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Abstract— A fundamental challenge in wireless heterogeneous
networks (HetNets) is to effectively utilize the limited trans-
mission and storage resources in the presence of increasing
deployment density and backhaul capacity constraints. To alle-
viate bottlenecks and reduce resource consumption, we design
optimal caching and power control algorithms for multi-hop
wireless HetNets. We formulate a joint optimization framework
to minimize the average transmission delay as a function of the
caching variables and the signal-to-interference-plus-noise ratios
(SINR) which are determined by the transmission powers, while
explicitly accounting for backhaul connection costs and the power
constraints. Using convex relaxation and rounding, we obtain a
reduced-complexity formulation (RCF) of the joint optimization
problem, which can provide a constant factor approximation to
the globally optimal solution. We then solve RCF in two ways: 1)
alternating optimization of the power and caching variables by
leveraging biconvexity, and 2) joint optimization of power control
and caching. We characterize the necessary (KKT) conditions for
an optimal solution to RCF, and use quasi-convexity to show that
the KKT points are Pareto optimal for RCF. We then devise a
subgradient projection algorithm to jointly update the caching
and power variables under general SINR conditions. Finally,
our analytical findings are supported by results from extensive
numerical experiments.

Index Terms— Wireless joint power-caching optimization,
biconvexity, alternating optimization, quasi-convexity, Pareto
optimality.

I. INTRODUCTION

THE energy and cost efficiencies of wireless heterogeneous
networks (HetNets) incorporating macro cells (MCs) and

small cells (SCs) are critical for meeting the performance
requirements of 5G wireless networks [1]. Design of these
HetNets entails the fundamental challenge of optimally utiliz-
ing both the bandwidth and storage resources of the network
to reduce the download or transmission delay and the energy
costs. With the increasing deployment density in wireless net-
works, the backhaul capacity becomes the bottleneck. It is well
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known that caching can alleviate this bottleneck by replacing
the backhaul capacity with storage capacity at SCs [2], i.e.,
moving content closer to the wireless edge. Caching reduces
transmission delay by bringing the popular data items in SCs
that are faster or computationally cheaper to access than MCs.
To optimize resource usage in wireless HetNets, designing
caching and power control policies and the interplay between
caching and transmission decisions remains an open challenge.
Enabling this will help control the interference and minimize
the transmission delay costs in wireless HetNet topologies.

A. Current State of the Art and Motivation

Research to date on cost optimization in the context of
caching has focused on different perspectives. There have been
attempts to devise replacement algorithms that aim to optimize
the caching gain, which is the reduction in the expected total
file downloading delay achieved by caching at intermediate
nodes. Simple, elegant, adaptive, and distributed approaches
determining how to populate caches in a variety of networking
applications abound. These include Che’s analytical approxi-
mation to compute the probability of an item being in a Least
Recently Used (LRU) cache [3], in the context of web caches
[4], and extension of Che’s decoupling approach to provide a
unified analysis of caching for different replacement policies
in [5]. A simple and ubiquitous algorithm for populating
caches in peer-to-peer networking is path replication, i.e., once
a request for an item reaches a cache, every downstream
node receiving the response caches the item [6]. Various
cache eviction policies devised for a single cache primarily
concern the optimization of the cache hit rate that describes
the frequency of finding the searched item in the cache, or the
latency that describes how long it takes for the cache to return
a desired item [3], [5], [7].

For networks of caches, time-to-live (TTL) caching is a
better alternative [5], [8], where items stay in a cache for
predetermined times and are evicted when the timers expire.
An age-based-threshold policy where cache stores all contents
requested more times than a threshold [9] captures temporal
popularity changes via the Poisson shot noise model (SNM),
and maximizes the hit ratio [10]. Hence, SNM is compatible
with the TTL caching [11]. Traditional cache eviction policies
[3], [5], [12], e.g., LRU, Least Frequently Used (LFU), First-
In-First-Out (FIFO), and Random Replacement (RR), provide
gain by making content available locally and compromise
between hit rate and latency, and can be arbitrarily subop-
timal in terms of the expected caching gain [13]. However,
as devised in the landmark paper [14], novel coded caching
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approaches can provide a global gain that derives from jointly
optimizing placement and delivery. Furthermore, geographic
caching approaches that capture the spatial diversity of con-
tent, as in [15], [16], [17], and [18], help optimize the
placement.

There is an extensive literature on physical layer aspects of
caching in wireless networks design. For example, the gain
offered by local caching and broadcasting is characterized in
[14]. Works also include the analysis of the scaling of the per-
user throughput and collaboration distance [17], the wireless
caching capacity region which is the closure of the set of
all achievable caching traffic [19], as well as single-hop and
device-to-device [14], [17], [20], [21], [22], and multi-hop
caching networks [23], [24].

Recently, information centric networking (ICN) architec-
tures have put emphasis on the traffic engineering and caching
problems [13], [25] to effectively use both bandwidth and
storage for efficient content distribution [26], and optimize
the network performance [27]. Alternatively, there have been
works focusing on jointly optimizing the caching gain and
resource usage, e.g., a decentralized SC caching optimiza-
tion, i.e., femtocaching, to minimize the download delay [2],
distributed optimization of caching gain given routing [13],
minimizing the total cost incurred in storing and accessing
objects by building the Steiner trees [28], jointly optimizing
caching and routing to provide latency guarantees [29], and
minimizing delay by taking into account congestion [30], and
elastic and inelastic traffic [31]. Existing strategies have also
focused on separately optimizing the caching gain or the
throughput [32], or spatial throughput via scheduling [33].
From a resource management perspective, it is not sufficient
to exclusively optimize caching or throughput, or delay.

There exist several pertinent power control algorithms to
optimize the resource usage in wireless networks [34], [35],
[36], [37], [38], or maximize throughput under latency con-
siderations [39]. However, delay optimization in wireless links
is challenging because of interference and congestion. There
exist power-aware routing algorithms for packet forwarding
to balance the traffic between high-quality links and less
reliable links, such as [40] and [41], joint optimization of
power control, routing, and congestion [42], and joint opti-
mization of radio and computational resources under latency
and power constraints [43], [44], [45], as well as delay-optimal
computation task scheduling at the mobile edge [46], and
the minimum delay routing algorithm [47]. In addition, fog
optimization-based resource allocation schemes for wireless
networks have been devised in [48] to achieve high power
efficiency while keeping a very high Quality of Experience
under latency constraints, and in [49] to maximize the sum rate
of cellular networks. However, none of these or research on
ICN architectures has jointly designed traffic engineering and
cache placement strategies to optimize network performance
in view of traffic demands.

Several papers have studied complexity and optimization
issues of cost minimization as an offline, centralized caching
problem under restricted topologies [2], [6], [28], [30], [50],
[51]. Despite the advent of different caching solutions, to the
best of our knowledge, none of the above protocols focuses

on the joint optimization of caching and power allocation or
provides algorithmic performance guarantees in terms of the
achievable costs via caching. Although most of these strategies
suggest that intermediate caching can alleviate the average
download delays, it is hard to quantify how this delay is
affected by the resource allocation strategy in a HetNet setting.
In this paper, we focus on jointly optimizing the network level
performance in terms of transmission delay and caching, which
can be increasingly skewed away from a strategy that places
the items without accounting for the transmission delay.1

B. Methodology and Contributions

In this paper, we study jointly optimal caching and power
control for arbitrary multi-hop wireless HetNet topologies with
nodes that have caching capabilities. Note that as the networks
are becoming increasingly heterogeneous, MCs and SCs can
co-exist in 5G, and all networks beyond it [1]. Dense SC
deployment is the key for 5G networks to enhance the capacity,
rendering a cost-efficient backhaul solution a key challenge.

For a given caching HetNet topology with multi-hop trans-
missions,2 a set of finite cache storage capacities, a demand
distribution on the content items known a priori, and a
subset of nodes designated to store specific items, we devise
algorithms for jointly optimal caching and power control
to minimize the average transmission delay cost, i.e., the
average download delay, per request. While end-to-end delay
in systems is due to several key sources, including transmission
delay, propagation delay, processing delay and queuing delay,
we are primarily interested in a lightly loaded regime for which
congestion-dependent latency costs can be neglected, and in
which the link lengths are much smaller than the propagation
speed of the signal, and each node can sustain a high service
rate relative to the average rate at which items are arriving to
be serviced. Hence the transmission delay is the major delay
component. To accurately determine the transmission delay,
we explicitly account for the transmission power, backhaul
costs, and wireless interference.

Finding the optimum placement of files is proven to be
NP-complete [2]. Hence, jointly optimal power control and
caching to minimize the transmission delay is also NP-
complete. We emphasize that our joint optimization framework
is significantly different from the traditional approach which
maximizes the caching gain only. This approach has been
widely studied in the literature, such as in [2], [13], [24],
and [52] and their follow-up works, where the link costs
are fixed. This assumption is only true when the links are
granted orthogonal frequencies and do not interfere, and the
transmission powers are fixed, which is not the case in Het-
Nets. Furthermore, when link costs are deterministic, caching
gain always improves with increasing link costs. This requires
high transmission powers and violates the purpose of cost
minimization. In other words, savings via intermediate caching
do not inform us about the actual achievable delay-cost via
caching. This justifies our proposed framework in Sect. III,

1In this paper, we primarily consider the transmission delay assuming a
lightly loaded system which we detail in Sect. II.

2Routing is fixed and each request is a pair that is jointly determined by the
item requested and the fixed multi-hop path traversed to serve this request.



where we consider the minimum achievable cost via caching
by taking into account the joint behavior of link costs under
resource constraints.

Our main technical contributions include the following:

• A reduced-complexity formulation (RCF) to the joint
optimization problem. We provide a constant factor
approximation to the minimum average transmission
delay-cost Do(X, S) of serving a request via jointly
optimizing binary caching variables X and real valued
transmission powers S. Using convex relaxation tech-
niques, we obtain an RCF of the joint optimization
problem, with cost function D(Y, S) which is not jointly
convex, where Y denote the relaxed caching variables.
We then round Y to obtain an integral solution within a
constant factor from the optimal solution to Do(X, S).

• Sufficient conditions for biconvexity of D(Y, S). We
provide a sufficient condition for the convexity of RCF
in the logarithm of powers which yields a biconvex
RCF objective. This condition pertains to the high SINR
regime and does not hold for general SINR values.
We jointly optimize RCF under the biconvexity condition
to provide an alternating optimization solution to mini-
mizing D(Y, S).

• Joint optimization framework. We jointly optimize
RCF under the general setting which is not jointly con-
vex. We obtain the following results: a) quasi-convexity
of D(Y, S), b) necessary conditions for optimality of
D(Y, S), c) generalized necessary conditions for optimal-
ity of D(Y, S) assuming strict convexity of the feasible
set of all S, denoted by DS , and d) Pareto optimality of
the solution to D(Y, S).

• Subgradient projection algorithm. Due to the
non-differentiability and non-convexity of the relaxed
problem, we propose a Clarke subgradient projection
algorithm with a modified Polyak’s step size, and provide
a simple method to calculate the Clarke subgradients.

Our prior work [53] contains a subset of the results of
this manuscript, including (i) a RCF D(Y, S) to the joint
power-caching optimization problem, (ii) sufficient conditions
for the biconvexity of D(Y, S), (iii) a joint optimization
framework, where we show a) quasi-convexity of D(Y, S),
b) generalized necessary conditions for optimality of D(Y, S)
assuming strict convexity of DS , and c) Pareto optimality of
the solution to D(Y, S), and (iv) a subgradient projection
algorithm. However, [53] does not contain the results per-
taining to the alternating optimization. It does not include
the proofs of the main results (theorems, or propositions),
which have been detailed in the current manuscript. This
draft contains in addition to a)-c) under the joint optimization
framework, necessary conditions for the optimality of D(Y, S)
(Theorem 2). The simulation results in the current manuscript
are also more comprehensive and applicable to larger scale
models.

Organization of the rest of the paper is follows. In Sect. II
we detail the wireless HetNet topology where each node
has caching capability and adjustable transmission pow-
ers. We establish a transmission delay model of serving a
request using multiple hops where the transmission delay is

a nonlinear function of the signal-to-interference-plus-noise
ratios (SINR). In Sect. III we detail the joint optimization of
delay in power and caching variables. This section contains the
main technical contributions which are the necessary and suf-
ficient conditions for joint optimality, and algorithms to solve
for points with provable theoretical guarantees. In Sect. IV,
we numerically verify our analytical findings. In Sect. V,
we conclude the paper by pointing out the use cases including
mobile edge and fog computing.

II. WIRELESS CACHING MODEL

We consider a multi-hop wireless HetNet topology consist-
ing of different types of nodes, e.g., small cells (SCs), macro
cells (MCs), and users. The network serves content requests
routed over different paths. To alleviate the impact of limited
backhaul capacity, availability, and long-distance reach it is
desired that the network serves the requests via the SCs and
multi-hop transmissions. While each MC or SC might have
a fiber connection to the backhaul network in 5G, multi-hop
relaying3 is essential due to radio range limitations. However,
for a given end-to-end distance, increasing the number of
hops arbitrarily may lead to additional energy consumption
incurred by relays. As a result, long-hop routing, sending over
a smaller number of longer hops versus over many short hops,
is a competitive strategy for many networks [56]. Furthermore,
from a cost-effective perspective, each MC should allocate its
resources to a smaller number of users, which balances the
traffic between SCs and MCs [1]. We represent the network
as a directed graph G(V,E) where V is the collection of
nodes such that a node v ∈ V is either an MC, an SC or
a user. All nodes V transmit on the same frequency,4 i.e.,
all transmissions interfere with each other. In G, E is the
set of edges, where given v, u ∈ V , the edge (v, u) ∈
E denotes the transmission link from v to u. In Fig. 1,
we illustrate the proposed wireless caching network model
and possible multi-hop paths where the users request different
items. We provide the notation in Table I.

The caching model is as follows. The entire set of content
items, i.e., the catalog, is denoted by C. Each item in C is
of equal size. Readers can refer to [58, Section 6] for an
extension to contents with unequal sizes where the authors
partitioned contents into equal-sized chunks and defined the
caching gain/cost per chunk, where chunks can be treated as
distinct items [52]. Each node is associated with a cache that
can store a finite number of content items. The cache capacity
at node v ∈ V is cv . The variables xvi ∈ {0, 1} indicate
whether v ∈ V stores item i ∈ C. Due to this finite capacity
constraint,

∑
i∈C xvi ≤ cv , ∀v ∈ V . Each item i ∈ C is

associated with a fixed set of designated sources Si ⊆ V ,
i.e., nodes that always store i: xvi = 1, ∀v ∈ Si. While the
backhaul is always considered to be a designated source for
all items, user nodes, SCs, or MCs can also be designated

3Since the transceiver is the major source of power consumption in a node
and long distance transmission requires high power, in some cases multi-hop
routing can be more energy efficient than single-hop routing [54], [55].

4If subsets of nodes are allocated different frequencies, as in OFDMA-
based networks, then we can determine the resulting subset of interfering
nodes [57]. This also reduces interference and improves the SINR coverage.



Fig. 1. A caching network scenario with possible connections between the
users, SCs or MCs, and to the backhaul, where the backhaul cost DSC of
SC is typically higher than the backhaul cost DMC of MC connections [39].
A path p = {p1, p2, p3} for request (i, p) is indicated where p1 is a user
where the request (i, p) is originated, p2 is an SC, and p3 is the MC.

sources. Items that are not available in the wireless network
need to be retrieved from the backhaul via the SCs or MCs.

Users issue requests for content items. The set of all requests
is denoted by R. A request r ∈ R is a pair (i, p) that is jointly
determined by the item i ∈ C being requested, and the fixed
path p traversed (request is forwarded from the user toward a
designated source over a fixed path) to serve this request. The
routing strategy of a user with respect to request (i, p) ∈ R is
predetermined, e.g., the shortest path in terms of the number
of hops to the nearest designated source. We assume that (i)
the collection of requests for the same content item i, i.e., {p :
(i, p) ∈ R}, are served separately instead of being aggregated,
(ii) the response to a request (i, p) travels the same path p,
in the reverse direction, which follows from the symmetric
routing assumption in ICN,5 (iii) different frequency bands
are used for the uplink and downlink, (iv) transmission delays
are solely due to response messages carrying desired items
assuming that request forwarding and cache downloads are
instantaneous. This is due to the assumption that sizes of
requests are much smaller than that of responses, and we
ignore the processing time at the nodes.

Request rates are known a priori, where choices of requested
items are independent. The arrivals of requests are Poisson
where the arrival rate of r = (i, p) is λ(i,p). A path p on G of
length |p| = K is a sequence {p1, p2, . . . , pK} of nodes pk ∈
V such that edge (pk, pk+1) ∈ E, for k ∈ {1, . . . , |p| − 1}.
Let kp(v) = {k ∈ {1, . . . , |p|} : pk = v} denote the position
of v in p. For each request (i, p), p1 is the requesting user and
p|p| is the designated source of item i, and we assume that p
is a simple path, i.e., p contains no loops.

End-to-end delay includes several key components, such as
transmission delay, propagation delay, processing delay, and
queueing delay. In this paper, we focus on lightly loaded
systems, where the transmission delay is dominant and the
other delay components are negligible. We assume there is
one queue for each link (u, v) ∈ E that serves in a FIFO
manner all requests traversing (u, v).

To determine the transmission delay of link (v, u) ∈ E
corresponding to request (i, p), we first derive the signal-to-

5In ICN, since there is no source or destination information in packets,
responses follow the reverse path of requests [13].

interference-plus-noise ratio (SINR) on link (v, u), which we
denote by SINRvu(S), where S = [svu] ∈ R|E| represents the
set of transmission powers at all links (v, u) ∈ E. To decode
the requests (i, p) traversing link (u, v), we calculate the SINR
on link (v, u), where we treat all other transmissions from
nodes j ∈ V \v, as well as the transmissions from v to w ̸= u
as noise. Hence, the SINR on link (v, u) is given as

SINRvu(S) =
Gvusvu

Nu +
∑

j∈V \v
Gju

∑
w

sjw + Gvu

∑
w ̸=u

svw
, (1)

where Nu is the receiver noise power at node u, and svu

is the transmit power from v ∈ V to u. The total transmit
power of node v is

∑
u:(v,u)∈E svu. The parameter Gvu is the

channel power gain that includes only path loss, where we use
the standard power loss propagation model, i.e., Gvu = r−n

vu

given distance rvu between v and u, and the path loss exponent
n > 2 [59]. The signal for request (i, p) over link (v, u) is
decoded regarding all other signals as noise, for all (i, p) ∈ R
and (v, u) ∈ E. Thus, in our model the transmission delays
are coupled, in contrast to [2] and [24], because the decoding
model captures the interference due to simultaneous wireless
transmissions. Because the SINR analysis in (1) is for a single
frequency band, the set of active nodes with nonzero trans-
mission powers causes interference to the unintended receiver
node. Employing OFDMA-based schemes allows frequency
multiplexing by moving the interfering nodes to orthogonal
resources and eliminates the out-of-band interference, and
improves the SINR quality.6 However, we leave this extension
to future work.

To model the wireless transmission delay on link (v, u) ∈
E, we use the following composite relation7:

f(SINRvu(S)) =
1

log2(1 + SINRvu(S))
, (2)

which is the delay in number of channel uses per bit corre-
sponding to the data rate of link (v, u). This model captures
interference, and thus provides a more sophisticated way
of modeling delay in a lightly loaded network than simple
hop count. When the SINR is high, (2) yields a low trans-
mission delay and vice versa. From (1)-(2), it is clear that
f(SINRvu(S)) is convex and decreasing in SINRvu(S) but
non-convex in S.

If the last node of a path p, i.e., p|p|, is not a designated
user node, SC, or MC, then the final hop from p|p|−1 to p|p|
is a wired connection from an MC or an SC to the backhaul.
For given (i, p) ∈ R, the transmission delay incurred by the
edge (p|p|−1, p|p|) ∈ p where p|p| is the backhaul is given as

f(SINRp|p|p|p|−1(S)) =

{
DMC , if p|p|−1 is MC,

DSC , if p|p|−1 is SC,
(3)

6In 5G and 6G applications, the performance can be improved using inter-
ference cancellation techniques with NOMA-based non-orthogonal resource
allocation. However, our transmission delay (2) is related to the inverse
of transmission rate. This paper focus on the delay tradeoffs due to the
joint optimization of power and caching variables. A similar tradeoff for
NOMA-based frameworks will be investigated in our future work.

7Practical adaptive modulation and coding schemes operate at lower SINR
values [60, Ch. 4.2, Ch. 9.3]. For example, for MQAM the gap from the
Shannon SNR as function of the symbol error probability Pe is Γ =
1
3
(Q−1(Pe))2.



where the wired backhaul transmission delays DMC and DSC

are fixed and known a priori, which we assume to be the
same for all SCs and MCs based on [61]. In contradistinction
to this, the transmission delays are coupled in the wireless
part of the network due to the dependency of SINRvu(S),
(v, u) ̸= (p|p|, p|p|−1) in (1) on the power allocation S.

Our goal is to jointly optimize the transmission power
allocations along with the caching decisions to minimize the
average transmission delay of requested items over the multi-
hop network. We next formulate this problem.

III. JOINT POWER CONTROL AND CACHING
OPTIMIZATION FOR TRANSMISSION DELAY MINIMIZATION

In this section, we formulate the delay minimization
problem that jointly considers power control and caching
allocations. Due to its NP-hard nature, in Sect. III-A we first
develop a RCF based on convex relaxation and its optimal
solution, which yields an integral solution (via rounding)
whose cost is within a constant factor from that of the optimal
solution to the original problem. Next in Sect. III-B we provide
a sufficient condition for the convexity of RCF in the logarithm
of powers which yields a biconvex objective. This sufficient
condition corresponds to the high SINR regime. Later in
Sect. III-C we jointly optimize RCF, first under the assumption
of biconvexity so as to provide an alternating optimization
formulation, and second under the general setting which is
not jointly convex, we provide various results on the RCF
objective. We demonstrate a) quasi-convexity of D(Y, S), b)
necessary conditions for optimality of D(Y, S), c) generalized
necessary conditions for optimality of D(Y, S) under strict
convexity of DS , and d) Pareto optimality of the solution
to D(Y, S). Finally in Sect. III-D we provide a subgradient
projection algorithm for the general setting.

A. Caching Optimization for RCF

A goal in caching systems is to minimize the expected
total file downloading delay, i.e., the expected delivery time
of content items averaged over the demands and the cache
placement. Since end-to-end delay in our setup is mainly due
to the transmission delay, by letting matrix X = [xvi] ∈
{0, 1}|V |×|C| denote the global caching strategy, we can
express the cost function for serving a request (i, p) in terms
of the transmission delay as

Do
(i,p)(X, S) =

|p|−1∑
k=1

f(SINRpk+1pk
(S))

k∏
l=1

(1− xpli) (4)

where xvi = 1 if node v ∈ V stores item i ∈ C, and xvi =
0 otherwise, and Do

(i,p)(X, S) includes the transmission delay
of an edge (pk+1, pk) in the path p = {p1, . . . pk} if none
of the nodes p1, . . . pk caches i. If the request is well-routed,
no edge (or cache) appears twice in (4). The last node of p is
the designated source, hence a request is always served. Let
Do be the aggregate expected cost in terms of the average
number of channel uses per bit, which equals

Do(X, S) =
∑

(i,p)∈R

λ(i,p)D
o
(i,p)(X,S). (5)

The gain of intermediate caching is equivalent to the achiev-
able reduction in the overall transmission delay. An upper
bound on the expected cost is obtained when all requests are
served by the designated sources at the end of each path, i.e.,

Dub(S) =
∑

(i,p)∈R

λ(i,p)

|p|−1∑
k=1

f(SINRpk+1pk
(S)). (6)

Our primary objective is to solve the problem
min{Do(X, S) : X ∈ DX , S ∈ DS}, (7)

where DX is the feasible set of X ∈ R|V |×|C| satisfying the
capacity, integrality, and source constraints:

DX =
{ ∑

i∈C
xvi ≤ cv, ∀v ∈ V, xvi ∈ {0, 1}, v ∈ V, i ∈ C;

xvi = 1, ∀i ∈ C, v ∈ Si

}
. (8)

The set of constraints DS is for the power or resource
budget. The feasible set of S is specified by the individual
power budget for each node, namely DS is the feasible set of
all S = [svu]v∈V,u∈V \v ∈ R|V |×(|V |−1) satisfying

DS =
{ ∑

u∈Ov

svu ≤ ŝv, svu ≥ 0, ∀v ∈ V
}

, (9)

where Ov = {u ∈ V : (v, u) ∈ E}, and ŝv denotes the total
transmit power of node v ∈ V .

Minimization of Do(X, S) subject to the set of integer
constraints X ∈ DX is NP-hard since it is a reduction from
the 2-disjoint set cover problem [2]. Therefore, we aim to
devise a centralized algorithm that produces an allocation
within a constant approximation of the optimal, without prior
knowledge of the network topology, edge weights, or the
demand distribution. We next formulate a convex relaxation.

1) Convex Relaxation: To approximate the non-convex
function Do(X, S), we construct a convex relaxation, follow-
ing the approach of [2] and [13]. Suppose that xvi, v ∈ V ,
i ∈ C, are independent Bernoulli random variables. Let ν be
the corresponding joint probability distribution defined over
matrices in {0, 1}|V |×|C|, and denote by Pν [·] and Eν [·] the
probability and expectation with respect to ν, respectively.

Relaxing the integrality constraints of X in (8), let marginal
probabilities

yvi = Pν [xvi = 1] = Eν [xvi] ∈ [0, 1], v ∈ V, i ∈ C.
(10)

Denote the feasible set of Y = [yvi]v∈V,i∈C ∈ R|V |×|C| by

DY =
{ ∑

i∈C
yvi≤cv, v ∈ V, yvi ∈ [0, 1], v ∈ V, i ∈ C;

yvi = 1, v ∈ Si, i ∈ C
}

, (11)

representing the collection of (marginal) probabilities that
v ∈ V stores i ∈ C and satisfying the capacity and source
constraints for the caching variables. Using the definition of
Y in (10), and from the fact that xvi’s are independent and
path p is simple (no loop), we now observe that

Do(Y, S) = Eν [Do(X, S)]. (12)
The extension of Do to the domain [0, 1]|V |×|C| is known

as the multi-linear relaxation of the optimization problem [2],
where (7) is relaxed to

min{Do(Y, S) : Y ∈ DY , S ∈ DS}. (13)



TABLE I
NOTATION

Let X∗ and Y ∗ be the optimal solutions to (7) and (13),
respectively. Then, because the integrality constraints are
relaxed in (10), the cost with relaxed variables Y ∗ satisfies
for any S ∈ DS :

Do(Y ∗, S) ≤ Do(X∗, S). (14)
Note that the multi-linear relaxation Do(Y, S) in (12) is

non-convex. Therefore, we next approximate it by another cost
function D defined as follows:

D(Y, S) =
∑

(i,p)∈R

λ(i,p)D(i,p)(Y, S), (15)

where the relaxed delay-cost for request (i, p) ∈ R is

D(i,p)(Y, S) =
|p|−1∑
k=1

f(SINRpk+1pk
(S))gpki(Y ), (16)

where f is given in (2) and gpki is given by

gpki(Y ) = 1−min
{

1,
k∑

l=1

ypli

}
, ∀ ypli ∈ [0, 1]. (17)

The Goemans-Williamson inequality [62] states that,

1−
k∏

l=1

(1− ypli) ≥ min{1,
k∑

l=1

ypli} ypli ∈ [0, 1].

Combining (17) with the above, it holds that

gpki(Y ) ≥
k∏

l=1

(1− Eν [xpli]).

Therefore, the relaxed objective (15) gives an upper bound
on (12). Due to the concavity of the min operator, i.e.,
Eν [gpki(Y )] ≥ gpki(Eν [Y ]), the function gpki(Y ) is quasi-
convex (see Prop. 2) in Y . In (17), gpki(Y ) is a piecewise
linear function which is not smooth or strictly convex,
and its partial derivatives8 do not exist everywhere. If the
objective function or some of the constraint functions are
non-differentiable, we can devise non-differentiable methods
to optimize D(Y, S), or subdifferential versions of KKT
conditions [64], [65, Ch. 6.3]. To address such scenarios we
will detail an algorithm in Sect. III-D.

The approximated delay-cost D(Y, S) is convex in Y for
a fixed given S due to the convexity of gpki(Y ). Note on
the other hand that D(Y, S) is nonconvex in the power
variables S because f is nonconvex in S. We aim to solve

8A function is piecewise continuously differentiable if each piece is
differentiable throughout its subdomain, even if the whole function may not
be differentiable at the points between the pieces [63, Ch. 3].

the following reduced-complexity formulation (RCF) of the
joint optimization problem:

min{D(Y, S) : Y ∈ DY , S ∈ DS} (18)

where the objective function in (18) captures the backhaul
connection between the core network and the MCs or the SCs
at the edge of the network. This is enabled by incorporating
the backhaul delay model in (3) which affects the delay-cost
function D(Y, S) given in (15).

The optimal value of D(Y, S) in (18), is guaranteed to be
within a constant factor from the optimal values of Do(Y, S)
in (13), and of Do(X, S) in (7). In particular, we have the
following theorem.

Theorem 1: Constant factor approximation for fixed S
[2], [66]. For given S, let Y ∗ and Y ∗∗ be the optimal
solutions that minimize Do(Y, S) and D(Y, S) in (13) and
(18), respectively. Then,

Do(Y ∗, S) ≤ Do(Y ∗∗, S) ≤ Dub(S)
e

+
(
1− 1

e

)
Do(Y ∗, S).

(19)
Proof: See Appendix A. □

2) Rounding: To produce an integral solution to (7),
we round the solution Y ∗∗ of (18). For any given S ∈ DS

and given a fractional solution Y ∈ DY , there is always a way
to convert it to a Y ′ ∈ DY with at least one fewer fractional
entry than Y , for which Do(Y ′, S) ≤ Do(Y, S) [13], [15].

Each rounding step reduces the number of fractional vari-
ables by at least 1. Thus, the above algorithm concludes
in at most |V | × |C| steps (assuming fixed power alloca-
tions), producing an integral solution X ′ ∈ DX such that
Do(X ′, S) ≤ Do(Y ∗∗, S) because each rounding step can
only decrease Do. Hence, from Theorem 1 and (14) we have
the following corollary.

Corollary 1: Rounding of caching for fixed S. The inte-
gral solution X ′ ∈ DX as a result of rounding satisfies for
any S ∈ DS:

Do(X∗, S) ≤ Do(X ′, S) ≤ Dub(S)
e

+
(
1− 1

e

)
Do(X∗, S).

Note that the rounding step produces a
(
1− 1

e

)
-approximate

solution, along with an offset of Dub(S)
e to RCF. The offset

in Cor. 1 is eliminated if instead of RCF in (18) we use
a maximum caching gain formulation which concerns the
ultimate gain that can be obtained via caching at interme-
diate nodes, such as in [2] and [13]. In maximizing the
caching gain, the objective function is given by the differ-



ence Dub(S) − D(Y, S), where Dub(S) is given by (6).
In this case, the relationship Do(X∗, S) ≤ Do(Y ∗∗, S) ≤
Dub(S)

e +
(
1 − 1

e

)
Do(X∗, S) is equivalent to Dub(S) −

Do(X∗, S) ≥ Dub(S) −Do(Y ∗∗, S) ≥ Dub(S) − Dub(S)
e −(

1− 1
e

)
Do(X∗, S) =

(
1− 1

e

)
(Dub(S)−Do(X∗, S)), giving a(

1− 1
e

)
-approximate solution for the maximum caching gain

formulation without an offset. However, in this formulation the
gap Dub(S)−D(Y, S) that models the caching gain increases
in S, requiring high powers. Hence, despite its offset, RCF in
(18) is preferable as it can jointly optimize power.

3) Do and D are Not Jointly Convex in Y and S: The
transmission delays are coupled due to the interference from
simultaneous transmissions. From (2), f is not convex in S.
Furthermore, (12) is not convex in Y for given S and not
convex in S for given Y , hence not jointly convex in (Y, S).
Note that D(Y, S) is jointly convex at low interference or low
power because the logarithm function in (2) changes linearly
(and its reciprocal is convex) in power when SINR is low in
all paths, which is true in the power-limited regime.

The joint convexity of D requires the Hessian matrix
H of D(Y, S) with respect to (Y, S) to be positive semi-
definite (PSD). Since (17) is not differentiable, the Hessian
matrix for D(Y, S) with respect to Y , i.e., ∇2

Y D, is not
defined. However, from [67, Theorem 2.1], the second order
derivatives for maximum functions are defined in each interval
and the subhessians of (15) or (17) with respect to Y , i.e.,
{d2

Y D}, exist and we can define a subhessian matrix d2
Y D.

However, since (17) is piecewise linear, d2
Y D is a zero matrix.

Combining this with the Schur’s complement condition for
H to be PSD in [68], D(Y, S) is jointly convex only if the
off-diagonals of H are singular. However, in our setting, the
partial derivatives ∇SD with respect to S are nonzero, and the
subhessian matrix formed by their subgradients with respect
to Y is non-singular. Therefore, D(Y, S) is not jointly convex.

Note however that if we define D in the logarithms of the
power variables, the function can be biconvex under a certain
condition we provide next, in Sect. III-B in Prop. 1.

B. Power Optimization for RCF

We next provide a sufficient condition for f(SINRpk+1pk
)

to be convex in log power variables P ≜ (log(svu))(v,u)∈E in
which Pvu = log(svu) denotes power measured on link (v, u)
corresponding to request (i, p) in dB.

Proposition 1: Convexity in log power variables. A suffi-
cient condition for the composite function f(SINRpk+1pk

) to
be convex in P ≜ (log(svu))(v,u)∈E is given as follows.

2f ′(x)2

f(x)
· x− f ′(x) ≤ f ′′(x) · x, ∀x ≥ 0. (20)

Proof: The result follows from extending the approach
in [69]. For details, see Appendix B. □

The sufficient condition (20) of Prop. 1 holds in the high
SINR regime where log(1+SINR) ≈ log(SINR), i.e., where
SINR ≫ 1. Given the sufficient condition in (20), it is clear
that the program (18) is convex in terms of power measured
in dB. Hence, we define the log-power variables P , belonging

to the feasible set

DP = {Pvu ∈ R :
∑

u∈Ov

ePvu ≤ ŝv, ∀v ∈ V, ∀(u, v) ∈ E},

where Ov = {u ∈ V : (v, u) ∈ E}.
The condition of Prop. 1 ensures that D(Y, P ) is biconvex,

i.e., D(Y, P ) is convex in Y for given P and convex in P for
given Y [70]. This paves the way for employing methods to
solve RCF in (18). We next outline one such method.

C. Joint Optimization of RCF

In this section, we present two techniques to optimize RCF:
1) Biconvex optimization of D(Y, S) under the condition
of Prop. 1 on convexity in log powers, and 2) General
joint optimization where D(Y, S) is not jointly convex in Y
and S. For the former, we exploit alternating optimization
methods. For the latter, we prove various results on D(Y, S):
a) quasi-convexity, b) necessary conditions for optimality, c)
generalized necessary conditions under strict convexity of DS ,
and d) Pareto optimality of D(Y, S).

1) Alternating Optimization: From [71, Theorem 4.2], since
D is a differentiable and biconvex function of (Y, S), each
stationary point of D is a partial optimum. Furthermore, from
[71, Corollary 4.3], (Y, S) is stationary if and only if it is
a partial optimum. However, a partial optimum neither has
to be a global nor a local optimum to the given biconvex
optimization problem even if (Y, S) is stationary, as stationary
points can be saddle points of D [71]. From (21) and (22) the
partial derivatives of D(i,p) does not change sign. However,
since the partial derivative of D is a linear combination of
D(i,p) as given in (15), it is possible that the stationary point
may be a local optimum.

We next present a biconvex optimization technique for RCF.
To that end, we exploit alternating optimization methods.
There exist techniques to find the local optimum of bicon-
vex minimization problems, such as block-relaxation methods
[71]. Furthermore, the global optimum of biconvex problems
can be determined for certain classes of constraints [72].

Provided that the convexity condition in Prop. 1 holds,
D(Y, S) is biconvex and hence we can focus on the alternating
optimization of RCF. This corresponds to alternatively updat-
ing the power variables S given the caching variables Y , and
then updating Y given S. This iterative optimization approach
can find a local optimum to the average delay minimization
problem. To obtain an integral solution, the algorithm needs a
rounding step before it terminates. This technique for RCF is
summarized in Algorithm 1. An algorithm called Global OPti-
mization (GOP) algorithm was developed in [72] to exploit
the convex substructure of constrained biconvex minimization
problems by a primal-relaxed dual approach. The objective
function and the constraints in RCF satisfy the necessary
convexity conditions [70, Ch. 3.1, Conditions (A)] for the
GOP algorithm. However, [70, Ch. 3.1], [72, Theorem 1,
Condition (d)] require the multipliers for the primal problem to
be uniformly bounded, which may not be true for RCF. Hence,
employing the GOP algorithm does not guarantee termination
in a finite number of steps for any ϵ > 0 [70, Theorem 3.6.1],
or at the global optimum of (15) [70, Theorem 3.6.2].



Algorithm 1 Alternating Optimization for Biconvex D(Y, S)
1: Begin: S0 ∈ DS ; Y 0 ∈ DY ;
2: Let t = 0;
3: do
4: Y t+1 = arg min

Y
D(Y, St) (convex with start point

Y t);
5: St+1 = arg min

S
D(Y t+1, S) (convex with start point

St);
6: Let t = t + 1;
7: while D(Y t, St)−D(Y t−1, St−1) > ϵ
8: Let (Y ∗∗, S∗∗) = (Y t, St);
9: Implement b) Rounding.

We note that the proposed alternating approach requires the
condition in Prop. 1, while no optimality guarantee is estab-
lished. However, this condition does not ensure the biconvexity
of D(Y, S) because it is nonconvex in S when interference
is non-negligible, i.e., at low SINR. Deriving the necessary
conditions for optimality will reveal the true potential of
the algorithm and elucidate the effect of network’s operating
regime, e.g., in the high or low SINR.

2) General Joint Optimization: We next extend the
approach of [13] to develop centralized algorithms for the joint
power-caching optimization of RCF which is not biconvex,
i.e., the sufficient condition in log powers imposed by Prop. 1
does not hold. We first present a general result on the relaxed
cost function D(Y, S) without putting any assumptions on the
log powers or the caching variables.

a) Quasi-convexity of D(Y, S):
Proposition 2: The relaxed delay-cost function D(Y, S) of

RCF in (18) is quasi-convex.
Proof: See Appendix C. □

Note that the partial derivatives of the relaxed delay-cost
function D(i,p)(Y, S), (i, p) ∈ R : (u, v) ∈ p with respect to
svu and the subgradients of it with respect to yvi satisfy

∂D(i,p)

∂sju

(a)

≥ 0,
∂2D(i,p)

∂s2
ju

(a)

≤ 0, j ∈ V \v, (21)

∂D(i,p)

∂svu

(b)

≤ 0,
∂2D(i,p)

∂s2
vu

(b)

≥ 0,

dymiD(i,p)

(c)

≤ 0, d2
ymi

D(i,p)

(d)

≥ 0, m ∈ p, (22)

where (a) follows from that f(SINRvu(S)) is decreasing in
SINRvu(S) which is decreasing in sju for j ∈ V \v, and
similarly (b) from that SINRvu(S) is linearly proportional to
svu and f(SINRvu(S)) is inversely proportional to log(1 +
SINRvu(S)) and convex in SINRvu(S). Note that (c) follows
from (17), and (d) from the convexity of D(Y, S) in Y .

b) Necessary conditions for optimality of D(Y, S): We
investigate the necessary, i.e., the Karush-Kuhn-Tucker (KKT),
conditions for a solution of D(Y, S) to be optimal. Assume
that D(Y, S) and the constraints are continuously differen-
tiable at (Y ∗∗, S∗∗). If (Y ∗∗, S∗∗) gives a local optimum and
the optimization problem satisfies some regularity conditions
[65], then there exist constants [µv,i]v∈V,i∈C , [νv,i]v∈V,i∈C ,
[ηv]v∈V , [βv]v∈V , [γe,r]e=(u,v)∈E,r=(i,p)∈R called KKT mul-
tipliers, such that the following hold.

Theorem 2: Necessary conditions for optimality of
D(Y, S). For a feasible set of power and cache allocations
[svu](u,v)∈E , and [yvi]v∈V,i∈C to be the solution of RCF in
(18), the following conditions are necessary.

The subgradients for the caching variables satisfy

dyvi
D = αvi, if yvi ∈ (0, 1),

dyvi
D ≥ αvi, if yvi = 0,

dyvi
D < αvi, if yvi = 1, (23)

where αvi, v ∈ V , i ∈ C is some constant.
The gradients for the power variables should satisfy

∂D

∂svu
≥ −βv + γe,r, if svu = 0,

∂D

∂svu
= −βv, if svu > 0 and

∑
u∈Ov

svu = ŝv,

∂D

∂svu
= 0, if svu > 0 and

∑
u∈Ov

svu < ŝv, (24)

for nonnegative constants βv , v ∈ V , γe,r, e = (u, v), r ∈ R.
Proof: See Appendix D. □

Note that when D(i,p)(Y, S) in (16) is jointly convex in
(Y, S) (which is not true in general and requires a more restric-
tive condition than Prop. 1 on the power control variables), the
conditions in Theorem 2 are also sufficient for optimality of
D(Y, S) [42, Theorem 1].

The following characterizes the optimality conditions for
the relaxed delay-cost function D(Y, S) with a general convex
power allocation region DS which is true from linearity of (9),
and a general convex cache allocation region DY .

c) Generalized KKT conditions that requires strictly con-
vex DS for unique optimal solution:

Proposition 3: Assume that the cost functions D(i,p)(Y, S)
satisfy (21) and (22), and DS is convex. Then, for a feasible set
of cache and power allocations (yvi)v∈V, i∈C and (svu)(v,u)∈E

to be a solution of (18), the following conditions are necessary:
For all v ∈ V , i ∈ C, there exists a constant αvi for which

dyviD = αvi, if yvi ∈ (0, 1),
dyviD ≥ αvi, if yvi = 0,

dyviD < αvi, if yvi = 1. (25)

For all feasible (∆svu)(v,u)∈E at (svu)(v,u)∈E∑
(i,p)∈R

∂D(i,p)

∂svu
(Y, S) ·∆svu ≥ 0, (26)

∑
(i,p)∈R

∂D(i,p)

∂sju
(Y, S∗∗) ·∆sju ≥ 0, j ∈ V \v, (27)

where S∗∗ is the optimal power, ∆svu at svu is an incremental
direction which is feasible if there exists δ̄ > 0 such that
(svu + δ ·∆svu) ∈ DS for any δ ∈ (0, δ̄).

Proof: The necessary conditions follow from the argu-
ments in Theorem 2. However, we still need to detail why
(26) is true. By the convexity of cost functions, the cost
difference of two configurations (Y, Sa) and (Y, S∗∗) for



any feasible Sa is∑
(i,p)∈R

D(i,p)(Y, Sa)−
∑

(i,p)∈R

D(i,p)(Y, S∗∗)

≥
∑

(i,p)∈R

∂D(i,p)

∂svu
(Y, S∗∗)(sa

vu − s∗∗vu) ≥ 0,

where the last inequality follows from the complementary
slackness condition in (24), i.e., ∂D(i,p)

∂svu
(Y, S∗∗) = 0 since

s∗∗vu > 0, and
∑

u∈Ov

∑
(i,p):(u,v)∈p

s∗∗vu(i, p) < ŝv . Furthermore,∑
(i,p)∈R

D(i,p)(Y, Sa)−
∑

(i,p)∈R

D(i,p)(Y, S∗∗)

≥
∑

(i,p)∈R

∂D(i,p)

∂sju
(Y, S∗∗)(sa

ju − s∗∗ju) ≥ 0, j ∈ V \v,

where the last inequality also follows from the complementary
slackness condition in (24). □

If D(i,p)(Y, S) is jointly convex in (Y, S), the above con-
ditions are also sufficient when (25) holds for all v ∈ V .
Furthermore, the optimal S∗∗ is unique if DS is strictly
convex. Moreover, if D(i,p)(Y, S) is strictly convex in Y ,
then the optimal cache allocations Y ∗∗ for the relaxed cost
function are unique as well. We do not prove this statement.
However, it can be proven using arguments similar to those in
[42, Theorem 3].

d) Pareto optimality of D(Y, S): When f(SINRvu(S))
is chosen to be (2), we infer that the sufficiency part of
Theorem 2 does not hold since D(i,p)(Y, S) is in general
not jointly convex in (Y, S). Hence, we further need to
establish the conditions for a Pareto optimal operating point
for quasi-convex cost functions (as shown in Prop. 2). We next
show that for a solution (Y ∗∗, S∗∗) that both satisfies (25) and
(26), we have the following Pareto optimal property.

Theorem 3: Pareto optimality of D(Y, S). From Prop. 2
on the quasi-convexity we have f(SINRvu(S)) in (2), gpki(Y )
in (17), and the relaxed delay-cost function for RCF in (18)
are quasi-convex. If a pair of feasible cache and power
allocations ((y∗∗vi ), (s∗∗vu)) satisfies conditions (25)-(26) [42,
Thm. 3] simultaneously, then the vector of transmission delays
(D(i,p)(Y ∗∗, S∗∗))(i,p)∈R is Pareto optimal, i.e., there does
not exist another pair of feasible allocations ((y#

vi), (s#
vu))

such that D(i,p)(Y #, S#) ≤ D(i,p)(Y ∗∗, S∗∗), ∀(i, p) ∈ R,
with at least one inequality being strict.

Proof: See Appendix E. □
Given the relaxed delay-cost function D(Y, S) of the form

(15), Theorem 3 implies that at the Pareto optimal point, the
cost of a request (i, p) ∈ R cannot be strictly reduced without
increasing the cost of another request (i′, p′) ∈ R.

D. Subgradient Algorithm

For general SINR scenario, the sufficient condition for the
convexity given in (20) is not necessarily satisfied, and hence
the objective function is not necessarily convex. In this section,
we introduce a Clarke subgradient projection method for the
non-smooth non-convex problem.

1) Algorithm Overview: Let y to denote the vectorized
caching variable Y , namely y ∈ [0, 1]|V ||C|×1 with yvi =
y(i−1)|V |+v,∀v ∈ V, i ∈ C.

Algorithm 2 Projected Subgradient Method
1: Choose S0, y0, small scalar ϵ > 0 and let t = 0
2: do
3: Compute Clarke subgradient dt

S , dt
y by (29);

4: Determine step sizes ξt
y , ξt

S according to (31);
5: Compute projected variables ȳt and S̄t by (28);
6: Update St+1 and yt+1 by (28);
7: Let t = t + 1;
8: while Dt −Dt−1 > ϵ
9: Let (y∗sub, S

∗
sub) = (yt, St);

10: Implement b) Rounding.

For the t-th iteration, the subgradient projection method can
be summarized by the following:

St+1 = St + ξt
S(S̄t − St), S̄t = [St − wt

Sdt
S ]+DS

,

yt+1 = yt + ξt
y(ȳt − yt), ȳt = [yt − wt

Y dt
y]+Dy

, (28)

where ξt
S , ξt

y ∈ (0, 1] are step sizes respectively corresponding
to S and y, wt

S and wt
Y are positive scalars, [x]+A denotes

projection of vector x on a convex constraint set A, and

dt
S = ∇SD(Y t, St), dt

y ∈ ∂yD(Y t, St) (29)

where dt
S and dt

y are the Clarke subgradients at iteration t
with respect to S and y, respectively. ∂yD(Y t, St) is the
subdifferential with respect to y.

2) Subgradient: Provided that the function D(Y, S) is not
jointly convex, identifying normal subgradients is generally
difficult, as a valid subgradient should form a global under-
estimator of D(Y, S). Nevertheless, a local generalization
of subgradient, i.e., the “Clarke subdifferential”,9 could be
calculated efficiently. Specifically, note that since D(Y, S)
is continuously differentiable in S over set DS , the Clarke
subdifferential of D(Y, S) with respect to S will only contain
the gradient. Meanwhile, ∂yD(Y t, St) could be explicitly
calculated by evaluating ∂yvi

gpki’s inside the term (16) and
using (15), where

∂yvi
gpki =



{1}, if
k∑

l=1

ypli < 1

{0}, if
k∑

l=1

ypli > 1

[0, 1], if
k∑

l=1

ypli = 1.

(30)

3) Step Size: The gradient/subgradient magnitudes might be
significantly different for Y and S, and therefore we calculate
their step sizes separately. We use a modified Polyak’s step
size [74]. Let Dt = D(yt, St), then

ξt
y =

Dt − D̂t

∥dt
y∥2

, ξt
S =

Dt − D̂t

∥dt
S∥2

(31)

where D̂t = minj=0,··· ,t D(yt, St) − δt is an estimate of
the local minima, {δt}t≥0 is a sequence of positive scalars
satisfying limt→∞ δt = 0 and limt→∞

∑t
m=0 δm = ∞.

We summarize the subgradient projection method that
achieves the local minima in Algorithm 2.

9We refer the readers to [73] for the definition of Clarke subdifferential.



To the best of our knowledge, the theoretical convergence
guarantees of the alternating optimization method (Algorithm
1) for non-smooth bi-convex functions, and the Clarke sub-
gradient method (Algorithm 2) for non-smooth non-convex
functions have not been established.10 Nevertheless, our exten-
sive simulation results on various network scenarios in Sect. IV
demonstrate that both algorithms converge at a desirable rate.

IV. NUMERICAL RESULTS

In this section, we present numerical results for the proposed
joint power control and caching network model. We simulate a
network in accordance with the model in Sect. II and compare
the performance of Algorithms 1 (ALT) and 2 (SUB) to the
LRU, LFU and FIFO cache replacement policies for several
scenarios, which have been widely used in web caching [76],
[77]. These baseline policies depend on a history of requests
kept in time, and operate on a time slot basis, whereas our
approach is designed to solve a snapshot of the network
averaged over time. We pair these baseline policies with
power optimization to have a fair comparison. To make this
distinction clear, we name these power optimal (PO) policies
POLRU, POLFU and POFIFO when reporting results.

Simulation setup. We simulate a network with 7 MCs,
where the cell layout is such that one MC at the center and
6 MCs, which model the first-order neighbors of the center
MC, surround the centering MC. The network has 5 SCs per
MC, and 30 users per MC. Users are distributed uniformly at
random within the coverage area of the MC. We use Lloyd’s
algorithm [78] to construct voronoi cells for this coverage area
and place the SCs at the centers of these cells. The users do
not cache items, and each one requests a single item at a
given time, from a catalog of |C| = 150 items,11 based on a
Zipf distribution with parameter γ which can be interpreted
as the popularity distribution of content items. The backhaul
is the source for all items while the MC and SCs are not
designated sources for any item. When a request for an item
arrives at the MC or an SC, if the item is not already cached
there, it is retrieved from an uplink node that caches the item
or from the backhaul and then cached. In our simulations,
we capture the interference power from the other MCs, i.e.,
the inter-cell interference, and incorporate it into the noise
level Nu. We also assume that in case of outage events in a
given MC, the cost to the backhaul is significantly smaller than
the cost of obtaining a neighboring cell. For scenarios with
a larger catalog size, our approach can still be implemented
conditioning on a selected subset of items based on popularity.
For Algorithms 2 and 1, we set the initial points S0 and Y 0 so
that s0

vu = ŝv/|Ov| and y0
vi = 0 for all v, u ∈ V and i ∈ C.

While the algorithms we propose can optimize a snapshot of
the network, LRU, LFU and FIFO policies assume a cache
history. Therefore, we simulate these policies in a time-slotted
fashion and compare their average results to our algorithms.

We next detail our observations from five distinct simu-
lation settings. To measure the gains, the default setting for

10We refer the readers to [71] for bi-convex optimization and [75] for
Clarke-subgradient optimization.

11We note that the choice of catalog size is aligned with the literature on
geographic caching, e.g., in [15], where |C| = 25 and cache memories are of
size 5, and more recently in [79] and [80] for |C| ranging from 100 to 300.

Fig. 2. Do versus increasing small cell cache capacity (assume
cmc = 2 csc), with γ = 0.5, ŝv = 200 and Nu = 1.

simulations is that the SC cache capacity is csc = 5, the MC
cache capacity is cmc = 10, ŝv = 200, γ = 0.5, the path loss
exponent is n = 3.7 and the noise power is Nu = 1 for all
u ∈ V . Below, in each figure, we plot Do over one of these
parameters while keeping the others as default. We include
other necessary parameters and details in these discussions.

Effect of cache capacity constraints. We present the results
of this setting in Fig. 2. We see that, with increasing cache
capacities, our joint optimization algorithms reduce delay
at a much faster rate compared to traditional replacement
algorithms. SUB and ALT algorithms also achieve a point of
minimum delay given large enough caches, while traditional
algorithms do not converge to such a point and perform worse
than SUB and ALT with all values of the cache capacity
constraint. Numerically, SUB and ALT methods achieve up
to 50% less delay at csc = 6 compared with traditional
algorithms. The improvement begins to saturate at csc = 6 and
diminishes at csc = 10. This is because, with a large enough
cache capacity, almost all requests are fulfilled at a nearby
SC, and we can hardly improve the delay by providing more
caches. The simulation result also implies that for delay
saturation, it takes up to 2× the cache capacity for traditional
algorithms to match the delay performance of SUB and ALT.

Effect of power constraints. We present the results of this
setting in Fig. 3. We observe that traditional methods and our
algorithms show a similar decreasing trend in delay when
the total power budget is increased. However, we can still
observe the benefit of jointly optimizing power with caching:
our algorithms achieve up to 50% less delay versus the
best-performing traditional method, POLFU. Moreover, when
the individual power budget ŝv is more than 100, the decrease
speed of total delay versus power budget drops to a low
level. This result is because when the power budget is high
enough, the noise (combined with the inter-cell interference) is
negligible compared with intra-cell interference, which limits
the SINR. A higher power budget would not help reduce the
average intra-cell interference level.

Effect of request distribution. We sketch the delay behavior
as a function of the Zipf exponent γ in Fig. 4. As γ increases,
the requests become more skewed towards the most popular
items, which causes a reduction in the delay. We also observe
the delay performance of SUB and ALT methods is up to 30%
better than traditional replacement models reinforced with



Fig. 3. Do versus node power budget ŝv , with csc = 5, cmc = 10,
γ = 0.5 and Nu = 1.

Fig. 4. Do versus parameter γ of Zipf distribution of requested items, with
csc = 5, cmc = 10, ŝv = 200 and Nu = 1.

Fig. 5. Do versus receiver noise power Nu, with csc = 5, cmc = 10,
ŝv = 200 and γ = 0.5.

power optimization. The advantage of SUB and ALT against
the other algorithms decreases with γ because as γ increases,
the Zipf distribution becomes more centralized to the popular
content items, reducing the size of popular items. Thus, with
increasing γ, the advantage of SUB and ALT against the
traditional priority-based caching policies diminishes.

Effect of noise power. We capture the effect of the noise
Nu at the receiving user of the centering MC. As shown in
Fig. 5, the delay of all algorithms degrades with the increasing
noise because the effective SINR of each link degrades. The
delay performance of SUB and ALT is up to 50% better than
traditional algorithms across different noise levels Nu.

Fig. 6. Convergence of SUB and ALT algorithms as described by D with
respect to time. csc = 2, cmc = 4, ŝv = 100 and γ = 0.25.

Convergence of SUB and ALT. We present the results of
this setting in Fig. 6. We observe that while both algorithms
reach the minimum in similar times, ALT has a much steeper
initial decrease in the relaxed delay-cost D. This is because
the number of power variables is significantly smaller than the
number of caching variables. ALT optimizes them separately
which results in the initial steep decrease where power vari-
ables are being optimized whereas SUB optimizes them jointly
leading to longer durations for each iteration. Furthermore, the
subhessian matrix of D(Y, S) does not satisfy the necessary
properties for joint convexity, as we detailed in Sect. III-A.3,
causing a slow convergence for SUB.

V. CONCLUSION

We considered the problem of joint power and caching opti-
mization to minimize the transmission delay for a stationary
request process in wireless HetNets. Because this problem is
NP-complete, we studied several approximation methods that
rely on convex relaxation and rounding of caching variables
to construct an integral solution. More specifically, we pro-
vided necessary and sufficient conditions for the optimality
of RCF to the joint optimization problem. We demonstrated
Pareto optimality of the solution to RCF and devised two
solution techniques: alternating optimization technique when
RCF satisfies biconvexity and subgradient projection algorithm
for general non-convex RCF. The results of our approach can
enable the wireless HetNets to optimally exploit the resources
to minimize the use of the backhaul connection, hence reduce
the transmission delays in both mobile devices and the infras-
tructure, and support latency-sensitive applications. They also
quantify the potential cost savings from the deployment of
SCs. More generally, optimal caching and power control
algorithms represent a key enabling technology for realizing
the potential of mobile edge computing and fog computing.

Possible extensions of this work include devising decen-
tralized techniques and designing both uncoded and coded
caching schemes via distributed adaptive stochastic descent
algorithms and implementing them in practice. Furthermore,
these results will inform the design of edge cloud architec-
tures by clarifying the relative benefits of centralized and
distributed implementation. Querying for content can be seen
as a simplified case of querying for a result of a computation
or service. Thus, caching and routing algorithms are essential
ingredients of an edge computing infrastructure that optimally
schedules processing and job flows. Therefore, quantifying
the potential cost savings from the deployment of SCs with



caching capabilities via optimal routing algorithms is critical.
Extensions also include leveraging more practical interference
mitigation schemes instead of having all transmissions on the
same frequency, and a more detailed analysis of backhaul costs
to effectively route the requests and control the traffic load
on SCs and to overcome the transmission delay incurred in
the backhaul due to limited bandwidth and dynamic channel
conditions. Further incorporating the unequal file sizes and the
(non-instantaneous) cache download times will improve the
accuracy of the proposed framework. Finally, our proposed
framework could also be extended to incorporate energy
efficiency in wireless HetNets, by adding a term of weighted
total power consumption in the objective.

APPENDIX A
PROOF OF THEOREM 1

The proof follows from relaxing and bounding techniques.
By Goemans and Williamson [62], [66], we have

k∏
l=1

(1− ypli) ≤ 1− (1− (1− 1/k)k) min
{

1,
k∑

l=1

ypli

}
≤ 1− (1− 1/e) min

{
1,

k∑
l=1

ypli

}
, (32)

as (1−1/k)k ≤ 1/e. On the other hand, we have Do(Y, S) =
Eν [Do(X, S)]. Using (32), the relaxed cost function for serv-
ing a request (given that each request (i, p) ∈ R is well-routed)
can be written concisely in terms of the allocation:

D(Y, S)
(a)

≥
∑

(i,p)∈R

λ(i,p)

|p|−1∑
k=1

f(SINRpk+1pk
(S))

k∏
l=1

(1− ypli)

= Do(Y, S), (33)
where (a) is due to (32). We also upper bound D(Y, S) as

D(Y, S)
(b)

≤
∑

(i,p)∈R

λ(i,p)

|p|−1∑
k=1

f(SINRpk+1pk
(S))Eν [gpki(X)],

(34)
where (b) follows from the concavity of the min operator and
employing (17), and

Eν [gpki(X)]
(c)

≤ 1− (1− 1/e)Eν

[
min

{
1,

k∑
l=1

xpli

}]
= 1− (1− 1/e)Eν

[
1−

k∏
l=1

xpli

]
= 1− (1− 1/e)

(
1−

k∏
l=1

ypli

)
,

where (c) is due to (1 − 1/k)k ≤ 1/e. Hence, Do(Y, S) ≥
(D(Y, S)−Dub/e)/(1− 1/e). Hence,

D(Y, S) ≤ Dub/e + (1− 1/e)Do(Y, S), (35)
From (33) and (34), we have

D(Y, S) ≥ Do(Y, S) ≥ (D(Y, S)−Dub/e)/(1− 1/e). (36)
Because Y ∗ ∈ DY is optimal, Do(Y ∗, S) ≤ Do(Y ∗∗, S).

From (36) and the optimality of Y ∗∗, Do(Y ∗∗, S) ≤
D(Y ∗∗, S) ≤ D(Y ∗, S) ≤ Dub/e + (1− 1/e)Do(Y ∗, S).

APPENDIX B
PROOF OF PROPOSITION 1

Note that the objective function D(S, Y ) in (15) is con-
vex in caching variables Y . It is convex in S if every
f(SINRpk+1pk

(S)) is convex in S where SINRpk+1pk
(S) is

concave in S for all k. However, given that SINRpk+1pk

is strictly increasing, ∇2SINRpk+1pk
(S) cannot be negative

definite. Letting C = f−1, based on the observations [69], if
C ′′(x) · x + C ′(x) ≤ 0, ∀x ≥ 0, (37)

then C is concave in P ≜ (log(svu(i, p)))(v,u)∈E, (i,p):(u,v)∈p

(power measured in dB). From above relation, since C ′′(x) =
2f ′(x)2−f(x)f ′′(x)

f(x)3 ≤ 0, and f(x) ≥ 0, ∀x ≥ 0, we have

2f ′(x)2 − f(x)f ′′(x) ≤ 0, yielding 0 ≤ 2f ′(x)2

f(x) ≤ f ′′(x).
Hence, f(SINRpk+1pk

) is convex in P .
The condition in (37) equivalently yields the following for

f−1(SINRpk+1pk
) to be concave in P :

2f ′(x)2 − f(x)f ′′(x)
f(x)3

· x− f ′(x)
f(x)2

≤ 0. (38)

Reordering the terms in (38) we get the desired result.
In addition to the condition in (38) on convexity in log

power variables, f(SINRvu(S) might be convex in svu when
the nodes have a total power constraint as given by (9) which is
satisfied with equality. We next explain the requirement under
which the convexity in powers holds. Assuming that the total
transmit power is fixed and equal to ŝ, since the routings are
predetermined, a user’s total received power lumped with the
noise power, coined s̄, will be fixed given the allocation of
the transmit power. Hence, f(SINRvu(S) = 1

log2(1+
svu

s̄−svu
)

for (v, u) ∈ E. Using this relation and computing the second
order derivative of f(SINRvu(S) with respect to svu, it can
be shown via algebraic manipulation that f(SINRvu(S) is
convex in svu provided that svu ≤ 3

4 s̄. We also emphasize
that this condition is not restricted to the high SINR regime
and is valid under general SINR values, provided that the total
transmission power constraint is satisfied with equality.

APPENDIX C
PROOF OF PROPOSITION 2

With no loss of generality, assume that Sa ̸= Sb such
that D(Y, Sa) < D(Y, Sb). Then, a function D defined on
a convex subset DY × DS of a real vector space is quasi-
convex in S given Y , if for all Sa ̸= Sb and α ∈ (0, 1) we
have the following condition:

D(Y, αSa + (1− α)Sb) < D(Y, Sb). (39)
Since D is linear in f , it is easily verified that a sufficient
condition for D(Y, S) to be quasi-convex in S is when f is
quasi-convex. While the sum of quasiconvex functions defined
on the same domain need not be quasiconvex, we will detail
why quasi-convexity will be preserved in our setting.

For f(SINRvu(Sa)) < f(SINRvu(Sb)) we have
f(SINRvu(αSa + (1− α)Sb))

=
1

log2(1 + SINRvu(αSa + (1− α)Sb))

<
1

log2(1 + SINRvu(Sb))
= f(SINRvu(Sb)), (40)



where we used (2). Under a total power constraint we note
that f(SINRvu(S)) decreases in svu. Since f(SINRvu(αSa+
(1 − α)Sb)) < max

{
f(SINRvu(Sa)), f(SINRvu(Sb))

}
=

f(SINRvu(Sb)) for all (v, u) ∈ E and max is Schur-convex,
and by ordering the summands of

∑|p|−1
k=1 f(SINRpk+1pk

(S))
in a decreasing manner, we have that

max
{ |p|−1∑

k=1

f(SINRpk+1pk
(Sa)),

|p|−1∑
k=1

f(SINRpk+1pk
(Sb))

}

=
|p|−1∑
k=1

f(SINRpk+1pk
(Sb)).

Hence, we infer from (40) and the order-preserving mapping
that (39) holds which implies D(Y, Sa) < D(Y, Sb).

We can also observe that

f(αSINRvu(Sa) + (1− α)SINRvu(Sb))

=
1

log2(1 + αSINRvu(Sa) + (1− α)SINRvu(Sb))

<
1

log2(1 + SINRvu(Sb))
= f(SINRvu(Sb)), (41)

where inequality follows from that SINRvu(Sa) >
SINRvu(Sb) which implies αSINRvu(Sa) + (1 −
α)SINRvu(Sb) > SINRvu(Sb). Furthermore, f(SINRvu(S))
is a monotonically decreasing function of SINRvu(S). Hence,
f(SINRvu(S)) is quasi-convex in SINRvu(S).

Note that D(Y, S) is convex with respect to set DY , which
is due to (17). Note also that D is quasi-convex in Y . This
can be shown using the condition that if

D(Y a, S) < D(Y b, S), (42)

then for any λ ∈ (0, 1) it holds that

D(λY a + (1− λ)Y b, S) < D(Y b, S). (43)

To verify D is quasi-convex, it is necessary that gpki(Y )’s
given in (17) are quasi-convex. Assume gpki(Y a) < gpki(Y b).
Then for all Y a ̸= Y b and λ ∈ (0, 1):

gpki(λY a + (1− λ)Y b)

= 1− ak min
{

1,
k∑

l=1

λya
pli

+ (1− λ)yb
pli

}
(a)

≤ 1− ak

[
λ min

{
1,

k∑
l=1

ya
pli

}
+ (1− λ) min

{
1,

k∑
l=1

yb
pli

}]
= λgpki(Y a) + (1− λ)gpki(Y b) < gpki(Y b), (44)

where (a) is due to the concavity of the min function. This
verifies that D is quasi-convex in Y .

APPENDIX D
PROOF OF THEOREM 2

If the optimization problem satisfies some regularity con-
ditions [65], the necessary conditions for a solution of the
nonlinear RCF in (18) are given by the KKT conditions. Then,
the following four groups of conditions hold:

(i) For stationary, the local solution (Y ∗∗, S∗∗) needs to
satisfy the following subgradients with respect to Y = (yvi)

and the gradients with respect to S = (svu) values:

dyviD(Y ∗∗, S) +
∑
v,i

µvi −
∑
v,i

νvi +
∑
v∈V

ηv = 0, ∀ v, i,

∂D(Y, S∗∗)
∂svu

+
∑
v∈V

βv −
∑

e∈E, r∈R
γer = 0, ∀(u, v), (i, p).

(ii) For primal feasibility, we require that

y∗∗vi − 1 ≤ 0, v ∈ V, i ∈ C, (45)
−y∗∗vi ≤ 0, v ∈ V, i ∈ C, (46)∑

i∈C
yvi ≤ cv, v ∈ V, (47)∑

u∈Ov

s∗∗vu − ŝv ≤ 0, v ∈ V, (48)

−s∗∗vu ≤ 0, v, u ∈ V. (49)

For dual feasibility, we require that

µvi, νvi, ηv, βv ≥ 0, v ∈ V, i ∈ C,
γe,r ≥ 0, e = (u, v) ∈ E, r = (i, p) ∈ R

(50)
(iii) The complementary slackness conditions are given as

µvi(y∗∗vi − 1) = 0, v ∈ V, i ∈ C,
νvi · y∗∗vi = 0, v ∈ V, i ∈ C,

ηv

( ∑
i∈C

yvi − cv

)
= 0, v ∈ V,

βv

( ∑
u∈Ov

s∗∗vu − ŝv

)
= 0, v ∈ V,

γe,r · s∗∗vu = 0, e = (u, v) ∈ E, r ∈ R. (51)

(iv) The subgradients with respect to yvi should satisfy

dyviD(Y ∗∗, S)

=
∑

u∈Ov

∑
(i,p):(u,v)∈p

λ(i,p)

|p|−1∑
k=1

f(SINRpk+1pk
(S))dyvi

gpki(Y ∗∗)

= −µvi + νvi + ηv = αvi, v ∈ V, i ∈ C. (52)

When yvi = 0, constraint (45) is eliminated, and
dyvi

D(Y ∗∗, S) ≥ αvi. Similarly, if yvi = 1, constraint (46) is
eliminated, and dyviD(Y ∗∗, S) < αvi. This verifies (23).

(v) The gradients with respect to the power variables are
∂D(Y, S∗∗)

∂svu
=

∑
u∈Ov

∑
(i,p):(u,v)∈p

λ(i,p)
∂f(SINRvu(S∗∗))

∂svu
gui(Y )

= −βv + γe,r, e = (u, v) ∈ E, r = (i, p) ∈ R. (53)

Solving the gradients (52) and (53), along with the comple-
mentary slackness conditions in (51), we obtain the necessary
conditions, which concludes the proof.

APPENDIX E
PROOF OF THEOREM 3

The proof follows from employing similar techniques as in
[42, Sect. VI-C, Theorem 4].

We initially assume that the joint power and cache allocation
problem is quasi-convex. With this assumption, for a fixed
cache allocation (y∗∗vi )v∈V, i∈C , the relaxed delay-cost is a



convex function of S. Therefore, any feasible power allocation
S∗ satisfying (26) satisfies that

D(Y, S∗∗) = min
S∈DS

∑
(i,p)∈R

D(i,p)(Y, S). (54)

Given any feasible power allocation, if condition (25) holds at
cache allocation (y∗∗vi )v∈V, i∈C , then

D(Y ∗∗, S) = min
Y ∈DY

∑
(i,p)∈R

D(i,p)(Y, S). (55)

In this case, any initial power and cache allocation config-
uration can be driven to a limiting (Y ∗∗, S∗∗) such that the
condition (26) is satisfied at S∗∗ given Y ∗∗, and Y ∗∗ satisfies
(25) given S∗∗. We now suppose that under the more general
convex power allocation region model, there are algorithms
that also can drive the power and cache configuration to
a limit (Y ∗∗, S∗∗) such that the conditions (26) and (25)
hold simultaneously. Although global optimality cannot be
guaranteed, the Pareto optimality can be shown.

Suppose that D(Y #, S#) Pareto dominates D(Y ∗∗, S∗∗).
Without loss of generality, we can assume

D(m,r)(Y #, S#) < D(m,r)(Y ∗∗, S∗∗). (56)

Because both Y # and Y ∗∗ belong to DY , and DY is strictly
convex, Y β = βY ∗∗ + (1 − β)Y # is achievable for all β ∈
(0, 1). Moreover, Y # ̸= Y ∗∗ because otherwise, S# ̸= S∗∗,
and from Pareto domination we would have∑

(i,p)∈R

D(i,p)(Y ∗∗, S#) <
∑

(i,p)∈R

D(i,p)(Y ∗∗, S∗∗). (57)

However, this contradicts (54). Therefore, Y β is in the interior
of DY for any β ∈ (0, 1).

From the same reasoning, S# ̸= S∗∗ and Sα = αS∗∗ +
(1 − α)S# is feasible for any α ∈ [0, 1] simply by linearity
of feasible power allocations.

Since D(i,p) is quasi-convex, D(Y α, Sα)
Pareto dominates D(Y ∗∗, S∗∗) as well for
any α ∈ (0, 1), since D(m,r)(Y α, Sα) ≤
max{D(m,r)(Y #, Sα), D(m,r)(Y ∗∗, Sα)}
< D(m,r)(Y ∗∗, S∗∗), and D(i,p)(Y α, Sα) ≤ D(i,p)(Y ∗∗, S∗∗)
for (i, p) ̸= (m, r). Summing up all the terms on LHS and
RHS, we have for any α ∈ (0, 1)∑

(i,p)∈R

D(i,p)(Y α, Sα) <
∑

(i,p)∈R

D(i,p)(Y ∗∗, S∗∗). (58)

By optimality condition (26) and the fact that Y α is in the
interior of DY for any α ∈ (0, 1), we have for any α ∈ (0, 1)
and (v, u) ∈ E,∑
(i,p)∈R

∂D(i,p)

∂svu
(Y ∗∗, S∗∗)(S# − S∗∗)

(a)
=

1
1− α

∑
(i,p)∈R

∂D(i,p)

∂svu
(Y ∗∗, S∗∗)(Sα − S∗∗)

>
1

1− α

∑
(i,p)∈R

∂D(i,p)

∂svu
(Y ∗∗, S∗∗)(S̄α − S∗∗) ≥ 0,

where (a) follows from Sα = αS∗∗ + (1− α)S#, and S̄α is
some power matrix strictly dominating Sα. Following similar

steps, from (27) for j ∈ V \v, (i′, p′) : (u, j) ∈ p′∑
(i,p)∈R

∂D(i,p)

∂sju
(Y ∗∗, S∗∗)(S# − S∗∗)

>
1

1− α

∑
(i,p)∈R

∂D(i,p)

∂sju
(Y ∗∗, S∗∗)(S̄α − S∗∗) ≥ 0.

Since D(i,p) is twice continuously differentiable on S, there
exists ϵ > 0 such that for all α ∈ [1− ϵ, 1)∑

(i,p)∈R

∂D(i,p)

∂svu
(Y α, S∗∗)(Sα − S∗∗) ≥ 0, (59)

∑
(i,p)∈R

∂D(i,p)

∂sju
(Y α, S∗∗)(Sα − S∗∗) ≥ 0,

j ∈ V \v, (i′, p′) : (u, j) ∈ p′. (60)

Combining (59) with the convexity of D(i,p)(Y α, ·) implies∑
(i,p)∈R

D(i,p)(Y α, S∗∗) ≤
∑

(i,p)∈R

D(i,p)(Y α, Sα)

<
∑

(i,p)∈R

D(i,p)(Y ∗∗, S∗∗) (61)

where the second inequality comes from (58). However,
this result contradicts (55). Hence, there does not exist
another pair of feasible allocations ((y#

vi), (s#
vu)) such that

D(i,p)(Y #, S#) ≤ D(i,p)(Y ∗∗, S∗∗), ∀(i, p) ∈ R, with at least
one inequality being strict.
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