gateway sends
one packet, it can act using one of the following Machine Retransmission
Protocols (mrps):

First MRP: The kernel of the gateway resends the original syn packet
using the same port with exponential backoff, as in the normal case.

Second MRP: The gateway opens a new connection to the server from a
different port and the server receives a new syn packet. Moreover, in
some cases, the kernel retransmits once the original syn packet.

Section 5.4 explains which providers, among the tested ones, expose each
mrp. Our intuition is that, in the second mrp, the application layer (not the
transport one) handles the sending of packets and the timeouts. When the
timeout expires, the application closes the previously used socket and opens
a new one. In some cases, this can produce a normal retransmission since the
application timeout can be longer or comparable to the transport layer one.

The behavior shown by resips in the second mrp is specific and peculiar.
We can exploit it to perform server-side resip detection of the providers that
adopt it. The idea is to detect if a machine sends a new syn packet from a
different port when the original one is not acknowledged in time. We call this
approach mrp_detection.

36 3.6. Summary

To perform this detection, the server simply needs to delay the sending of
the syn-ack packets. In this way, it can check if it receives other requests
from the same ip that are not retransmissions from the same port. To achieve
this result, the server can take advantage of a shared structure in memory
where all the threads that handle each connection save the timestamp, ip
and port of each received syn packet. If the same ip sends syn packets from
different ports in a short amount of time, the connection likely goes through
a resip provider adopting the second mrp. The server can then decide to
never send a syn-ack packet in response to those syn packets. In this way,
it provides mitigation on top of detection. Indeed, the resips waste resources,
having different devices in their network trying to connect, uselessly.

The above-mentioned technique presents some limitations. A server
implementing it needs to delay the answer to each syn packet for enough
time to potentially receive a new syn packet from the same machine. This
duration depends on how the providers implement the mrp. If this duration
was long, genuine clients would experience high delays. This would degrade
the real users’ experience. Section 5.3 displays the interval between new syn
packets for the analyzed providers that use this strategy and Section 5.4
discusses if the corresponding delay is acceptable at the client side.

Furthermore, resip providers could avoid this detection by changing their
mrp. They could randomly select different values for the interval after which
a machine sends a new syn packet. Moreover, they could switch to the first
mrp. Depending on their setup, this could be a difficult task to achieve and
could imply a loss in efficiency and costs on their side.

The mrp_detection technique results in false positives if some corner
cases take place. If two machines behind the same natting device contact
the same server in a short amount of time, the technique categorizes their
connections as resip. Moreover, this outcome occurs if a genuine user requests
the same url two or more times from the same device in a short amount of
time. While these events are possible, we find them unlikely to happen on a
large scale.

Finally, the proposed approach is only able to identify specific resip
providers that adopt the discussed mrp. While the technique is less general
than the one described in the previous section, it enables us to link scraping
campaigns to specific resip providers and thus perform attribution.

3.6 Summary
In this chapter, we have learned that resip infrastructures are a fixed environ-
ment that scrapers cannot modify. Hence, we can exploit specific features of

Chapter 3. Identification of Scrapers Exploiting Residential ip Proxies 37

such environments to understand, server-side, if an incoming request is proxied
through them. Based on this, we proposed two new detection techniques and
we explain the underlying intuition for them.

The first approach (rtt_detection) detects resip connections thanks
to Round Trip Time differences at the tcp and tls layers. The second one
(mrp_detection) identifies resip connections when they adopt a specific
Machine Retransmission Protocol. It consists of a retransmission timeout
handled at the application layer and not at the transport one.

The possibility exists that those ideas, simple and straightforward in theory,
could not work in practice because of technical limitations, as discussed in
the sections dedicated to each technique. This is why we have run long and
thorough experiments to assess their feasibility and validity. In the next
chapters, we outline the setup of such campaigns and the results we obtained.

Chapter 4

Round Trip Time
Measurements to Identify
Scrapers behind Residential ip
Proxies

4.1 Introduction
In Section 3.4, we outlined the underlying intuitions for the rtt_detection
technique. resip providers break the tcp session but not the tls one. Thanks
to this, we can identify resip connections by comparing the Round Trip
Times (rtts) at the two layers.

The same section points out that, while the idea is sound in theory, it
could be impacted by different factors in practice. We designed a series of
experiments to understand the validity of the approach and understand the
extent of the different impacts. Hereafter, we present their setups and we
discuss their results.

Section 4.2 introduces the setup of our first experiment, Ground Truth
Experiment. This experiment aims at assessing if the difference between the
rttT LS and the rttT CP is systematically, constantly, and significantly higher
for resip connections than direct ones when the same client is used in both
scenarios. In this experiment, we know, by design, which connections are
proxied through a resip and which ones are not. Section 4.3 presents the
analyses performed on the dataset of Ground Truth Experiment and assesses
the validity of the rtt_detection technique.

The choice of specific clients in the generation and transmission of packets
(e.g. using a web browser, hotspot connections, vpn usage) could impact

39

40 4.2. Ground Truth Experiment Setup

Client Server

resip

Database

resip connection

Direct connection

Logs Logs

Figure 4.1: Infrastructure used to validate the rtt_detection technique.

the technique. Hence, non resip connections could be wrongly categorized
as resip ones. In Section 4.4, we show which factors produce this situation
characterizing different client-side environments. Furthermore, we estimate
the probability of facing such situations by applying the rtt_detection
method on real-world connections. Finally, we investigate how many non
resip connections are categorized as such because of Mobile tcp Terminating
Proxies used by isps. We bring evidence that by highering the threshold, we
could avoid a large part of these false positive cases.

The underlying idea of the rtt_detection technique, the setup of the
Ground Truth Experiment and analyses of its dataset to evaluate the validity
of the technique were published in [C2]. Additional analyses of the dataset
(Section 4.3.1, Section 4.3.4) were presented in [C3]. Results in Section 4.4
were published in [C4].

4.2 Ground Truth Experiment Setup
In this section, we present the setup of the Ground Truth Experiment. Its
main goal is to understand if the δRT T is systematically, constantly, and
significantly higher for resip connections than direct ones when the same
client is used in both scenarios. Moreover, this experiment enables us to
assess the impact on the technique of network delays, proximity between
resip machine and our machines, tls version run at the server and packet
speeds.

As previously explained in Section 3.2, resip infrastructures are quite
specific. To achieve the above-mentioned goal, we have created an infrastruc-
ture that reproduces the real-world conditions scrapers experience when using
such services. Section 4.3.1 provides evidence of such a statement.

As shown in Fig. 4.1, our infrastructure includes a client sending requests
to a target server, a target server, a resip provider, and a database.

The client, which represents the scraper, sends requests either directly to
the server (direct connection) or through a resip provider (resip connection)

Chapter 4. Round Trip Time Measurements to Identify Scrapers behind
Residential ip Proxies 41

Table 4.1: Monthly subscriptions of the resip providers used in the experi-
ment.

Provider Plan Traffic Price
per gb

Advertised
Pool Size

Bright Data Starter 40GB 12.5$ 72M+
Oxylabs Business 50GB 12$ 100M+

Proxyrack
Premium

Residential
Proxies

50GB 4$ 5M+

Smartproxy Regular 50GB 8$ 40M+

from which we purchased the services. On the other side of the connection,
the server analyzes each received query. Furthermore, on the server machine,
there is a sniffer that looks at every received packet and performs network
measurements. The client and the server machines locally produce logs and
send them to a database where they are aggregated and processed.

22 machines and 4 resip providers constitute the core of the infrastructure.
In the next sections, we discuss their details. Section 4.2.1 discusses the ex-
amined resip services. Section 4.2.2 explains the configuration, location, and
roles of our client and server machines. Section 4.2.3 outlines the performed
network measurements for the detection technique. Section 4.2.4 describes
the timeline and data storage of the experiment.

4.2.1 Residential ip Proxy Providers
In this experiment, we test 4 resip providers widely used, allegedly, by
scrapers: Bright Data [91], Oxylabs [92], Proxyrack [93], and Smartproxy
[94]. We chose them thanks to the information provided by analysts and
companies working against scraping bots as well as online blogs devoted to
web scraping activities. These are the same providers used in Section 3.3 to
test the working assumptions.

The four services offer different packages and options. We subscribed to
each of them to have 40GB (Bright Data) and 50GB (the other providers)
of (incoming+outgoing) traffic per month proxied through residential ip
addresses. Table 4.1 provides detailed information about our subscriptions.
We set the ips to be changed at each new request and we did not impose any
localization constraint for them.

42 4.2. Ground Truth Experiment Setup

Table 4.2: Technical description of the machines in the experiment.

Provider os Memory Processing Storage
Amazon Lightsail Ubuntu 20.04 2GB 1vCPU 60 GB SSD

Azure Ubuntu 20.04 3.5GB 1vCPU 300GB+ SSD

We legitimately made and paid our subscriptions for the four services
online. Three out of four providers gave us access to the pool of residential
ips upon payment.

By contrast, Bright Data did not enable us to use the residential ips
directly after the payment. They asked us to participate in a recorded
interview in which we had to explain the motivations of our work and how
we wanted to use their infrastructure. We communicated to them that we
wanted to test our client and server machines with their infrastructure. We
told them that we would simply perform requests from our client to our server
machines, as we did.

However, 13 days after the beginning of the experiment, they paused our
subscription telling us that our scenario (targeting our own machines) could
“expose their users ips, which can become a privacy issue”[98]. They told
us that we would need to disclose additional information about what we
were doing. Since we did not agree to do so, they completely stopped the
subscription and refunded it.

4.2.2 Clients and Servers
The core of the infrastructure consists of 22 machines. Each of these machines
plays both the roles of client and server described in Fig. 4.1. In this way,
we maximize the number of different client-server paths available for the
experiment. To avoid any possible geographical or vendor bias, client and
server machines are spread all over the world and belong to two different
suppliers: Amazon Lightsail [99] (16 machines) and Microsoft Azure [100] (6
machines).

Each of the following locations hosts two machines: India, Australia,
Japan, Germany, Ireland, Canada, USA (Virginia and Oregon), South Africa,
United Arab Emirates and Brazil. The last three locations correspond to the
machines acquired from Azure. Table 4.2 shows the technical details of the
machines used in the experiment.

We implemented both client and server algorithms in Python3 [101]. The
server code leverages the ThreadinghttpServer and BasehttpRequestHandle

Chapter 4. Round Trip Time Measurements to Identify Scrapers behind
Residential ip Proxies 43

objects of the library http.server [102]. We modified the source code of this
library to insert a timeout for connections not completing the tcp handshake.
The client performs both direct and resip connections using the library urllib
[103].

The client algorithm consists of an infinite loop. According to the speed
set in the configuration file, each client sends queries to each server in the
experiment. Each client queries five times consecutively each machine, with
one direct connection and four resip ones, one per provider. The query
consists of an https get.

To provide the server with all the information about each connection it
receives, we encode the client ip address and the resip provider identifier
into the requested url. We assign a unique two-digit code (machine code)
to each machine, from 01 to 22, and a one-digit code (resip code) to each
resip provider, from 1 to 4. Direct connections have a one-digit code (direct
code) set to 0. Every time the client performs a request, it builds the url as
the concatenation of its machine code, the resip/direct code, and the target
server machine code.

The server algorithm keeps listening for new incoming https connections
on port 443. The server can run both tls1.2 and tls1.3. At launch time,
we can define an option to specify which version to run. Every time a new
https get request arrives, the server studies the url. It verifies that the
request format is compatible with the concatenation of the codes. In this
way, it assures that the request originates from a machine participating in the
experiment (as opposed to, eg. a scanner or a crawler). It then retrieves the
client, resip/direct and server codes. The server answers with an error page
to requests that do not pass the check. Otherwise, it delivers a simple page.

Both client and server programs locally log the connections. These logs
are aggregated in a database. In Section 4.2.4 we present an overview of the
collected data and we explain which field we logged on each machine.

4.2.3 Network Measurements
A sniffer program runs on each machine of our infrastructure to collect
network measurements. The sniffer parses each incoming and outgoing packet
to port 443. We implemented the sniffer in Python3, thanks to the library
PyShark [104]. The sniffer saves the information about packets in structures
representing the corresponding streams.

During our experiment, we noticed that Pyshark was exhibiting singular
behaviors when running for a long time. This was caused by the fact that
Pyshark live captures do not have an efficient garbage collection mechanism.
This can lead to memory problems. Unfinished connections produced by

44 4.2. Ground Truth Experiment Setup

Client Server
SYN

dt1SYN-ACK

ACK
dt2

dt3P1

ACK
P2 dt4 ∼ dt5

(a)

Client resip Server
SYN

SYN-ACK

ACK

SYN
rt1SYN-ACK

ACK
rt2

rt3P1
ACK

ACK
rt4

P2
rt5

(b)

Figure 4.2: tcp and tls packet exchanges used in the rtt_detection
technique for a) direct and b) resip connections.

intense scanning of our machines exacerbate this problem. To avoid these
singular behaviors and preserve our measurements, we run the sniffer for just
a short amount of time and restart it systematically every hour. Section 4.2.4
discusses the effects of this choice on the data collection.

For each incoming stream, we use the rtt to understand how far from
each other the parties taking part in the communication are. As discussed
in Section 3.4, rttT CP gives us the distance between client and server, for
direct connections. In the case of a resip connection, this value represents
the distance between a resip gateway and a server instead of between the
original client and the server. In both scenarios, the rttT LS represents the
distance between the original client and a server. If the difference between
the rttT LS and the rttT CP (δRT T) is higher than a chosen threshold, we
declare the connection as passing through a resip.

Hence, we need to calculate two rtts, rttT CP and rttT LS. Fig. 4.2 helps
to explain these measurements. Fig. 4.2a shows the packets in the tcp (dotted
lines) and the tls (dashed lines) exchanges that we use for detection in case
of direct connection. Fig. 4.2b presents the same exchanges in the case of a
resip connection. Dotted lines represent tcp exchanges between the client
and the resip, dash-dotted lines stand for tcp exchanges between resip and
server and dashed lines show the tls exchanges. dtx and rtx represent the
timestamp measurements of the sending/arrival of a packet at the server for
direct (dtx) and resip (rtx) connections. Hereafter, we define each of the two
measurements.

Chapter 4. Round Trip Time Measurements to Identify Scrapers behind
Residential ip Proxies 45

rttT CP

The rttT CP is the rtt between the syn-ack packet sent by the server and
the corresponding received ack. In the case of direct connection, the client
creates the tcp connection directly with the server. Thus, the rttT CP (dt2-dt1
in Fig. 4.2a) is a measure of the distance between these two parties.

By contrast, in a resip connection, the resip builds two distinct tcp
connections. One connection takes place between the client and the super-
proxy, and one between the gateway and the server. In this scenario, the
rttT CP (rt2-rt1 in Fig. 4.2b) represents the distance between gateway and
server.

Throughout the lifetime of a given tcp connection, the network conditions
can vary. There is uncertainty that the rtt calculated at the establishment
of the connection is representative of the "real" rttT CP for that connection.
To understand how this variability can influence our analysis, we collected
the rtt for all tcp packets sent by the server, in addition to the very first
rttT CP value described above. We calculate statistics and discuss them in
Section 4.3.3.

rttT LS

The rttT LS corresponds to the rtt of the tls layer. The tls protocol
is end-to-end between client and server both in case of direct and resip
connections. Thus, this metric should give us the measure of the distance
between client and server in all scenarios.

To obtain the rttT LS, we consider two packets, p1 and p2. p1 contains a
server tls record after which the server does not send any other tls record
before receiving a specific tls answer, as per the protocol. p2 is the packet
containing the client tls record that allows the continuation of the protocol.
We can choose any couple of tls packets that satisfies these conditions.

As explained in Section 3.2, we can consider the resip architecture fixed
for our scenario. Thus, the only variables that can influence our choice of p1
and p2 are the server and client implementations.

Our detection method is server-side. We assume anyone recreating this
experiment has full access and knowledge of the server implementation. In the
tls connection, the server dictates the rules of the exchanges e.g. accepting
the cipher proposed by the client or deciding if it requires client authentication.
In such conditions, we expect to be able to anticipate all the possible exchanges
between client and server to find a couple of packets and cover possible corner
cases. For these reasons, having full control over the client in our experiment,
contrary to the real-world case, does not constitute a bias.

46 4.2. Ground Truth Experiment Setup

In our setup, we have a generic https server, which does not require any
client authentication and accepts common encryption ciphers. We expect this
to be a common scenario for scraped websites that need to be accessed by the
largest possible number of clients. In these conditions, we can identify p1 and
p2 among the first tls packets. This is an added value because it enables us
to perform detection before any application content is delivered to the client.

Hereafter, we focus on the tls records we use to perform our measurement.
Depending on the tls version, we use different records to identify p1 and p2.
We refer to [105] for an accurate and detailed description of the tls protocols
and the records that are not involved in our measurement.

In tls1.2, we identify p1 and p2 in the tls handshake where all messages
are in clear text. The rfc 5246 [106] states that, after sending the "Server-
HelloDone" tls message as part of the tls handshake, the server waits for
a client response. We recognize p1 as the packet containing the tls record
encapsulating this message.

After the "ServerHelloDone" message, the client needs to continue the
communication. According to the rfc, it must send as first tls message the
"ClientKeyExchange" one. We identify p2 as the packet whose tls record
contains this tls message.

In tls1.3, content encryption starts in the tls handshake. If the server
agrees on the cipher chosen by the client, it sends the "ServerHello" tls
message. Since the server has already obtained the client-side information for
encryption, the data in the message is encrypted.

As explained in Appendix D of rfc 8446 [107], tls1.3 implementations
include a dummy "change_cipher_spec" tls record to guarantee backward
compatibility for middleboxes. The client sends this record before its en-
crypted handshake flight if, by setup, the client does not send early data and
if it does not send a second "ClientHello" message. In our implementation,
we do not offer early data. Moreover, the server accepts all common ciphers,
among which the one used by the client. Thus, the server does not send
the "HelloRetryRequest" tls message that forces the client to send a second
"ClientHello" message9. Hence, the "change_cipher_spec" tls record is the
first client tls record sent upon reception of the "ServerHello" tls message.
This record is in clear text and, thus we identify p2 as the packet containing
it. From this identification of p2, we look at previous packets sent by the
server to find p1. More precisely, we determine p1 as the packet whose tls

9In cases where the server could send the "HelloRetryRequest" tls message, we can
simply perform the measurement considering that also the packet containing this tls
message could identify p1. In that case, the next packet sent by the client (the one
containing the second "ClientHello" message or the alert that aborts the handshake) would
identify p2. These messages are all in clear text.

Chapter 4. Round Trip Time Measurements to Identify Scrapers behind
Residential ip Proxies 47

record contains the last encrypted server data sent after the transmission of
the "ServerHello" message and before the arrival of p210.

We define the rttT LS as the difference between the sending of p1 and
the arrival of p2 at the server. As shown in Fig, 4.2, this corresponds to the
difference dt5-dt3 in the case of direct connection and rt5-rt3 in the case of
resip one11.

4.2.4 Timeline and Data Storage
We run the experiment from 15:00 utc +0 on 12/01/2022 till 01/05/2022 at
15:00 utc +0. Thus, the total number of days is 110.

Every day at 00:00 utc +0, we restarted each server and we switched its
version from tls1.2 to tls1.3 and vice versa12. In this way, we obtained the
same amount of data for both protocols.

Initially, only 16 machines from Amazon were part of the experiment.
Considering all machines, we sent/received 10.88 requests/second and each
resip provider was processing 2.18 requests/second. We used these rates
to remain below the limits imposed on us by our resip subscriptions. On
24/01/2022 at 19:00 utc +0, we added 6 machines from Azure to our pool.
At first, we kept the same rates per client/server. Hence, the rate was 14.96
requests/second and the ratio per resip provider was 2.99 requests/second.
On 25/01/2022 at 16:00 utc +0, Bright Data stopped our access to their
network and ended our subscription. Section 4.2.1 provides the motivation for
this choice. Since it was not possible to restore this service, on 02/02/2022,
we eliminated it from our experiment. We adjusted the rates accordingly
and since then, 9.90 requests/second were sent/received for the rest of the
experiment. Each resip provider processed 2.48 requests/second.

On 07/03/2022 at 00:00 utc +0, we started collecting more network
information to study the variability of our measurements. For each connection,
we measured the rtt of all the tcp exchanges. On 14/04/2022 at 00:00 utc

10We could instrument the server to identify p1 from its decrypted content. However,
we want to be as less invasive as possible, providing a network monitoring approach, and
not obliging to modify the server code.

11The reader may wonder why we are not using the arrival of the ack packet of p1
as the second point of measurement (dt4 and rt4, in Fig. 4.2). In the case of a resip
connection, there are two distinct tcp connections (client-superproxy and gateway-
server, as explained in Section 3.2). The kernel is in charge of creating the ack packets
and these are sent at the arrival of p1 at the gateway, without synchronization with the
client-superproxy tcp connection. Hence, the difference rt5-rt4 represents the distance
between gateway and server and not the one between client and server.

12Later on in the section, we discuss the effects of this choice on the data collection.

48 4.2. Ground Truth Experiment Setup

Table 4.3: Attributes of a connection in the rtt_ds dataset

Attribute Attribute explanation

client epoch Epoch (UTC+0) in which the client sends the request [s]
client code Two-digits code identifying the client starting the connection
resip code One-digit code identifying the resip provider or direct connections

server code Two-digits code identifying the server receiving the request
superproxy ip ip address contacted by client

gateway ip ip address the server sees as the source address of the request
tls tls version run by the server at the time of the request

rttT CP Measured rtt at the tcp layer (first exchange) [ms]
rttT LS Measured rtt at the tls layer (between p1 and p2) [ms]

min rttT CP Minimum measured rtt at the tcp layer [ms]
min position Position in the stream of the minimum rtt at the tcp layer
max rttT CP Maximum measured rtt at the tcp layer [ms]

max position Position in the stream of the maximum rtt at the tcp layer
ttl Time-To-Live of the first client packet received by the server

+0, we began logging additional network information, the Time-To-Live (ttl)
corresponding to the first client tcp packet received at the server.

Occasionally, some machines were restarted by the cloud providers and this
resulted in small losses of data. We also had some brief synchronization issues,
caused by using one port for both tls1.2 and tls1.3 server programs and
switching among them at midnight. Fortunately, this has been an extremely
rare event. It has happened, on average, only 1.6 times per machine over the
110 days, with an average loss of only 0.17% of the traffic per machine.

We have created a database with postgresql [108] to gather the data
from the experiment. In the database, we keep a unique record for each
connection. This record includes information collected at the client and the
server as well as the network measurements.

We define the collected dataset as rtt_ds. Table 4.3 presents, with the
corresponding explanation, the attributes we consider for each connection in
our dataset. Moreover, we enrich the information about these connections
thanks to external databases. We study the geolocation of the ips we collected
thanks to the MaxMind GeoLite2 databases [70]. These databases contain

Chapter 4. Round Trip Time Measurements to Identify Scrapers behind
Residential ip Proxies 49

information about the city, country and Autonomous System Number (asn)
of ips. We unify all the information for our ips in the three databases into
one called geolocalization_ds. The accuracy of the MaxMind database
has been questioned in the past [72], [73]. However, it is recognized that its
data is reliable at the country level [74]–[76]. In our analyses, we are not
interested in the precise location of each ip but we consider the geolocalization
information at a high granularity. Thus, even if the geolocalization_ds
has limitations in accuracy, they do not influence our results.

In Section 7.2.6, we use the ttl of each client connection to characterize
the oses of gateways, which should be residential devices, among different
providers. To associate each ttl to the corresponding os, we take advantage
of fingerprints_ds. This dataset links tcp/ip fingerprinting information
with the corresponding os. Lastovicka et al. built it in [109] thanks to
measurements performed in an academic wireless network and, thanks to this,
it characterizes many classes of residential devices. The dataset is available
at [110].

In total, our clients have generated close to 98M connections but, for the
reason explained before, some observed connections were incomplete. A client
querying a server when this last machine was down produced a logged request
only on the client side (around 4M). Similarly, machines not part of the
experiment (e.g. scanners and crawlers) sent requests to our servers and, for
those, we have no matching record in the client logs (around 200K). Moreover,
the sniffer program restarts every hour, and incoming connections arriving
at the moment of the switch could have incomplete rtt measurements. We
only create a record in our database for connections that exist in both the
client and server logs and for which we have at least the measurement of
the rttT CP of the first exchange and the measurement of the rttT LS. As a
result, we use 95% of the total amount of connections started by the clients
which sum up to 92,712,461 connections (9.76 entries/second for 110 days).
In the next section, thanks to these connections, we show that our detection
technique is able to detect when scrapers exploit resip services. Moreover, in
Chapter 7, we provide ip-based analyses of the same connections. Thanks to
this examination, we introduce some novel findings about the inner workings
of resip providers.

50 4.3. Analyses of the Ground Truth Experiment Dataset

0 50 100 150 200

0

1

2

3

·105

Mean speed of packets (km/ms)

#
co

nn
ec

tio
ns

Europe
North

America
South

America
Asia

Africa
Oceania

(a) Bright Data

0 50 100 150 200

0

1

2

3

·106

Mean speed of packets (km/ms)

#
co

nn
ec

tio
ns

Europe
North

America
South

America
Asia

Africa
Oceania

(b) Oxylabs

0 50 100 150 200

0

1

2

3

4
·106

Mean speed of packets (km/ms)

#
co

nn
ec

tio
ns

Europe
North

America
South

America
Asia

Africa
Oceania

(c) Proxyrack

0 50 100 150 200

0

1

2

3

·106

Mean speed of packets (km/ms)

#
co

nn
ec

tio
ns

Europe
North

America
South

America
Asia

Africa
Oceania

(d) Smartproxy

0 50 100 150 200

0

1

2

3

4

·106

Mean speed of packets (km/ms)

#
co

nn
ec

tio
ns

Europe
North

America
South

America
Asia

Africa
Oceania

(e) Direct connections

Figure 4.3: Distribution of the mean speed of packets for each resip provider
and direct connections.

4.3 Analyses of the Ground Truth Experi-
ment Dataset

4.3.1 Packet Average Speed Analysis
We designed our experiment to be as close as possible to a real-world scenario
in which a scraper sends requests behind a resip infrastructure. To achieve
this goal, we use machines located around the world and acquired from
different providers. Moreover, we use resip services commonly exploited by
scrapers and we perform connections using the public Internet.

Our detection technique is based on the rtt mirroring the distance between
the parties involved in a connection13. However, the rtt is a measure of time.
To transform it in a distance, we need to consider the speed at which packets
move. If this speed had a common mean value, there would be a proportional
factor between each rtt value and the corresponding traveled distance of a
packet. This factor would be common to all the connections and this would
favor the success of our detection technique. However, the real world does

13We assume the processing time at the client to be negligible with respect to the
transmission time.

Chapter 4. Round Trip Time Measurements to Identify Scrapers behind
Residential ip Proxies 51

not present perfect conditions. As acknowledged by Weinberg et al. [87], an
idealized common value for the average speed does not exist in practice for
connections across different areas of the world.

This section highlights the great diversity of the hypothetical average
speed of packets. This convinces us that the results presented afterward are
not only valid for certain kinds of "well-behaving" connections. Instead, our
results have been obtained on a wide range of operational network conditions
and are thus representative.

We propose a study of the average speed of packets between our gateways
and servers. The definition of average speed is the ratio between space and
time. The space, in our context, is the distance between each gateway and
a server. We acquire the location of each gateway thanks to geolocal-
ization_ds. We calculate the distance between each gateway and a server
thanks to the Haversine distance [111], which approximates the distance on
Earth between two points given their coordinates. We consider the time
from a gateway to a server by dividing by half the rttT CP recorded in the
corresponding connection.

We analyze individually the connections of each resip provider. For each
provider, we consider all the rttT CP measurements acquired between each
server and each gateway that sent requests to it. Moreover, we perform the
same analysis for the direct connections between our clients and servers. We
exclude the combinations of client and server in which the machines are in
the same location. We cannot calculate the distance between them since they
share the same coordinates. We use, once again, the Haversine formula to
obtain the distance between each client and each server. We collect all the
direct connections among each couple of machines and we calculate the time
as half of the rttT CP of the connection.

Fig. 4.3 shows the histograms of the obtained results. On the x-axis, we see
the average speed of packets in km/ms. On the y-axis, we find the number of
connections showing that speed in the dataset. The average speeds are shown
in different colors depending on the continent in which the sender is located.
In this figure, we do not consider the cases where the value of the speed is
higher than 200km/ms, for better visualization, or where the continent is not
available in the database. These two cases together correspond to 0.08% of all
the considered connections and thus we consider their contribution negligible.

We can see how the distribution of the speed for each resip provider
(Fig. 4.3a-4.3d) ranges from 0 to 150km/ms. Moreover, we see that the
distribution for the connections from gateways of each continent follows
a shape comparable to the global one. These curves highlight the great
variability of the average speed of packets in our monitored connections. Our
dataset is clearly representative of the real conditions of the Internet in which

52 4.3. Analyses of the Ground Truth Experiment Dataset

0 500 1,000 1,500 2,0000

2

4

6

8
·103

δRT T (ms)

#
co

nn
ec

tio
ns

(a) Bright Data

0 500 1,000 1,500 2,0000

1

2

3

4

5

·104

δRT T (ms)

#
co

nn
ec

tio
ns

(b) Oxylabs

0 500 1,000 1,500 2,0000

2

4

6

·104

δRT T (ms)

#
co

nn
ec

tio
ns

(c) Proxyrack

0 500 1,000 1,500 2,0000

2

4

6
·104

δRT T (ms)

#
co

nn
ec

tio
ns

(d) Smartproxy

0 5 10 15 200

0.5

1

1.5
·107

δRT T (ms)

#
co

nn
ec

tio
ns

(e) Direct connections

Figure 4.4: δRT T distribution for each resip provider (interval 0-2000ms)
and direct connections (interval 0-20ms).

multiple factors affect the time it takes for a packet to reach its destination.
Fig. 4.3e illustrates the results for the direct connections. We can see that

the mean speed value ranges between different values as in the previous cases.
However, the values in the range are higher in this second study. Connections
coming from machines in North America only present values above 80km/ms.
Connections from European locations have mostly values between 75 and 150
km/ms. The mean speed values have more variability for the connections
coming from other continents. This analysis tells us that the connections
between our client and servers have better connectivity levels than the ones
between gateways and servers. We expected these results since the machines
are located in well-connected data centers, as opposed to gateways machines,
which are in unknown conditions. However, even in this case, the mean speeds
do not end up with a single value. This enables us to say that our setup has
no apriori bias that could compromise our experiment.

4.3.2 δRTT Values Distribution
In Fig. 4.4, we show the δRT T values for each proxy and for direct connections.
On the x-axis, we see the δRT T value in milliseconds of a connection. On the

Chapter 4. Round Trip Time Measurements to Identify Scrapers behind
Residential ip Proxies 53

0 500 1,000 1,500 2,0000

20

40

60

80

100

δRT T (ms)

Pe
rc

en
ta

ge
of

co
nn

ec
tio

ns

Threshold
Bright Data

Oxylabs
Proxyrack

Smartproxy
Direct connections

Figure 4.5: Cumulative Distribu-
tion Function of the δRT T of the re-
sip and direct connections for the
intervals 0-2000ms.

Table 4.4: Percentages of connec-
tions for different δRT T values (dc
= Direct Connections, bd = Bright
Data, ol = Oxylabs, pr = Prox-
yrack, sm = Smartproxy).

δRT T dc bd ol pr sm
25 99.91 1.03 0.47 0.06 0.35
50 99.97 5.45 1.11 0.13 0.84
75 99.98 12.17 2.18 0.25 1.71

y-axis, we find the number of connections that have that specific value of
δRT T . Areas in the plots with different backgrounds are highlighted to better
understand the analysis presented in Section 4.3.6.

To better visualize the δRT T values of the majority of the connections,
we consider different x-axis ranges. 97% of direct connections have an δRT T

value lower than or equal to 20ms. In Fig. 4.4e, we use the range [0,20]ms for
the x-axis of these connections. For resip connections (Figs. 4.4a-4.4d), we
consider instead the rtt differences in the range [0,2000] ms, which amounts
to the same percentage of connections.

We can see how for direct connections (Fig. 4.4e), the difference is always
close to zero. In the resip plots (Figs. 4.4a-4.4d), instead, we can see how
the difference varies for resip connections. It is very important to note that
the maximum value of the δRT T (x-axis) in Fig. 4.4e is 100 times smaller
than the ones in the other graphs. The maximum value on the y-axis is at
least 3 orders of magnitude larger for direct connections than for resip ones.
Yet, the total amount of connections is similar14. These results clearly show
that direct and resip connections have dramatically different distributions of
δRT T .

We need to choose a threshold above which we can safely categorize a
connection as a resip one. To find this value, we need to solve an optimization
problem where we want to minimize both the False Positive (fpr)15 and

14Except for Bright Data for which we have less traffic due to the early end of the service,
as explained in Section 4.2.1.

15Direct connections flagged as resip ones over the total amount of direct connections.

54 4.3. Analyses of the Ground Truth Experiment Dataset

False Negative (fnr)16 rates. Our technique aims to be used by e-commerce
websites trying to stop the scraping of their content. The goal of these
websites is to maintain the fpr as low as possible while doing so. To mirror
this prevalence, we privilege the minimization of the fpr above the one of
the fnr. However, we set as a constraint that the fnr value should not be
higher than 2%, to maintain the detection efficiency in stopping scrapers.

After experimenting with different values, we can conclude that 50ms is
the best value for our threshold. Indeed, choosing this threshold we obtain a
fpr of 0.04% and a fnr of 1.93%. The corresponding accuracy, calculated as
the number of correctly classified connections on the total amount, is 99.01%.

Fig. 4.5 helps us visualize the difference between direct and resip connec-
tions with respect to the 50ms threshold. It shows the Cumulative Distribution
Function (cdf) of the δRT T of the resip and direct connections. The x-axis
range shows the δRT T (in the same range as in Fig. 4.4), the y-axis the
percentage of connections. A black dashed line shows the chosen value for
the threshold. We can clearly see that the cdf of direct connection reaches
almost 100% before the threshold. On the other hand, the cdfs of the resip
providers grow much slower and have most of their connections way above
the threshold.

Table 4.4 helps us better understand what happens to the different distri-
butions near the threshold. At 25ms, the percentage of direct connections
having this δRT T value or below is 99.91%. For each resip provider, the cor-
responding percentages are close to or below 1%. We see that the percentage
for direct connection increases to 99.97 at 50ms. For resip connections and
the same value of δRT T , the percentage for Bright Data significantly increases
(factor of 5.29). For the other providers, the percentage is slightly above the
double previous value. We can deduce that Bright Data is more efficient and
stealthy than other providers. We believe that could be associated with their
superproxy management (Section 7.2.4). Considering 75ms as δRT T value,
the percentage for direct connections increases by just 0.01%, while resip
percentages, especially Bright Data one, increase consistently.

This table shows us that 50ms is a good compromise value for the threshold.
Almost all direct connections have a δRT T value below it, and after this value
the increase in the true positive ratio is small. At the same time, the
percentages of false negatives are still restrained. A higher threshold (75ms)
would bring a much more consistent number of undetected resip connections.

Chapter 4. Round Trip Time Measurements to Identify Scrapers behind
Residential ip Proxies 55

0 10 20 30 40 50 600

20

40

60

80

100

δRT T (ms)

Pe
rc

en
ta

ge
of

co
nn

ec
tio

ns

Threshold
Maximum rttT CP

Minimum rttT CP

(a) Direct connections

0 25 50 75 100 125 1500

5

10

15

δRT T (ms)

Pe
rc

en
ta

ge
of

co
nn

ec
tio

ns

Threshold
Maximum rttT CP

Minimum rttT CP

(b) Oxylabs

0 25 50 75 100 125 1500

5

10

15

20

δRT T (ms)

Pe
rc

en
ta

ge
of

co
nn

ec
tio

ns

Threshold
Maximum rttT CP

Minimum rttT CP

(c) Proxyrack

0 25 50 75 100 125 1500

2

4

6

8

10

12

δRT T (ms)

Pe
rc

en
ta

ge
of

co
nn

ec
tio

ns

Threshold
Maximum rttT CP

Minimum rttT CP

(d) Smartproxy

Figure 4.6: Cumulative Distribution Function of the δRT T (interval 0-150ms
for resip connections and 0-60ms for direct ones) of the connections when
the minimum and maximum rttT CP are used to compute the δRT T .

4.3.3 Network Delays Impact
Our approach determines if a connection passes through a resip provider
by measuring the δRT T . This measurement is conducted on packets sent and
received on the Internet. Thus, network delays could, possibly, negatively
impact our approach.

In our dataset, we see connections with negative values for the δRT T . The
percentage of the total amount of connections per provider is 2.9%, 0.9%,
1.8%, 0.2%, 1.4%, respectively for direct connections, Bright Data, Oxylabs,
Proxyrack and Smartproxy. A negative value of δRT T occurs when the rttT CP

is higher than the rttT LS. This happens when the syn-ack and/or the ack
packets of the tcp connection are delayed but the subsequent packets in the
tcp connections are not.

It can also happen that only the tls packets are delayed while the initial
tcp ones are not. In this case, the δRT T increases. This case is visually shown

16resip connections flagged as direct ones over the total amount of resip connections.

56 4.3. Analyses of the Ground Truth Experiment Dataset

by the long tails of the distributions in Fig. 4.4. We note that, in the case
of resip connections, the packets participating in the tls handshake have
a longer "journey" than the ones used to compute the rttT CP . Indeed, the
packets travel from the client, through superproxy and gateway, to the
server. By contrast, in a direct connection, the packets only travel between
gateway and server. Hence, it is more likely to observe an increase of the
δRT T caused by temporary network congestion rather than a decrease, for
resip connections.

Fortunately, the above-mentioned situations, as reflected by the data of
our experiment, are rare. To better understand how the variability of the
network could influence our technique, we present a study of the variation of
the rttT CP values per connection.

In our dataset, we have 45,902,917 connections for which the rtt of each
tcp packet sent by the server and the corresponding ack are recorded. These
connections were generated in the last 56 days of the experiment. For each
connection, we identify the minimum value of rttT CP and its position within
the stream as well as the maximum rttT CP value and its corresponding
position.

For our proxy detection technique to work, the ideal case is to have the
minimum rttT CP in the first exchange and/or to have a low variability of its
value throughout the connection. Our method could work taking as rttT CP

a rtt value of later tcp exchanges (e.g. the minimum one of an entire
connection). However, in this scenario, it would not enable us to detect the
resip proxy at the very beginning of the connection (to possibly block it).

We find the minimum rtt in the first exchange in 56% of the connections
and, generally, the variability is low (relative to our use case). More than
half of the connections (53%) present a difference between the maximum and
minimum rttT CP lower or equal to 50ms (our chosen threshold).

In 29% of the connections, the first rttT CP is the maximum one among
all the exchanges. Even in these adversarial cases, the δRT T remains above
the threshold for most connections, enabling our technique to work correctly.

Fig. 4.6 helps us to better visualize what happens to the δRT T when
different rttT CP values are used to calculate the δRT T .

The graphs represent the cdfs of the δRT T (=rttT LS-rttT CP) when
the rttT CP used to calculate it is the minimum (dashdotted lines) or the
maximum one (full lines). The collection of the minimum and maximum
values was performed in the second phase of the experiment when Bright Data
had already stopped our subscription. Thus, it is not possible to represent
the corresponding curves for this provider. We only show the δRT T values
between 0 and 150ms for resip connections and the values between 0 and 60
ms for direct ones. In this way, we can better appreciate the distributions

Chapter 4. Round Trip Time Measurements to Identify Scrapers behind
Residential ip Proxies 57

Table 4.5: Analysis of the connections in which client, server, gateway
and superproxy are not further than 1000km from each other.

Provider δRT T > 50ms Total Connections
Bright Data 64.79% 22,582

Oxylabs 86.92% 12,887
Proxyrack 62.03% 79

Smartproxy 87.08% 14,314
Total 76.90% 49,862

near the 50ms threshold (dashed line).

As we can see in Fig. 4.6a, direct connections always present the large
majority of connections below the threshold, no matter whether we use the
maximum or the minimum value of the rttT CP . For the resip providers
(Fig. 4.6b-Fig. 4.6d), we can also see that independently of the used rttT CP ,
most of the connections remain above the threshold. These figures, clearly
show us that our technique remains valid, independently of the considered
rttT CP .

Indeed, if we consider the very unlucky case where all first rttT CP values
would be the highest observed of that connection, we obtain a fpr of 0.01%,
a fnr of 9.68%, and an accuracy value of 92.78%. Naturally, the percentage
of false negatives increases with respect to our previous results (1.93%), but
the accuracy remains high, even in this worst-case scenario.

When considering the minimum rttT CP , more than 99% of the connections
present a positive δRT T for all providers and direct connections. When the
maximum rttT CP is considered, the percentage of negative δRT T increases
to 12%, 6.9%, 5.8% and 6% for direct, Oxylabs, Proxyrack and Smartproxy
connections respectively. The value for direct connections is surprisingly high.
However, the majority of these negative δsRT T (65.92%) have a value of -1ms,
showing that the rttT LS and rttT CP have still very similar values in this
scenario.

The results of this section show that our technique is robust and can con-
fidently detect resip connections even in very unlikely worst-case situations.

58 4.3. Analyses of the Ground Truth Experiment Dataset

4.3.4 Machines Proximity Impact
Our detection technique is based on the correlation between the rtt and the
distance traveled by packets. We assume that the rttT LS is higher than the
rttT CP for resip connections because the tcp packets sent by the server
stop at the gateway. By contrast, the tls ones, after reaching this machine,
traverse the resip infrastructure and are then forwarded by the superproxy
to the client.

However, we can consider a scenario in which client, server, gateway
and superproxy machines are in proximity to each other. In this situation,
the overhead given by the physical distance of the machines taking part in
the connection is small. Naturally, we could think that this influences the
δRT T calculation and thus our detection.

For each connection, as explained in Section 4.2.4, we collect the gateway
and the superproxy ip addresses. Thanks to the MaxMind GeoLite2
database [70], we know the latitude and longitude of each of these ips.

We consider those connections where client and server are in the same
location and in which gateway and superproxy are not further than
1000km (i.e. 10ms apart at a speed of 100km/s) from this location and from
each other. We calculate the distances between the parties thanks to the
Haversine formula [111].

Table. 4.5 shows the total number of connections satisfying the criteria
and how many of them would correctly be labeled as resip, considering our
50ms threshold.

We can see that the total number of connections is low, especially for
Proxyrack. In total, they account for 49,862 connections, which is 0.07% of
the total amount of resip connections. This information tells us that, even
when clients and servers are close to each other, it is not common that the
superproxy is close to that location and/or the assigned gateway is in
near proximity to the other machines.

Considering all the providers together, we can see that still 76.90% of the
considered connections have a δRT T higher than our chosen threshold (50ms).
This tells us that, even in an unlikely event where all the machines are in near
proximity, our technique still works relatively well. The exchanges between
two additional machines (gateway and superproxy) increase the δRT T

enough for us to detect the presence of a resip infrastructure in more than 3
out 4 cases.

The number of false negatives increases with respect to the global data
(23.09% against 1.93%). However, only 3.07% of these values present a δRT T

lower than 20ms. This is the value under which we can find 97% of the δRT T

of the direct connections (Section 4.3.2). Hence, this data shows that there is

Chapter 4. Round Trip Time Measurements to Identify Scrapers behind
Residential ip Proxies 59

0 500 1,000 1,500 2,0000

20

40

60

80

100

δRT T (ms)

#
co

nn
ec

tio
ns

Threshold
tls1.2
tls1.3

(a) Bright Data

0 500 1,000 1,500 2,0000

20

40

60

80

100

δRT T (ms)

#
co

nn
ec

tio
ns

Threshold
tls1.2
tls1.3

(b) Oxylabs

0 500 1,000 1,500 2,0000

20

40

60

80

100

δRT T (ms)

#
co

nn
ec

tio
ns

Threshold
tls1.2
tls1.3

(c) Proxyrack

0 500 1,000 1,500 2,0000

20

40

60

80

100

δRT T (ms)

#
co

nn
ec

tio
ns

Threshold
tls1.2
tls1.3

(d) Smartproxy

Figure 4.7: Comparison of the Cumulative Distribution Function of the
δRT T for connections with tls1.2 vs tls1.3 (interval 0-2000ms).

still a significant difference between direct and resip connections.

4.3.5 The Impact of tls Versions on the Threshold
In our experiment, we perform connections using tls1.2 or tls1.3. In both
connections, we apply the same principle to perform our measurements, as
described in Section 4.2.3. However, since the two protocols are different,
different tls packets are considered to calculate the rttT LS.

We could fear that these different choices in the considered packet could
affect the registered δRT T . For example, the processing at the client side
to generate the packet p2 could be longer/shorter for one tls protocol
than the other. In this case, two servers running different tls versions and
implementing our detection method with the same threshold would produce
different accuracy levels of the technique.

In this section, we analyze if the above-mentioned scenario takes place
and thus if the tls version run by the server impacts our technique. We have
studied separately the communications performed using tls1.2 and tls1.3.

60 4.3. Analyses of the Ground Truth Experiment Dataset

0 500 1,000 1,500 2,0000

50

100

150

200

250

δRT T (ms)

#
co

nn
ec

tio
ns

Virginia-South Africa
Ireland-South Africa
Oregon-South Africa

Figure 4.8: δRT T values distribution for three representative client-server
paths (Proxyrack).

Fig. 4.7a-Fig. 4.7d show, with two different colors and patterns, the δsRT T

cumulative distribution functions for tls1.2 and tls1.3 for each provider.
We have maintained the same x-axis ranges used in Fig, 4.5. The shapes of
both curves overlap and they are in line with the global distributions. These
results clearly show that the tls version run by the server does not impact
our measurement.

4.3.6 δRTT Distribution Shapes
The attentive reader can see that different providers show distinctive shapes
in the δRT T values distributions (Fig. 4.4). Bright Data distribution has
peaks in the intervals 50ms-210ms and 250ms-370ms, identified with different
backgrounds in Fig 4.4a. Fig. 4.4b and Fig. 4.4d show Oxylabs and Smartproxy
distributions of δRT T . The curves present similar Gaussian shapes with
oscillations. The curves present similar shapes. In Fig. 4.4c we can see
the distribution of the δRT T in Proxyrack connections. It displays peaks
(areas with different backgrounds) in the intervals 140ms-220, 220ms-330 and
330ms-400ms.

The cause of these peculiar shapes can be identified by considering the
relative geographic position of the client and the server involved in each
connection.

For each resip provider, we define S as the set of all collected connections
and Sij the subset of connections sent to server j by client i. For each Sij , we

Chapter 4. Round Trip Time Measurements to Identify Scrapers behind
Residential ip Proxies 61

examine the distribution of the δsRT T . The results show that the shapes of
the distributions differ from the ones for the whole set S, shown in Fig. 4.4.
In particular, each distribution shows a peak of connections in a specific small
range of δRT T values and low values for the rest of the x-axis. Studying the
individual shapes and their composition, we can conclude that the peaks are
created by the overlap of distributions with distinctive shapes shifted on the
x-axis.

Fig. 4.8 shows representative δsRT T distributions of three Sij from Prox-
yrack. Each of them has a peak in a different interval among the [140-220]ms,
[220-330]ms, and [330-400]ms in which we previously noted the peaks (areas
with different backgrounds in Fig. 4.4c). The not shown Sij present δsRT T

distributions with shapes and values similar to those in the figure. Since∑︁
i,j Sij = S, Fig. 4.4c is the sum of the δRT T distributions of each Sij, which

have the shapes provided in Fig. 4.8. The peaks of Fig. 4.4c are the result of
the superposition of the distributions of each Sij, which have similar shapes
but are shifted along the x-axis. For the distributions of the other providers,
the same schema takes place.

We need to remember that the rttT LS is a measure of the distance
client-server and the rttT CP is a measure of the distance gateway-server,
in the case of resip connections. Thus, the δRT T , which is the difference
between rttT LS and rttT CP , gives us a measure of the distance between
client and superproxy, plus the resip overhead and the distance between
superproxy and gateway. The differences in the δRT T distributions of
the Sij suggest that the distances client-superproxy and superproxy-
gateway are mostly influenced by the client location, instead of the server
one. Indeed, studying the distributions of each Sj, the subset of connections
sent to server j by all clients, we find shapes similar to the ones in Fig. 4.4
and we do not observe differences among them, contrary to what we see
considering the Sij.

Thus, the bigger the shift on the x-axis of a peak of an Sij is, the bigger
the distances among client, superproxy and gateway likely are. We believe
this happens when there are no available gateway and/or superproxy in
the proximity of the client.

4.3.7 Ground Truth Experiment Discussion
In the previous subsections, we have investigated different aspects of the
rtt_detection technique thanks to the connections in rtt_ds. Hereafter,
we discuss the results of our analyses in terms of the validity and feasibility
of the technique.

Thanks to our analyses, we can see that the δRT T values of resip connec-

62 4.4. Client Environment Analysis

tions are substantially higher than the ones of direct connections. 97.05% of
the direct connections have an δRT T lower than 50ms, our chosen threshold.
In the same interval of δRT T ([0,50]ms), Bright Data, Oxylabs, Proxyrack and
Smartproxy connections account for, respectively, the 5.35%, 1.08%, 0.13%
and 0.81% of the total. The accuracy of our method remains high even in
conditions of network delays (Section 4.3.3). This happens even when client,
server and superproxy and gateways are in close proximity (Section 4.3.4).
Different tls versions on the server do not impact our measurement (Sec-
tion 4.3.5). This data shows that the technique is robust in differentiating
resip and direct connections from the same device.

The rtt_detection technique can be easily implemented on existing
servers, without modifying existing software. Indeed, we can perform the
measurement outside the server with a sniffer program, as we do in our setup.
To mitigate identified resip connections, the sniffer program can signal the
result of its analyses to a mitigation software of choice.

To efficiently communicate the detection verdict to another software, the
sniffer needs to promptly capture and analyze the tcp and tls packets. For
this reason, the machines running the rtt_detection technique need a
memory capacity that enables this operation on top of the one needed to run
the server program. The memory consumption of the sniffer depends on the
software used to implement it and the average number of concurrent requests
that the server program can handle.

Finally, we can apply the rtt_detection in the majority of Internet
transactions. The technique works for https connections and, nowadays,
more than 79% of websites use secure encryption. Moreover, this percentage
grows every year [112]. Furthermore, as we saw in Section 4.3.5, the technique
can work with both tls1.2 and tls1.3 servers. This information tells us
that it is feasible to implement the technique to protect most web domains.

4.4 Client Environment Analysis
In the previous sections, we presented the Ground Truth Experiment and
the results we collected running it. Thanks to this experiment, we were able
to assess that the δRT T is significantly higher for resip connections than
direct ones starting from the same device. In this section, we focus on direct
connections and the possibility that the client environment in which they are
generated impacts our detection.

Our technique measures the rtts at the server side. Hence, beyond
reflecting the distance traveled by packets, the rttT LS includes the client
application layer processing time. In the Ground Truth Experiment setup,

Chapter 4. Round Trip Time Measurements to Identify Scrapers behind
Residential ip Proxies 63

we performed connections among well-connected data center machines using
Python scripts. This is not a common way for end users to connect to websites.
Generally, they utilize personal devices, such as laptops and mobile phones.
They navigate the Internet thanks to web browsers and can leverage hotspots.
In Section 4.4.1, we provide evidence that these factors do not impact our
measurement.

Moreover, the rtt_detection technique does not recognize only resip
connections. It identifies all proxies that break the tcp session while keeping
the tls end-to-end between these two parties. resips are not the only proxies
behaving in this way.

An example of this is ssh forwarding. Both local and remote forwardings
do not provide end-to-end tcp connections and are thus detected with our
method. Specific vpns (e.g. WireGuard protocol [113]) and Tor [114] behave
in the same way and are thus detected as resip by our technique.

Furthermore, Mobile tcp Terminating Proxies (mttps) are another exam-
ple of proxies that break the tcp but not the tls session [95]. mttps belong
to specific mobile Internet Service Providers (isps) and break the tcp session
between the device and a server at the antenna. This enhances performance
since the probability of packet loss is higher in the electromagnetic wave
transmission between the device and the antenna than in the wired part of
the connection. Breaking the tcp, the device needs to resend lost packets
only for the short path between the antenna and the device itself.

On the other hand, there are network artifacts that do not behave like
resip by design. A widely deployed defense for companies is the Web
Application Firewall (waf). wafs need to break tcp and tls to study the
application content and assess if the communication is allowed to continue.
Thus, if a client is behind a waf, both tcp and tls between client and server
are broken and we see comparable rttT CP and rttT LS measurements. The
rtt_detection technique does not declare these connections as resip.

Secure tunneling solutions using Network Address Translation (nat) and
ipsec do not break tcp, but leverage encapsulation. This technique is
nowadays widely used both in private and commercial networks. Since they
do not break the tcp connection, the rtt_detection technique does not
classify them as resip requests.

We need to reach a better understanding of how much delay non resip
detected proxies add to the δRT T with respect to the direct connections and
resip ones. In this way, we can understand if we can discern between the
connections coming from these proxies and the ones from resip and tune our
threshold accordingly to limit false positives. For this reason, we test direct
connections with varying client-side environment conditions (Section 4.4.1).

While it is crucial to understand how various factors impact the δRT T , it

64 4.4. Client Environment Analysis

is also important to understand the probability of having these factors in the
connections. In Section 4.4.2, we take advantage of real-world connections
to assess this probability. Our preliminary results suggest that the usage
of mobile isps that leverage mttps causes on average one-third of the false
positives. Moreover, in those cases, the additional delay in the δRT T is smaller
than the one provoked by the resip infrastructures and other identified tcp
terminating proxies. This opens the door to the possibility of discerning when
each of the two contributions increases the δRT T .

4.4.1 Preliminary Client Environment Analysis
In this section, we carry out a preliminary analysis of client-side factors and
their impact on the rtt_detection technique.

Experimental Setup

A large number of devices, types of networks, web browsers and tunneling
techniques exist nowadays. It is not feasible to consider all the available
combinations. For this reason, we consider this experiment to be explorative
and not exhaustive. We chose an initial subset of the available combinations,
based on the possibilities we had at the time we performed the test. We
consider this a starting point in our analysis. Furthermore, the approach we
adopt is cumulative, thus, it is possible to test other combinations in the
future and evaluate the results with the ones obtained thanks to this first
initial sample. We leave the expansion of this analysis as a future work for
this thesis.

For this experiment, we use a personal computer and a mobile phone as
client machines. With these devices, located in France, we query one of the
servers of the Ground Truth Experiment (Section 4.2.2) in the United Arab
Emirates. The server runs the rtt_detection technique.

We perform the connections with different configurations. For each con-
figuration, we send 20 connections to the server which is running tls1.2. As
explained in Section 4.3.5, the tls version does not impact the measurement
hence this choice does not bias the results.

With the personal computer, we connect to the Internet leveraging three
different setups. In the first one, the personal computer reaches the Internet
thanks to a 5ghz Wi-Fi signal from a residential access point. In the other
setups, we take advantage of the mobile device included in the experiment
and we use it as a hotspot. The personal computer has access to the Internet
thanks to this. First, the mobile phone is connected to the 5ghz Wi-Fi signal
presented above, then to the 4g network thanks to the French Provider sfr

Chapter 4. Round Trip Time Measurements to Identify Scrapers behind
Residential ip Proxies 65

[115]. In this way, we distinguish the contributions on the δRT T of the wired
and the sfr mobile networks as well as the impact of performing hotspots.

We test the above-mentioned settings using no vpns, Tor [114] and
Nordvpn [116]. We use it with the WireGuard protocol and we leverage
their desktop application to establish the vpn. We use these connections to
benchmark the contributions of detected non resip connections. For these
connections, we randomly choose a new exit location for each request.

We perform connections using two different browsers, Google Chrome
[117] and Microsoft Edge [118]. These browsers are among the most used
by genuine users [119]. For the Tor connections, we use the Tor Browser.
We manually perform the queries to the server, to reproduce a real user
interaction. We also send queries with Python [101] scripts. We use them as
a benchmark to assess the delays introduced by web browsers.

For the mobile device, we test two types of networks: Wi-Fi and 4g (from
sfr). We query the server using no vpn and the Google Chrome Browser.
We perform these connections to evaluate the delay of the mobile network
without the hotspot contribution.

Results

Table 4.6 provides a summary of all the tested combinations and the results
of the measurement. We present the median value plus or minus the median
absolute deviation of the twenty collected δRT T values. Hereafter, we use
the different colors of the cells to help read the table and thus interpret the
results.

When examining the combinations where no vpn is used and connections
are made via Wi-Fi (light blue and light green cells), we observe that the δRT T

remains below the threshold of 50ms for both devices, even when using the
Wi-Fi hotspot. However, in the cases where connections are made through 4g
directly from the mobile device or via the hotspot and without using a vpn
(dark blue and dark green cells), the δRT T exceeds 50ms. This discrepancy
suggests that sfr (the mobile isp used in this experiment) utilizes tcp
terminating proxies, which contribute to the higher δRT T values observed in
these scenarios.

As expected, Nordvpn and Tor are detected as a resip when using Wi-Fi
(light gray and light orange cells). When connecting with Nordvpn and Tor
through 4g (dark gray and dark orange cells), the δRT T is generally higher
compared to when using the Wi-Fi (respectively light gray and light orange
cells). These findings indicate that Nordvpn, Tor, and the sfr mobile network
itself each contribute to a delay independently. In cases where a connection
involves two of these factors simultaneously, the delays associated with each

66 4.4. Client Environment Analysis

Table 4.6: Tested combinations to assess the impact of different factors on
false positives with the respective median value plus or minus the median
absolute deviation of the δRT T .

Device vpn Network Web Browser δRT T (ms)

Personal
computer

No vpn

Wi-Fi
Google Chrome 28±16.5
Microsoft Edge 13±6.5

Python 3±1

Hotspot (Wi-Fi)
Google Chrome 36±10
Microsoft Edge 32±15.5

Python 3.5±2.5

Hotspot (4g)
Google Chrome 117±56
Microsoft Edge 77±18

Python 52.5±6.5

Nordvpn

Wi-Fi
Google Chrome 127±4.5
Microsoft Edge 158±14.5

Python 140±20

Hotspot (Wi-Fi)
Google Chrome 127.5±1.5
Microsoft Edge 129±1.5

Python 124.5±5

Hotspot (4g)
Google Chrome 188±34
Microsoft Edge 170±8

Python 219.5±70.5

Tor
Wi-Fi Tor Browser 278±50.5

Hotspot (Wi-Fi) Tor Browser 982.5±274
Hotspot (4g) Tor Browser 888±183

Mobile
phone No vpn Wi-Fi Google Chrome 10.5±6

4g Google Chrome 51.5±14.5

Chapter 4. Round Trip Time Measurements to Identify Scrapers behind
Residential ip Proxies 67

factor are combined, resulting in a bigger δRT T .
We can observe that using a web browser introduces a delay compared to

using a Python script. This is evident in the tested combinations involving
browsers and Python (blue and gray cells). However, the median values of
the δRT T remain below the threshold when no other high-delaying factors are
present, such as 4g, Nordvpn, and Tor (light blue cells). This demonstrates
that the use of web browsers alone does not lead to false positives.

Furthermore, when using a hotspot to connect to a Wi-Fi signal, there is
an increase in the δRT T compared to a direct Wi-Fi connection (light blue,
light gray, light orange cells). However, neither this factor alone results in
δRT T values exceeding 50ms.

In addition to 4g connections, Tor and Nordvpn are the other sig-
nificant sources of false positives (gray and orange cells). Currently, the
rtt_detection technique identifies these connections as resip. To distin-
guish their respective contributions (resip and vpn/Tor), one approach is
leveraging the knowledge of the ip addresses of the exit nodes of these parties.
We can reach this knowledge by taking advantage of commercial databases
that provide this information (e.g. ipqualityscore [120]) and directly checking
the list of exit nodes for Tor. Another potential approach consists of perform-
ing Maximum Transmission Unit (mtu) analysis at the server side, expanding
upon prior studies to detect vpns [51], [121]. We leave this differentiation as
a future work after this thesis.

When considering only 4g as the delaying factor (dark green cell), we
observe that the δRT T exceeds the threshold. However, the delay introduced
solely by 4g is much smaller compared to the delays introduced by Nordvpn
and Tor when considered independently (light gray and light orange cells).

As previously discussed, isps employ mttps to enhance performance. Our
findings support this, as the delay caused by the 4g provided through sfr
is lower than in other cases. Moreover, the average value of 51.5±14.5ms is
close to the threshold. This suggests that, if this finding applies to other isps
using tcp terminating proxies, we could potentially mitigate false positives
caused by this setup by adjusting the threshold. Hereafter, we further explore
this hypothesis by considering real-world connections.

4.4.2 Detection on Real-World Scrapers Connections
In the previous section, we conducted an initial analysis of the client envi-
ronment factors that can impact the rtt_detection technique. In this
section, we leverage real-world connections to assess the probability of encoun-
tering such factors. Additionally, we explore the extent to which Mobile tcp
Terminating Proxies (mttps) contribute to this probability. Building upon

68 4.4. Client Environment Analysis

the results we obtained in the previous analysis, we explore the feasibility
of distinguishing between the contributions in the δRT T of resips and these
proxies.

The positive results of the Ground Truth Experiment helped us in convinc-
ing Amadeus it Group (Amadeus) to adopt the rtt_detection technique.
As described in Section 2.2.3, Amadeus offers various it solutions to airlines,
including products that enable passengers to make flight bookings. Web
scraping heavily impacts these solutions. Amadeus employs a third-party Bot
Detector to protect their systems. The Bot Detector intercepts each request
directed to the Amadeus booking domains and scrutinizes the request. If a
request matches the parameters of a bot signature, the Bot Detector responds
with a countermeasure. Otherwise, the request proceeds to the intended
booking domain.

The rtt_detection technique is based on measuring the rtts among
client, gateway and server. When a domain is protected by the Bot Detector,
this party acts as the server. Consequently, it becomes necessary for us to
conduct measurements on that end. We successfully convinced the third-party
company to integrate the rtt_detection technique into their Bot Detector.
This collaboration enables us to examine the effects of our technique on the
connections that reach Amadeus domains.

The Bot Detector registers the rttT CP and the rttT LS values for each
newly established connection. Amadeus has the option to utilize the δRT T ,
either independently or in conjunction with other indicators supplied by the
third-party company, to construct custom rules for specific pathways.

Experience shows that, by employing the rtt_detection technique to
protect Amadeus domains, the δRT T serves as a robust parameter for identi-
fying connections that traverse resips. Over the course of two representative
months, the δRT T was incorporated as a custom rule parameter in 74.32%
of the investigations. Indeed, during this period, a total of 148 rules were
established for domains targeted by scraping campaigns, with 110 of them
including the δRT T as a parameter.

As discussed in Section 4.4.1, various factors (specific vpns, Tor, mttps)
lead to false positives. Consequently, we do not deem it reliable to rely solely
on δRT T as a standalone parameter at this stage. It is crucial to determine
the percentage of traffic in which different factors contribute to false positives.
This understanding will aid in assessing their impact and significance in
generating false positives. In the following investigation, we utilize the real-
world connections reaching Amadeus to evaluate this probability. Furthermore,
we explore the extent to which we can attribute false positives to mttps.

Chapter 4. Round Trip Time Measurements to Identify Scrapers behind
Residential ip Proxies 69

False Positive Ratio in Airlines Booking Domains

On the airline domains managed by Amadeus, users reach a designated page
(Booked Flight Page) after they have successfully made a payment for their
booking. Our assumption is that only genuine users who have purchased
flight tickets will reach this page. As a result, we consider any connection
that reaches the Booked Flight Page page with an δRT T equal to or greater
than our threshold value of 50ms as a false positive connection17.

For a representative week (01/06/23-07/06/23), we collected the ip ad-
dresses and the corresponding δRT T of the connections reaching the Booked
Flight Page of eight different airlines. We categorize the airlines by size. For
a Big airline, on average more than 3,000 ips reach the Booked Flight Page
page daily. For a Medium-Big one, the average is between 1,500 and 3,000
while, for a Medium-Small one, this value is between 100 and 1,500. We
consider Small those airlines whose average number of ips is lower than 100
per day. For each airline, we calculate the mean and standard deviation of
the daily percentage of false positive ips, the daily False Positive Ratio (fpr).
The third column of Table 4.7 shows the results of this calculation.

The average among all airlines is set at 17.66%. However, the standard
deviation is high (7.53%). This tells us that the percentage of false positives
largely varies among the different airlines. Indeed, some airlines have a much
higher false positive ratio (Airline e, 29.27%), while others show much smaller
ones (Airline h, 7.24%). Furthermore, there is not a direct correlation between
the mean and/or standard deviation values and the size of the airline. The
mean value varies among the airlines of the same category. Moreover, while
we could expect the standard deviation to increase with the decrease in the
size of the airline (a lower number of total ips is more affected by even small
changes), we see that this is not always the case. The airlines in the category
Big do not have the lowest standard deviation among all categories.

The reported percentages are considerably higher than what we observed
in the Ground Truth Experiment. This indicates that the probability of
finding a δRT T delaying factor is high in real-world connections.

According to [122], in 2022, 40% of the United States people used a vpn
and the majority of them did so for personal reasons. As previously discussed
(Section 4.4.1), specific vpns are detected as resip by our technique. Thus,

17Although the assumption we make is reasonable, it is worth acknowledging that there
could be rare instances where resip campaigns aim to purchase tickets legitimately. While
we recognize the possibility of such events, we currently lack the means to distinguish this
particular scenario from other situations that generate genuine false positives. Therefore, it
is important to treat the positive percentages presented in this section as an upper-bound
estimate for the number of false positives associated with the technique.

70 4.4. Client Environment Analysis

Table 4.7: False positive ratio and mobile δRT T of analyzed airlines.

Airline Size fpr (%) Mobile
fpr (%)

Non Mobile
fpr (%)

Mobile fpr
δRT T (ms)

Airline a Big 17.86±1.49 34.00±3.48 66.00±3.48 90±8
Airline b Big 10.54±1.07 24.04±10.32 75.96±10.32 82±1
Airline d Medium-Big 25.65±0.76 60.26±2.73 39.74±2.73 72±2
Airline c Medium-Big 12.51±0.63 36.08±2.25 63.92±2.25 147.5±12.5
Airline e Medium-Small 29.27±1.36 58.74±4.05 41.26±4.05 90±7
Airline f Medium-Small 22.15±1.87 37.80±6.70 62.20±6.70 93±6
Airline h Small 7.24±3.10 0.00±0.00 100.00±0.00 na18

Airline i Small 16.10±5.10 3.09±5.90 96.91±5.90 na18

All airlines - 17.66±7.53 31.75±21.66 68.25±21.66 88.5±59.0

our intuition is that vpns are one of the major causes of the false positives in
this scenario.

Moreover, we know that we detect Mobile tcp Terminating Proxies
(mttps) as resip. Although the exact percentage of mobile isp utilizing
these proxies is unknown, we know that nowadays a significant portion
of connections is made through mobile networks. Moreover, this trend is
expected to continue growing in the coming years [123]. Given this context,
it is reasonable to assume that tcp terminating proxies play a substantial
role in generating false positives in such scenarios.

In Section 4.4.1, we saw that sfr mobile connections showed an δRT T close
to the threshold. Hereafter, we show that also real-world mobile connections
that result in false positives show a similar trend. Thanks to this, we could
differentiate tcp terminating proxies and resips and reduce the probability
of false positives.

Mobile Connections δRT T

To gain further insights in studying the δRT T of mobile connections, we
leverage the Mobile Carrier Database of Digital Element [124]. We use it to

18Not Applicable to those airlines in which the number of false positive connections is
lower than one per day.

Chapter 4. Round Trip Time Measurements to Identify Scrapers behind
Residential ip Proxies 71

categorize the number of false positive mobile connections19 among the ones
previously considered. In Table 4.7, the third and fourth columns indicate
the daily distribution of the fpr between mobile and non-mobile connections.

We can see that the mobile fpr varies greatly among different airlines.
Mobile connections do not cause any false positive in Airline h whereas they
are a significant factor for both Airline d and Airline e. However, we observe
that globally the fpr reduces to 10.13±3.54 if we consider only non-mobile
fpr. This means that if we manage to discern between the mobile and resip
contributions in the δRT T , we can lower the average fpr of all airlines by
one-third.

The last column of Table 4.7 proposes the median value and the median
absolute deviation of the δRT T when a mobile connection results in a false
positive. With the elements at our disposal, we can not know with certainty
that the only factor that increases the δRT T in these connections is the usage
of the mobile network. There could be other factors, on top of it, that increase
the delay. However, based on the results in Section 4.4.1, the reported delays
are generally20 more compatible to the connections using sfr 4g with a web
browser and/or hotpot than the ones leveraging Nordvpn or Tor. This seems
to suggest that the main contributor to the delay is the usage of mobile
networks.

In the case of mobile connections fprs, the δRT T is higher than the
threshold but still lower than the majority of values presented by resip
connections. If we consider the highest median δRT T among those values plus
the corresponding median absolute deviation we obtain 160ms (Airline c).
In the Ground Truth Experiment, 90.63% of resip connections have a δRT T

higher than this value. These results suggest that it could be possible to
recognize false positives produced by recognized mobile connections thanks to
the lower δRT T they expose. To bring more evidence to this point, we analyze
true positive connections. Hereafter, we describe the collection and analysis
of these connections.

True Positive Connections Case Study

As previously described, Amadeus employs a custom rule-based Bot Detector
to identify and mitigate scraping requests. In order to assess the impact of
mobile connections on the δRT T , we need a custom rule in which the δRT T was
not a parameter of detection but where at the same time the vast majority of

19In the rest of this section, we use mobile connections to define those connections
originating from mobile networks.

20All airlines for which it was possible to calculate the Mobile fpr δRT T except Airline
c.

72 4.5. Summary

the connections had an δRT T greater than 50ms.
We discovered a suitable rule on Airline x that fulfilled our requirements.

Among the ips that matched this rule, less than 2% had an δRT T below the
specified threshold.

We analyzed the connections that matched the rule and their rtt_detection
on a specific day (12/06/23). Leveraging the Mobile Carrier Database of
Digital Element, we classified the ips into mobile and non-mobile categories.

Our analysis reveals that 10.93% of the ips belong to mobile connections.
While the median δRT T for non-mobile connections is 251ms, for mobile
connections it is 313ms, indicating a difference of 62ms. This finding supports
the fact that mobile networks (using mttps) introduce a delay in the δRT T

(62ms) that is lower than that of resips (251ms). Moreover, when the two
factors take place in the same connection, the delay increases. Consequently, it
may be possible to use a higher value for the threshold of the rtt_detection
for mobile connections to not detect them as false positives. A comprehensive
sensitivity analysis is required to determine the most suitable value for this
adjustment.

4.5 Summary
In this chapter, we conducted an evaluation of the rtt_detection technique
to assess its validity and feasibility. The technique classifies connections as
originating from resip when their rttT LS exceeds the rttT CP .

Through our experiments, we consistently observed that the δRT T (cal-
culated as rttT LS- rttT CP) exhibited significantly higher values for resip
connections compared to direct connections when the same client was utilized
in both scenarios. The initial results indicate that a threshold of 50ms is
the most effective in distinguishing between direct connections and resip
connections from the same device.

Our analyses of specific client environments reveal that the technique
can encounter false positives when a mobile network utilizes Mobile tcp
Terminating Proxies or when requests are routed through specific vpns and
Tor. Real-world connection studies demonstrated a relatively high percentage
of false positives (17.66±7.53). This makes the technique unsuitable for
standalone use. Nevertheless, a real-world company currently uses the tech-
nique in combination with other parameters to detect scrapers with successful
results. This shows that a high δRT T is a strong indicator of resip activity
and false positives can be reduced by using this detection in conjunction with
other parameters.

Furthermore, preliminary analyses suggest that by increasing the threshold,

Chapter 4. Round Trip Time Measurements to Identify Scrapers behind
Residential ip Proxies 73

it may be possible to mitigate false positives caused by mobile networks
employing Mobile tcp Terminating Proxies. This adjustment could potentially
reduce the false positive rate by one-third.

As explained in Chapter 3, rtt_detection is just one of the two tech-
niques that we identified to detect resip connections at the server side. In
the next chapter, we present the measurement campaign we performed to
validate our second technique, mrp_detection. This second technique
enables us to detect resip connections originating from specific providers.
Thus, on top of detection, it provides attribution. In the next chapter, after
presenting the validation of the technique, we propose a possible combina-
tion with rtt_detection to differentiate the contributions of the different
resip providers and reduce the possible user degradation caused by the
mrp_detection technique standalone.

Chapter 5

Scraping Detection through
Retransmission Protocols

5.1 Introduction
As introduced in Section 3.5, when a client uses a resip to send a syn packet
to a non-acknowledging server, we witness a behavior different from the one
of direct connections. If no resip is involved, only one ip address contacts
the server and the corresponding machine simply keeps retransmitting the
original syn packet from the same port with the exponential backoff behavior
associated with the retransmission timeout.

On the other hand, when the client hides behind a resip, new gateways
contact the server. Moreover, gateways can act according to one of two
Machine Retransmission Protocols (mrps). In the first mrp, the gateway
retransmits the original syn packet, as when no resip is involved. In the
second mrp, the gateway closes the connection at the application layer and
opens a new one from another port. In this case, the server receives a new
syn packet. Moreover, if the application timeout is longer than the kernel
one, the gateway retransmits also once the original syn packet.

In theory, one could think of exploiting the usage of the behavior of the
second mrp to detect, server-side, when a connection passes through a resip
service (mrp_detection).

The server can delay sending syn-ack packets and check, for each client,
if it sends a new syn packet when the original one is not acknowledged in
time. This identifies a resip connection.

In this chapter, we present the measurement campaign we performed
to characterize three resip providers when contacting a non-acknowledging
server. Our goal is to check whether the specific behavior seen in our prelim-

75

76 5.2. Experimental Setup

inary analysis holds over time and assess the validity and feasibility of the
mrp_detection technique.

Hereafter, we present the setup used to perform our measurement campaign
(Section 5.2). Then, Section 5.3 shows the analyses performed on the collected
communications. Finally, Section 5.4 discusses the mrp_detection technique
and its feasibility.

The information provided in this chapter, as well as the explanation of
the idea underlying the mrp_detection, were published in [C5].

5.2 Experimental Setup
In our experiment, we consider two machines, server_a and server_b.
These machines are located in Ireland and supplied by the same provider
(Azure [100]). Contrary to the rtt_detection technique (Section 3.4),
preliminary analysis showed that the geolocalization of the clients and servers
does not influence the behavior of resip when contacting a non-acknowledging
server. Thus, for this experiment, we selected only one location for our
machines among the available ones.

server_a and server_b are reachable from the public Internet on port
80 but they do not reply to syn packets. They do not generate icmp error
messages either for connections to this port. In this setup, server_a tries
to send http get requests to server_b through a resip provider. Every
time the client sends a request, it waits until the superproxy closes the
connection. After that, it sends a request using another resip provider tested
with this setup. On the contrary, we do not send any requests to server_a.
Thus, server_a only receives syn packets from external sources, if any.

When server_b receives a syn packet, it does not have information about
the real initiator of the request (the machine behind the resip). Indeed,
for rtt_detection, we encoded this information in the url (Section 4.2).
In this new setup, we do not have this possibility since we send just one
syn packet. Moreover, server_a does not have any knowledge about which
gateway ips the superproxy assigns to its outgoing requests. Hence, there
is no direct way to match the requests sent by server_a with the ones
received by server_b. Furthermore, server_b is publicly reachable and
scanning campaigns most likely produce some of the syn packets sent to
it. To keep only the connections originating from resip gateways that
reach server_b, we can use the traffic that reaches server_a as a reference.
server_a and server_b share the exact same location and provider. Hence,
we can assume that they are frequently scanned at the same time by the same
campaigns or, at least, that they witness such scans at a similar rate.

Chapter 5. Scraping Detection through Retransmission Protocols 77

Table 5.1: Attributes of a communication in the unacked_ds dataset.

Attribute Attribute explanation

com_start_epoch Epoch (UTC+0) in which the client sends the
request and thus starts the communication [s]

com_end_epoch
Epoch (UTC+0) in which the client

receives the signal by the
superproxy to end the connection [s]

n_ips Number of different ip addresses/gateways that
send syn packets during the communication

avg_syn_per_ip Average number of syn packets an ip
sends in the communication

avg_syn_ret_per_ip Average number of retransmissions
per ip performed in the communication

avg_dist_countries Average number of distinct countries
associated with the ips of the communication

avg_dist_continents Average number of distinct continents
associated with the ips of the communication

median_new_syn Median delay between syn packets the
same ip issues from different ports [s]

int_diff_ips
Elapsed intervals between a request

from an ip and the next request with a
new ip in the communication

perc_parallel_ips Percentage of ip addresses that
send packets in parallel

behaviors_counts
Counters for each type of behavior of an ip:

only retransmissions, only sending a new syn
from a new port, doing both actions

For 88 days (03/02/2022 at 09:00 utc +0 to 01/05/2022 at 09:00 utc +0)
we recorded connections to server_a and server_b. We queried server_b
using three resip providers: Oxylabs (ol) [92], Proxyrack (pr) [93], and
Smartproxy (sm) [94]. In total, we recorded 9,219 incoming connections to
server_a and 1,773,407 incoming connections to server_b.

78 5.3. Communications Analysis

As explained above, we can see the connections to server_a as a reference
for the scanning activity on server_b. We can then use them to clean the
connections to server_b and keep only the ones produced by the gateways.
For each connection performed to server_b, if the same ip address contacted
server_a in the same hour, we eliminate the entries associated with that ip
address and time from the logs of server_b and server_a. These are very
likely syn packets generated by scanners, not by a resip. Thanks to this
operation, we can delete 1,666 connections from server_b logs (0.09% of
server_b connections) and 1,840 connections from server_a ones (19.96%
of server_a connections).

Moreover, we can consider the number of connections per hour received by
server_a and by server_b in these cleaned datasets. If the two values were
similar, it would mean that the amount of scanning activities is comparable
to the number of requests sent by gateways and thus it would be impossible
for us to distinguish the two contributions.

On average, the amount of requests received at server_a corresponds
to 0.43% of the amount received by server_b. This confirms that resip
gateways, and not scanners, produced the vast majority of connections
received by server_b. Even if a small number of requests at server_b
are scanning ones, they are lost in the noise of the requests generated by
server_a and we can safely ignore them for the statistical analysis we intend
to do. Thus, this clean dataset enables us to have a good representation of
the behavior of resip gateways when the tcp connection can be initiated
but not completed.

For each connection initiated by our client, there are many syn packets
received at the server from different gateways. We match each connec-
tion started at server_a with all the connections at server_b that were
received between when server_a started the request and when the super-
proxy ended the request. We define this as a communication. In total, this
dataset, which we call unacked_ds, contains 124,865 communications. This
value corresponds to the number of connections initiated by server_a. On
server_b, it corresponds to 1,734,351 incoming syn packets. Table 5.1 shows
the attributes we consider for each communication in the unacked_ds and
the corresponding explanation. In the next section, we present the analyses
performed on the dataset and discuss their results.

5.3 Communications Analysis
In this section, we analyze the communications in unacked_ds and we share
the insights gathered from these analyses. Table 5.2 shows statistics about

Chapter 5. Scraping Detection through Retransmission Protocols 79

Table 5.2: Mean value and standard deviation of attributes (unacked_ds).

resip Duration (s) n_ips avg_syn_per_ip avg_syn_ret_per_ip

ol 52.39±97.02 3.18±0.76 3.07±0.85 1.8±1.14
pr 15.77±5.19 3.27±0.78 1.04±0.15 2.12±0.5
sm 51.87±96.33 3.98±0.87 2.66±0.7 1.66±0.88

Table 5.3: Mean value and standard deviation of the average number of
distinct countries and continents in unacked_ds.

resip avg_dist_countries avg_dist_continents

ol 2.87±0.78 2.24±0.71
pr 3.08±0.82 2.15±0.75
sm 3.61±0.87 2.62±0.77

the attributes of the communications. It presents for each attribute the
average plus or minus the standard deviation. The second column tells the
duration, registered at the client, of a communication (com_end_epoch-
com_start_epoch). This value informs about the timeout set in the resip
to determine when to abandon a connection. For the resip provider pr, we
have a low value and small variability. This tells us that most likely this
interval is fixed for this provider. On the other hand ol and sm show higher
values and higher variability. This is more compatible with a not fixed interval.
Let us now consider if the multiple used gateways appear in sequence or
partially in parallel. The median percentage of a new ip appearing while
the previous one is still sending packets (perc_parallel_ips) is 0% for ol
and sm. This value is 50% for pr. This seems to confirm that pr has fixed
intervals after which its superproxy contacts a new gateway or ends the
communication. On the other hand, ol and sm try to connect to the server
with a sequence of machines and close the connection only when the last
gateway terminates its attempts.

The third column of Table 5.2 gives the number of different ips that
produced syn packets per communication. We can notice that all the providers
use on average 3-4 different ips to contact the server. This shows an inner
protocol of the resip providers. Apparently, when a gateway is unable to

80 5.3. Communications Analysis

Table 5.4: Median intervals between requests of different ips in the same
communication

resip 1st-2nd ips 2nd-3rd ips 3rd-4th ips 4th-5th ips

ol 7s 7s 6s 5s
pr 3s 6s 5s 5s
sm 0s 6s 7s 6s

establish a tcp connection, they believe the problem is with the gateway.
Thus, they retry from another machine. Table 5.3 shows the mean value and
standard deviation for the average number of distinct countries and continents
of the ips selected for each communication. We can notice that when the
resip chooses a new machine, the ip belongs generally to a country different
from one of the previously used machines for that communication. In most
cases, the continent is also different. This is probably a sign that resip
providers check if there are regional connectivity problems and/or the server
is blocking requests from specific areas of the world.

Table 5.4 shows the median of the int_diff_ips, the interval of time
between an ip contacting our server and the appearance of a new ip in the
same communication. We can see that intervals of ol have similar values.
For pr, the first interval is roughly half of the subsequent ones, which present
similar values. sm shows similar values for the intervals except for the first
one, in which the difference is set to zero. In the dataset, the granularity of
the intervals is in seconds, so this means that, either the two syn packets were
issued from the provider at the same time, or the interval between them is less
than one second. We believe the second to be a more plausible explanation
since sending two syn packets for each connection would not be efficient for
the providers.

These values of the interval between requests from different ips in a
single communication confirm the idea of an automation process at the resip
provider. In one case, requests from each new ip are sent after a similar
amount of time. In the other two, the interval between the first and second
ips is shorter. Subsequent intervals present constant values.

In the fourth column of Table 5.2, we find the average number of original
syn packets sent per ip in a communication. This corresponds to the average
number of ports used by a device to send syn packets for that communication.
The fifth column of the same table gives the average number of retransmitted

Chapter 5. Scraping Detection through Retransmission Protocols 81

syn packets for each of the ips that contacted the server during the duration
of the communication. As explained in Section 3.5, when a server does not
send an ack message, a generic client keeps retransmitting the syn packet
using the exponential backoff behavior. The gateways of pr appear to
behave in this way, since the average number of syn packet is close to one
and the same packet is retransmitted more than once.

This is not the case for both ol and sm. For the communication performed
with these two providers, a single ip sends syn packets to our server much more
often by opening a new connection from a new port than retransmitting the
same packet. Moreover, studying the distribution of the behaviors_counts
attribute, we see that there are no cases where an ip only retransmits packets
and does not start also a new connection.

The median_new_syn parameter tells the median delay between new
syn packets from different ports of the same ip. The median of these values
is 1.5s for ol and 1s for sm. In the kernel exponential backoff behavior, the
minimum interval before a retransmission is usually 1s. Thus, it is more
probable for ol syn packets, that have a median interval greater than this
minimum interval, to be retransmitted, as shown by our data (column 5 in
Table 5.2).

5.4 Detection of Second mrp Discussion
In Section 3.5, we introduced the mrp_detection technique. When a resip
provider presents the second mrp and tries to contact a non-acknowledging
server, its gateways send multiple syn packets from different ports to the
server. Thus, an acknowledging server can simply delay the sending of each
syn-ack packet and check if the client sends a second syn packet from
another port. In that case, the connection is likely proxied through a resip21.

We can apply this technique only for resip connections presenting the
second mrp. The analyses performed in Section 5.3 show that ol and sm
gateways consistently present the second mrp. For this reason, we can say
that the mrp_detection can identify them.

When applying this technique on connections, the server needs to delay
the sending of the syn-ack packets. As explained in Section 3.5, this results
in delays on the client side, since the server needs to wait enough time for the
gateway to send a second syn packet. The analyses show that the median
delay between the first and the second syn packets coming from the same
ip but different ports is 1.5s and 1s for respectively ol and sm. Hence, the
server should wait for at least 1.5s to detect half of those. According to [125],

21Unless a corner case, such as the ones described in Section 3.5, takes place.

82 5.5. Summary

any delay higher than 1s degrades the user experience. For this reason, the
mrp_detection technique likely affects real users’ experiences.

Therefore, our suggestion is to use it in combination with the rtt_detection,
presented in Section 3.4, to achieve attribution and mitigation. In this com-
bined detection, we can redirect the connections declared as resip with the
rtt_detection approach to another machine. We can perform the redirec-
tion with the http redirect (http 307 Temporary Redirect) to another
machine. This obliges the client to open a new connection with that machine.
In case of a resip connection, the gateway (or a new gateway depending
on the settings) starts a new tcp session with the new machine where we
can perform the mrp_detection.

In this way, only a percentage of real users (the false positives of the
rtt_detection i.e. 17.66±7.53% of the real-world traffic as discussed in
Section 4.4) would be impacted by the delay. Moreover, we delay all resip
connections providing a mitigation solution, similar to what the Imperva
Tarpit does [33]. Finally, we are able to distinguish the connections of different
resip providers.

5.5 Summary
In this chapter, we present a measurement campaign that characterizes resip
providers contacting a non-acknowledging server.

Our results show that all the analyzed providers use 3-4 gateways to try
to reach the server. Moreover, these machines are usually located in different
countries and continents. This shows that resip providers try to circumvent
possible regional problems and restrictions using gateways in other areas of
the world.

Furthermore, two of the analyzed providers consistently show the second
mrp and are thus good candidates for the mrp_detection technique.

Based on our measurements, the delay introduced by the technique to
identify the resip providers would generally affect the real users’ experiences.
For this reason, we propose to use it in combination with the rtt_detection
technique (Section 3.4).

Thanks to the rtt_detection and mrp_detection techniques, we are
able to detect resip connections and differentiate them from genuine ones.
Moreover, while resip providers could evade these detection techniques, this
would require them to perform significant changes in their infrastructure.
Hence, these two techniques enable us to answer the first research question
that this thesis aims to answer (rq1, Section 1.1). In the next part of this
thesis, we will address the other proposed research question thanks to our

Chapter 5. Scraping Detection through Retransmission Protocols 83

deceptive approach for scraping mitigation.

Part II

Web Scraping Mitigation
Through Deception

85

Chapter 6

Web Scraping Mitigation
through Redirection to a
Honeypot

6.1 Introduction

As explained in Section 2.2, web scraping is a problem for e-commerce websites.
These websites receive large amounts of scraping requests which cause losses
of revenue and additional costs for the providers. Moreover, the current
detection and mitigation of scraping requests are not effective. The detection
is performed on parameters whose values scrapers can easily change and are
similar to the ones of legitimate users. Regarding mitigation, scrapers can
infer they have been detected from the side effects of the current techniques
we use for this task. In this scenario, scrapers simply identify the parameters
we use to detect them and they change them to avoid the mitigation. Then,
they continue their activity until they are detected again. At that point, they
change again the identified parameters and the process repeats itself.

In this chapter, we present a new mitigation approach that overcomes
these limitations and enables us to break this infinite loop. It consists of
redirecting the scraping requests to a web application honeypot. There,
scrapers receive pages with the same structure as the original website but
with modified content. In this way, scrapers cannot understand that their
requests are mitigated and, at the same time, they do not access the real
content of the website. Moreover, the honeypot enables us to poison the
information they scrape and on which they monetize, producing financial
damage on their side. Furthermore, with this platform we can study the
semantics of the payloads and the distribution of the ip addresses of specific

87

88 6.2. Setup and Methodology

bots, giving us new insights into their ecosystem.
In late 2019, in the context of the Master’s thesis project of the author,

we performed a first case study with the honeypot platform in collaboration
with Amadeus it Group (Amadeus). In Section 2.2.3, we shared background
information about web scraping against this company and we showed the
challenges of its analysts in detecting and mitigating scraping traffic.

In the first case study, scrapers leveraged a corner case in the syntax of
their requests to detect when we were redirecting them to the honeypot. They
sent queries with an erroneous combination of secondary search constraints.
The real website answers this type of query with an error page. Instead, our
honeypot was sending back the result of the search. The scrapers used this
information to understand which parameters we were performing detection
on and change them to avoid identification. Thus, our case study ended
prematurely. Even if the campaign stopped in an early stage, the honeypot
platform enabled us to acquire precious insights about the scraping bot
ecosystem (more details are available in [126]). For this reason, we decided to
perform another attempt, after modifying the implementation to cover the
corner case previously discovered.

In the next sections, we provide a short recap of the setup of the Honeypot
platform (Section 6.2). We refer to [126] for a more complete explanation.
Then, we propose the analysis of the results of the second case study we
performed with the honeypot. Section 6.3.1 studies the semantics of the
requests performed by scrapers. We reveal the automated process behind
those requests and we show that the majority of the requests belongs to one
single bot campaign. In Section 6.3.2 we characterize the ip addresses from
which the requests were generated. We show the distribution, reputation and
repetition patterns. We explain how these addresses most likely belong to a
resip service. Finally, Section 6.3.3 discusses the value of the honeypot as a
mitigation technique and its success in luring the attackers.

The different analyses of the honeypot data proposed in this chapter are
available in the following publications: [C6], [C7], [J1].

6.2 Setup and Methodology
Amadeus provides software solutions to help airlines handle their booking
processes (Section 2.2.3). For our case study, we consider a specific product
among the ones offered by Amadeus, which we refer to as Product x. When
an airline company chooses Product x for its booking domain, it builds a
separate front-end website.

Figure 6.1 shows the flow of the requests when using this product. The

Chapter 6. Web Scraping Mitigation through Redirection to a Honeypot89

User
or

Bot

Airline
Website

step 1

Bot
Detector

step 4a Booking
Domain

step 5

Custom
Mitigation Honeypot

step 2

step 3 step 4b step 6b

step 6a
step 7

Figure 6.1: Flow of actions performed when a User/Bot searches flights
using Product x.

steps in the figure are explained hereafter. Initially, the initiator of a
connection (User/Bot) reaches the front-end website of the airline (step 1)
and receives a webpage in return (step 2). This webpage contains a form
where the users insert the constraints of their searches e.g. departure and
destination locations. At this point, the initiator sends the form to the Bot
Detector (step 3). If the Bot Detector concludes that the parameters of a
request do not match any bot signature, it redirects it to the Booking Domain
(step 4a). This domain finds all the available flight solutions matching the
search and sends them to the initiator (step 5). Hence, in this case, the
initiator receives a successful answer. On the other hand, if the Bot Detector
finds a matching bot signature (step 4b), it performs the Custom Mitigation
associated with that signature. For example, the bot can receive a captcha
[28], a JavaScript challenge or the request can be blocked (step 6a).

In our setup, we have implemented a new type of Custom Mitigation. It
consists of a transparent redirection of the request to a honeypot (step 6b).
This platform, external to the it provider environment, can provide answers
to requests while modifying the prices at will. The template of the real page
is obtained periodically from the real booking domain. Fares are retrieved
thanks to a Fares api of Amadeus. The system can modify the fares, insert
them into the template and send the response back. In this way, bots receive
a response with the same syntax but prices different from the original ones
(step 7).

To experiment with our honeypot, we collaborated with a specific airline
company that uses Product x. We call it Airline x. At the time of the case
study (beginning of 2020), Airline x was receiving an average of 1 million
daily booking requests. The Bot Detector mitigated close to 40% of them. We
configured the Detector to forward to our honeypot all the requests matching
a specific bot signature.

90 6.3. Honeypot Results

We used the following criteria to choose the signature:

• The signature was not receiving any custom mitigation yet, to prevent
scrapers from seeing drastic changes in the type of received responses

• The signature presented characteristic daily peaks of activity, to be able
to effectively see any change in the behavior of the bot

• The traffic associated with the signature could be entirely diverted to
the honeypot, considering the limitation we had in using the Fares api22

In order to respect these constraints we chose a signature that presented only
daily peaks of activity (300-500 requests) in a 40 minutes time window at the
same moment of the day.

The case study started on January 7th, 2020. We served the bots with
unmodified fares in the first 72 hours. The objective of this phase was to
test that our modified setup was not creating particular artifacts that could
be detected by the bots. Then, we started the luring phase. We randomly
modified the fares of 10% of the requests by 5%.

The requests matching the bot signature drastically disappeared on March
3rd, 2020. We believe the reason is linked with the business needs of the
actor behind these bots. Indeed, that date coincides with the beginning of the
worldwide covid-19 pandemic. Furthermore, Airline x is the main airline
for a country whose government issued its first major travel restriction on
the 2nd of March, practically ending airline travel to and from that country.
Without any flight to search for to/from that country, there was no reason for
the malicious actor to keep scraping the website. This and the fact that the
bot behavior did not change after the increase in the prices give us confidence
that the disappearance of this bot campaign was caused only but external
factors.

6.3 Honeypot Results

6.3.1 http Payload Analysis
In this section, we propose an analysis of the http payloads of the 22,991
requests received during the 56 days of the case study. Since the Bot Detector
does not consider the payloads to build bot signatures, the goal of our
examination is to understand if the bot traffic redirected to the honeypot

22Amadeus imposed a maximum number of requests per minute we could perform with
the Fares api.

Chapter 6. Web Scraping Mitigation through Redirection to a Honeypot91

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 21 30 45 60 90 120

0

5

10

15

20

25

30

35

40

research interval

R
eq

ue
st

s
gr

ou
pe

d
by

se
gm

en
t

Figure 6.2: Count of requests grouped by segment over each research
interval.

corresponds to one or more scraping campaigns. Indeed, multiple scrapers
could be using the same parameters on which the fingerprint is built and it is
important to define the different contributions of each party. Moreover, this
analysis enables us to gather more insights into how scrapers perform their
scraping campaigns. This information can help us in assessing the efficacy of
using the honeypot to lure attackers.

Inspecting the payloads, we see that the requests ask for a return flight
(resp. one way) in 51.5% of the cases (resp. 48.5%). In the case of a return
flight, the return date is always 7 days after the departure. The 22,991 requests
only look for 25 combinations of 16 departure and 12 arrival airports from
where this airline operates flights, an extremely small fraction of the airline
offers. This data is consistent with the idea of a repetitive data collection
task and that there is an automated process behind these requests. Moreover,
the time analyses presented hereafter support these conclusions.

For each request, we define the time interval between the date on which
the request is performed and the date of the departure of the searched flight as
research interval. Studying the research intervals among all requests
we see that they present a specific pattern. The vast majority (99.8%) take
values either between 0 and 14 days or 21, 30, 45, 60, 90, 120 days. We define
these values standard research values.

We call segment the combination of the type of flight (one-way/return),
departure location, and arrival location included in it. Multiple requests
can present the same segment. In Figure 6.2, we represent the count
of requests, grouped according to the corresponding segment, for each

92 6.3. Honeypot Results

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 21 30 45 60 90 120
0

5

10

15

20

25

30

35

research interval

R
eq

ue
st

s
gr

ou
pe

d
by

re
qu

es
t

da
te

Figure 6.3: Count of requests grouped by request date over each re-
search interval.

research interval in the standard research values. On the x-axis,
we see the value of the research interval, and on the y-axis the number
of requests. To build each boxplot, we first calculate the number of observed
requests for each segment and research interval. Then, we calculate the
median and percentile statistics considering all the segments and a specific
research interval. This figure clearly shows that, for each research
interval, the median of requests presents stable values for the majority of
the requests. Thus, the bots request equally all the considered research
intervals. We see that for the research intervals lower than 30, we have
outlier segments which present count zero. Indeed, there are two segments
that are queried just for research intervals equal to or higher than 30.
Apart from this, each boxplot shows small variability. This tells us that each
segment is queried with similar contributions for each research interval.

Figure 6.3 looks at this regularity from a different angle. For each request,
we define request date as the date on which each request is performed.
Similarly to the previous figure, the x-axis represents the research inter-
vals, the y-axis the count of requests. We build each boxplot by grouping
the requests according to their research interval in the standard re-
search values and counting the occurrence for each request date. The
new boxplots show a high regularity in the querying process. Every day
similar kinds and amounts of queries are performed.

The regularity of the results of these time analyses shows us, once again,
strong automation behind the scraping requests. Every day, bots request
similar combinations for similar time frames. For this reason, we can conclude
that most requests correspond to one single scraping campaign that shows
specific characteristics. Only a few requests (48, 0.2% of the total) present

Chapter 6. Web Scraping Mitigation through Redirection to a Honeypot93

values of the research interval different from those in the standard
research values (20, 31, 44 days). We note that these requests were
performed outside the daily 40 minutes window. We can conclude that
they most likely correspond to a different small campaign. Another possible
explanation is that the scraper behind the main campaign is performing small
checks for specific information outside the normal scraping window.

Studying the content of each request, we can see that the queries performed
day after day by the scraper are not identical. If we compute the 4 tuples
made of i) departure airport, ii) arrival airport, iii) time interval, iv) type of
flight (one way or return), we can identify 982 distinct ones over the whole
case study. If we compare this with the average number of requests per day
(410), we can conclude that not all tuples are queried every day. On average
the scraper queries each of them 23.41 times during the whole running time
of the case study. Generally, he asks for a specific tuple just once a day, but
20% of the tuples, at least on one occasion, are registered more than once
a day. The maximum number of times the same tuple has been requested
on the same day is 8. Almost every day at least one tuple has been queried
more than once. Requests asking for the same tuple are always performed in
a short period of time. The maximum interval between two of them is 337
seconds (around 5 minutes and a half), the minimum one is 5 seconds. The
average value is 45.2 seconds.

This behavior is somehow peculiar. Not only the scraper asks for the
same combinations multiple times, but it also does it in a short amount of
time. One possible reason is that he is performing a check of consistency for
the prices. Another possible explanation could be that a bot did not return
an expected reply quickly enough, causing its master to ask another bot to
submit the same request a second time. In Chapter 3, we saw that Residential
ip Proxies used by scrapers implement this last strategy. This tells us that
parties of the sector implement this approach and thus seems to confirm that
the same combinations are requested multiple times because of delays in the
answer of a bot.

6.3.2 ip Addresses Characterization

The 22,991 requests collected in the honeypot have been sent by 13,897 unique
ips. We use the term "honeypot ip addresses" to identify them in the rest
of this work. In this section, we study their distribution, reputation and
repetitions. We show how the results of our analyses suggest that these ips
are provided by Residential ip Proxies (resip) services.

94 6.3. Honeypot Results

Table 6.1: Honeypot ips matches with ips in external datasets.

(a) Dates in which a honeypot ip per-
formed a booking, corresponding ap-
pearance dates in the honeypot and
time passed between the two dates.

Bookings Honeypot ∆t

2020-01-17
2020-02-01 15d
2020-02-05 19d
2020-02-14 28d

2020-02-26 2020-01-10 47d
2020-01-23 34d

2020-02-29 2020-02-01 28d
2020-02-06 2020-02-23 17d

2020-02-07
2020-01-24 14d
2020-02-02 5d
2020-02-19 12d

(b) Matches between Tor exit nodes
and honeypot ips.

Date # ips % ips
2020-02-14 12 0.09%
2020-02-15 24 0.17%
2020-02-18 20 0.14%
2020-02-19 40 0.29%
2020-02-24 12 0.09%

Total 108 0.78%

Distribution

The honeypot ip addresses belong to 1,187 /16 blocks. This means that, on
average, there are less than 12 ips used within each /16 block (less than 0.02%
of that ip space). Furthermore, the geo-localization of these addresses indicates
790 distinct origins, in 86 different countries. This highlights how widespread
the distribution of these ips on the Internet is while they participate in a
well-coordinated scraping campaign, as described in the previous section.

Reputation

To define the reputation of each honeypot ip address we check if the ip
performed benign and/or malicious activities outside of the honeypot envi-
ronment during the time of the case study. To do so, we take advantage of
external datasets.

First, we focus on benign activities. We analyze if, during the running time
of the case study, any of the honeypot ips was associated with a completed
booking on Airline x or other airline domains managed by Amadeus. Five
such ips reserved a flight in that time frame. Table 6.1a shows the dates
on which the bookings were performed and the dates on which we see the
corresponding ip in the honeypot logs. The dates differ among them and

Chapter 6. Web Scraping Mitigation through Redirection to a Honeypot95

Table 6.2: Analysis of the honeypot ips with ipqualityscore.

(a) Classification of the ips.

Type # ips % ips
vpn 9,138 65.76%

Proxy23 1,075 7.74%
Recent abuse 3,878 27.91%
Bot Status 2,780 20.00%

(b) Distribution of the fraud score.

Score (S) # ips % ips
S < 75 3,958 28.48%

S ∈ [75, 85[6,371 45.84%
S ⩾ 85 3,568 25.67%

none of the booking requests presented the bot signature associated with
redirection to the honeypot. This tells us that, during the scraping campaign,
at least part of the honeypot ips have been used by legit users. Moreover,
most likely these users were different actors from the one performing the
scraping campaign.

We know that an ip address can be associated with more than one device,
e.g. when multiple devices are behind a Network Address Translation (nat),
and that the same ip address can be associated with different devices at
different points in time. For this reason, we cannot conclude that legit users
and scrapers were taking advantage of the same devices. However, since these
ips performed legitimate activities at some point in time, we can say with
confidence that they are not datacenter ips. Thus, we have strong indications
that at least a part of the honeypot ips does not belong to datacenters.

Using the Python library Pydnsbl [127], we can see that 76% of the
honeypot ips have been blocked in at least one blocklist at the time of our
analysis (July 2020). Regarding Tor, 72 honeypot ips were announced as exit
nodes on the same day of their registration in the honeypot. This happened
on 5 different days. Table 6.1b shows the matches between the Tor exit
nodes and the honeypot ips. It is peculiar how only 5 days close in time
have witnessed these matches. We hypothesize that the scraper tried to take
advantage of the Tor nodes but did not continue with this strategy.

Table 6.2a shows the results of the analysis of the honeypot ips with
ipqualityscore. This service tells if an ip has been used in “automatic
fraudulent behavior” thanks to the “Bot status” category. Moreover, it
indicates a positive value of “Recent Abuse” if the ip has been involved
in a “recently verified abuse across their network”. The “abuse” behavior

23From the total number of positive matches, 10,213, we subtract the number of positive
values for the category vpn.

96 6.3. Honeypot Results

includes performing a chargeback, being detected as a compromised device,
and being associated with fake app installation. The “vpn” category indicates
ips that allow tunneling and the “Proxy”24 one identifies devices infected by
malware, users selling bandwidth from their connection, or other types of
proxy like socks, Elite, Anonymous, Tor, etc. We can see that a large fraction
of the collected ips is associated with proxying out requests. Furthermore,
ipqualityscore provides a general fraud score for each ip: this value ranges
from 0 to 100, indicating a suspicious activity when higher than 75 and a
high risk when greater than 85. Table 6.2b tells us that around 72% of the
honeypot ips show suspicious behavior and that 26% are classified as high
risk.

These analyses tell us that the ips collected in the honeypot have been
associated with malicious activities. Moreover, they tell us that a large
percentage of them has been associated with proxying activities.

Repetitions

Figure 6.4a shows the maximum number of requests per day sent by each ip
address. Almost all the ips (98.06% of the total) make at most two requests
per day. We can see that 12,277 ips (88.94% of the total) make only one
request per day. This data tells us that the bots of this campaign can be
categorized as Advanced Persistent Bots. These bots normally perform just
one request per ip address per day [9].

However, looking at the whole running time of the experiment, we see
that the scraper reuses some ips. Figure 6.4b shows the total amount of
requests made per distinct ip over the whole case study. Here, we see that
8,257 ips have sent only one request. If we compare this value with the 12,277
of Figure 6.4a, we understand that a large number of ips shows up on at least
two different days, issuing a single request every time. This is confirmed by
Figure 6.4c where we see the number of distinct days in which an ip performs
a request to the honeypot. Almost 30% of the ips contact the platform on at
least two different days. This information suggests that the scraper behind
the campaign tried to have a new ip for each request but had a limited pool
of ips.

Discussion

These analyses show that the ips contacting the honeypot are widely dis-
tributed around the world. They are largely used for proxying activities and
we have strong indications that (at least) a part of them does not belong to

24A “vpn” is automatically a “Proxy” according to their definitions.

Chapter 6. Web Scraping Mitigation through Redirection to a Honeypot97

0%

14%

29%

43%

58%

72%

86%

100%

1 2 3 4 5 6
0

4,000

8,000

12,000
12,277

1,267
263 71 11 8

Max Requests per Day

H
on

ey
po

t
ip

s

(a) Maximum number of requests per
day performed by honeypot ips.

0%

14%

29%

43%

58%

72%

86%

100%

1 2 3 4 5 6 7 >7
0

4,000

8,000

12,000

8,257

3,461

1,384
521 160 71 25 18

Requests

H
on

ey
po

t
ip

s
(b) Number of requests sent per hon-
eypot ip during the case study.

0%

14%

29%

43%

58%

72%

86%

100%

1 2 3 4 5 6 7 8
0

4,000

8,000

12,000
9,437

2,801
1,106

387 106 45 12 3

Distinct Days

H
on

ey
po

t
ip

s

(c) Number of distinct days on which
the same ip contacted the honeypot.

Figure 6.4: Analysis of the repetitions of the honeypot ips.

datacenters networks. Moreover, they are associated with malicious activities
in various contexts. For these reasons, we strongly believe these ips are part of
a resip network. Indeed, resip providers proxy requests thanks to residential
devices located all over the world. At the same time, they are also associated
with malicious activities [38], [45], [46]. The collected ips show matching
characteristics with this description.

resip providers claim to have access to a pool of tens of millions of ips
that can be used as exit points of requests. If the honeypot ips were part of
one of these networks, the repetitions exposed in this section would suggest
that the pool at the resip disposal is much smaller than the advertised
values. Indeed, 2,801 ips have been used twice during the case study and
this is inconsistent with picking randomly from a large pool of millions of ips.
Calculating the probability that a given ip got picked twice over this period
comes down to resolving the classical birthday paradox. We can generalize it

98 6.3. Honeypot Results

as follows:

Given n random integers drawn from a discrete uniform distribu-
tion with range [1,B], what is the probability p(n, B) that at least
two numbers are the same? [128]

In our case, n is equal to 56, the number of days where ips from the pool
were assigned to the scraping campaign. The variable B, set to 365 for the
birthday paradox, is the size of the resip pool from which the picking is
performed.

The formula 1 − (B−1
B

)
56(55−1)

2 gives an approximate result for the birthday
paradox problem. Using it with our data, we obtain the probability that an
ip is drawn twice over the period of 56 days. Computing the probability and
varying the size of B, we obtain:

• If B = 10, 000, 000 then p(56, 10, 000, 000) ≈ 0.000154

• If B = 1, 000, 000 then p(56, 1, 000, 000) ≈ 0.001538

• If B = 100, 000 then p(56, 100, 000) ≈ 0.015282

From these results, we can see that the probability of having a repetition
with large sizes of B is extremely low. Considering that we have seen more
than 30% of the ips drawn at least twice, either B in our case study is
significantly lower than what resip services announce or the assignment of
ips is not randomly done, or both. Knowing this information is essential to
perform the detection on the server side. If only a small pool of ips or a small
portion of a large pool is used to scrape a website, we could take advantage
of ip blocklists to perform detection.

In Chapter 7, we further explore this line of research. We build a math-
ematical model to find the pool size of resip providers starting from the
ips used as exit points. We apply this model on the honeypot ips and ips
collected from 3 resip providers. While in both cases the resulting pools
are smaller than the advertised ones, we reveal that the one associated with
the honeypot ips is much smaller than the ones of the studied providers.
This tells us that if the honeypot ips were indeed part of a resip network,
the provider was different from the other ones we analyzed and had a much
smaller pool of ips at its disposal.

6.3.3 Luring Attackers as a Mitigation
The case study ran between the 7th of January 2020 and the 2nd of March
2020, for a total of 56 days. The platform served modified fares to the bots

Chapter 6. Web Scraping Mitigation through Redirection to a Honeypot99

for 53 days. Over the duration of the case study, the honeypot received
22,991 requests. Thanks to the analysis of Section 6.3.1, we can say with high
confidence that the requests were part of a single scraping campaign.

The daily average amount of sent queries was 410±33 queries. The vast
majority of the collected requests arrived in the same daily time window with
a duration of 38.18 minutes on average. The amount and the timing of the
requests are in line with those of that bot signature before the beginning
of the case study, even after the beginning of the modifications. Thus, we
can conclude that the scrapers did not realize they were receiving modified
content and did not change their behavior accordingly.

In our case study, we have successfully changed randomly some of the
values without causing the bots departure. From this, we have learned that
the scraper behind this campaign i) has no ground truth to compare the
returned values and/or ii) his plausibility checks (as the ones potentially seen
in Section 6.3.1) are not sophisticated enough to detect small changes, not
even by correlating values collected over several days.

In our case study, the requests were produced by a single bot signature
corresponding to a single campaign. Moreover, they were collected only for a
finite period of time. Hence, we know that our analysis can not pretend to
be directly representative of the whole bot traffic. However, they provide a
good picture of the behavior of this particular botnet and, from our results,
it could be easily generalized.

We redirected to the honeypot requests which were produced by scrapers
aware to be targeting a protected system. Amadeus has suffered from bot
attacks for many years and has used different mitigations to stop them. Thus,
bots choosing to send requests there know they most likely encounter some
type of mitigation. This tells us that the studied botnets were sophisticated
enough to try to overcome leading commercial anti-bot solutions.

Moreover, as seen in Section 6.3.2, the bots producing the honeypot
requests can be categorized as Advanced Persistent Bots, the highest sophis-
tication category of bots used to perform scraping campaigns. Furthermore,
we have strong hints that the ips producing the requests are part of a resip
network. These services are used more and more to perform scraping. This
information tells us that the campaign we studied is a representative example
of the scraping campaigns category. Hence, this gives us hope that our results
could be easily generalized.

The results presented in this section helped us convince Amadeus to move
forward into developing a honeypot environment built in their production
system and the work is underway. In this solution, cache prices could be served
to the bots at a cheap price for the provider. Cached values dramatically
reduce the cost of computing the responses. Some sensitivity analysis remains

100 6.4. Summary

to be done to assess the cache refreshing rate.

6.4 Summary
In this chapter, we have investigated the possibility of mitigating Advanced
Persistent Bots thanks to the redirection to a honeypot. Our honeypot
platform is able to produce responses that are, syntactically, indistinguishable
from the real ones, but that contain modified prices. In this way, scrapers do
not realize they are not reaching their goal and we can poison the information
they collect.

Even if the mitigation was applied to a single bot campaign, our analyses
of the payloads and ip addresses suggest that this botnet is representative
of the ones performing web scraping. Thus, our results could be generalized.
Thanks to this, we have convinced our partner, Amadeus, to move forward
into developing a honeypot environment built in their production system and
the work is underway.

The results of this section give us the means to address the second research
question proposed by this thesis (rq2, Section 1.1). Moreover, the honeypot
enabled us to see first-hand the extent to which scrapers use Residential ip
Proxies. As explained in Section 2.3, scrapers take more and more advantage of
resips to perform their activities. This motivates us to conduct an extensive
study of these parties and their ecosystem, as proposed in the next chapters.

Part III

Residential ip Proxies and
Scrapers Ecosystem Analysis

101

Chapter 7

Analysis of the Residential ip
Proxies Ecosystem

7.1 Introduction

Section 2.3 explained how different actors use resips for malicious purposes
and Section 2.2.3 show their involvement in scraping activities. It is important
to characterize the resip ecosystem to better understand it and find new
ways to mitigate the threats it represents when used by scrapers and other
malevolent parties. In this chapter, we take advantage of the 110 days dataset
of resip connections we presented in Section 4.2.4 (rtt_ds) and we use
it to disclose new findings about resip inner functioning and try to assess
the order of magnitude of their pool of residential ips. Moreover, we take
advantage of the analyses presented in this chapter, Chapter 3, Chapter 4
and Chapter 5 to have a complete overview on resip and draw conclusions
on what is known so far about these parties.

To collect rtt_ds, each client performs the dns resolution for the super-
proxy domain name and sends a http connect to the obtained ip address.
The superproxy forwards the request to a gateway that finally sends it
to the server. All the requests sent by our clients share the same customer
id. For this reason, it could be possible that the superproxy and gateway
ips we collect are only taken from a partition of ips assigned to our account.
However, based on the available documentation and the interactions we had
with the companies, there is no indication that this is a practice they follow.
Because of this, we can safely assume that our dataset is a representative
sample of the global pool of ips belonging to these parties. Thus, our results
describe the characteristics of the whole pool available to the providers.

Thanks to an in-depth analysis of the superproxy and gateway ips in

103

104
7.2. Findings about resip Inner Functioning and Relationships Among

Providers

Table 7.1: ips distribution statistics per provider

resip # Connections # Countries # /32 # /24 # /16 # /8 # as

bd 2,413,405 226 1,546,886 712,274 23,274 193 17,026
ol 22,387,788 226 6,660,452 846,165 15,230 194 19,370
pr 22,523,876 234 3,982,149 411,949 14,145 201 9,871
sm 22,353,578 224 6,852,898 859,946 15,288 194 19,501

rtt_ds, we disclose novel insights about the inner working of resips in terms
of geographic distribution, types and management of ips used. Moreover, we
show the similarities and differences among the four studied resip services.

Furthermore, we use the rtt_ds to discuss the size of the pool of residential
ip addresses that resip providers have at their disposal. While these providers
claim to have access to a large amount of ips, the analyses in Section 6.3.2
seemed to suggest otherwise. In this chapter, we reach the same conclusions
by estimating the pool size through mathematical modeling.

In the following sections, we first present the novel findings about resip
providers (Section 7.2). Then, we propose our analyses concerning the ip
address size of the resip (Section 7.3). We conclude the chapter with a
discussion on the lessons learned from studying resip providers (Section 7.4).

The works presented in Section 7.2 were published in [C5]. The model
illustrated in Section 7.3 was presented in [C7], [J1], while its application on
the rtt_ds was included in [C5].

7.2 Findings about resip Inner Functioning
and Relationships Among Providers

In this section, we study the ip addresses collected in rtt_ds to reveal
new findings about their inner functioning and the relationships among
different providers. During the 110 days of collection, we registered 22M+
connections for Oxylabs (ol), Proxyrack (pr), Smartproxy (sm), as shown in
Table 7.1. Bright Data (bd) count is lower than the other entries due to the
discontinuation of the service imposed by the company (see Section 4.2.1).
Moreover, Table 7.1 shows the wide distribution of the ips associated with
the requests in terms of countries, Autonomous System (as) and subnets. We
notice that bd shows high variability even if we have fewer connections from
this provider. This tells us that potentially its real distribution presents even

Chapter 7. Analysis of the Residential ip Proxies Ecosystem 105

1 2 3 4 5 6 7 8 9 10111213141516171819202122

0

2

4

6

8

·105

Server code

U
ni

qu
e

ip
s

bd
ol
pr
sm

Figure 7.1: Unique gateway ips
registered by each server.

Table 7.2: ips repetitions per
provider

RESIP Repeated IPs Repeated IPs
per server

Repeated IPs
per client

bd 31% 3±1.6% 3.3±1.8%
ol 49% 16.3%±0.5% 16.3%±1.3%
pr 61% 23% 23.4%±0.2%
sm 49% 15.7±0.4% 15.7%±0.4%

higher values. For pr, instead, we see the lowest values in terms of /32, /24
and /16 subnets count and as variability. At the same time, it presents ips
in more countries than the other providers and it shows the highest value in
/8 subnets diversity. This shows that this provider has a better presence on
the global scene but lower shares in each region.

Thanks to the analysis of the above-mentioned connections, we introduce
some novel findings into the inner workings of resip providers and their
relationships. We present these findings, numbered between f1 and f7, in
the following sections.

7.2.1 f1: Assignation of gateway ips to Minimize
Repetitions per Path

Fig. 7.1 shows the amount of unique gateway ip addresses registered by
each server for every provider. On the x-axis, we see the codes (1-22) of our
servers. On the y-axis, we find the count of unique ips. Each mark represents
the count of unique gateway ips seen by a server for a specific provider.
Codes 17-22 correspond to the machines added in the second phase of the
experiment. They have received fewer requests than the others and this is
reflected in the count of unique ips.

In general, we can see that, for each provider, the amount of unique ips
contacting each server is constant. This shows an inner strategy of resip
providers. These parties try to assign unique gateway ips to each server
with the same proportion.

Moreover, we can notice that if we sum the amount of unique ip addresses
registered at each server for a specific provider we obtain much higher values

106
7.2. Findings about resip Inner Functioning and Relationships Among

Providers

than the total amount of unique ips (# /32 in Table 7.1) seen for that provider
across all servers. For instance, looking at pr, the average number of unique
ips in Fig. 7.1 is around 600,000. Multiplying this value for the number of
servers (22) we obtain 13,200,000 which is much higher than the number of
unique ips seen for the same provider in the whole experiment (3,982,149).

Examining the count of unique ips per path (combination of client-server),
we see that the number of unique ips per path is 4971±4252, 45526±4247,
43164±3929, 45552±4252 for, respectively, bd, ol, pr and sm. If we multiply
these values by the total number of paths (22*22), we obtain again values
much bigger than the ones in the fourth column of Table 7.1 (e.g. for ol,
22,034,584 instead of 6,660,452).

These results tell us that resip providers increase the variability of ip
addresses for a single path, and try to optimize their stealthiness by giving
each client a new ip for each of its requests, even if it queries a distinct
server. At the same time, they reuse much more often the same ips for other
client-server combinations.

Furthermore, the statistics about the repetitions of ips, as shown in
Table 7.2, validate this idea. We define a repetition when an ip address shows
up in at least two connections. The third last column shows the percentage
of repetitions with respect to the number of unique gateway ip addresses.

pr presents a repetition percentage higher than 60%. However, it is in line
with the fact that we almost reached the advertised size of its pool (4M). ol
and sm percentage are similar and set to around 50%. In this case, since the
claimed pool sizes are much bigger (100M and 40M respectively), we would
have expected a lower percentage of repetitions.

The second last column of Table 7.1 displays the average and the standard
deviation percentages of repeated ips per server. In the last column of the
table, we can see the same statistics per source client. These percentages are
much smaller than the ones obtained considering all machines. Furthermore,
the standard deviation is low, telling us that the frequency of ip repetitions is
stable for each machine. We can see the biggest variation for bd. This is due
to the company stopping our subscription just after the introduction of new
machines. Because of this, the traffic in these machines and the repetition
rate are lower and it influences the standard deviation.

The percentage of repetitions per path is even smaller. The obtained
values are 0.2±0.1%, 1.5±0.3%, 6%±0.3%, 1.3±0.1% for, respectively, bd,
ol, pr and sm.

This data, shows, once again, that resip providers, try to minimize the
usage of the same gateway ip for a single path. This minimization protocol
is an incentive for the clients of resip services to use only one machine to
send out many requests to one (or more) server(s) they want to contact. In

Chapter 7. Analysis of the Residential ip Proxies Ecosystem 107

(a) bd (b) ol

(c) pr (d) sm

Figure 7.2: Hilbert curves of the gateway ips distribution of resip
providers in rtt_ds.

this way, they maximize the ips used for their requests and complicate the
detection on the server side.

7.2.2 f2: Non Correlation between gateway ip and
Destination Server Locations

In our setup, we have two machines per location. If resips chose the gateway
to minimize the additional distance between client and server introduced
using their infrastructure, we would have higher percentages of repetitions of
gateway ips between servers in the same location than among other ones.
Indeed resips would choose gateways close to the two machines more often,
increasing the probabilities of repetitions and diminishing the pool size of the
provider seen by those servers.

However, examining the unique ips per provider per couple of servers, we
see that the percentage of repetitions is similar in all combinations. Further-
more, the proximity study proposed in Section 4.3.4 tells us that the number
of connections where client, server and resip machines are close to each other

108
7.2. Findings about resip Inner Functioning and Relationships Among

Providers

is low. This information suggests that resip providers do not choose a subset
of gateways close to the destination server location.

7.2.3 f3: Non Uniform Distributions of gateways ips

Figure 7.2 shows the Hilbert curves [129], a continuous fractal space-filling
curve, for the gateway ip addresses of every studied provider. We created
the curves with ipv4-heatmap [130]. Each pixel represents a single /24 block.
The color of each pixel depends on the number of addresses of that block that
we collected during the experiment. A white pixel means that none of our ip
addresses is in that /24 block. Colored pixels tell how many ips are in the
block. Colors range from blue (1 ip) to red (256 ips).

The curves are annotated with iana labels. We can see in the top right,
the Multicast, and Reserved blocks. On the top left, we can notice the blocks
that were assigned to private companies before Regional Internet Registries
(rirs) became in charge of ipv4 allocation. The majority of the rest of the
blocks are divided among the world’s five biggest rirs: American Registry
for Internet Numbers (arin) [131], Réseaux ip Européens25 (ripe) [69],
Latin America and Caribbean Network Information Centre (lacnic) [132],
Asia Pacific Network Information Centre (apnic) [133], African Network
Information Centre (afrinic) [134].

We can clearly see that the majority of bd gateway ips are situated in
the areas controlled by arin and ripe. On the other hand, the distribution
of pr gateway ips have peaks in afrinic. Most of the gateways of ol
and sm are in lacnic and ripe registries.

We can look at the distribution of gateways also from a geographic angle.
Fig. 7.3 shows the distribution in percentage of gateway ips per country
for each provider. The darker the color blue is in a country, the higher the
percentage of gateway ips from that country. We see that bd requests
mostly originated from the usa and Russia, while pr ones were sent mostly
from North Africa. ol and sm larger fractions of ips are situated in Brazil
and India. These two providers exhibit similarities in terms of the respective
geographic distribution and Hilbert curves.

These data show that single providers do not have uniform distributions
of their gateway ips around the world. Furthermore, it shows how sm and
ol distributions are comparable, while the ones of pr and bd differ from
each other and from the two previously mentioned ones.

25French for “European ip Network”.

Chapter 7. Analysis of the Residential ip Proxies Ecosystem 109

(a) bd (b) ol

(c) pr (d) sm

Figure 7.3: Distribution of the gateway ips per country.

7.2.4 f4: Different Management of superproxy ips
among Providers

When the client needs to send a request, it identifies the superproxy through
a domain name. Analyzing the superproxy ips obtained from the Domain
Name System (dns), we can see that pr superproxy is identified with the
same 2 ip addresses from all locations. ol domain name resolution results
in 18 ip addresses. 17 of them are shared among all our clients. One ip is
observed only by both our machines in India and Canada and one among
the two we have in India, Australia, and Tokyo. For sm, the domain name is
resolved with 11 different ips, seen by all our clients.

bd presents a different scenario. The total number of ips is 5,603. For each
machine, the resolution gives 3,539 ips on average. The maximum number of
shared ip addresses is 4,177. We have checked if bd is using its gateways
network to play the role of superproxy as well. The data of our experiment
reject this hypothesis since there is no intersection between the gateways
and superproxys sets of ips of bd.

From these results, we can see that bd has a more distributed network of

110
7.2. Findings about resip Inner Functioning and Relationships Among

Providers

Table 7.3: Shared ips among providers (rtt_ds).

bd ol pr sm
bd - 9% 5% 9%
ol 2% - 8% 63%
pr 2% 13% - 13%
sm 2% 61% 7% -

superproxys, while the other providers have a small number of addresses
for this component. This lets us think that the infrastructure of ol, pr and
sm is more similar with respect to the one of bd.

7.2.5 f5: ol and sm most likely Share Part (or all) of
their Pools of gateway ip Addresses

Table 7.3 shows, for each couple of providers, the percentage of ip addresses
shared by the two. Each cell represents the amount of ip addresses shared
by the provider of the line and the one of the columns with respect to the
amount of unique ip addresses of the provider of the line. pr shares more
than 10% of its ip addresses with ol and sm. Moreover, ol and sm share
more than half of their pool.

It is possible that the software of different resip services is installed on
the same device and that, thus, the same ip address ends up being part of
more than one resip pool. It is also possible that distinct devices behind
a nat can run the resip software of different providers. In this case, the
providers share the same (nated) ip address. Moreover, as previously said,
the same ip can be used by distinct devices on different days. However, it
is highly unlikely that these scenarios account for more than half of the ip
addresses of these two providers. Our intuition is that sm and ol share a
significant part of (or all) their pools of addresses, be it knowingly or not.

It would not be the first time that two providers shared a consistent part
of their ips. In the first resip study [38], the authors display how two other
providers (Geosurf and Proxies Online) have major intersections of their
pools. Moreover, in [45], the authors discover a high correlation among the
pools of three Chinese resip providers. Thanks to further investigations,
they disclosed that the three services are controlled by the same underlying
operator.

Nowadays, there are more and more resip providers on the market
claiming to have access to tens of millions of residential ips. The above-
mentioned data shows that even if these sizes were real, some pools of ips

Chapter 7. Analysis of the Residential ip Proxies Ecosystem 111

Table 7.4: Distribution of gateways with respect to the initial ttl value
and the associated oses (rtt_ds).

resip

Linux, Ubuntu, Android,
mac os x, ios, Solaris,

openbsd, Debian
(ttl = 64)

Windows, Windows
Phone, Android

(ttl = 128)

BlackBerry
(ttl = 255)

ol 97.23% 0.51% 2.26%
pr 6.33% 92.79% 0.88%
sm 97.27% 0.51% 2.22%

are not uniquely used by a single provider. If this is true on a large scale,
the global pool of resip ips is much smaller than the sum of the claimed
numbers. This would be significant from a detection point of view. It would
dramatically decrease the number of ips to possibly detect and it would open
the door to the use of blocklisting detection techniques.

7.2.6 f6: gateways of Different Providers support
Different oses

As explained in Section 4.2.4, we collected the Time-To-Live (ttl) corre-
sponding to the first client tcp packet of each connection in rtt_ds. The
ttl is a value initially set by the os kernel and included in every network
layer packet. This value is decremented by one per each network element that
it crosses on its path between sender and receiver. It was designed to prevent
endless routing.

This value has been widely used to perform passive fingerprinting in
combination with other parameters [109], [135]–[137]. In this context, we use
it to study the distribution on sets of different oses of the resip gateways
of different providers. This is the only information that the ttl alone can
give us.

To reconstruct the original ttl set at the sender, we round the value
observed in a connection to the next higher power of two, as suggested by
Lippman et al. [138], starting from 64. Table 7.4, shows the distribution
of the original ttl of the three studied providers for 14 days of the data in
rtt_ds (14/04/2022-28/04/2022). Each initial ttl value is associated with

112
7.2. Findings about resip Inner Functioning and Relationships Among

Providers

0 5 10 15 20

2

3

4

5

Hours of the day

%
of

co
nn

ec
tio

ns
bd
ol
pr
sm

Figure 7.4: Diurnal patterns of gateway ips connections.

the oses found in fingerprints_ds26 for that value.
We can see that, for all providers, the usage of BlackBerry os (ttl =

255) is very limited. On the other hand, the distribution among the other
ttl values differs among the three. Most of the gateways of pr have an
initial ttl of 128, while the vast majority of gateways of ol and sm have
the ttl set to 64. This shows that ol and sm providers have access to similar
categories of devices while pr takes advantage of different types of machines.

7.2.7 f7: Diurnal Patterns in the gateway ips Avail-
ability depend on Provider

For each received connection, we use the geolocalization_ds to localize
the gateway ip that sends the request. Combining this information with
the client_epoch (UTC+0) we can determine the time zone in which the
gateway operates and the corresponding local time of the request.

In Fig. 7.4 we can see the distribution of the number of requests with
respect to the local time. On the x-axis, we have the hour of the day, and on
the y-axis the percentage of the number of connections sent by the gateway
in that local time, for each resip provider. A dashed line represents 4.17%,
which should be the value of the percentage if the connections are equally
distributed over the 24 hours. We can see that ol and sm present values
around the dashed line, with a smaller prevalence of usage during the first
hours of the day. On the other hand, bd and especially pr show to use
devices as gateway much more frequently in the second half of the day with

26We consider only the measurements with 100% confidence; we are aware that Android
appears with 2 distinct values.

Chapter 7. Analysis of the Residential ip Proxies Ecosystem 113

respect to the first half. This second daily trend has been also found in [38]
for all the studied resip gateways.

This shows that not all resip providers use the same strategies. Some
of them use devices available at any time of the day. Others, instead, take
advantage of different classes of devices whose availability has a different
diurnal pattern (e.g. mobile phones could be turned off at night while desktop
computers could remain available).

7.3 Assessment of resip Pool Sizes
resip providers claim to have access to tens of millions of residential ips and
to be able to rotate them among the different requests of each client. For
these reasons, the report [10] asserts that ip blocklisting has become “wholly
ineffective”. Doubtlessly, millions of different ips cannot be blocklisted alto-
gether and websites cannot risk blocking requests coming from real customers.
As introduced in Section 6.3.2, if resip providers had access to these vast
networks of ips, the probability of seeing the same ip more than once during
the collection would be low. However, the honeypot ips, which our analyses
suggest being resip ips, showed a high percentage of repetitions. This is
incompatible with randomly picking ips from a pool of tens of millions ip
addresses. Knowing the real order of magnitude of the resip ip pool can
drastically change how we perform detection. Thus, we built a mathematical
model to find this value from the ips used by gateways.

Contrary to datacenter ips, residential ones are dynamically assigned by
Internet Service Providers (isps), that typically reassign ip addresses [139].
Thus, a user proxying out a request through the same device could end up
sending requests with different ips at different moments in time. Moreover,
multiple devices could have the same ip at different moments in time or use
the same ip at the same time when behind a Network Address Translation
(nat) device. For these reasons, there is no 1-1 correspondence between the
number of devices and the number of ips involved in a resip network. Hence,
our analyses do not tell us the number of devices available to a resip provider
at any point in time. However, counting the number of distinct ips in a
window of time, as we do, is usually considered to lead to an overestimation of
the number of hosts [140]. Thus, our analysis likely provides an upper bound
of this value. Finally, the goal of our analyses is not to find the accurate
number of the ips but to understand their correct order of magnitude. This
can help us design effective detection methods.

In [C7], [J1], we applied a mathematical model27 on the honeypot ips. We
27To be exact, we applied two different mathematical models. The first one is based on

114 7.3. Assessment of resip Pool Sizes

0 20 40 60 80 100 1200

2

4

6

·106

Number of days

C
um

ul
at

iv
e

un
iq

ue
IP

s

ol
pr
sm

(a)

0 200 400 600 800 1,000 1,2000

0.5

1

1.5

·107

Number of days

C
um

ul
at

iv
e

un
iq

ue
IP

s

ol
pr
sm

(b)

Figure 7.5: Cumulative curve (a) and projection in time (b) of new unique
gateway ips.

saw that the pool from which these ips were taken was likely in the order
of the low tens of thousands. This result clashes with what resip services
advertise. However, the ip dataset collected at that time was small and
focused on a specific campaign leveraging a hypothetical resip provider. In
this section, we apply the same model on the much larger resip ip dataset in
rtt_ds to assess if our previous findings hold.

Hereafter, we present the model and the results obtained running it with
the rtt_ds ips28 as input. Moreover, we discuss the obtained results and
compare them to the ones obtained with the honeypot ips.

7.3.1 Pool Estimation thanks to Cumulative Curve
Fitting

In this section, we estimate the size of the resip pool by fitting the cumulative
curves of new unique gateway ips in rtt_ds.

For each day, we consider the amount of different ip addresses that did
requests on that day and were not seen before. We add them to the amount
of unique ip addresses seen since the beginning of the experiment. Fig. 7.5a
shows the result of this operation for ol, pr and sm. We can see that the

modeling the resip ip addresses seen at the server through cumulative curves. The second
one models the process resips do when deciding which gateway and, thus ip address,
is used for each new request, through different distributions. Both of the two approaches
gave us similar results. For the sake of conciseness, we propose here only the one based on
cumulative curves and its results. The interested reader can find more information about
the second model in [C7], [J1].

28We did not apply the model on the ips of bd because of the shorter collection period
for this provider.

Chapter 7. Analysis of the Residential ip Proxies Ecosystem 115

daily increment decreases over time, suggesting that it will eventually reach a
maximum.

To confirm our visual understanding, we can fit the cumulative curves
of new unique gateway ips with different curves and choose the one that
best represents the phenomenon. Thanks to the Python library SciPy [141],
we can perform this operation and find, for each curve, the parameters that
give us the best Pearson correlation factor [142]. This factor ranges from -1.0,
which means total negative line correlation, to 1.0, representing total positive
line correlation.

We experimented with linear growth and decay as well as exponential
growth and decay curves. Among these curves, the one that gave us the
best Pearson correlation factor was the exponentially decaying curve (a ∗
(1 − e−(x−b)/c)). We choose the parameters that give us a Pearson correlation
factor of 1.0. We project the curves in time to find the value of the plateau.

This approach, most likely, does not enable us to obtain the exact number
of ips used by resips in time. However, rtt_ds is a representative sample
of resip connections for each studied provider, as explained in Section 7.1.
Hence, we expect it to representatively characterize how transient the ips
available to resip are. We assume that this transient remains constant over
time. Thus, by projecting the current data in the future we can have an idea
of the correct order of magnitude of the pool size.

Fig. 7.5b shows the results of the projections. The curve of pr indicates
that the plateau for this provider reaches values above 8M. This contrasts
with the information given by the provider, which advertises a pool of half
this size (4M). This could mean that they have more ips at their disposal
but they do not have them all available at the same time. Alternatively, they
could count only one single ip per device they can use, not considering that
the device can change its address. ol and sm plateaus are around 14M and
15M respectively. These values largely differ from the available information
about the size of the pools (100M for ol and 40M for sm). Considering once
more the fact that there is no 1 to 1 correlation between devices and ips, the
providers seem to overestimate the number of ips they have at their disposal
at any moment in time.

The obtained values do not validate the pool size obtained in [C7], [J1]
where we applied the model on the honeypot ips. There, we estimated resip
providers to have a pool of ips in the low tens of thousands. However, in
our previous work, we applied the technique on a server in a unique location
targeted by a specific scraper that could have used a different resip provider
than any of the four studied in the experiment. In this case, instead, we
are considering ip addresses from different locations. To perform a more
fair confrontation, we can perform the same analysis also for every server of

116 7.4. Lessons Learned Analyzing resip Connections

our infrastructure. Results show that for each server the plateau is bigger
than 1M. In particular, we have values per server of 2,604,031±110,460,
1,818,972±33,534 and 2,737,814±145,454 for, respectively, ol, pr and sm.
These results confirm, again, that the pool sizes of resip providers differ
from what they advertise on the Internet. Moreover, this tells us that, if the
honeypot ips were resip ips as hypothesized, they most likely belonged to a
resip provider different from the analyzed ones and with a smaller pool of
ips at its disposal.

7.4 Lessons Learned Analyzing resip Connec-
tions

In the previous sections and chapters, we have looked at the resip ecosystem
from different angles and we have discovered new features about their modus
operandi. In this section, we present the lessons learned considering all our
results together.

We have seen that all resip providers share part of their implementation
and functioning strategy. resip services try to maximize the number of ips
associated with a single client-server path and do not seek to choose gateway
ips close to the contacted server (Section 7.2.1 and Section 7.2.2). Moreover,
the three providers studied in the Chapter 5, act in the same way when the
server does not acknowledge packets. Indeed, all the resip services, try to
contact the server from another couple of gateways located in different areas
of the world (Section 5.3). Finally, as described in Chapter 4, none of the
providers breaks the tls session in between client and server, but they do so
for the tcp session.

However, even if we see these common features, we have many indica-
tions that some of the studied parties have fundamental differences among
themselves. Section 7.2.3, Section 7.2.6 and Section 7.2.7 show that the
providers recruit gateways with different characteristics (installed os, avail-
ability during the day) and from different areas of the world. In Section 7.2.4,
we can see that bd has a completely different management of their super-
proxy with respect to the other providers. All resip providers break the tcp
and not the tls session, but as visible in Figure 4.4, the difference between
the rttT LS and the rttT CP produces different distributions for different
providers. Finally, Section 5.3 shows that while all the providers use more
than one gateway to send syn packets to non-acknowledging servers, pr
keeps retransmitting packets from one port but ol and sm send syn packets
from newly opened ports. These results tell us that even if the providers

Chapter 7. Analysis of the Residential ip Proxies Ecosystem 117

show similarities, we cannot consider them as one monolithic entity. This
complicates the task of finding detection methods able to identify all of them.
At the same time, it opens the door for attribution techniques thanks to the
detection of specific features of providers, as the one proposed in Section 5.4.

Among the different tests we propose, we can notice that ol and sm have
high similarities in almost all the results. These two services share more
than half of their gateway ips (Section 7.2.5) and they show the same
distribution of /24 (Section 7.2.3) and oses of their gateways (Section 7.2.6).
Furthermore, neither of them shows a diurnal pattern in the availability of
devices (Section 7.2.7) and they present similar distribution of the differences
between tls and tcp rtts (Section 4.3) as well as the speeds used to send
their packets (Section 4.3.1). Moreover, both of them use a very similar
algorithm to send new syn packets in case they do not obtain a syn-ack
packet from the server (Section 5.3). In this last scenario, however, we see
that they have shown a small difference. The median interval between the
first and second gateways that contact the server is really short for sm (<1s)
but not for ol (7s). While we can see striking similarities between these two
parties, this difference and the fact that they have different superproxy ips
(there is no intersection among the two groups of ips), does not enable us
to say that these two companies are two different names for the same entity.
The root cause of these similarities remains an open question.

Finally, we could implement an approach similar to blocklists to detect
resip . We have seen that two out of three providers appear to have pool sizes
much smaller than what they claim (Section 7.3.1). Moreover, Sections 7.2.3
and 7.2.5 tell us that two providers use the same /24s and that different
providers share a high percentage of ips. We need to remind that an ip
registered on two different days, does not necessarily mean that the same
device was part of a resip for the whole time between the two days. However,
considering the corresponding /24 enables us to take into account devices
that change address but remain in the same /24.

Based on this, our idea would be to build lists of suspicious /24. When
an ip is seen as part of a resip, we mark the corresponding /24 as suspicious.
When an ip from a suspicious /24 contacts a server, the server can answer
with a more invasive technique, such as delaying the sending of the syn-ack
packet (Section 3.5). Since we have seen that ips are much more often reused
for different paths and servers (Section 7.2.1), a collaborative protocol among
different servers to build and share this list would enable to have better
detection.

This approach might not always be effective. As shown by Griffioen
et al. [143], there is no general rule among ases to maintain the previous
prefix after reallocation. While some ases reallocate only in the same /24 for

118 7.5. Summary

operator policy, others present a more variegated scenario. Because of this,
our idea could not work and a real-world measurement is necessary to assess
the validity of the proposed approach. We leave this as future work for this
thesis.

7.5 Summary
In this chapter, we provide novel insights about the resip ecosystem thanks
to the analysis of the rtt_ds. We show different aspects of the resip
infrastructures, highlighting similarities and differences of the providers in the
geographic distribution, types, management and amount of their gateways,
as well as in the management of their superproxys. Moreover, we estimate
the size of residential ips that are at the disposal of resip providers. Our
results do not confirm the claims resip providers do on their websites. Finally,
we use all the information gathered about resips in this chapter and the
previous ones to list all the lessons we learned about these parties. This
information gives us indications about the next directions the security industry
could follow to better detect and mitigate scraping requests through resip
services in the future. However, while it is important to detect and mitigate
resip requests enabling malicious activities, the original client behind these
infrastructures is the actual party that we would like to detect and mitigate.
Hence, it is important to acquire information about it. In the next chapter,
we focus on this task, investigating the possibility of geolocating scrapers
sending requests through resips.

Chapter 8

Geolocation of Scrapers behind
a Residential ip Proxy

8.1 Introduction
In the previous chapters, we saw how much and why scrapers leverage resips
to perform web scraping (Sections 2.2.3 and 2.3). Moreover, we presented and
tested two new ways to detect server-side if a request is proxied through resips
(Chapters 3 to 5) and we characterized the resip ecosystem (Chapter 7).
However, resips are just instruments in the hands of scrapers and other
malevolent parties that use them for their activities. While it is important
to detect and mitigate resip requests when they enable malicious activities,
the original client is the actual party on which we want to acquire threat
intelligence information.

In particular, we would like to understand when different campaigns
(different sets of requests proxied through resips) are initiated in the same
area of the world and, hence, could be produced by the same party. Moreover,
we would like to see if multiple parties from different locations in the world
are behind a single set of resip requests that reach a server at the same time.
This information would help us to better characterize the goals and means of
attackers, and, thus, defeat them. Within the current state-of-the-art, there
is no available technique to perform these tasks.

In this chapter, we investigate the possibility of performing them with a
new multilateration approach. In Section 2.5, we studied geolocation through
multilateration. Moreover, we saw why we cannot leverage previous works on
rtt-based geolocation in this new scenario. However, we can take advantage
of part of their results. In [C8]29, we studied the problem of rtt-based

29For conciseness, in the rest of the thesis we refer to this preliminary work only

119

120 8.1. Introduction

geolocation between directly connected machines. Our outcomes told us that
considering a combination of speeds helps in the geolocation accuracy. Indeed,
a single average mean value for packets traveling around the world does not
exist, as discussed in Section 4.3.1 regarding resip connections in rtt_ds.
Different speeds enable us to cover multiple scenarios and associate the best
speed to each connection.

This concept is the starting point of our approach. As highlighted in Sec-
tion 8.2, though, the problem at hand presents many challenges with respect
to the direct connections studied in [C8]. Thus, we start our investigation
by verifying if there is a combination of speeds that enables to geolocate the
client in this complex scenario.

To answer this question, we enlarge and refine the technique in [C8]
to obtain rttlocator , our geolocation algorithm for the initiators of resip
requests. rttlocator leverages the δRT T values of a set of resip requests
to multilaterate the location of the original client using a combination of
speeds. Our experimental results on ground truth connections show that the
algorithm geolocates the original client when its parameters are optimized
for the specific set of requests. However, finding the optimal combination
of speeds that reach an accurate solution for all sets of requests considered
together and/or obtaining multiple client locations is not a trivial task. We
show that, although intuition would say otherwise, considering the best speeds
that reduce the median error and its dispersion among different sets of requests
is not an effective approach.

While finding the optimal combination of speeds remains an open problem,
we present here our early results and the knowledge gained in studying this
complex problem with rttlocator . We believe this to be an important starting
contribution to finding the location of the client(s) behind resips.

In the following, we detail the idea behind our technique and the challenges
imposed by the setup (Section 8.2). Then, Section 8.3 describes the algorithms
used in rttlocator . Section 8.4 proposes an evaluation of the rttlocator on
the ground truth dataset obtained from the rtt_ds (Section 4.2.4). The
section explains the different used parameters and the problems in choosing
the right set of those. Moreover, it provides a technique to find a possible
final Set of Speeds and the accuracy obtained using them. Furthermore, it
proposes the geolocation of real-world resip connections obtained through
our collaboration with Amadeus it Group. In these requests the original
client location is unknown. Finally, Section 8.5 discusses the results and
limitations of the technique.

highlighting the parts that are important to understand our new algorithm. We refer the
interested reader to the full paper for more information.

Chapter 8. Geolocation of Scrapers behind a Residential ip Proxy 121

C
lie

nt

su
pe

rp
ro

xy

ga
te

w
ay

rttT LS

rttT CP

resip

δRT T

Se
rv

er...

Figure 8.1: Common internal structure of a resip provider and rtt values
among the involved parties.

The content of this chapter is based on ongoing work. The high-level idea
behind multilaterating the original client behind a resip was introduced as
future work in [C3]. The author contributed to [C8], where the geolocation
algorithm we leverage and refine in this chapter was first applied to a different
problem.

8.2 Multilateration of the Original Client
Figure 8.1 recalls the common internal structure of resips as discussed in
Section 3.2. The client sends the request to the superproxy, the request
traverses the resip infrastructure, composed of an unknown number of
intermediate machines, if any [38], and reaches the gateway. This last
element contacts the target server. In this scenario, the tcp and tls sessions
take place between different parties (respectively gateway-server and original
client-server). We can identify this difference in the transport layer at the
server-side thanks to the comparison of the rtt of the tcp and tls packets
(Section 3.4).

The difference between these two rtt values (δRT T =rttT LS-rttT CP)
reveals information about the distance between the used gateway and the
original client. We can exploit this information, given a set of requests initiated
by the same client and using multiple different gateways, to multilaterate
the location of the client. We can find the intersection of the circles whose
centers are the gateway locations, information we can retrieve from their ip
address, and whose radii are half of the corresponding δRT T multiplied by the
speed of the packets. This intersection identifies the area of the world where
the original client is. Figure 8.2 provides a visual example of this concept.

However, accurately performing this process comes with a number of
complex challenges. The machine we want to geolocate is hidden behind a set
of other machines (resip infrastructure). On the server side, we do not have

122 8.2. Multilateration of the Original Client

g1

1
2 δRT T 1 ∗ savg g2

1
2 δRT T 2 ∗ savg

g3
1
2 δRT T 3 ∗ savg

Real
location

Figure 8.2: Example of multilateration from 3 gateways using the corre-
sponding δRT T values.

any information, e.g. number of machines and their location, about these
machines. The only information we know is the δRT T , which is not measured
directly. It is obtained from the difference between the measured rttT LS and
rttT CP .

Moreover, this metric is not the rtt between two machines but is the
sum of the rtts among the unknown number of machines that break the tcp
session between the gateway and the client. Furthermore, the machines
in the resip infrastructure could produce large detours of packets (e.g. the
client and the gateway are in Europe, but the superproxy is in South
America) that are reflected in the value of the δRT T and bias the resulting
information about the distance between the client and the gateway.

In addition, on the server side, we do not have any control over the resip
and their choice of gateways. Hence, we usually have one single δRT T

measurement per gateway and no information if that measurement had
delays due to network congestion.

Finally, even if the δRT T would give us the precise time to go from the
client to the gateway and come back, there is no common value for the
speed of packets traveling around the world (Section 4.3.1) and the different
journeys between machines inside the resip could experience different packet
speeds.

To address these challenges and overcome the limitations of previous
rtt-based multilateration methods in our use case (Section 2.5), we propose
a probabilistic approach to geolocate the initiator(s) of a set of requests sent
through resip services. Starting from the algorithm in [C8], we create a
new technique, called rttlocator , that multilaterates the client behind a

Chapter 8. Geolocation of Scrapers behind a Residential ip Proxy 123

g1

g2

g3 Real
location

Figure 8.3: Multilateration using multiple average packet speeds. Each
circle corresponds to a different average packet speed. Solid lines are the ones
that best contribute to finding the solution area in this example.

resip leveraging the δRT T and considering multiple packet speeds. For each
connection coming from a gateway, we end up with a set of circles centered
in the gateway location with different radii, one for each considered speed
(Figure 8.3). We expect the circle that best represents the real distance
between the client and the gateway to cross in the same area as the ones of
the other gateways that best represent the corresponding real distances.

We acknowledge that there are reasons why neither of the chosen speeds
could end up properly modeling the packet path between the client and
the gateway. Network delays and large detours of packets in the resip
infrastructure could largely affect the δRT T . There could be really different
packet speeds among some machines of the resip infrastructure that would
bias the result.

In these cases, which we hope to be a minority, none of the concentric
circles obtained with different speeds and centered in the gateway location
cross on the location of the original client. Moreover, they add noise to our
geolocation process. For this reason, in our algorithm, we first filter out the
circles that do not contribute to finding the solution because they do not cross
in a single location with the majority of the others. Then, we just consider
the crossing circles to understand the area of the world in which the client is
likely to be.

Beyond finding the location of the original client, rttlocator has the
potential to tell if multiple clients are behind a set of requests. If two clients
in different parts of the world send requests using resips at the same time,

124 8.2. Multilateration of the Original Client

g1

g2

g3

g4

g5
g6

Figure 8.4: Example of two scraping campaigns initiated by different clients
and running at the same time. The first client leverages g1-g3, the second
g4-g6. Blue dots represent the real client position and the red one is the
erroneous cross of circles from gateways of different campaigns.

we obtain two groups of circles intersecting among them in those areas.
However, the intersections across the two groups will be all over the world.

To identify these groups of circles, we need to detect when the majority of
circles cross at just one point or more than one. Moreover, we need to carefully
tune the initial filtering of the circles to not remove the circles contributing
to a second location. Finally, having multiple campaigns running at the same
time could lead to wrong solutions. Figure 8.4 represents an example of this
situation. The blue dots represent the two original clients. The first one
leverages g1-g3 to send out requests, the second g4-g6. Circles obtained
from g1-g3 cross the area of the corresponding client, circles created from
g4-g6 meet in the second client location. However, circles from g2,g3 and g5
also all cross among them in correspondence with the red dot, which could
be wrongly considered a solution. We need to have a procedure that does not
lead to this last result.

The rttlocator performs the above-mentioned tasks leveraging two distinct
algorithms:

• Grid Based Localization (gbl): We consider the planisphere as
a grid of squares. We build a circle from each resip connection and
each speed to study. The circle is centered in the gateway location
and the radius mirrors the distance between the gateway and the
initiator, as expressed by the δRT T . We find the square(s) crossed by
most circles. This gives us an initial idea of the area(s) of the world in

Chapter 8. Geolocation of Scrapers behind a Residential ip Proxy 125

Figure 8.5: Example of visual outcome of the gbl algorithm.

which the client(s) is(are) located and identifies the circles with valuable
information (the ones that contribute to estimating the most crossed
square(s)) for the next phase. gbl enables us to filter out the circles
that produce noise in the geolocation and to see if multiple clients are
behind a set of requests.

• Iterative Least Squares Multilateration (ilsm): For each identified
area of the world in which a client could be, we consider the circles
passing in that area. We apply a refined version of the Iterative Least
Squares Multilateration Algorithm in [C8] to find the location of the
client.

In the next section, we explain step-by-step both the algorithms that
compose rttlocator .

8.3 The rttlocator technique

Hereafter, we provide the details of two algorithms behind rttlocator , defining
some Parameters. These parameters influence each other. To find the optimal
combination of them, we take advantage of a ground truth database, in which
we know the location of the clients behind resip requests. In Section 8.4,
we present the chosen value for each parameter and explain the ratio behind
these choices while, in the following, we just refer to the concept expressed
by each parameter for an easier understanding of the logic of the algorithms.

126 8.3. The rttlocator technique

Figure 8.6: Example of multiple client locations as visual outcome of the
gbl algorithm.

Grid Based Localization

We consider the planisphere centered on the European continent. We divide
the planisphere into a grid of squares, whose length is Grid Size. Each square
has a counter that is initialized at zero. We use this counter to know how
many circles cross each square.

We read an input file that contains information regarding a list of resip
connections. Each line of the file provides the latitude and longitude of
the gateway contacting a server as well as the corresponding δRT T of the
connection expressed in milliseconds.

Initially, we confirm the existence of connections created by a minimum
of three distinct gateways, each having non-matching coordinates. If this
condition isn’t met, the multilateration process becomes unfeasible, leading
the algorithm to generate an error. Then, the algorithm verifies that the
δRT T is in the interval [Minimum rtt, Maximum rtt]. This check enables
us to eliminate errors in the measurement and long delays at the tcp or tls
layer due to network congestion. If this check is not passed, the line is not
considered in the further steps of the algorithm.

At this point, we divide the δRT T value by 2, obtaining δRT T

2 . We perform
this step since we only need the one-way time to go from the gateway to
the client. The entries remaining after the cleaning process are sorted in
ascending order based on the δRT T

2 value.
For each line, we draw the corresponding circles in our grid. We consider

the latitude and longitude of the gateway to find the center of the circles.
We determine the radii in kilometers by multiplying δRT T

2 by each considered
speed in the Set of Speeds.

After this, we convert the coordinates from degrees and kilometers into

Chapter 8. Geolocation of Scrapers behind a Residential ip Proxy 127

square distances. We plot the circle on the planisphere. If the circle exits the
planisphere on the east or west border (longitude -180◦ and +180◦), we draw
the exiting part of the circle on the other side of the planisphere. Indeed, we
consider the planisphere as a cylinder where the line at longitudes -180◦ and
+180◦ coincide. We thus draw the circle as if there was continuity between
the two areas around the line. Regarding the circles that exit the map on the
north and south borders (latitude -90◦ and +90◦), we make the reasonable
assumption that the path does not cross the poles. Hence, for these circles,
we just consider the part not exiting the planisphere.

For each square that is traversed by a circle, we increment its counter
by one. After processing all lines, the counter of each square indicates
the total number of circles passing through it. Figure 8.5 provides a visual
representation of an example result of this phase. It represents the planisphere
divided into squares. The x and y axes provide respectively the longitude and
latitude values. Blue points refer to the locations of the considered gateways,
and the red dot corresponds to the real client location. Each square has a
different color depending on the number of circles passing through it. The
darker the color, the higher the number of circles passing through it. We can
see that the area near the solution has the darkest squares, recognizing that
the requests were sent from that part of the world.

When the grid shows multiple regions on the planisphere with darker
squares (e.g. Figure 8.6), it may indicate the presence of different clients
behind the set of connections. We start considering the square with the
highest count. We retrieve the circles crossing that square. Moreover, we
consider that also the circles crossing the neighboring squares could contribute
to finding the location. We consider neighboring squares the 24 squares that
surround the highest value square in the two preceding/subsequent rows and
columns.

Figure 8.5 provides a visual example of the concerned squares that are
highlighted with a black border. We retrieve the circles crossing those squares
as well. Depending on the location of this group of squares in the world, we
define which projection of the planisphere (Europe, America, Asia centered)
the next phase of our algorithm (ilsm) needs to use. One of ilsm limitations
is that it does not cope with those circles that exit the planisphere on the
east and west borders. To minimize this phenomenon, we need to use the
earth projection which positions the area under study as close to its center as
possible.

We then calculate the number of retrieved circles over the amount of
total plotted ones. If this percentage is lower than Minimum Circles, we
consider that at least one other client location exists and revisit the results
obtained with the gbl algorithm. We then take into account only the plotted

128 8.3. The rttlocator technique

but non-previously retrieved circles. We find a new square with the highest
count and, as before, we retrieve the circles crossing it and its neighboring
squares. This corresponds to a second location. We recalculate the number
of retrieved circles over the amount of total plotted ones, considering also the
previously retrieved ones. Suppose the percentage is still lower than Minimum
Circles, we redo the process to identify a third location. This iterative process
continues until the threshold percentage is reached.

For each recognized location, we obtain a set of circles that best enable
us to geolocate the solution and the corresponding projection.

Iterative Least Squares Multilateration

In the previous phase, we extracted the most contributing circles for each
client location. Each circle radius was calculated with the speed among the
used Set of Speeds that best contributed to the solution. Moreover, for each
client location, we determined the corresponding planisphere projection to use.
Given this information, we take advantage of a refined version of the ilsm
algorithm described in [C8] to find a better approximation of the location of
each client.

In [C8], we showed how to use the rtt values associated with a set of
packet speeds for geolocation purposes. The use case was much simpler
though: we were finding the location of a server through the rtts obtained
from direct connections of clients. In our case, we want to localize the client
behind the resip given the gateways and the δRT T . In this new scenario,
the δRT T is a much worse estimate of the distance between the client and a
gateway because the packet traverses the resip infrastructure, composed of
multiple machines, which could impose a large detour of packets.

In [C8], we ran the analytical solution with several random samples of
circles to minimize errors caused by “erroneous” circles. Thanks to the gbl
phase, we are not facing this problem and we can run the ilsm algorithm
only once. This enables us to be much more efficient.

Moreover, we only perform multilateration on one projection for each
set of connections, since we already know which projection to use from the
previous step. In the original algorithm, three projections were used to
understand which one was the one giving the best results. Finally, in the
original algorithm, we were considering the number of hops passed by the
incoming request to refine the geolocation. However, this information is not
available in the proposed scenario and thus we do not perform this step.

Given a set of circles and the projection, the algorithm uses the Iterative
List Square method [144] to find the point that minimizes the squared error
between this point and all the circles. The algorithm returns the latitude and

Chapter 8. Geolocation of Scrapers behind a Residential ip Proxy 129

the longitude of the solution. It calculates the error between this point and
the real client location (Haversine distance [111]) when this information is
known.

8.4 Evaluation
In this section, we first define the datasets that we take advantage of to
evaluate and tune rttlocator (Section 8.4.1). Then, in Section 8.4.2 we use
the ground truth dataset to tune the different parameters of the algorithm and
try to understand their optimal value. Finally and with not less importance,
we show the results of running rttlocator on real-world scraping connections
passing through resip services.

8.4.1 Datasets
Ground Truth Dataset

Our ground truth dataset is obtained from rtt_ds. Section 4.2.4 presents the
collection process. For our analysis and evaluation, we take samples from this
collection. We arbitrarily chose the size of the sample to be a manageable size
for the running time of the algorithm. For each resip provider and each client,
we retrieve 10,000 connections, divided into 2 groups of 5,000 connections. This
corresponds approximately to 20 consecutive hours of connections per client
and resip. We obtain a grand total of 4*22*10,000=880,000 connections.

For each sample, we know by design the location of the corresponding
client and the used resip provider. For each connection in the sample, we
know the latitude and the longitude of the gateway, retrieved from the ip
address thanks to MaxMind GeoLite2 Database [70] and the corresponding
registered δRT T . We use this information as input for rttlocator .

Real World Datasets

As explained in Section 4.4.2, we have a collaboration with Amadeus it Group
and the third-party company protecting their domains from bot attacks.
Thanks to this, we have access to resip real-world connections sent to their
domains. In these requests the original client location is unknown.

We focused on four different airline domains and we obtained the corre-
sponding datasets, which we call Airline x Dataset, Airline y Dataset, Airline
z Dataset, Airline w Dataset.

To extract these datasets, we asked the security analysts working in
Amadeus it Group to indicate already built fingerprints not including the

130 8.4. Evaluation

rtt_detection technique and whose corresponding traffic could be proxied
through resips, based on their experience. As we saw in Section 4.4.2, the
technique can outcome false positives when used alone. We decided to add
it as a parameter of fingerprints only in a second step to reduce these cases.
For Airline x Dataset and Airline y Dataset we used the same bot signature,
while we use different ones for the other two datasets.

To confirm the resip intuition of the analysts, we applied the rtt_detection
technique on the δRT T values of the connections matching these fingerprints.
99.6% of them had a δRT T higher than 50ms and thus corroborated the initial
intuition of the analysts.

For each airline, we built a dataset of 10,000 connections, to be comparable
with the size of the ground truth files. For each connection, we obtain the
latitude and longitude of the ip address, thanks to the MaxMind GeoLite2
Database [70], as for the ground truth one, and the corresponding δRT T .

8.4.2 Parameters Tuning
In this section, we study the parameters introduced in the description of the
algorithm. We take advantage of the ground truth dataset, in which the
location of the original client is known, to find the most appropriate values
for them, when feasible.

Minimum rtt

Minimum rtt is the value below which we consider the δRT T to be the cause
of an error. δRT T is the difference between the rttT LS and the rttT CP and,
as described in [C2], having this difference above 50ms is a clear indication of
a resip request. However, some resip requests show a δRT T even below this
threshold, which was obtained to minimize false positives Section 4.3.2. We
chose to set the Minimum rtt to 25ms which is the first value after which
the resip curves in Figure 4.5 start to show values above zero.

Maximum rtt

Intuitively, it seems reasonable to think that a longer packet journey is more
likely to be error-prone than a short one. Indeed, the longer the path the higher
the probability of having delays caused by the network. Moreover, resip
infrastructures could cause large detours of packets in specific connections
and we would like to filter them out of our processing. Maximum rtt is a
threshold value above which the risk of an error is too high.

Chapter 8. Geolocation of Scrapers behind a Residential ip Proxy 131

0
3,

00
0

6,
00

0
9,

00
0

12
,0

00
15

,0
00

18
,0

00
21

,0
00

24
,0

00
27

,0
00

30
,0

00
33

,0
00

36
,0

00
39

,0
00

42
,0

00
45

,0
00

4,000

6,000

8,000

10,000

12,000

14,000

Maximum Radius (km)

Su
m

of
th

e
av

er
ag

e
pe

rc
en

ta
ge

of
cl

os
en

es
s

to
th

e
m

in
im

um
er

ro
r

fo
r

ea
ch

bi
n

40 km/ms
80 km/ms
120 km/ms

Figure 8.7: Maximum radius and corresponding percentage of closeness to
the minimum error for different speeds, using the gbl algorithm standalone.

To find this value and understand if it changes in the function of the used
speed, we run only the gbl logic of the algorithm. We find the square with
the highest count and we calculate the error with the real solution using
the center of that square. We use a Grid Size of 530 and multiple single
speeds that enable us to represent low, medium and high-speed connections
(40,80,120 km/ms).

For each resip provider, we consider the sample files with 5,000 connec-
tions and we order the entries in ascending order based on the δRT T . We run
the gbl algorithm on each percentage of lines from 1% to 100% with step 1%.
We call each of them a batch. For each batch, for each tested speed, we know
which is the obtained maximum radius (speed* δRT T

2). We calculate the lowest
error for each batch. Thus, for each single file and each speed, we obtain 100
batches and we know for each of them the lowest error and the maximum
radius in the batch.

For each file, for each speed, we find the minimum error among all batches.
We divide the error of each batch by this value and we multiply it by 100. In
this way, we know how close the error of a batch is to the minimum possible

30Size of the grid in the gbl algorithm.

132 8.4. Evaluation

Grid Size Total Time (s) Median Error (km)
1 1,816 7,0148.04
5 237 6,9812.11
10 159 7,0210.30
20 146 7,6857.35

Table 8.1: Total time and median error of the gbl algorithm standalone
using different Grid Size values.

error for that file and speed.
Figure 8.7 provides a visual representation of the result. Each batch

is represented through the corresponding maximum radius. We divide the
maximum radius in bins of 3,000 km to obtain a more readable result. For
each bin, for each resip provider, we find the average percentage of closeness
to the possible minimum error among all files. For each bin, we sum the
average percentage of the closeness of each provider to have a global view.
We have one curve for each analyzed speed. We can see that each speed has
the highest sum in different areas of the plot. In particular, for 40 km/ms we
obtain the best values around 5,000km, for 80 km/ms around 10,000, and for
120 km/ms around 15,000.

These results suggest that the maximum radius is not a function of the
studied speed. It is a constant was value is around 125 (125 = 5000

40 = 10000
80 =

15000
120). Thus, we can consider a single value for the Maximum rtt to have a

more efficient run of the algorithm and select the best circles to consider in
the next phase. In particular, the Maximum rtt we consider for each speed
is 250ms (e.g. 2*5,000km/40km/ms).

Grid Size

As explained in Section 8.3, gbl divides the planisphere into squares of size
Grid Size. We want to find the value of this parameter that gives us the best
compromise between accuracy in finding the location and the time taken to
find that solution. We run all the files of each resip with the gbl algorithm
with different values of the Grid Size: 1,5,10,20. The grid is indexed by
latitude and longitude degrees. Hence, a Grid Size equal to 1 means that we
obtain 1 square for every degree of the grid, for a total of 360 columns and
180 lines.

As for studying the Maximum rtt, we calculate the error with the center
of the square with the highest count. We obtain the errors in finding the

Chapter 8. Geolocation of Scrapers behind a Residential ip Proxy 133

solution and the corresponding running time, for each Grid Size, file and
tested speed (40,80,120 km/ms). For each Grid Size, used speed and resip,
we find the average error and the total running time.

Table 8.1 represents the results. For each tested Grid Size, it displays
the corresponding sum of the running time and the average error among all
resips. We can see that with the increase of the used Grid Size the running
time decreases but the difference between running with Grid Size 1 and any
other Grid Size is much higher than just considering the other grid sizes.
Considering the average error, we see that Grid Size 5 gives us the best result.
While we would have expected Grid Size 1 to have the lowest error, most
likely the small size of the squares spread all the circles that contribute to
the solution among different squares. Thus, the one with the highest count
could be "far" from the solution. When considering grid size 5, the square
includes all the circles of the previous 25 Grid Size 1 squares and has a much
higher contribution in terms of circles. For Grid Size values higher than 5 we
see that the error increases. Indeed, considering bigger and bigger squares we
lose in accuracy to find the solution. For these reasons, we chose to run our
algorithm with Grid Size 5.

Set of Speeds

As explained in Section 8.3, we use a Set of Speeds to try to identify for each
gateway the most appropriate speed. This speed produces the circle that
best represents the distance between this machine and the original client.

However, we need to find the components of the Set of Speeds that enable
us to have the best accuracy for all the sample files. We initially try to find
the combination that minimizes the error when only one client is behind a
set of requests.

To understand which set to consider, we run the rttlocator on the
connections in each sample file, divided among different resip providers. We
assume that each resip provider could have a different internal infrastructure
and, for this reason, we consider the corresponding files independently. For
the previously discussed parameters, we use the values chosen in the dedicated
section. Thus, Grid Size is set to 5, Minimum rtt to 25ms and Maximum rtt
to 250ms. For the Minimum Circles, we set it to zero so the gbl algorithm
retrieves only one solution.

We test single speeds starting from 20km/ms to 160km/ms with a step of
10km/s. For each resip provider, we calculate the median error among the
results obtained in each file. Moreover, we also consider the corresponding
standard deviation and the interquartile range to measure the statistical
dispersion. To find our final Set of Speeds, we do not want only to minimize

134 8.4. Evaluation

20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

0

5,000

10,000

15,000

20,000

25,000

Speed (km/ms)

Er
ro

r
(k

m
)

(a) Bright Data

20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

0

5,000

10,000

15,000

20,000

25,000

Speed (km/ms)

Er
ro

r
(k

m
)

(b) Oxylabs

20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

0

5,000

10,000

15,000

20,000

25,000

Speed (km/ms)

Er
ro

r
(k

m
)

(c) Proxyrack

20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

0

5,000

10,000

15,000

20,000

25,000

Speed (km/ms)

Er
ro

r
(k

m
)

(d) Smartproxy

Figure 8.8: Error in geolocating using rttlocator with single speeds.

the error of the majority of samples but also to have a small dispersion.
Figure 8.8 provides a visualization of the results in running rttlocator

with single speeds. On the y-axis, we have the error in kilometers. On the
x-axis, the tested speed. For each speed, a boxplot summarizes the errors
on the files of the corresponding provider. The plot tells us that a single
speed that provides a good result for all the considered files does not exist,
as expected. Moreover, it seems to suggest that the different providers, as we
suspected, have different internal infrastructures. The error for pr is much
higher than the other proxies for all the considered speeds. Moreover, while
for bd the median error is lower for high and slow speeds, ol and sm show an
opposite pattern. We can also see that for every single speed, there are files
for which the error has low values (lower part of the whisker of each boxplot).
This information confirms to us that, when the right speed is chosen for a
set of requests, the algorithm can find an accurate solution. However, we see

Chapter 8. Geolocation of Scrapers behind a Residential ip Proxy 135

Figure 8.9: Outcome of the gbl algorithm for Airline w Dataset.

that other files obtain a much larger error for the same speed.
To try to balance the effects of each speed on each file, we would like to

find the Set of Speeds that enables us to obtain low errors for the majority of
files. At the same time, we would like to reduce the dispersion of the error.

To try to reach this goal, we create a point system. For each resip
provider, we consider three metrics: median, standard deviation and the
interquartile range (iqr). For each metric, we order the tested speed from
the one resulting in the lowest error to the one leading to the highest one.
We assign one point to the first speed, two to the second and so on. For each
metric, we sum the points of the same speed for the four different providers.
Table 8.2 provides a visual representation of the results.

For each metric, we consider the two speeds that received the lowest number
of points (highlighted in blues in Table 8.2). This results in the set 60,70,80,100,
120,130. For these speeds, we test all the possible combinations among the
elements. We run rttlocator using each combination for each resip. We
apply the same point system described above to find the combination that
minimizes median, standard deviation and iqr. At the end of this process,
the Set of Speeds {60,70,120,130} results in the best result. However, applying
this Set of Speeds to the files of each resip we obtain errors that do not enable
accurate geolocation. Table 8.3 reports the median, standard deviation and
iqr errors obtained for each resip provider. These results clearly show us
that this system does not provide the expected results.

While the challenge of determining the optimal Set of Speeds for all
considered resip connections collectively remains unsolved, we opted to
employ this Set of Speeds on real-world connections to gain initial insights
into the achievable outcomes. We executed rttlocator with the Set of Speeds
{60,70,120,130} and kept the other parameters consistent with our previous

136 8.4. Evaluation

selections. This process was carried out for each of the four datasets outlined
in Section 8.4.1.

Within these datasets, the actual location of the original client is unknown.
However, we know that Airline x Dataset and Airline y Dataset were obtained
from the same bot signature. The outcomes of rttlocator indicate the
successful localization of the corresponding clients in North Africa (Morocco
and Algeria), hinting at the likelihood of the original client’s presence in that
vicinity. On the other hand, when we use Airline z Dataset as input, we
obtain a client location in the middle of the Atlantic Ocean. This clearly
shows that this Set of Speeds does not obtain a correct result for this set of
requests. We have tried to find manually a possible Set of Speeds that could
give a plausible location for these requests. We discovered that {60, 80, 100,
120, 130} could potentially yield a plausible client location for the Airline z
Dataset, specifically pinpointing Portugal.

Finally, analyzing Airline w Dataset we understood that the solution
delivered by rttlocator was the result of an error. In this dataset, all utilized
gateways are in close proximity to one another. In particular, they fall in the
same square in which we divided the planisphere. Consequently, the resultant
circles are almost concentric, and the derived location arises not from the
intersection of multiple circles, but from their overlapping. Figure 8.9 provides
the result of the gbl phase and enable to visualize this problem. Given that
a correct multilateration necessitates the intersection of at least three non-
coincident circles, this particular dataset fails to meet the prerequisites for
such a computation.

Moreover, this opens the door for a new question regarding the problem
we are trying to solve: what is the minimum distance that we have to consider
as a requirement among at least three gateways to obtain a plausible result?
Furthermore, if the vast majority of gateways are located in the same area,
even if there are at least three different gateway locations, the multiple
concentric circles will vastly bias the result. How can we address this problem?
In Section 8.5 we propose future approaches to address this issue.

Minimum Circles

Minimum Circles represents the minimum proportion of circles that gbl
must successfully extract to determine the completion of this phase. In cases
where the count of identified circles contributing to a solution falls below this
threshold, it implies that there’s a possibility another client might have sent
a portion of the incoming requests.

Defining the optimal value of Minimum Circles is a task strictly associated
with finding the optimal Set of Speeds. While we want Set of Speeds to reduce

Chapter 8. Geolocation of Scrapers behind a Residential ip Proxy 137

the noise in finding a first client location, we do not want it to eliminate those
connections related to a second client. As discussed in the previous section,
the optimal Set of Speeds to find one single solution has not been determined
yet, since the candidate one obtained with the points system does not enable
us to reach an accurate geolocation. For this reason, we cannot determine
the optimal value of this parameter.

However, we have anectodically experimented using the Set of Speeds giving
us the best results for specific files and merging the files best performing
with the same Set of Speeds to obtain a set of connections from multiple
clients. Our early results from these runs suggest that when two clients are
behind a set of requests, Minimum Circles set to 50%-60% correctly returns
two solutions, in the case of three clients Minimum Circles need to be set to
70%-80%. However, when only one client is behind the requests, having a
Minimum Circles higher than 40%-50% incorrectly results in finding a second
location. A possible solution to this problem could be to output for each
identified solution the percentage of circles contributing to it. The lower
this percentage, the lower the confidence that that location corresponds to a
client sending requests and the higher the probability that only the previously
identified solutions are the correct ones.

8.5 Discussion and Limitations
Within this chapter, we introduce a method aimed at geolocating a client who
transmits requests through a resip. To achieve this objective, we leverage a
planisphere, a 2d representation of the world. It is important to acknowledge
that this creates an inherent limitation. The world is in three dimensions
and, consequently, the precise distances between various locations on the
globe might undergo minor adjustments when projected onto a 2d surface.
Therefore, we need to consider the outcomes produced by our algorithm as
an estimation of the actual client location in the 3d space.

Another limitation of our approach is the retrieval of the latitude and
longitude of each gateway from a geolocation database (MaxMinf Geo2Lite
[70]). If this information was not accurate or incorrect, it could lead rttlocator
to an erroneous result. As discussed in Section 2.5 and Section 4.2.4, the
accuracy of this database has been questioned in the past [72], [73] but it
is recognized that its data is reliable at the country level [74]–[76]. This
information tells us that if there are cases in which the gateway location is
inaccurate and the area of the corresponding country is small, the error is
contained. Moreover, we expect to have few rare large errors in the geolocation
of the gateway. In both cases, errors in the client location would result

138 8.5. Discussion and Limitations

in circles that do not contribute to finding the final location of the client
and would simply increase the intrinsic noise created by the problem in hand
(Section 8.2). Thus, while acknowledging this limitation, we believe its impact
on the technique is negligible.

rttlocator geolocation is based on the δRT T . However, this value could
be strategically modified by the original client to avoid the identification
of his location. The client would need to delay tls packets to increase the
registered δRT T . However, this action would have a drawback for the client.
It would introduce a delay in obtaining the requested data and this would
result in a loss in efficiency on his side.

Our work aims at finding if multiple clients are behind a set of requests.
However, if two distinct clients send requests at the same time from the same
location in the world, our algorithm recognizes them as one only contribution.
Once a strategy to find the optimal Set of Speeds will be identified, we will
produce a sensitivity analysis to understand what is the minimum distance
among clients to enable the geolocation of both contributions.

As discussed in Section 4.4, we know that Mobile tcp Terminating Proxies
(mttps) break the tcp session between a mobile device and the used antenna.
Thus, in those cases where a resip leverages a mobile device whose Internet
Service Provider uses a mttp, the obtained δRT T gives information about the
distance between the client and the antenna instead of between the client and
the device itself. However, in general, a device is close to the used antenna.
Hence, this should not create a large error in our estimation.

As seen in Section 8.4.2, rttlocator results can be polluted when all the
used gateways are located close in space. The obtained circles are almost
concentric and partially overlap with each other creating wrong solutions.
While it is easy to check if the gateway locations are exactly the same as
we do in the preliminary phase of gbl (Section 8.3), it is more difficult to
understand when the distance between enough gateways is sufficient to
perform correct multilateration. Moreover, if a large part of gateways is
closed in space and only a few others are in other locations, even if enough
gateways are sufficiently far from each other, the result could be biased
by the high number of gateways in one location and we could obtain
an erroneous solution. At the same time, we cannot simply discard the
contributions of these concentric circles since they give us information about
the real solution.

To address this situation, we could model the contributions of these circles
considering just one gateway for a defined area in which there is a high
concentration of gateways. We use only the circles corresponding to that
gateway but repeated for the number of gateways in the area. In this
way, the crossed squares would have a high count, thus a higher weight

Chapter 8. Geolocation of Scrapers behind a Residential ip Proxy 139

in contributing to the solution, but we would limit the partial overlapping
of concentric circles. A drawback arises if, among the gateway in this
area, some contribute to one solution and some to another. In that case, a
second contribution would be lost. Moreover, we need to understand the right
strategy to choose which gateway best represents the contribution of the
area.

Finally, we saw that the results of the proposed point system do not enable
us to have a globally accurate solution Section 8.4.2. We anectodically tried
a complementary approach. Instead of running just once rttlocator with the
found optimal Set of Speeds, we run it five times, each time using a different
Set of Speeds among the best five found by the point system. We identify the
solution as the area of the world in which the majority of the five runs find
the solution. Early results on a subset of the ground truth dataset show that
the majority of solutions correctly identifies the right area of the world. Thus,
we could consider this as an alternative way to find a correct solution. More
analyses need to be performed to understand if the approach is consistent
and how many runs with different Set of Speeds are needed to geolocate the
correct solution.

8.6 Summary
In this chapter, we studied the challenging problem of geolocating the client(s)
that proxy requests through resips. We propose rttlocator , a multilateration
approach modeling the distances between gateways and the original clients
through the δRT T value of the requests and multiple packet speeds. Our
results on both ground truth and real-world scraping datasets suggest that
when the correct Set of Speeds for a set of requests is identified, rttlocator
correctly locates the area of the world where the requests originate from.
However, finding a Set of Speeds or multiple Sets of Speeds that generalize
the geolocation is left for further work.

140 8.6. Summary

Table 8.2: Points assigned to each tested speed. In blue, we find the lowest
points sums.

Median Error
Speed (km/ms)

resip 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Bright Data 11 7 6 5 3 1 13 15 14 12 10 2 4 9 8

Oxylabs 15 14 12 10 11 9 7 6 4 1 2 3 5 8 13
Proxyrack 10 13 12 14 11 15 9 8 7 4 1 2 6 3 5

Smartproxy 13 12 11 9 10 4 1 2 3 5 7 6 8 14 15
Total 49 46 41 38 35 29 30 31 28 22 20 13 23 34 41

Standard Deviation Error
Speed (km/ms)

resip 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Bright Data 11 14 15 12 10 13 9 8 7 6 5 1 3 2 4

Oxylabs 9 8 7 1 2 5 3 4 6 10 11 13 12 14 15
Proxyrack 11 15 10 9 6 4 8 3 1 5 2 7 14 12 13

Smartproxy 4 5 1 2 3 9 6 10 7 11 12 8 13 14 15
Total 35 42 33 24 21 31 26 25 21 32 30 29 42 42 47

Interquartile Range Error
Speed (km/ms)

resip 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Bright Data 13 14 15 12 6 11 9 10 5 8 1 3 7 4 2

Oxylabs 9 7 4 6 10 1 2 3 5 8 12 13 11 14 15
Proxyrack 12 7 6 4 9 2 3 5 1 11 10 13 15 8 14

Smartproxy 1 4 7 3 2 5 6 8 10 9 13 11 12 14 15
Total 35 32 32 25 27 19 20 26 21 36 36 40 45 40 46

Table 8.3: Results of rttlocator with the Set of Speeds {60,70,120,130}.

resip Median Error (km) Standard Deviation Error (km) iqr Error (km)
Bright Data 3084.47 5141.13 5823.17

Oxylabs 3647.14 1554.21 2743.61
Proxyrack 7060.38 3600.65 2814.90

Smartproxy 4837.14 3334.61 2402.79

Chapter 9

Future Works and Conclusion

In this thesis, we introduced innovative approaches to detect and mitigate
scraping bots, as well as novel characterizations of the latest technologies
used by scrapers and a novel method aimed at determining the geographical
origins of proxied scraping requests.

These new approaches give us an advantage in the ongoing war against
scrapers. However, the ever-changing and dynamic essence of scraping bots
presents challenges in definitively overcoming them. This demands a continu-
ous need to enhance our defense approaches and adjust to their ever-evolving
tactics. In the following, we highlight the contributions of this thesis and how
we can build upon them to move forward toward fighting scrapers.

Chapter 3 described the idea behind our two innovative server-side detec-
tion techniques for requests proxied through resip networks, rtt_detection
and mrp_detection. Differing from the only other resip detection tech-
nique described in the state-of-the-art, our methods provide a systematic
and deterministic way to identify a resip connection by examining only a
single request. Furthermore, mrp_detection has the capability to recognize
connections from specific sets of resip providers. The ideas underlying both
techniques are protected in two filed patents and rtt_detection has been
implemented in one of the most used anti-bot solutions on the market.

Chapters 4 and 5 detailed the experiment we performed to prove the valid-
ity and feasibility of the, respectively, rtt_detection and mrp_detection
techniques. In Chapter 4, we consistently observed that the δRT T (calculated
as rttT LS- rttT CP) exhibited significantly higher values for resip connec-
tions compared to direct connections when the same client was utilized in
both scenarios. Initial results indicated 50ms as the most effective threshold
in differentiating the two types of connections.

Our analyses of real-world scraping connections and specific client environ-
ments identified the possibility of false positives. However, our results suggest

141

142

that increasing the threshold for mobile network connections could effectively
reduce the number of false positives caused by Mobile tcp Terminating
Proxies.

In Section 4.3.6, we saw that different providers have a different distribution
of the δRT T . Building upon this, we could explore the potential of utilizing
the δRT T not only for detecting whether a connection has traversed a resip
network, but also for discerning the specific resip provider through which the
request has been proxied. Another future work regarding rtt_detection,
associated to this analysis, implies the expansions of the client environment
analyses performed in Section 4.4.1 and the differentiation of resip and
false positive connections based on the different δRT T averages (as we suggest
for Mobile tcp Terminating Proxies) or complementary information (mtu
analysis to identify vpns).

Chapter 5 described the experiment to validate mrp_detection. The
technique leverages a specific machine retransmission protocol used by two of
the analyzed providers allegedly to increase efficiency. Moreover, this chapter
revealed the internal algorithm all resip providers use when the server does
not acknowledge packets. They involve 3-4 gateways from different areas of
the world to try to perform the connection. This suggests that they try to
circumvent possible regional problems and restrictions.

Most likely, the specific machine retransmission protocol used by the two
resip providers is not the only type of operation in which resip providers try
to optimize their actions. A possible future work consists of testing connections
from different resip providers in atypical situations, e.g. producing long
delays in the middle of a connection or requiring the client to open a new
connection from a different port, to check if specific behaviors take place at
the network layer and build detection/attribution methods based on them.

In Chapter 6, we proposed a new deceptive approach based on the redirec-
tion of scraping requests to a honeypot mimicking the real website. Thanks
to this, we were able to serve modified information to scrapers for almost two
months.

A natural follow-up of this work is a larger usage of the honeypot system to
expand the analyses performed so far and test new data poisoning strategies
for scrapers. The positive results of our experiment convinced our partner,
Amadeus it Group, to take action on this proposition. Work is underway for
a honeypot environment directly built into their production system.

In Chapter 7, we characterized the resip ecosystem. We presented various
facets of the resip infrastructures, emphasizing both the shared characteristics
and distinctions among providers in terms of geographical distribution and
types, management and amount of machines. We highlighted the significant
similarities among two of the considered providers in all the different resip

Chapter 9. Future Works and Conclusion 143

studies we performed.
Moreover, we proposed a novel idea for a potential ip-based resip detection

methodology at the /24 level. However, this approach might not be effective
since there is no general rule among ases to maintain the previous prefix after
reallocation. Future works in this area would involve conducting real-world
measurements to evaluate the effectiveness and potential constraints of the
proposed methodology.

Additionally, in the same chapter, we estimated the size of residential
ips available to resip providers. Our results did not corroborate the claims
resip providers do on their respective websites.

A follow-up of this work would be to understand the actual number
of devices corresponding to these ip addresses and their evolution in time.
Expanding on our current model and a recent work about estimating the
number of devices behind the ip addresses used in botnet attacks [140], we
could better understand the size of the pool of devices available to resips.

Chapter 8 delved into the intricate challenge of determining the geographi-
cal location of the client(s) that proxy requests through resips. It introduced
rttlocator , a multilateration technique that models the distances between
gateways and the original clients by utilizing the δRT T value of the requests
along with multiple packet speeds. Our findings, derived from both ground
truth and real-world scraping datasets, indicate that once the correct Set of
Speeds is identified for a given set of requests, rttlocator accurately pinpoints
the global region of origin. However, the task of identifying a Set of Speeds or
multiple Sets of Speeds that can generalize the geolocation process remains a
subject for future research. Correctly defining the parameters that enable us
to accurately geolocate different sets of requests is a natural future work idea
related to this contribution.

Finally, the contributions of this thesis focus on the specific use cases
of defeating scraping bots. However, they can be easily applied to other
categories of bots and attacks to identify and mitigate them. We can leverage
the deceptive mitigation solution we presented in Chapter 6 to lure attackers
into believing they are accessing genuine content, while they are obtaining
fake data. One context in which we can take advantage of this is account
takeover [145]. In this type of attack, brute force is generally used to identify
the right combination of username and password to perform a login. Once
we identify this attack is happening, we can lure the attacker into believing
that he has found the right combination of credentials. We can then send
him to a honeypot where we can study their actions, deny the actual attack
to happen and provide them with poisoned information, as previously done,
in a different context, by Alata et al. [146]. Furthermore, we can leverage
honeytokens to possibly detect where this information is then used on the

144

Internet.
Additionally, we could use this system to counter denial of inventory

attacks, the act of making selections and retaining items from a constrained
inventory or stock, without finalizing any purchase [7]. This attack is usually
performed using a large number of bots and causes the items to become
virtually out-of-stock. This creates economic damage and prevents genuine
users from purchasing the items. When this type of attack is detected, we
could redirect these requests to a honeypot mimicking the real system. In
this way, the attacker believes they have reached their goal, while the items
remain available for genuine users.

On top of the above-mentioned contributions in detecting and mitigating
web scraping activity, we believe that one of the merits of this thesis is to bring
light to internal characteristics of Residential ip Proxies and find new ways to
detect server-side when scrapers, and attackers in general, use them. Because
of their favorable characteristics for attackers (no need to build/maintain a
private botnet and usage of ips with a good reputation), we believe these
parties will be more and more leveraged for malicious activities in the near
future. Thus, our findings can be used for protecting websites not only from
scraping attacks but from a more diverse set of malicious actions. We hope
that the insights and contributions of this thesis can serve as a starting point
for future work in the field, as well as in web scraping detection and mitigation,
and assist academics and practitioners to better deal with these threats.

Author’s Publications

Conferences
[C1] E. Chiapponi, M. Dacier, O. Thonnard, M. Fangar, M. Mattsson, and

V. Rigal, “An industrial perspective on web scraping characteristics
and open issues,” in 2022 52nd Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks - Supplemental Volume
(DSN-S), 2022, pp. 5–8.

[C2] E. Chiapponi, M. Dacier, O. Thonnard, M. Fangar, and V. Rigal,
“BADPASS: Bots Taking ADvantage of Proxy as a Service,” in In-
formation Security Practice and Experience, C. Su, D. Gritzalis, and
V. Piuri, Eds., Cham: Springer International Publishing, pp. 327–344,
isbn: 978-3-031-21280-2.

[C3] E. Chiapponi., M. Dacier, and O. Thonnard, “Towards detecting
and geolocalizing web scrapers with round trip time measurements,”
in 2023 7th Network Traffic Measurement and Analysis Conference
(TMA), 2023, pp. 1–4.

[C4] E. Chiapponi, M. Dacier, and O. Thonnard, “Poster: The impact of
the client environment on residential ip proxies detection,” in Proceed-
ings of the 2023 ACM on Internet Measurement Conference, ser. IMC
’23, Montreal QC, Canada: Association for Computing Machinery,
2023, pp. 712–713.

[C5] E. Chiapponi., M. Dacier, and O. Thonnard, “Inside Residential IP
Proxies: Lessons Learned from Large Measurement Campaigns,” in
2023 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW), 2023, pp. 501–512.

[C6] E. Chiapponi, O. Catakoglu, O. Thonnard, and M. Dacier, “HoPLA:
A Honeypot Platform to Lure Attackers,” in CAESAR 2020, Computer
& Electronics Security Applications Rendez-vous, Deceptive security
Conference, part of European Cyber Week, 2020.

145

146 Author’s Publications

[C7] E. Chiapponi, M. Dacier, M. Todisco, O. Catakoglu, and O. Thon-
nard, “Botnet sizes: When maths meet myths,” in Service-Oriented
Computing – ICSOC 2020 Workshops, H. Hacid, F. Outay, H.-y. Paik,
et al., Eds., Cham: Springer International Publishing, 2020, pp. 596–
611, isbn: 978-3-030-76352-7.

[C8] M. Champion, M. Dacier, and E. Chiapponi, “ImMuNE: Improved
Multilateration in Noisy Environments,” in 2022 IEEE 11th Inter-
national Conference on Cloud Networking (CloudNet), 2022, pp. 1–
6.

Journals
[J1] E. Chiapponi, M. Dacier, O. Catakoglu, O. Thonnard, and M.

Todisco, “Scraping Airlines Bots: Insights Obtained Studying Honey-
pot Data,” International Journal of Cyber Forensics and Advanced
Threat Investigations, vol. 2, no. 1, pp. 3–28, 2021, issn: 2753-9997.

Submitted Patents
[P1] E. Chiapponi, M. Dacier, O. Thonnard, V. Rigal, and M. Fangar,

“PROXY DETECTION SYSTEMS AND METHODS,” United States
Patent Application No. 17/746556, Applicant(s): AMADEUS S.A.S.
2022.

[P2] E. Chiapponi, M. Dacier, O. Thonnard, V. Rigal, and M. Fangar,
“PROXY DETECTION SYSTEMS AND METHODS,” United States
Patent Application No. 63/497053, Applicant(s): AMADEUS S.A.S.
2023.

References

[1] DataDome. “Advanced techniques for detecting & blocking sneaker
bots.” (2023), [Online]. Available: https : / / datadome . co / bot -
management-protection/how-to-detect-block-manage-sneaker-
bots/.

[2] S. Dietrich, N. Long, and D. Dittrich, “Analyzing distributed denial
of service tools: The shaft case.,” in Proceedings of the 14th USENIX
conference on System administration, New Orleans, Louisiana, USA,
2000, pp. 329–339.

[3] M. Antonakakis, T. April, M. Bailey, et al., “Understanding the mirai
botnet,” in 26th USENIX Security Symposium (USENIX Security 17),
Vancouver, BC: USENIX Association, Aug. 2017, pp. 1093–1110, isbn:
978-1-931971-40-9.

[4] T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling, “Measure-
ments and mitigation of peer-to-peer-based botnets: A case study on
storm worm,” in Proceedings of the 1st Usenix Workshop on Large-
Scale Exploits and Emergent Threats, ser. LEET’08, San Francisco,
California: USENIX Association, 2008.

[5] N. Hoque, D. K. Bhattacharyya, and J. K. Kalita, “Botnet in ddos
attacks: Trends and challenges,” IEEE Communications Surveys &
Tutorials, vol. 17, no. 4, pp. 2242–2270, 2015.

[6] L. Zhang, S. Yu, D. Wu, and P. Watters, “A survey on latest botnet
attack and defense,” in 2011IEEE 10th International Conference on
Trust, Security and Privacy in Computing and Communications, 2011,
pp. 53–60.

[7] C. Watson and T. Zaw, “OWASP Automated Threat Handbook Web
Applications,” OWASP Foundation, Tech. Rep., 2018.

[8] Wikipedia. “Hiq labs v. linkedin.” (2023), [Online]. Available: https:
//en.wikipedia.org/wiki/HiQ_Labs_v._LinkedIn.

147

https://datadome.co/bot-management-protection/how-to-detect-block-manage-sneaker-bots/
https://datadome.co/bot-management-protection/how-to-detect-block-manage-sneaker-bots/
https://datadome.co/bot-management-protection/how-to-detect-block-manage-sneaker-bots/
https://en.wikipedia.org/wiki/HiQ_Labs_v._LinkedIn
https://en.wikipedia.org/wiki/HiQ_Labs_v._LinkedIn

148 References

[9] Imperva, “Bad Bot Report 2021, The Pandemic of the Internet,”
Imperva, Tech. Rep., 2021.

[10] Imperva, “Imperva Bad Bot Report,” Imperva, Tech. Rep., 2020.
[11] B. Gelbord. “In China and Japan, Malicious Botnets Surge Amidst

Holiday Ecommerce Traffic.” (2022), [Online]. Available: https://www.
akamai.com/blog/security/china-and-japan-holiday-botnets.

[12] DataDome. “Cost of Bots Calculator.” (2023), [Online]. Available:
https://datadome.co/cost-of-bot-calculator/.

[13] “Scrapy.” (2023), [Online]. Available: https://scrapy.org/.
[14] “Phantom js.” (2023), [Online]. Available: https://phantomjs.org/.
[15] “Selenium.” (2023), [Online]. Available: https : / / www . selenium .

dev/.
[16] R. Egger, M. Kroner, and A. Stöckl, “Web scraping,” in Applied Data

Science in Tourism: Interdisciplinary Approaches, Methodologies, and
Applications, R. Egger, Ed. Cham: Springer International Publishing,
2022, pp. 67–82, isbn: 978-3-030-88389-8.

[17] B. Amin Azad, O. Starov, P. Laperdrix, and N. Nikiforakis, “Web
runner 2049: Evaluating third-party anti-bot services,” in Proc. of
DIMVA 2020.

[18] H. Debar, M. Dacier, and A. Wespi, “A revised taxonomy for intrusion-
detection systems,” in Annales des télécommunications, Springer, vol. 55,
2000, pp. 361–378.

[19] P. Laperdrix, N. Bielova, B. Baudry, and G. Avoine, “Browser fin-
gerprinting: A survey,” ACM Trans. Web, vol. 14, no. 2, 2020, issn:
1559-1131.

[20] G. Jacob, E. Kirda, C. Kruegel, and G. Vigna, “PUBCRAWL: Protect-
ing users and businesses from CRAWLers,” in 21st USENIX Security
Symposium (USENIX Security 12), Bellevue, WA: USENIX Associa-
tion, Aug. 2012, pp. 507–522.

[21] A. G. Lourenço and O. O. Belo, “Catching web crawlers in the act,” in
Proceedings of the 6th International Conference on Web Engineering,
ser. ICWE ’06, Palo Alto, California, USA: Association for Computing
Machinery, 2006, pp. 265–272, isbn: 1595933522.

[22] A. Vastel, W. Rudametkin, R. Rouvoy, and X. Blanc, “FP-Crawlers:
Studying the Resilience of Browser Fingerprinting to Block Crawlers,”
in Proc. of MADWeb’20, San Diego, United States.

https://www.akamai.com/blog/security/china-and-japan-holiday-botnets
https://www.akamai.com/blog/security/china-and-japan-holiday-botnets
https://datadome.co/cost-of-bot-calculator/
https://scrapy.org/
https://phantomjs.org/
https://www.selenium.dev/
https://www.selenium.dev/

References 149

[23] E. Bursztein, A. Malyshev, T. Pietraszek, and K. Thomas, “Picasso:
Lightweight device class fingerprinting for web clients,” in Proceed-
ings of the 6th Workshop on Security and Privacy in Smartphones
and Mobile Devices, ser. SPSM ’16, Vienna, Austria: Association for
Computing Machinery, 2016, pp. 93–102, isbn: 9781450345644.

[24] H. Jonker, B. Krumnow, and G. Vlot, “Fingerprint surface-based
detection of web bot detectors,” in Computer Security – ESORICS
2019, K. Sako, S. Schneider, and P. Y. A. Ryan, Eds., Cham: Springer
International Publishing, 2019, pp. 586–605, isbn: 978-3-030-29962-0.

[25] X. Li, B. A. Azad, A. Rahmati, and N. Nikiforakis, “Good bot, bad
bot: Characterizing automated browsing activity,” in 2021 IEEE Sym-
posium on Security and Privacy (S&P), 2021, pp. 1589–1605.

[26] L. Brotherston. “Tls fingerprinting.” (2016), [Online]. Available: https:
//github.com/LeeBrotherston/tls-fingerprinting.

[27] Z. Durumeric, Z. Ma, D. Springall, et al., “The Security Impact of
HTTPS Interception,” in 24th Network and Distributed System Security
Symposium (NDSS), 2017.

[28] L. Von Ahn, M. Blum, N. J. Hopper, and J. Langford, “CAPTCHA:
Using hard AI problems for security,” in Advances in Cryptology
EUROCRYPT 2003, E. Biham, Ed., Springer, 2003, pp. 294–311.

[29] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy, G. M. Voelker,
and S. Savage, “Re: Captchas: Understanding captcha-solving services
in an economic context,” in Proc. USENIX Security 2010, USA, p. 28.

[30] M. Egele, L. Bilge, E. Kirda, and C. Kruegel, “Captcha smuggling:
Hijacking web browsing sessions to create captcha farms,” in Proc. of
the 2010 ACM SAC conf., Sierre, Switzerland, 2010, pp. 1865–1870,
isbn: 9781605586397.

[31] 2Captcha, “Captcha typing job. online earning by solving captchas,”
2023.

[32] N. Singh. “How to Fight Bad Bots and Win: Radware’s New Crypto
Mitigation Algorithms.” (2022), [Online]. Available: https://www.
radware.com/blog/application-protection/2022/07/how-to-
fight-bad-bots-and-win-radwares-new-crypto-mitigation-
algorithms/.

[33] Imperva. “Advanced bot protection general release notes.” (2023),
[Online]. Available: https://docs.imperva.com/bundle/advanced-
bot-protection/page/76994.htm.

https://github.com/LeeBrotherston/tls-fingerprinting
https://github.com/LeeBrotherston/tls-fingerprinting
https://www.radware.com/blog/application-protection/2022/07/how-to-fight-bad-bots-and-win-radwares-new-crypto-mitigation-algorithms/
https://www.radware.com/blog/application-protection/2022/07/how-to-fight-bad-bots-and-win-radwares-new-crypto-mitigation-algorithms/
https://www.radware.com/blog/application-protection/2022/07/how-to-fight-bad-bots-and-win-radwares-new-crypto-mitigation-algorithms/
https://www.radware.com/blog/application-protection/2022/07/how-to-fight-bad-bots-and-win-radwares-new-crypto-mitigation-algorithms/
https://docs.imperva.com/bundle/advanced-bot-protection/page/76994.htm
https://docs.imperva.com/bundle/advanced-bot-protection/page/76994.htm

150 References

[34] “Amadeus Global Report 2020,” Amadeus IT Group, Tech. Rep., 2021.
[35] Imperva, “2022 Bad Bot Report, Evasive Bots Drive Online Fraud,”

Imperva, Tech. Rep., 2022.
[36] DataDome. “Blocking the IP is Not Enough - How to Stop Bots

on Residential IPs.” (2022), [Online]. Available: https://datadome.
co/bot- management- protection/one-third- bad- bots- using-
residential-ip-addresses/.

[37] Bright Data. “Web Unlocker Avoid Getting Blocked.” (2023), [Online].
Available: https://brightdata.com/products/web-unlocker.

[38] X. Mi, X. Feng, X. Liao, et al., “Resident evil: Understanding residential
IP proxy as a dark service,” in 2019 IEEE Symposium on Security and
Privacy (S&P), 2019, pp. 1185–1201.

[39] X. Mi, S. Tang, Z. Li, X. Liao, F. Qian, and X. Wang, “Your Phone is
My Proxy: Detecting and Understanding Mobile Proxy Networks,” en,
in Proc. of NDSS 2021, 2021.

[40] N. Abdurahiman, “Towards Residential Proxies Detection: An Experi-
mental Analysis in the Android Environment,” M.S. thesis, Hamad
Bin Khalifa University, 2021.

[41] M. Frappier, P. Plante, and G. Joly. “Illegitimate residential proxy
services: the case of 911.re and its IOCs.” (2022), [Online]. Available:
https://gric.recherche.usherbrooke.ca/rpaas/.

[42] A. Vastel. “Ever wonder how proxy providers & BaaS providers obtain
residential proxies?” (2022), [Online]. Available: https://datadome.
co / bot - detection / how - proxy - providers - get - residential -
proxies.

[43] A. Tosun, M. De Donno, N. Dragoni, and X. Fafoutis, “RESIP Host
Detection: Identification of Malicious Residential IP Proxy Flows,” in
2021 IEEE International Conference on Consumer Electronics (ICCE),
2021, pp. 1–6.

[44] B. Krebs. “The Rise of “Bulletproof” Residential Networks.” (2019),
[Online]. Available: https://krebsonsecurity.com/2019/08/the-
rise-of-bulletproof-residential-networks/.

[45] M. Yang, Y. Yu, X. Mi, et al., “An Extensive Study of Residential
Proxies in China,” in Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, 2022.

https://datadome.co/bot-management-protection/one-third-bad-bots-using-residential-ip-addresses/
https://datadome.co/bot-management-protection/one-third-bad-bots-using-residential-ip-addresses/
https://datadome.co/bot-management-protection/one-third-bad-bots-using-residential-ip-addresses/
https://brightdata.com/products/web-unlocker
https://gric.recherche.usherbrooke.ca/rpaas/
https://datadome.co/bot-detection/how-proxy-providers-get-residential-proxies
https://datadome.co/bot-detection/how-proxy-providers-get-residential-proxies
https://datadome.co/bot-detection/how-proxy-providers-get-residential-proxies
https://krebsonsecurity.com/2019/08/the-rise-of-bulletproof-residential-networks/
https://krebsonsecurity.com/2019/08/the-rise-of-bulletproof-residential-networks/

References 151

[46] W. Turton. “Russian hackers used home networks to evade detection.”
(2021), [Online]. Available: https://www.bloomberg.com/news/
articles/2021-10-26/suspected-russian-hackers-use-home-
networks-to-evade-detection.

[47] E. Khan, A. Sperotto, J. van der Ham, and R. van Rijswijk-Deij,
“Stranger VPNs: Investigating the Geo-Unblocking Capabilities of
Commercial VPN Providers,” in Passive and Active Measurement, A.
Brunstrom, M. Flores, and M. Fiore, Eds., Cham: Springer Nature
Switzerland, 2023, pp. 46–68, isbn: 978-3-031-28486-1.

[48] J. Choi, M. Abuhamad, A. Abusnaina, et al., “Understanding the proxy
ecosystem: A comparative analysis of residential and open proxies on
the internet,” IEEE Access, vol. 8, pp. 111 368–111 380, 2020.

[49] A. Hanzawa and H. Kikuchi, “Analysis on Malicious Residential Hosts
Activities Exploited by Residential IP Proxy Services,” in Information
Security Applications, Springer International Publishing, 2020, pp. 349–
361.

[50] A. Vastel. “How to Use Machine Learning to Detect Residential
Proxies.” (2022), [Online]. Available: https://datadome.co/bot-
management - protection / how - to - use - machine - learning - to -
detect-residential-proxies/.

[51] H. Hoogstraaten, “Evaluating server-side internet proxy detection
methods,” M.S. thesis, Leiden University, 2018.

[52] N. Tschacher. “Is this a valid method to detect Proxies?” (2021),
[Online]. Available: https://incolumitas.com/2021/11/26/is-
this-a-valid-method-to-detect-proxies/.

[53] A. T. Webb and A. L. Narasima Reddy, “Finding proxy users at the
service using anomaly detection,” in IEEE Conference on Communi-
cations and Network Security (CNS), 2016, pp. 82–90.

[54] A. Turgeman, Y. Lehmann, Y. Azizi, and I. Novick, “Detection of
proxy server,” Patent, United States, US10069837B2, 2019.

[55] B. Cheswick, “An Evening with Berferd in which a cracker is Lured,
Endured, and Studied,” in Proc. Winter USENIX Conference, San
Francisco, CA, USA, 1992, pp. 20–24.

[56] W. Z. Venema, “TCP Wrapper: Network Monitoring, Access Control,
and Booby Traps.,” in USENIX Summer, 1992.

[57] F. Cohen, “The use of deception techniques: Honeypots and decoys,”
Handbook of Information Security, vol. 3, no. 1, pp. 646–655, 2006.

https://www.bloomberg.com/news/articles/2021-10-26/suspected-russian-hackers-use-home-networks-to-evade-detection
https://www.bloomberg.com/news/articles/2021-10-26/suspected-russian-hackers-use-home-networks-to-evade-detection
https://www.bloomberg.com/news/articles/2021-10-26/suspected-russian-hackers-use-home-networks-to-evade-detection
https://datadome.co/bot-management-protection/how-to-use-machine-learning-to-detect-residential-proxies/
https://datadome.co/bot-management-protection/how-to-use-machine-learning-to-detect-residential-proxies/
https://datadome.co/bot-management-protection/how-to-use-machine-learning-to-detect-residential-proxies/
https://incolumitas.com/2021/11/26/is-this-a-valid-method-to-detect-proxies/
https://incolumitas.com/2021/11/26/is-this-a-valid-method-to-detect-proxies/

152 References

[58] C. Leita and M. Dacier, “SGNET: a worldwide deployable framework
to support the analysis of malware threat models,” in 2008 Seventh
European Dependable Computing Conference, IEEE, 2008, pp. 99–109.

[59] F. Pouget, M. Dacier, and H. Debar, “White paper: honeypot, hon-
eynet, honeytoken: terminological issues,” EURECOM, Tech. Rep.
EURECOM+1275, 2003.

[60] F. Pouget and M. Dacier, “Honeypot-based forensics,” in AusCERT
Asia Pacific Information Technology Security Conference, 2004.

[61] V. Nicomette, M. Kaaniche, E. Alata, and M. Herrb, “Set-up and
deployment of a high-interaction honeypot: Experiment and lessons
learned,” 2, vol. 7, Springer, 2011, pp. 143–157.

[62] O. Thonnard and M. Dacier, “Actionable knowledge discovery for
threats intelligence support using a multi-dimensional data mining
methodology,” in 2008 IEEE International Conference on Data Mining
Workshops, IEEE, 2008, pp. 154–163.

[63] O. Thonnard, W. Mees, and M. Dacier, “Addressing the attack at-
tribution problem using knowledge discovery and multi-criteria fuzzy
decision-making,” in Proceedings of the ACM SIGKDD workshop on
CyberSecurity and intelligence informatics, 2009, pp. 11–21.

[64] “LaBrea: "Sticky" Honeypot and IDS.” (), [Online]. Available: https:
//labrea.sourceforge.io/labrea-info.html.

[65] M. Delong, E. Filiol, and B. David, “Investigation and surveillance on
the darknet: An architecture to reconcile legal aspects with technology,”
in ECCWS 2019 18th European Conference on Cyber Warfare and
Security, Academic Conferences and publishing limited, 2019, p. 151.

[66] “The Bait and Switch Honeypot.” (2020), [Online]. Available: %7Bhttp:
//baitnswitch.sourceforge.net/%7D.

[67] K. Takemori, K. Rikitake, Y. Miyake, and K. Nakao, “Intrusion trap
system: An efficient platform for gathering intrusion-related informa-
tion,” in 10th International Conference on Telecommunications, 2003.
ICT 2003., vol. 1, 2003, 614–619 vol.1.

[68] Collins Dictionaries. “Geolocation.” (2023), [Online]. Available: https:
//www.collinsdictionary.com/dictionary/english/geolocation.

[69] RIPE. “Regional Internet Registry for Europe.” (), [Online]. Available:
www.ripe.net.

https://labrea.sourceforge.io/labrea-info.html
https://labrea.sourceforge.io/labrea-info.html
%7Bhttp://baitnswitch.sourceforge.net/%7D
%7Bhttp://baitnswitch.sourceforge.net/%7D
https://www.collinsdictionary.com/dictionary/english/geolocation
https://www.collinsdictionary.com/dictionary/english/geolocation
www.ripe.net

References 153

[70] MaxMind. “Geolite2 free geolocation data.” (1999), [Online]. Available:
https://dev.maxmind.com/geoip/geolite2-free-geolocation-
data.

[71] P. Gill, Y. Ganjali, B. Wong, and D. Lie, “Dude, Where’s That IP?
Circumventing Measurement-Based IP Geolocation,” in Proceedings
of the 19th USENIX Conference on Security, ser. USENIX Security’10,
Washington, DC: USENIX Association, 2010, p. 16.

[72] P. Callejo, M. Gramaglia, R. Cuevas, and A. Cuevas, “A deep dive into
the accuracy of IP Geolocation Databases and its impact on online
advertising,” IEEE Transactions on Mobile Computing, pp. 1–1, 2022.

[73] M. Gharaibeh, A. Shah, B. Huffaker, H. Zhang, R. Ensafi, and C.
Papadopoulos, “A Look at Router Geolocation in Public and Com-
mercial Databases,” in Proceedings of the 2017 Internet Measurement
Conference, ser. IMC ’17, London, United Kingdom: Association for
Computing Machinery, 2017, pp. 463–469, isbn: 9781450351188.

[74] M. Cozar, D. Rodriguez, J. M. Del Alamo, and D. Guaman, “Reli-
ability of IP Geolocation Services for Assessing the Compliance of
International Data Transfers,” in 2022 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW), 2022, pp. 181–185.

[75] I. Poese, S. Uhlig, M. A. Kaafar, B. Donnet, and B. Gueye, “IP
Geolocation Databases: Unreliable?” SIGCOMM Comput. Commun.
Rev., vol. 41, no. 2, pp. 53–56, 2011, issn: 0146-4833.

[76] M. Schopman, “Validating the accuracy of the MaxMind GeoLite2City
database,” Radboud University, 2021.

[77] A. F. V. F. P. Millerand and J. McBrewster, Multilateration. 2010,
isbn: 978-6130772307.

[78] T. Wang, K. Xu, J. Song, and M. Song, “An optimization method for
the geolocation databases of internet hosts based on machine learning,”
Mathematical Problems in Engineering, vol. 2015, 2015.

[79] D. Li, J. Chen, C. Guo, et al., “IP-geolocation mapping for involving
moderately-connected Internet regions,” Project participation from
Microsoft Research, 2009.

[80] B. Gueye, S. Uhlig, A. Ziviani, and S. Fdida, “Leveraging buffering
delay estimation for geolocation of internet hosts,” in International
Conference on Research in Networking, Springer, 2006, pp. 319–330.

https://dev.maxmind.com/geoip/geolite2-free-geolocation-data
https://dev.maxmind.com/geoip/geolite2-free-geolocation-data

154 References

[81] B. Wong, I. Stoyanov, and E. G. Sirer, “Octant: A comprehensive
framework for the geolocalization of internet hosts.,” in NSDI, vol. 7,
2007, pp. 23–23.

[82] E. Katz-Bassett, J. P. John, A. Krishnamurthy, D. Wetherall, T.
Anderson, and Y. Chawathe, “Towards IP geolocation using delay and
topology measurements,” in Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement, 2006, pp. 71–84.

[83] M. J. Arif, S. Karunasekera, S. Kulkarni, A. Gunatilaka, and B. Ris-
tic, “Internet host geolocation using maximum likelihood estimation
technique,” in 2010 24th IEEE International Conference on Advanced
Information Networking and Applications, IEEE, 2010, pp. 422–429.

[84] F. Zhao, Y. Song, F. Liu, K. Ke, J. Chen, and X. Luo, “City-level
geolocation based on routing feature,” in 2015 IEEE 29th International
Conference on Advanced Information Networking and Applications,
IEEE, 2015, pp. 414–419.

[85] M. Grey, D. Schatz, M. Rossberg, and G. Schaefer, “Towards dis-
tributed geolocation by employing a delay-based optimization scheme,”
in 2014 IEEE Symposium on Computers and Communications (ISCC),
IEEE, 2014, pp. 1–7.

[86] S. Laki, P. Mátray, P. Hága, T. Sebők, I. Csabai, and G. Vattay, “Spot-
ter: A model based active geolocation service,” in 2011 Proceedings
IEEE INFOCOM, IEEE, 2011, pp. 3173–3181.

[87] Z. Weinberg, S. Cho, N. Christin, V. Sekar, and P. Gill, “How to catch
when proxies lie: Verifying the physical locations of network proxies
with active geolocation,” in Proceedings of the Internet Measurement
Conference 2018, 2018, pp. 203–217.

[88] Z. Dong, R. D. Perera, R. Chandramouli, and K. Subbalakshmi, “Net-
work measurement based modeling and optimization for IP geoloca-
tion,” Computer Networks, vol. 56, no. 1, pp. 85–98, 2012.

[89] T. Chung, D. Choffnes, and A. Mislove, “Tunneling for Transparency:
A Large-Scale Analysis of End-to-End Violations in the Internet,”
in Proceedings of the 2016 Internet Measurement Conference, 2016,
pp. 199–213.

[90] T. Chung, R. van Rijswijk-Deij, B. Chandrasekaran, et al., “A longitu-
dinal, End-to-End view of the DNSSEC ecosystem,” in 26th USENIX
Security Symposium (USENIX Security 17), 2017, pp. 1307–1322.

[91] Bright Data. “Bright Data - The World’s #1 Web Data Platform.”
(2023), [Online]. Available: https://brightdata.com/.

https://brightdata.com/

References 155

[92] Oxylabs. “Innovative Proxy Service to Gather Data at Scale | Oxylabs.”
(2023), [Online]. Available: https://oxylabs.io/.

[93] Proxyrack. “Proxyrack: Buy Proxies HTTP, UDP, SOCKS Proxy.”
(2023), [Online]. Available: https://www.proxyrack.com/.

[94] Smartproxy. “Smartproxy - Best Value Proxies & Data Collection
Solutions.” (2023), [Online]. Available: https://smartproxy.com/.

[95] R. Zullo, A. Pescapé, K. Edeline, and B. Donnet, “Hic sunt proxies:
Unveiling proxy phenomena in mobile networks,” in 2019 Network
Traffic Measurement and Analysis Conference (TMA), 2019, pp. 227–
232.

[96] N. Weaver, C. Kreibich, M. Dam, and V. Paxson, “Here be web
proxies,” in Passive and Active Measurement, M. Faloutsos and A.
Kuzmanovic, Eds., Cham: Springer International Publishing, 2014,
pp. 183–192, isbn: 978-3-319-04918-2.

[97] W. R. Stevens and K. R. Fall, TCP/IP Illustrated, Volume 1: The
Protocols (Second edition). USA: Addison-Wesley Longman Publishing
Co., Inc., 2012, isbn: 978-0201633467.

[98] D. El Kaim - Bright Data, Private Email Communication, 25-01-2022.
[99] AWS. “Amazon Lightsail.” (2023), [Online]. Available: https://aws.

amazon.com//lightsail/.
[100] Microsoft. “Azure.” (2023), [Online]. Available: https : / / azure .

microsoft.com/.
[101] Python Software Foundation. “Python.” (2023), [Online]. Available:

https://www.python.org/.
[102] Python Software Foundation. “http.server.” (2023), [Online]. Available:

https://github.com/python/cpython/blob/3.10/Lib/http/
server.py/.

[103] Python Software Foundation. “urllib.” (2023), [Online]. Available:
https://github.com/python/cpython/tree/3.10/Lib/urllib/.

[104] KiwiNet. “Pyshark.” (2023), [Online]. Available: https://github.
com/KimiNewt/pyshark.

[105] R. Oppliger, SSL and TLS: Theory and Practice, Second Edition, 2nd.
USA: Artech House, Inc., 2016, isbn: 1608079988.

[106] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2,” RFC Editor, RFC 5246, 2008, http://www.rfc-
editor.org/rfc/rfc5246.txt.

https://oxylabs.io/
https://www.proxyrack.com/
https://smartproxy.com/
https://aws.amazon.com//lightsail/
https://aws.amazon.com//lightsail/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://www.python.org/
https://github.com/python/cpython/blob/3.10/Lib/http/server.py/
https://github.com/python/cpython/blob/3.10/Lib/http/server.py/
https://github.com/python/cpython/tree/3.10/Lib/urllib/
https://github.com/KimiNewt/pyshark
https://github.com/KimiNewt/pyshark
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.rfc-editor.org/rfc/rfc5246.txt

156 References

[107] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.3,” RFC Editor, RFC 8446, 2018.

[108] The PostgreSQL Global Development Group. “PostgreSQL.” (1996),
[Online]. Available: https://www.postgresql.org/.

[109] M. Lastovicka, T. Jirsik, P. Celeda, S. Spacek, and D. Filakovsky,
“Passive os fingerprinting methods in the jungle of wireless networks,” in
NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management
Symposium, 2018, pp. 1–9.

[110] M. Lastovicka, T. Jirsik, P. Celeda, S. Spacek, and D. Filakovsky.
“Passiveosfingerprint.” (2018), [Online]. Available: https://github.
com/CSIRT-MU/PassiveOSFingerprint.

[111] Wikipedia. “Haversine.” (2023), [Online]. Available: https : / / en .
wikipedia.org/wiki/Haversine_formula.

[112] W3Techs. “Usage statistics of Default protocol HTTPS for websites.”
(2023), [Online]. Available: https://w3techs.com/technologies/
details/ce-httpsdefault.

[113] Jack Wherry. “What is WireGuard?” (2023), [Online]. Available:
https://cybernews.com/what-is-vpn/wireguard-protocol/#:
~:text=WireGuard%5C%20is%5C%20a%5C%20VPN%5C%20protocol,
reasons%5C%20why%5C%20it’s%5C%20so%5C%20fast..

[114] The Tor Project. “ExoneraTor.” (2023), [Online]. Available: https:
//metrics.torproject.org/exonerator.html/.

[115] SFR. “SFR.” (2023), [Online]. Available: https://www.sfr.fr/.
[116] NordVPN. “NordVPN.” (2023), [Online]. Available: https://.
[117] Google. “Google Chrome.” (2023), [Online]. Available: https://www.

google.com/intl/en/chrome/.
[118] Microsoft. “Microsoft Edge.” (2023), [Online]. Available: https://www.

microsoft.com/en-us/edge.
[119] Oberlo. “Most Popular Web Browsers in 2023.” (2023), [Online]. Avail-

able: https://www.oberlo.com/statistics/browser- market-
share.

[120] IPQualityScore. “IPQUALITYSCORE Proactively Prevent Fraud.”
(2023), [Online]. Available: https://www.ipqualityscore.com/.

[121] ValdikSS. “Detecting VPN (and its configuration!) and proxy users on
the server side.” (2015), [Online]. Available: https://medium.com/
@ValdikSS/detecting-vpn-and-its-configuration-and-proxy-
users-on-the-server-side-1bcc59742413.

https://www.postgresql.org/
https://github.com/CSIRT-MU/PassiveOSFingerprint
https://github.com/CSIRT-MU/PassiveOSFingerprint
https://en.wikipedia.org/wiki/Haversine_formula
https://en.wikipedia.org/wiki/Haversine_formula
https://w3techs.com/technologies/details/ce-httpsdefault
https://w3techs.com/technologies/details/ce-httpsdefault
https://cybernews.com/what-is-vpn/wireguard-protocol/#:~:text=WireGuard%5C%20is%5C%20a%5C%20VPN%5C%20protocol,reasons%5C%20why%5C%20it's%5C%20so%5C%20fast.
https://cybernews.com/what-is-vpn/wireguard-protocol/#:~:text=WireGuard%5C%20is%5C%20a%5C%20VPN%5C%20protocol,reasons%5C%20why%5C%20it's%5C%20so%5C%20fast.
https://cybernews.com/what-is-vpn/wireguard-protocol/#:~:text=WireGuard%5C%20is%5C%20a%5C%20VPN%5C%20protocol,reasons%5C%20why%5C%20it's%5C%20so%5C%20fast.
https://metrics.torproject.org/exonerator.html/
https://metrics.torproject.org/exonerator.html/
https://www.sfr.fr/
https://
https://www.google.com/intl/en/chrome/
https://www.google.com/intl/en/chrome/
https://www.microsoft.com/en-us/edge
https://www.microsoft.com/en-us/edge
https://www.oberlo.com/statistics/browser-market-share
https://www.oberlo.com/statistics/browser-market-share
https://www.ipqualityscore.com/
https://medium.com/@ValdikSS/detecting-vpn-and-its-configuration-and-proxy-users-on-the-server-side-1bcc59742413
https://medium.com/@ValdikSS/detecting-vpn-and-its-configuration-and-proxy-users-on-the-server-side-1bcc59742413
https://medium.com/@ValdikSS/detecting-vpn-and-its-configuration-and-proxy-users-on-the-server-side-1bcc59742413

References 157

[122] Statista. “Virtual Private Network (VPN) usage in the United States
in 2022.” (2023), [Online]. Available: https://www.statista.com/
statistics/1342696/vpn-usage-united-states/.

[123] L. Ceci. “Mobile internet usage worldwide - Statistics & Facts.” (2023),
[Online]. Available: https : / / www . statista . com / topics / 779 /
mobile-internet/#topicOverview.

[124] Digital Element. “Carrier Data Insights.” (2023), [Online]. Available:
https://www.digitalelement.com/solutions/user- context/
carrier-data/.

[125] DataDome. “8 ways to effectively reduce server response time.” (2022),
[Online]. Available: https://datadome.co/learning-center/how-
to-reduce-server-response-time/.

[126] E. Chiapponi, “Building a honeypot to mitigate bad bot traffic,” M.S.
thesis, Politecnico di Torino - TELECOM Paris, 2020.

[127] Python Software Foundation. “pydnsbl 0.5.4.” (2023), [Online]. Avail-
able: https://pypi.org/project/pydnsbl/0.5.4/.

[128] K. Suzuki, D. Tonien, K. Kurosawa, and K. Toyota, “Birthday Paradox
for Multi-collisions,” in Information Security and Cryptology – ICISC,
Berlin, Heidelberg, 2006, pp. 29–40.

[129] Wikipedia. “Hilbert curve.” (2023), [Online]. Available: https://en.
wikipedia.org/wiki/Hilbert%5C_curve.

[130] D. Wessels. “Ipv4-heatmap.” (2011), [Online]. Available: https://
github.com/measurement-factory/ipv4-heatmap.

[131] ARIN. “American Registry for Internet Numbers.” (2023), [Online].
Available: https://www.arin.net/.

[132] LACNIC. “Latin America and Caribbean Network Information Cen-
tre.” (2023), [Online]. Available: https://www.lacnic.net/.

[133] APNIC. “Asia Pacific Network Information Centre.” (2023), [Online].
Available: https://www.apnic.net/.

[134] AFRINIC. “African Network Information Centre.” (2023), [Online].
Available: https://afrinic.net/.

[135] J. M. Allen, “Os and application fingerprinting techniques,” in SANS
Institute InfoSec Reading Room, 2007.

[136] O. A. Osanaiye and M. Dlodlo, “TCP/IP header classification for
detecting spoofed DDoS attack in Cloud environment,” in IEEE EU-
ROCON 2015 - International Conference on Computer as a Tool
(EUROCON), 2015, pp. 1–6.

https://www.statista.com/statistics/1342696/vpn-usage-united-states/
https://www.statista.com/statistics/1342696/vpn-usage-united-states/
https://www.statista.com/topics/779/mobile-internet/#topicOverview
https://www.statista.com/topics/779/mobile-internet/#topicOverview
https://www.digitalelement.com/solutions/user-context/carrier-data/
https://www.digitalelement.com/solutions/user-context/carrier-data/
https://datadome.co/learning-center/how-to-reduce-server-response-time/
https://datadome.co/learning-center/how-to-reduce-server-response-time/
https://pypi.org/project/pydnsbl/0.5.4/
https://en.wikipedia.org/wiki/Hilbert%5C_curve
https://en.wikipedia.org/wiki/Hilbert%5C_curve
https://github.com/measurement-factory/ipv4-heatmap
https://github.com/measurement-factory/ipv4-heatmap
https://www.arin.net/
https://www.lacnic.net/
https://www.apnic.net/
https://afrinic.net/

158 References

[137] M. Zalewski. “P0f v3.” (2016), [Online]. Available: https://lcamtuf.
coredump.cx/p0f3/.

[138] R. Lippmann, D. Fried, K. Piwowarski, and W. Streilein, “Passive
Operating System Identification From TCP / IP Packet Headers,” in
Proceedings Workshop on Data Mining for Computer Security (DM-
SEC), 2003.

[139] R. Padmanabhan, A. Dhamdhere, E. Aben, k. claffy kc, and N. Spring,
“Reasons Dynamic Addresses Change,” in Proceedings of the 2016
Internet Measurement Conference, ser. IMC ’16, Santa Monica, Cali-
fornia, USA: Association for Computing Machinery, 2016, pp. 183–198,
isbn: 9781450345262.

[140] L. Böck, D. Levin, R. Padmanabhan, C. Doerr, and M. Mühlhäuser,
“How to Count Bots in Longitudinal Datasets of IP Addresses,” in
Proceedings 2023 Network and Distributed System Security Symposium,
San Diego, CA, USA: Internet Society, 2023, isbn: 978-1-891562-83-9.

[141] Python. “Scipy.optimize Curve fit function.” (2023), [Online]. Available:
https://docs.scipy.org/doc/scipy/reference/generated/
scipy.optimize.curve_fit.html.

[142] S. M. Stigler, “Francis Galton’s Account of the Invention of Correla-
tion,” Statistical Science, vol. 4, no. 2, pp. 73–79, 1989, issn: 08834237.

[143] H. Griffioen and C. Doerr, “Quantifying Autonomous System IP Churn
Using Attack Traffic of Botnets,” in Proceedings of the 15th Interna-
tional Conference on Availability, Reliability and Security, ser. ARES
’20, Virtual Event, Ireland: Association for Computing Machinery,
2020, isbn: 9781450388337.

[144] A. Augustin. “Easy-trilateration.” (2021), [Online]. Available: https:
//github.com/agusalex/easy-trilateration.

[145] Imperva. “Account Takeover.” (2023), [Online]. Available: https :
/ / www . imperva . com / learn / application - security / account -
takeover-ato/.

[146] E. Alata, V. Nicomette, M. Kaaniche, M. Dacier, and M. Herrb,
“Lessons learned from the deployment of a high-interaction honey-
pot,” in 2006 Sixth European Dependable Computing Conference, 2006,
pp. 39–46.

https://lcamtuf.coredump.cx/p0f3/
https://lcamtuf.coredump.cx/p0f3/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://github.com/agusalex/easy-trilateration
https://github.com/agusalex/easy-trilateration
https://www.imperva.com/learn/application-security/account-takeover-ato/
https://www.imperva.com/learn/application-security/account-takeover-ato/
https://www.imperva.com/learn/application-security/account-takeover-ato/

	Abstract
	Résumé
	List of Figures
	List of Tables
	Introduction
	Problem Statement and Research Questions
	Main Contributions and Thesis Outline
	Part I: Server-side Detection of Residential ip Proxies Connections
	Part II: Web Scraping Mitigation Through Deception
	Part III: Residential ip Proxies and Scrapers Ecosystem Analysis
	Publications

	Background and Related Works
	Introduction
	Web Scraping
	Web Scraping and E-commerce Websites
	Web Scraping Detection and Mitigation
	Web Scraping in Amadeus it Group

	Residential ip Proxies
	Residential ip Proxies and Web Scraping
	Past Works in resip Analysis and Detection

	Honeypots
	Geolocation
	Background
	Past Works in rtt-based Geolocation

	Summary

	I Server-side Detection of Residential ip Proxies Connections
	Identification of Scrapers Exploiting Residential ip Proxies
	Introduction
	Residential ip Proxies Infrastructure
	Confirmation of Working Assumptions
	Detecting resips with Round Trip Time Measurements
	Residential ip Proxies Identification based on Retransmission Protocols
	Summary

	Round Trip Time Measurements to Identify Scrapers behind Residential ip Proxies
	Introduction
	Ground Truth Experiment Setup
	Residential ip Proxy Providers
	Clients and Servers
	Network Measurements
	Timeline and Data Storage

	Analyses of the Ground Truth Experiment Dataset
	Packet Average Speed Analysis
	δRTT Values Distribution
	Network Delays Impact
	Machines Proximity Impact
	The Impact of tls Versions on the Threshold
	δRTT Distribution Shapes
	Ground Truth Experiment Discussion

	Client Environment Analysis
	Preliminary Client Environment Analysis
	Detection on Real-World Scrapers Connections

	Summary

	Scraping Detection through Retransmission Protocols
	Introduction
	Experimental Setup
	Communications Analysis
	Detection of Second mrp Discussion
	Summary

	II Web Scraping Mitigation Through Deception
	Web Scraping Mitigation through Redirection to a Honeypot
	Introduction
	Setup and Methodology
	Honeypot Results
	http Payload Analysis
	ip Addresses Characterization
	Luring Attackers as a Mitigation

	Summary

	III Residential ip Proxies and Scrapers Ecosystem Analysis
	Analysis of the Residential ip Proxies Ecosystem
	Introduction
	Findings about resip Inner Functioning and Relationships Among Providers
	f1: Assignation of gateway ips to Minimize Repetitions per Path
	f2: Non Correlation between gateway ip and Destination Server Locations
	f3: Non Uniform Distributions of gateways ips
	f4: Different Management of superproxy ips among Providers
	f5: ol and sm most likely Share Part (or all) of their Pools of gateway ip Addresses
	f6: gateways of Different Providers support Different oses
	f7: Diurnal Patterns in the gateway ips Availability depend on Provider

	Assessment of resip Pool Sizes
	Pool Estimation thanks to Cumulative Curve Fitting

	Lessons Learned Analyzing resip Connections
	Summary

	Geolocation of Scrapers behind a Residential ip Proxy
	Introduction
	Multilateration of the Original Client
	The rttlocator technique
	Evaluation
	Datasets
	Parameters Tuning

	Discussion and Limitations
	Summary

	Future Works and Conclusion
	Author's Publications
	References

