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Abstract—The progress achieved in deepfake technology has
been remarkable; however, evaluating the resulting videos and
comparing different generators remains challenging. A primary
concern arises from the lack of ground-truth data, except for
self-reenactment scenarios. Additionally, available datasets may
have inherent limitations, such as lacking expected animations or
demonstrating inadequate subject diversity. Furthermore, there
are ethical and privacy concerns when using real individuals’
faces in such applications. This paper goes beyond the state-
of-the-art dealing with the evaluation of deepfake generators
by introducing an innovative dataset featuring MetaHumans.
Our dataset ensures the availability of ground-truth data and
encompasses diverse facial expressions, variations in pose and
illumination conditions, and combinations of these factors. Addi-
tionally, we meticulously control and verify the expected anima-
tions within the dataset. The proposed dataset enables accurate
evaluation of cross-reenactment generated images. By utilizing
various established metrics, we demonstrate a high degree of
correlation between the generator’s scores obtained from deep-
fake videos of Metahumans and those obtained from deepfake
videos of real persons. The synthesized MetaHuman dataset can
be accessed at: https://github.com/SaharHusseini/MMSP 2023

Index Terms—Deepfake, Face reenactment, Face Animation,
Evaluation, MetaHumans

I. INTRODUCTION

Animating videos using just a single-face image opens up
a wide array of applications, ranging from movie production
and image editing to dubbing and beyond. Within the realm of
face animation techniques, one particular noteworthy approach
is face reenactment, posing significant potential for diverse
applications.

Face reenactment methods aim to generate a synthesized
video animated by the driver’s movement while preserving the
identity of the source image. More precisely, when a source
image is fed to a face reenactment network, the source person
in the image will turn into a puppet, and the driving video will
define the source’s facial expression, head pose, and movement
in the targeting video.

The recent face manipulation techniques [1]–[6] utilize
generative models such as Encoder-Decoder (ED) networks,
Generative Adversarial Networks (GAN) [7], and Variational
Auto-Encoders (VAEs) [8] to generate image animation. These
recent works based on deep learning have significantly im-
proved the automatic generation of the synthesized videos’
quality and realism.

The development of reenactment methods is popular among
researchers; however, evaluating the results still poses sig-

nificant challenges, especially in cross-reenactment scenarios,
where a different identity reenacts the source face, commonly
referred to as cross-reenactment. This challenge arises from the
lack of ground-truth data, which makes it difficult to obtain
accurate and objective results. To address this challenge, a sub-
jective test can be conducted; however, it is time-consuming
and requires visual inspection.

The second approach for evaluating cross-reenactment is
to use feature embeddings. In this approach, the feature
embeddings of the source, driving, and generated images
are extracted, and depending on the evaluation criteria, the
extracted feature of the generated image is compared to the
source or driving image. Although this approach/protocol
holds promise, it offers only a partial solution to the evaluation
problem. This is because only certain existing metrics, such as
Cosine Similarity (CSIM) of embeddings can be applied with
this protocol to evaluate reenactment results, while metrics that
require explicit ground-truth (e.g., Structural Similarity Index
(SSIM)) [16] cannot be used with this protocol.

For a more comprehensive evaluation, in our previous work
[9] we propose a new protocol [9], depicted in Figure 1, for
cross-reenactment evaluation, addressing the lack of ground-
truth by utilizing a real Head 3D dataset to assess various
deepfake methods. However, our proposed dataset is limited
to head rotation and does not include facial expressions. This
paper builds on our previous work and proposes a novel
approach to create a 3D synthesized dataset that includes
both facial expressions and head rotation. The dataset is
generated using MetaHumans [13], an advanced platform pro-
viding highly realistic synthesized head models with diverse
human subjects, facial expressions, variations in pose, and
illumination conditions. Leveraging a synthesized dataset en-
sures compliance with the General Data Protection Regulation
(GDPR) by avoiding the use of sensitive personal information.
The availability of our proposed dataset enables more robust
evaluations of cross-reenactment methods. It overcomes the
challenges associated with the absence of ground-truth data,
fostering further advancements in this domain.

This paper is structured as follows: Section II provides an
overview of related works in face reenactment evaluation. Sec-
tion III introduces the methodology and the synthetic dataset
generated using MetaHumans. In Section IV, we present
experiments and results comparing four reenactment methods:
FOMM [4], X2Face [1], Fs-vid2vid [3], and ICFace [17]. The
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Fig. 1: Cross-reenactment evaluation protocol. The protocol involves two video sequences of different identities (A and B) that
share the same rendering conditions (same expression, head pose, and light condition). The first frame of the video sequence,
depicting identity A, is used as the source face. The video frames of identity B are then used to animate the source face,
thereby generating video frames of identity A that simulate the expressions and movements of identity B. The generated
deepfake frames can then be compared to the original frames of the video sequence of identity A to evaluate the accuracy of
the cross-reenactment.

results obtained using MetaHumans are compared with those
of the real Head dataset discussed in [9] for comparison:
Finally, Section V concludes the study and outlines future
research directions in this domain.

II. RELATED WORK

Evaluation techniques for face reenactment can be broadly
classified into three categories: self-reenactment evaluation,
cross-reenactment evaluation, and subjective test evaluation.

Self-reenactment evaluation involves using one video frame
as a source image and animating it with the rest of the
frames from the same video sequence. As the source and
driver identity belong to the same video sequence, the driver
frames can serve as ground-truth, allowing a direct comparison
with the generated frames. This evaluation protocol enables
the assessment of the generated frames using metrics that
require explicit ground-truth, such as Peak Signal to-Noise
Ratio (PSNR) [16], SSIM, and Facial keypoint error. For
instance, Siarohin et al. [4] report the L1 error, Average
Euclidean Distance (AED), and Average Keypoint Distance
(AKD) between the generated and ground-truth frames for
self-reenactment. Similarly, Wiles et al. [1] compute the L1
error between the generated and ground-truth frames.

Cross-reenactment evaluation, in contrast, is employed
when the source face is reenacted by a different identity. Since
the ground-truth data does not exist, evaluating the generated
frames using metrics that require explicit ground-truth is chal-
lenging. In this protocol, first, a pre-trained network is used to
extract some embeddings/features from the generated frames,
the driving frames, and the source frame. Depending on the
evaluation criteria, the extracted features from the generated
frame are then compared with the driving frame or the source
frame. For instance, in recent face reenactment methods [2],

[10], [11], identity preservation is evaluated by computing the
Cosine Similarity (CSIM) of embedding vectors generated by
a pre-trained face recognition model [12]. Furthermore, Ha
et al. [2] use a pre-trained network to estimate the head pose
angles and facial action units of both the generated and driving
frames and compute the error between them.

Using the cross-reenactment protocol and pre-trained net-
works for extracting feature embeddings has partially ad-
dressed the challenges of cross-reenactment evaluation. How-
ever, it cannot be used to compute metrics that require ex-
plicit ground-truth, such as SSIM and PSNR. To enable the
evaluation of cross-reenactment generated frames, we recently
proposed a protocol in [9] that can be used in conjunction
with video sequences that are created using a 3D environment
where the animation movement is controlled. Using this proto-
col and the controlled video sequence dataset one can evaluate
cross-reenactment using all existing evaluation metrics.

Subjective tests, on the other hand, involve human observers
assessing the quality of the generated frames and can be
conducted for both self and cross-reenactment. For example,
Siarohin et al. [4] conducted a user study in which participants
were presented with a source image, a driving video, and cor-
responding results generated by different methods. Participants
were then asked to select the most realistic image animation.
Similarly, Wang et al. [6] employed a pairwise comparison
method to evaluate the realness of generated frames by human
observers.

III. PROPOSED METHODOLOGY: SYNTHESIZED DATA
GENERATION

This section presents the overall pipeline for cross-
reenactment evaluation, as proposed in [9], and illustrated
in Figure 1. The protocol involves two video sequences of
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Fig. 2: Body Control (a) and Face Control Rig Board (b)
enabling adjustment of pose and facial expression.

different identities (A and B) that have the exact same head
pose and expression in each frame. The first frame of the video
sequence, depicting identity A, is used as the source face. The
video frames of identity B are then used to animate the source
face, thereby generating images of identity A that simulate
the expressions and movements of identity B. The generated
deepfake images can then be compared to the original images
of identity A in video sequence A to evaluate the accuracy of
the cross-reenactment.

The protocol is specifically designed to be utilized with
video sequences rendered in a 3D environment with controlled
animation settings. The 3D environment offers a significant
advantage in terms of control over various features in the
scene, including lighting conditions and movements [14],
[15], [18]. To evaluate the effectiveness of face reenactment
methods, we generate synthesized data of MetaHumans. We
used the Unreal Engine, a powerful game engine, and content
creation tool, in combination with the built-in MetaHuman
asset from the Quixel Bridge library [13], to generate a highly
realistic synthesized face video dataset. MetaHumans are 3D
digital human models created with advanced scanning, rigging,
and animation technology. Their textures are a combination of
high-quality photo scans of real skins and artificial textures
that capture additional details, such as light reflection and
surface roughness. The riggability of MetaHumans allows for
greater control over their facial expressions and movements.

A rig is a digital framework that defines the movement
and behavior of the 3D character. It typically consists of
a hierarchy of interconnected bones or joints that can be
manipulated to control the deformation and animation of the
character. In Unreal Engine, all MetaHuman characters have
the same base rig and they interpret the animations in the same
way. Therefore, animations created for one MetaHuman can
be transferred to other MetaHumans. This method allows us to
generate multiple videos, each containing a different identity
with the exact same head rotation and expression. Another
interesting feature in Unreal engine is the slider associated
with each MetaHuman, which allows adjustment of specific
parts of the face. Figure 2a illustrates a MetaHuman character

with its corresponding body Control Rig, while Figure 2b
illustrates the displacement of a specific part of the face (e.i.
eyes) using sliders.

To generate the video dataset for cross-reenactment eval-
uation, we began by defining the scene, lighting conditions,
and camera properties in Unreal Engine. We then place a
MetaHuman character in the scene and animated it using either
the Control Rig Board or pre-made expressions from the Facial
Pose Library and we render the animation. Finally, we transfer
the same animation to the second character to create several
videos with the same head pose and expression. Figure 3
illustrates two MetaHuman identities with the exact same head
pose and expression in each column.

We generated a total of 19 distinct video animations fea-
turing the source identity named Ada (depicted in Figure 4).
The video sequences are carefully structured, beginning with
a frontal head position and neutral expression, and concluding
with either an expressive facial expression or head rotation.
They include various facial expressions such as amusement,
anger, disgust, laughter, sadness, and surprise. Additionally, we
incorporate head rotations to assess the Metahumans’ ability to
accurately reproduce complex head rotations. These rotations
involve rotating the head around the yaw axis towards the left
side (Head-L) and right side (Head-R), as well as rotating the
head around a combination of the pitch and yaw axes towards
a combination of down and right (Head-DR), down and left
(Head-DL) and up and left (Head-UL).

Furthermore, we created a set of videos that combine both
head rotations and expressions. In these videos, the head is
rotated towards the left, right, or a combination of down
and right, while simultaneously transitioning the expression
from neutral to amusement (Head-L-Amusement, Head-R-
Amusement, and Head-DR-Amusement).

To explore the impact of lighting on reenactment per-
formance, we also produced videos with different lighting
directions. These videos maintained the same head rota-
tion scenarios as the previous ones but introduced a left-
sided light source (Head-DR-LightL, Head-L-LightL, Head-
R-LightL, Head-UL-LightL).

By incorporating this diverse set of video animations,
we aimed to conduct a comprehensive evaluation of cross-
reenactment by Metahumans. This evaluation allowed us to
assess their ability to accurately reproduce a wide range
of facial expressions and head rotations, as well as their
performance under varying lighting conditions.

To create the driving video sequence, we transfer Ada’s an-
imation to five other MetaHuman characters/identities, namely
Emory, Gavin, Maria, Nasim, and Robin resulting in a total
of 95 videos (5 identities × 19 animations). All videos are of
resolution 256 × 256.

IV. EXPERIMENT AND RESULTS

This section presents the results using the cross-reenactment
protocol and the synthesized dataset of MetaHumans as intro-
duced in Section III. We conduct a comparative evaluation of
four reenactment methods (FOMM, X2Face, Fs-vid2vid, and



Fig. 3: Two MetaHumans sharing the same expression. Expressions from left to right: amusement, surprise, anger, disgust,
fear, head rotated to right-hand side and to left-up by 30 degrees.

Fig. 4: The source and driving identities for cross-reenactment
evaluation. Ada, Emory, Gavin, Maria, Nasim, and Robin are
generated using MetaHumans. Identity Ada is the source face,
and the rest of the identities are the driving identities.

ICFace) using our dataset, which is characterized by a broad
range of head rotations, expressions, and lighting variations.
By utilizing our dataset, we investigate the effect of driving
identity on the generated images. Additionally, we analyze
the sensitivity of each method to different head rotations and
expressions.

We employed AKD and SSIM metrics to evaluate the qual-
ity of the generated images using the synthesized MetaHuman
dataset. The results are presented in Tables I. Furthermore, for
comparison purposes, we present the results on the Real Head
dataset [9] in Table II, which includes different head rotations
with static expressions. Each row in the tables represents the
metric value for different variations in the datasets, while each
column corresponds to a specific reenactment method. The last
row in the tables presents the average error of the method for
the specific metric across the entire dataset.

For the evaluation, we used a total of 12 video clips
containing 1,200 frames from the Real Head Dataset, and
95 video clips containing 5,600 frames from the synthesized
dataset. All experiments start from the initial frontal head
pose and neutral expression, enabling a consistent comparison
across methods.

The synthesized dataset results, as illustrated in Table I,
indicate that the average AKD error for FOMM and X2Face is
statistically similar, while the Fs-vid2vid and ICFace methods
have higher AKD error values of 7.85 and 11.03, respectively.
Upon closer examination of the errors, it becomes evident
that X2Face generates significantly larger errors for certain
head rotations, such as head rotation toward the left (Head
L), when compared to the FOMM method. However, the error
for videos with only expression is comparable to FOMM’s
performance. This finding suggests that while X2Face can
maintain similar landmark accuracy to FOMM, it struggles
with more pronounced head rotations, leading to a notable
increase in error.

Moreover, Figure 5a shows that FOMM and X2Face exhibit
similar AKD values for most cases with minimal head rotation.
However, upon closer analysis, as depicted in Figure 5b,
the error per frame/head degree for the specific case of
Head-L video shows that the results for both methods are
nearly identical up to 25 degrees of head movement. Beyond
this threshold, the error for the X2Face method increases
significantly. Furthermore, the SSIM scores suggest that all
techniques struggle to preserve image quality when confronted
with substantial head rotations.

Furthermore, we compared the results obtained in Table
I with the results from the Real Head Dataset in Table II.
As shown in Table II, the FOMM method achieved the best
performance among the four reenactment methods with an
AKD error of 1.99, followed by X2Face with an error of 3.36.
The ICFace method exhibited the highest average keypoint
error of 11.5, indicating difficulties in accurately reproducing
the target face’s keypoints.

Regarding SSIM scores, FOMM outperformed the other
methods with a score of 0.73, indicating its effectiveness
in generating images with similar structural content to the
ground-truth images. The X2Face method had a lower SSIM
score of 0.68 but still relatively high compared to the other
two techniques. Meanwhile, the Fs-vid2vid and ICFace meth-
ods had lower SSIM scores of 0.54 and 0.45, respectively,
suggesting difficulties in accurately generating images with



AKD↓ SSIM↑
VARIATION FOMM X2FACE FS-VID2VID ICFACE FOMM X2FACE FS-VID2VID ICFACE
Amusement 4.32 4.25 6.83 5.07 0.63 0.63 0.64 0.50
Anger 4.29 4.22 7.47 5.78 0.62 0.63 0.63 0.50
Disgust 4.31 4.26 8.72 6.08 0.63 0.63 0.63 0.49
Fear 4.24 4.012 8.99 5.96 0.63 0.63 0.61 0.50
Laughter 4.07 4.05 8.77 5.54 0.62 0.62 0.62 0.48
Sadness 4.17 4.203 8.38 7.19 0.63 0.63 0.62 0.49
Surprise 4.22 4.022 10.64 5.68 0.63 0.63 0.60 0.50
Head L 4.65 5.77 7.50 15.56 0.63 0.63 0.63 0.46
Head R 4.68 4.50 7.30 15.82 0.63 0.62 0.63 0.48
Head DR 4.76 4.60 7.19 13.71 0.63 0.62 0.62 0.47
Head UL 4.30 4.27 7.58 11.47 0.63 0.63 0.63 0.48
Head L Amusement 4.65 5.73 7.33 15.49 0.63 0.63 0.63 0.46
Head R Amusement 4.65 4.50 7.33 15.72 0.63 0.62 0.63 0.48
Head DR Amusement 4.74 4.62 7.18 13.57 0.63 0.62 0.63 0.47
Head UL Amusement 4.33 4.31 7.71 11.59 0.63 0.63 0.63 0.47
Head DR LightL 5.06 5.05 2.30 13.28 0.59 0.58 0.59 0.45
Head L LightL 4.99 6.38 7.66 15.37 0.59 0.58 0.58 0.43
Head R LightL 4.88 4.91 7.94 15.55 0.59 0.58 0.58 0.46
Head UL LightL 4.64 5.14 7.65 11.21 0.59 0.59 0.58 0.45
Average 4.52 4.67 7.85 11.03 0.62 0.62 0.62 0.47

TABLE I: The evaluation results for cross-reenactment using synthesized dataset. The arrows pointing upward and downward
correspond to metrics that show better results with higher and lower values, respectively. The best values are highlighted in
bold.

(a) Mean and standard deviation of AKD and SSIM scores over the entire synthesize dataset of MetaHumans (i.e. all frames of all videos).

(b) AKD and SSIM scores frame by frame for the head rotated toward the left video sequence (Head-L).

Fig. 5: The mean and starndard deviation over different facial expressions and head rotations. Notably, there is a substantial
increase in error for head rotations compared to facial expressions (a). Focus on the specific scenario of head rotation toward
left . These curves provide a more detailed analysis by zooming in and reporting the error degree by degree for entire video
frames, rather than average value.

similar structural content to the ground-truth images.

Our analysis of the MetaHuman dataset revealed consistent
findings with those from the Real Head Dataset with ani-

mations limited to head pose motion. We observed that the
FOMM method outperformed the other methods in terms of
maintaining facial keypoints. Conversely, the ICFace method



AKD↓ SSIM↑
VARIATION FOMM X2FACE FS-VID2VID ICFACE FOMM X2FACE FS-VID2VID ICFACE
Head U 1.90 2.76 4.07 8.45 0.74 0.71 0.53 0.48
Head L 1.82 3.03 4.07 10.89 0.74 0.69 0.61 0.47
Head UL 2.27 4.29 9.18 15.16 0.70 0.64 0.48 0.41
Average 1.99 3.36 5.77 11.5 0.73 0.68 0.54 0.45

TABLE II: The evaluation results for cross-reenactment using the real Head dataset [9], which includes three types of head
rotations: rotation around the pitch, yaw, and combination of pitch and yaw. The facial expression of this dataset is constant.

exhibited the highest error, indicating potential difficulties with
accurately reproducing the target face’s keypoints.

V. CONCLUSION

This paper highlights the challenges associated with ac-
curately evaluating and comparing cross-reenactment tech-
nologies. These challenges primarily arise from the absence
of ground-truth data. Additionally, existing datasets have
limitations in effectively representing diverse subjects, head
movements, expressions, and adhering to General Data Pri-
vacy Regulation (GDPR) [19]. To overcome these issues, we
introduce a novel dataset of MetaHumans that addresses the
aforementioned limitations by ensuring diversity in ethnicity,
age, and gender. This dataset encompasses a wide range of
facial expressions, pose variations, and illumination changes.

To ensure that the synthesized dataset accurately represents
real-world data, we utilize various established metrics and
compare the results obtained from MetaHuman synthesized
dataset with those from the Real Head dataset. Through
this analysis, we show a correlation between the generator’s
scores obtained from deepfake videos of MetaHumans and
those obtained from deepfake videos of real individuals. Our
current findings are of significant interest, and there are several
promising avenues for future research to build upon our work.

Firstly, an extension of this study could involve computing
the error for additional metrics, such as CSIM and FID,
thereby providing a more comprehensive evaluation of the
methods. Furthermore, conducting a subjective test can be ben-
eficial to evaluate the effectiveness of the proposed protocol.
By considering these aspects, further advancements can be
made in the domain of face reenactment evaluation.
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