
GNN-based SDN Admission Control in Beyond 5G
Networks

Sofiane Messaoudi∗, Adlen Ksentini∗, Franck Messaoudi†, Christian Bonnet∗
∗Eurecom Institute, †OpenAirInterface Alliance

∗ †Sophia Antipolis, France
Email: ∗name.surname@eurecom.fr, †name.surname@openairinterface.org

Abstract—This paper proposes a novel approach to Software-
Defined Networking (SDN) Admission Control (AC) based on
Graph Neural Networks (GNNs) for Beyond 5G (B5G). AC is a
critical function in SDN, as it determines which traffic flow to pass
by the network and which should be rejected. GNNs are a type of
Neural Networks (NNs) that are able to learn how to make real-time
AC decisions by training on pre-existing data, including network
topologies and traffic characteristics. The solution we propose
is made of two layers: (i) Network Delay Predictor (NetDelP)
leveraging on the RouteNet-Fermi GNN model, used to predict the
network latency for different topologies and traffic patterns. (ii)
Admission Control Agent (AdConAgt) supporting the SDN and
used to regulate the traffic flow in the network. The outlined concept
is able to manage large-scale and complex topology networks with
optimized Key Performance Indicators (KPIs) such as network
latency and Packet Loss Rate (PLR). The envisioned approach
is evaluated with various network topology scales and classes of
traffic. The obtained results outperform the SDN-Shortest Path
(SDN-SP) solution by demonstrating the ability of our proposal
to guarantee the End-To-End (E2E) latency and prevent link
congestion in order to meet the QoS requirements.

I. INTRODUCTION

The emerging Beyond 5G (B5G) market is expected to bring
a variety of services, allowing to meet the requirements of
a highly mobile and connected society. The key enabler for
5th Generation (5G) architecture is the support of different
use cases and applications such as e-health, autonomous cars,
and metaverse [1]. Their coexistence will depend on B5G
networks’ ability to serve these classes of traffic, having
different needs in terms of Quality of Service (QoS) that include
latency, bandwidth, reliability, and availability. Software-Defined
Networking (SDN) trends may accommodate these needs and
provide the missing capabilities.

Being deployed in research laboratories, and industry, SDN
is emerging as a promising technology to manage large-scale
networks since it has a global view of the network. However,
the SDN concept itself is stateless as it does not implement the
feedback control command, so it is harder to ensure consistent
and predictable QoS, such as maintaining low latency and
avoiding traffic congestion. Bring up a stateful SDN involves
implementing mechanisms to maintain the current state and
context of network devices and flows, allowing for more
granular control and management of network resources.

Enabling statefulness in SDN is not a new topic. Indeed,
the research community has introduced various approaches that
combine two main elements: the Network Model (NM), and

the Optimisation Algorithm (OA) [2]. The former predicts the
network Key Performance Indicators (KPIs), such as delay and
throughput; it features approaches such as Network Prediction
(NP) [3]. The latter explores different configurations until it
meets the optimization goals defined in the NM, which include
solutions based on Time Sensitive Networking (TSN) standards
[4] such as Admission Control (AC) [5], and Traffic Engineering
(TE) [6], to name few. Although TSN is an interesting approach,
it provides hop-by-hop QoS guarantee; high End-To-End (E2E)
visibility is crucial when links get congested and multiple paths
are available. Yet, the NM feeds the OA with inputs in order
to seek the optimal configurations. Therefore, the OA accuracy
highly depends on the NM correctness and fidelity.

Providing accurate and low-cost NMs has already concen-
trated a lot of consideration in the research community. Indeed,
Analytic models based on Queuing Theory (QT) [7] are largely
developed. Even though these models are deterministic solutions,
hence low resource consumption, they assume some non-
realistic network properties and use probabilistic rules such
as Poisson distribution, which are unsuitable in real networks.
Another example is packet-level network simulators, which
bring accuracy and fidelity. Unfortunately, such models are
time-consuming and need high computational resources in large-
scale networks.

To provide a balance between precision, fidelity, and swiftness,
Deep Learning (DL) [8] models are proposed. Existing solutions
such as [9], [10] use the Neural Network (NN) architectures
like Recurrent NNs or Variational AutoEncoders. However,
computer networks are fundamentally represented as graphs, and
NN cannot learn graph-structured information and generalize
over other topologies or routing configurations. Moreover, their
accuracy is limited.

To overcome these limitations, we unveil in this paper a
solution that combines Graph Neural Network (GNN) and AC,
named Graph Neural Network-Admission Control (GNN-AC).
It leverages the RouteNet-Fermi (RouteNet-F) model [11], [12]
as a real-time Latency Prediction (LP) framework for each
path, that is to achieve Load Balancing (LB) and optimize
the AC decisions. The solution is inspired by the SDN-based
AC that provides flexibility and agility to guarantee QoS of
several classes of traffic running in competition mode. GNN-AC
relies on the new 5G Data Plane (DP) specifications. It uses the
Quality Flow Identification (QFI) [13] to map the 5G services to

Transport Network (TN) classes of traffic. The solution regulates
the traffic and guarantees QoS for the accepted packets by
predicting for each traffic flow if its QoS can be satisfied,
particularly traffic with a low latency requirement. In addition
to these contributions, our solution is resource-aware and delay-
aware, thanks to the TE module and path listing algorithm that
we developed.

We have evaluated the GNN-AC accuracy with a dataset
including various topology flavours (i.e., scales) generated by
the packet-level simulator OMNeT++ [14]. We compared our
solution with the Open Network Operating System (ONOS)
SDN controller’ default one (i.e., SDN-Shortest Path (SDN-SP)).
The rest of the paper is organized as follows: Section II provides
background on GNN, RouteNet-F, and reviews related state-of-
the-art. Our solution is presented in Section III and evaluated
in Section IV. Section V concludes the paper.

II. BACKGROUND & RELATED WORKS

To better understand our contribution, we introduce in what
follows the concepts of GNNs, and RouteNet-F.

GNNs have shown outstanding applications in communication
networks [15]. Indeed, Networking systems comprise many
components represented as a graph (e.g., topology or routing).
GNNs represents a new generation of data-driven models that
can accurately learn and reproduce the complex behaviors
behind real-world networks. As a result, these models can be
applied to a wide variety of networking use cases, such as
planning. The main advantage of GNNs over traditional NN
lies in their generalization capabilities when applied to other
network topologies and configurations unseen during training.

RouteNet-F is a custom GNN model for network perfor-
mance prediction. It has a network state description (sample),
defined by: a network topology, a routing scheme, a queuing
configuration, and a set of traffic flows characterized by some
parameters as input, and flow-level performance predictions as
output, such as delay. This model implements a custom three-
stage message-passing algorithm that represents key elements for
the NM mentioned above. RouteNet-F supports a wide variety
of features present in real-world networks, such as complex
traffic models. Figure 2 includes a black-box representation of
this model communicating with the AC module on the top of
an SDN controller. RouteNet-F is based on two main design
principles: (i) finding a good representation of the network
components and (ii) exploiting scale-independent features of
networks to encompass larger networks unseen during training.

In what follows, we review different works in correlation with
LP, AC, and QoS guarantee. Indeed, in [16], authors introduced
RouteNet, a NP model based on GNN that estimates the per-
source/destination packet delay distribution and loss without
including queuing configuration as input. They simulated some
use cases where they leverage the KPI predictions of the model
to achieve efficient routing optimization and network planning.
However, their solutions did not include the LB mechanism
compared to GNN-AC.

[17], addressed the challenge of accurately predicting E2E
delay in SDN to improve network performance and user

experience. The authors propose a GNN-based model, Spatial-
Temporal Graph Convolutional Network (STGCN), which
captures spatial and temporal dependencies of traffic data,
outperforming traditional machine learning techniques.

[18] proposed a GNN architecture for Service Function
Chaining (SFC). The proposed model consists of an encoder
and a decoder, where the first finds the network topology repre-
sentation, and the latter estimates probabilities of neighborhood
nodes to process a Virtual Network Function (VNF). In the
experiments, the architecture outperformed the performances of
Deep NN (DNN) based model. Despite being different from
GNN-AC, their solution satisfies QoS requirements as ours.

All the above proposals did not consider LB part, unlike our
solution that takes into account several points (i.e., multiple
topology flavours test, guaranteeing low E2E latency, LB, and
preventing congestion in order to maintain the QoS.

III. GNN-AC SOLUTION

In this section, we describe the high-level view of our proposal
how it fits within the 5G architecture, its design, and workflow.

A. Interaction with 5G

It is generally agreed that B5G architectures will rely on the
5G specifications. In what follows, we summarize the 5G QoS
in correlation with GNN-AC and how the latter can be used
within the DP.

In 5G, a User Equipment (UE) traffic has to pass through
dedicated bi-directional tunnels or bearers to interact with the
outside. These tunnels are created by the Session Management
Function (SMF) Packet Data Unit (PDU) session establishment
request. The bearer encapsulates UE’ Internet Protocol (IP)
packets in GPRS Tunneling Protocol (GTP) tunnels between
the gNodeB (gNB) and the User Plane Function (UPF). The
GTP header contains information on the user traffic, such as
QoS that the gNB and the UPF should apply to the tunnel. This
GTP header information corresponds to the 5G QFI field. QoS
is tailored to specific requirements using 5G QoS Identifier
(5QI) that classifies packets into different classes of traffic,
each with specific QoS characteristics that include resource
type, priority level, and Packet Delay Budget (PDB). There
are approximately two dozen standard 5QI values grouped into
two types of resources: Guaranteed Bit Rate (GBR) and Non-
Guaranteed Bit Rate (Non-GBR). The QFI value is assigned
by the 5G Core Network (CN) based on the UE subscription
and the service to run, making it critical when carrying tunnel’
traffic over 5G TN or Backhaul.

Figure 1 shows the positioning of GNN-AC on the 5G
architecture. The GNN-AC is on top of an SDN controller.
The SDN control plane is independent of the 5G network
infrastructure. The only interaction between GNN-AC and 5G
DP is the border switches (i.e., routers connecting the gNB and
UPFs to the 5G TN) that needs to map the QFI to IP networks
QoS identifier values known as Differentiated Services Code
Point (DSCP). DSCP specifies a mechanism for classifying and
managing network traffic and providing QoS on IP networks.
DSCP uses 6 bits in the IP header for packet classification

purpose. Internet Engineering Task Force (IETF) has proposed
a mapping of the 3rd Generation Partnership Project (3GPP)
QoS Class Identifier (QCI) and the 5QI to the DSCP, which
aligns their marking recommendations, as stated in [19]. This
mapping is used by the border switches when parsing the GTP
header and extracting the QFI to modify the IP header with the
corresponding DSCP value. The mapping process is done for
both Uplink and Downlink directions.

C
on

tr
ol

Pl
an

e AC App GNN-based Model

SDN Application Layer

SDN Control Layer

D
at

a
Pl

an
e

UPF UPFGTP tunnelGTP tunnel

UE1

UE2

gNB Internet

5G Transport Network (Backhaul)

Legend:
SDN Control Traffic
User Traffic
PDU Session
SDN Controller NBI

Figure 1: Simplified 5G architecture with SDN perspective

In GNN-AC, for every flow newly coming into the network, a
PACKET-IN message is generated by the respective access node
(i.e., border switches of the SDN forwarding plane or Backhaul).
The process shown in Algorithm 1 is triggered as a response.
In what follows, we describe the GNN-AC architecture design
along with the workflow.

B. GNN-AC Solution Design

GNN-AC framework is made of two main modules; (i)
Network Delay Predictor (NetDelP), a network LP module lever-
aging the RouteNet-F GNN-based model, and (ii) Admission
Control Agent (AdConAgt), an AC module supporting SDN.

1) NetDelP: Is the module predicting, in real-time, the delay
on the entire network topology paths using RouteNet-F GNN-
based modelling. It is a data-driven model learning from a dataset
with various network topologies and traffic. It has as inputs - A
Graph schematising the network topology where nodes (edges,
respectively) represent switches (links, respectively), - All the
available Paths between the nodes. - A Scheduling Policies such
as type and queue size. Finally, - A Traffic Model in the form
of a matrix including the distribution type and the packet size.
As outputs, the NetDelP predicts links’ delay.

2) AdConAgt: It is a packet AC guard. Its function is
to decide which flow rules to communicate to switches via
OpenFlow protocol. These flow rules regulate the traffic in a
selection process (i.e., to be forwarded or dropped) to meet
QoS agreement. The decision is based on the NetDelP’ real-
time predicted delay, provided as entry to the AdConAgt. This
module interacts with each switch via an SDN controller to
monitor the network traffic and nodes and Create, Read, Update,
and Delete (CRUD) the flow rules.

Figure 2 details the GNN-AC architecture view represented
as a recursive client-server based on SDN controller. The

architecture is designed within 3 layers according to SDN Open
Networking Foundation (ONF) standards [20].

Application Layer: hosts the GNN model (i.e., NetDelP)
and the SDN application (i.e., AdConAgt), which communicates
its network requirements toward the control plane via the
NorthBound Interfacess (NBIs). This application is installed
on the top of an SDN controller, for instance, ONOS.

Control Layer: The SDN controller is a central element
of this layer. It acts as a server and a client for, respectively,
the above and below layers. As a server, it controls network
elements by pushing, updating, or deleting flow rules on switches
requested by the AdConAgt via Rest Application Programming
Interface (API). As a client, it monitors the network traffic and
elements.

Infrastructure Layer: Or data plane, is a composition of
network elements, switches such as Open vSwitch (OVS), which
expose their capabilities toward the SDN controller via the
SouthBound Interfacess (SBIs) and apply the forwarding rules
as computed by the controller.

A
pp

lic
at

io
n

L
ay

er

AdConAgt
(AC App)

NetDelP
(RouteNet-F GNN-

based Model)

Topology

Routing

Scheduling

Traffic Matrix

Hop by Hop Delay Prediction

App 2 ... App n

App 1: GNN-AC

SDN Applications

C
on

tr
ol

L
ay

er

Controller
(ONOS)

In
fr

as
tr

uc
tu

re
L

ay
er Switch 1

Port 1 Port 2 Port 3 ... Port n ...

Switch n

OpenFlow (SBI)

OpenFlow (SBI)

client

server

client

server
Rest API (NBI)

Figure 2: GNN-AC architecture view

C. Mathematical Representation

A flow rule ξ is composed of: Match set (µ) to identify a
flow; Action set (τ) to define the actions executed on each
packet of the flow; and Priority (ρ) that is used to order rules in
the forwarding switch. In our solution, the Match set includes
packet DSCP value, the Action set is to accept and forward
flow’s packets through a set of port numbers or to reject and
drop them, while the priority is the same for all the flow rules
(equations 1, 2, 3, and 4).

ξ= {[
µ
]

, [τ] ,ρ
}

(1)
µ= {0,1,2, ...,56} (2)

τ= {
out put (por tnumber), dr op

}
(3)

ρ = {0,1,2, ...,65535} (4)

D. GNN-AC Workflow

The GNN-AC framework reduces the load imbalances in the
network by real-time LP (line 12). Also, the specific traffic
priority µ is used as a reference for the AC module to get their
respective PDB (line 11) and check if it is exceeded by the
Packet Predicted Delays (PPDs) (line 13). If NO, the AC module
translates the chosen path with the minimum PPD into flow
rules, which include data such as the output port number (line
14). Otherwise, the packet will be rejected (line 16). Finally,
the flow rules are pushed to the intermediate nodes involved in
the communication (line 17).

Algorithm 1 GNN-AC Workflow

1: Inputs: {Paths}, {Hosts}, {Links}, {ξ}, {PPD}, {PDB}
2: Outputs: {New Flow Rule (ξ) (Accept/Drop packet)}
3: SDN CTRL receives PACKET-IN message with µ info
4: if (exist path with a ξ satisfying packet DSCP µ) then:
5: Apply ξ

6: else
7: Find all the potential paths to the destination
8: if path list is empty then:
9: The destination is unreachable

10: else
11: Get the PDB
12: Get the PPDs using real-time Traffic Matrix TM(t)
13: if PPDs < PDB then:
14: Chose the path with the minimum PPD
15: else
16: Reject the packet
17: Install the ξ on the devices
18: Goto 5

IV. PERFORMANCE EVALUATION

A. Setup

We have tested the GNN-AC framework within a linear
network topology with three flavours (i.e., scales) (small (c1),
medium (c2), and large (c3), respectively), according to the
number of used virtual switches (10, 20, and 50, respectively).
Each flavour defines 3 different paths (short (p1), moderate (p2),
and long (p3)), not necessarily similar between these flavours.
We distinguished the paths to show how GNN-AC is balancing
the traffic compared with SDN-SP. As a source traffic generator,
we used 6 Linux Virtual Emulators (LVEs), each of which
generates 10,000 Internet Control Message Protocol (ICMP)
packets per second (pps) of size 2,000 Bytes (B). Each packet
has a specific DSCP (µ) and a respective PDB, which simulate
different classes of traffic (6 flows (f1 to f6) in total: f1 with
5ms PDB, f2 (10ms), f3 (30ms), f4 (50ms), f5 (60ms), and
finally, f6 (75ms)). We also used an LVE as a destination
that receives all the generated traffic in a competition mode.
Table I summarizes the different parameters, and Figure 3 draws
the setup. We used ONOS as an SDN controller, OVS for the
OpenFlow switches, and Mininet for the network topology.

Table I: Technical details of the setup

Parameter Value
Operating System Ubuntu 20.04.4 LTS

Software ONOS 2.7.0, Mininet 2.2.2, OpnVSwitch 2.13.5, Python 3.9
Protocols OpenFlow 1.6

Network Topology Linear
Packet Amount Max of 6× 104 packet; (104 packet each of the 6 hosts)
Generation rate 10,000 pps

Packet size 2000 Bytes
Number of iterations 100

Bandwidth 200 Mb/s for each link

Source (UEs) Destination (UE)

h1

...

hx
...

hy

...

h6

h7

...

...

...
...

s1i s1 j

... ...s2k s2l s2m

...s3e s3 f s3h s3p

sns1

∗p1 = {s1, s1i , ..., s1 j , sn }
∗p2 = {s1, s2k , ..., s2l , ..., s2m , sn }
∗p3 = {s1, s3e , ..., s3 f , ..., s3h , ..., s3p , sn }
∗car d(p1) ≤ car d(p2) ≤ car d(p3)
∗n ∈ {10,20,50}

Figure 3: Setup’s Network Topology with 3 flavours

We have put the network under realistic conditions (with
different topology flavours, paths, and classes of traffic from
urgent to non-urgent traffic), with a large number of packets
and ensuring none of the links is empty, aiming at stressing the
different switches. Especially, switches s1 and sn , which are
shared between the three paths of each flavour.

B. Results

In this section, we focus on both GNN-AC and SDN-SP
E2E latency, packet loss, and QoS Breach evaluation. We may
distinguish the analysis of the GNN-AC results according
to flow types into 2 sets (S1 and S2): In S1, we regroup
flows f1 and f2, while S2 contains the rest of flows (i.e.,
f3, f4, f5, and f6). In S1, the PDB ≤ 10ms (i.e., f1(5ms),
f2(10ms)), and this requirement is hardly satisfied by the
three flavours, especially the third one (i.e., c3) where the
estimated latency is around 20ms (see below). For the
two first flavours c1 and c2, the average latencies is 3ms
and 8ms, respectively (as we will see below). Whilst, in
S2, the 30 ≤ PDB ≤ 75ms, and this requirement is relaxed
and can be satisfied by all flavours except for the couple (f3, c3).

1) E2E Network Latency: Figure 4 (respectively, Figure 5)
shows the min, max, and median E2E latencies (in ms) obtained
with GNN-AC (respectively, SDN-SP), for the classes of traffic
f1, f2, f3, f4, f5, and f6 (respectively, independently from classes
of traffic) under the 3 topology flavours (i.e., c1, c2, and c3).

GNN-AC: We first notice that in S2, we have similar results
between the classes of traffic f3, f4, f5, and f6. This is for the
reason that the S2 PDB condition is often satisfied excluding
some packets related to the pair (f3, c3). Therefore, GNN-AC
is LB the traffic (i.e., f3, f4, f5, and f6) over the available
resources, unlike for S1 where the f2 PDB requirement could
be satisfied more than the f1. Although we may think that

the latency for S2 is bigger than for S1 as shown in Figure 4,
this is due to the latencies representation of the only accepted
packets under the flows’ PDB requirement. We also noted that
the latency is increasing with the topology flavour, which is
obvious as flavour c2 (respectively, c3) includes more switches
than flavour c1 (respectively, c2 and c1), which adds additional
transmission and propagation delays to the E2E latency.

We should mention that for the couple (f1, c3), latencies are
not represented as c3 cannot satisfy the f1’s hard PDB condition
(i.e., 5ms), therefore all f1’ packets were rejected.

c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

E2
E

La
ten

cy
(m

s)

f1 f2 f3 f4 f5 f6

Figure 4: E2E latency obtained with GNN-AC for the
aforementioned classes of traffic (f1 to f6) under the 3 flavours

(c1 to c3)

SDN-SP: We remark in Figure 5, that latencies obtained
for all the classes of traffic (i.e., S1 and S2) are similar to
only S2 values in Figure 4, on the same way we note that
the maximum latency values in S1 exceed the flows respective
PDB requirement. Therefore, it does not use the notion of PDB.
Indeed, as SDN-SP is based on TE shortest path algorithm and
not on AC. Hence, all the traffic is treated the same way. The
six emulators compete for the shortest path p1 until it gets
saturated. After that, the traffic is forwarded to p2, then p3.

From these results (Figure 4 and 5), we demonstrated that
our solution GNN-AC respects the 3GPP PDB specifications.

c1 c2 c3
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

E2
E

La
ten

cy
(m

s)

f1, f2, f3, f4, f5, f6

Figure 5: E2E latency obtained with SDN-SP independently
from classes of traffic (f1 to f6) under the 3 flavours (c1 to c3)

2) Packet Loss Rate: Table II compares Packet Loss Rate
(PLR) for GNN-AC with SDN-SP in percentage (%) for the six
aforementioned classes of traffic and topology flavours.

GNN-AC: In S1, we notice that the PLR increases with the
number of switches. This is due to the E2E latency increase that
yields to the non-respect of PDB. Second, we remark that the f2

PLR is lower than the f1 PLR as the PDB condition for f2 is less
strict than f1. Last, we can also point the PLR approximating the
100% for flavour c3 as the estimated latency (i.e., around 20ms)
does not satisfy the PDB conditions. In S2, to our delight, the
PLR is smaller than in S1. In fact, The smallest PDB value in S2

is 30ms used by flow f3, which is mostly satisfied by the setup
even with the flavour c3 offering approximately 20ms delay.
Therefore, we reduce considerably the packet loss. The other
observation is that the PLR is decreasing, from 13%∼ 12% to
0, for the same flow and the three flavours except for 5% of
packets in the pair (f3,c3). The reason is that the six emulators
are in competition mode, and around 75% (87%, respectively) of
traffic flow f1 (f2, respectively) is accepted on flavour c1, which
lets less room for flows f3 to f6 on flavour c1. Inversely, PLR
which approximates the 100% for flows f1 and f2 on flavour c3

(due to the delay) is advantageous for flows f3 to f6 on flavour
c3. The same applies on flavour c2.

SDN-SP: In contrast, in the SDN-SP, we notice that the
PLR is increasing, with respect to flavours, between 14% and
21%, independently from Class of Traffic (CoT). It is relevant
to note that SDN-SP is using shortest path algorithms without
any LB approach. We believe that the PLR increase is due to
more delay, congestion, and error, potentially introduced by
each additional switch.

To sum up, with respect to the SDN-SP state-of-the-art, our
solution reduces the PLR by more than 4× order of magnitude.
In addition, it takes into consideration the CoT and the predicted
latency to load-balance the traffic over different existing paths,
which is not the case of SDN-SP based on the shortest path
strategy.

Table II: Packet Loss Rate (in %)

CoT Flavour GNN-AC SDN-SP CoT Flavour GNN-AC SDN-SP

f1

c1
c2
c3

25
74

100

15
15
19

f4

c1
c2
c3

12
1
0

14
18
20

f2

c1
c2
c3

13
31
96

16
17
18

f5

c1
c2
c3

12
0
0

15
15
18

f3

c1
c2
c3

13
2
5

15
15
21

f6

c1
c2
c3

13
1
0

15
16
19

3) QoS Breach: Table III provides a QoS breach comparison
in percentage (%) between GNN-AC and SDN-SP. By QoS
breach, we mean how many packets from a flow with a given
PDB were transmitted, although the PDB condition is not
satisfied (i.e., PDB < E2E latency). In case of GNN-AC, we
noticed that some values are not null for the couples (f1, c1),
(f2, c2), (f2, c3) and (f3, c3), so we obtain this incorrectness.
The reason is due to the LP mean relative error of RouteNet-F
module estimated around 6.24% [21]. For the SDN-SP case,
two more values for couples (f1, c2) and (f1, c3) violate the
QoS agreement. The explanation is due to non-consideration

of PDB. For both cases, we also remarked that the more PDB
increases, the more QoS breach decreases.

Equation 5 represents the average QoS breach calculation (Gx)
for GNN-AC (GGN N−AC) and SDN-SP (GSDN−SP) for all the
classes of traffic and all the topology flavours (gx (fi ,c j)). For
GNN-AC, GGN N−AC = 3.191, while for SDN-SP, GSDN−SP =
21.5 which is 7× bigger than GGN N−AC

Gx =
∑6

i=1
∑3

j=1 gx (fi ,c j)

6×3
(5)

Overall, GNN-AC solution significantly outperforms the
SDN-SP for the entire flows. Our solution reacts much better
to classes of traffic, to meet the QoS of each one.

Table III: QoS Breach (in %)

CoT Flavour GNN-AC SDN-SP CoT Flavour GNN-AC SDN-SP

f1

c1
c2
c3

4
0
0

40.2
84.7
100

f4

c1
c2
c3

0
0
0

0
0
0

f2

c1
c2
c3

0
1.44
50

0
37.4
100

f5

c1
c2
c3

0
0
0

0
0
0

f3

c1
c2
c3

0
0
2

0
0

24.7
f6

c1
c2
c3

0
0
0

0
0
0

V. CONCLUSION

In this paper, we have explored the use of GNN-based
RouteNet-F model for LP and its application for SDN AC in
B5G networks. We have investigated the performance of our
solution GNN-AC for various topology flavours (i.e., scales)
and classes of traffic and compared the results with the state-of-
the-art. The obtained results have demonstrated the potential of
GNN models for SDN AC. Indeed, our solution maintains QoS
while avoiding congestion in the network. In the future, we will
focus on refining the proposed model as well as investigating
the use of resource allocation instead of taking a binary decision
by accepting or rejecting the packets.

ACKNOWLEDGMENT

This work was partially supported by the European Union’s
Horizon Europe SNS D ImagineB5G project (Grant No.
101096452).

REFERENCES

[1] I.-T. N. 2030, “A blueprint of technology, applications and market drivers
towards the year 2030 and beyond,” 2019. [Online]. Available: https://
www.itu.int/en/ITU-T/focusgroups/net2030/Documents/White_Paper.pdf

[2] W. da Silva Coelho, “Modeling and optimization of 5g network design,”
in 2021 33th International Teletraffic Congress (ITC-33), 2021, pp. 1–3.

[3] D. Minovski, N. Ögren, K. Mitra, and C. Åhlund, “Throughput prediction
using machine learning in lte and 5g networks,” IEEE Transactions on
Mobile Computing, vol. 22, no. 3, pp. 1825–1840, 2023.

[4] Y. Zhang, Q. Xu, M. Li, C. Chen, and X. Guan, “Qos-aware mapping
and scheduling for virtual network functions in industrial 5g-tsn network,”
in 2021 IEEE Global Communications Conference (GLOBECOM), 2021,
pp. 1–6.

[5] M. O. Ojijo and O. E. Falowo, “A survey on slice admission control
strategies and optimization schemes in 5g network,” IEEE Access, vol. 8,
pp. 14 977–14 990, 2020.

[6] S. MESSAOUDI, A. Ksentini, and C. BONNET, “Sdn framework for qos
provisioning and latency guarantee in 5g and beyond,” in 2023 IEEE 20th
Consumer Communications & Networking Conference (CCNC), 2023, pp.
587–592.

[7] G. Shen, Q. Li, W. Shi, Y. Jiang, P. Zhang, L. Gu, and M. Xu, “Modeling
and optimization of the data plane in the sdn-based DCN by queuing
theory,” J. Netw. Comput. Appl., vol. 207, p. 103481, 2022. [Online].
Available: https://doi.org/10.1016/j.jnca.2022.103481

[8] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven networking: A deep reinforcement learning based
approach,” in 2018 IEEE Conference on Computer Communications,
INFOCOM 2018, Honolulu, HI, USA, April 16-19, 2018. IEEE, 2018,
pp. 1871–1879. [Online]. Available: https://doi.org/10.1109/INFOCOM.
2018.8485853

[9] S. Xiao, D. He, and Z. Gong, “Deep-q: Traffic-driven qos inference
using deep generative network,” in Proceedings of the 2018 Workshop on
Network Meets AI & ML, NetAI@SIGCOMM 2018, Budapest, Hungary,
August 24, 2018. ACM, 2018, pp. 67–73. [Online]. Available:
https://doi.org/10.1145/3229543.3229549

[10] A. Mestres, E. Alarcón, Y. Ji, and A. Cabellos-Aparicio, “Understanding
the modeling of computer network delays using neural networks,” in
Proceedings of the 2018 Workshop on Big Data Analytics and Machine
Learning for Data Communication Networks, Big-DAMA@SIGCOMM
2018, Budapest, Hungary, August 20, 2018, P. Casas, M. Mellia,
A. Dainotti, and T. Zseby, Eds. ACM, 2018, pp. 46–52. [Online].
Available: https://doi.org/10.1145/3229607.3229613

[11] J. Suárez-Varela et al., “Technical report: Routenet-fermi,” 2022. [Online].
Available: https://bnn.upc.edu/download/technical_report_routenet_fermi

[12] ——, “The graph neural networking challenge: a worldwide competi-
tion for education in ai/ml for networks,” ACM SIGCOMM Computer
Communication Review, vol. 51, no. 3, pp. 9–16, 2021.

[13] X. Yin, Y. Liu, L. Yan, and D. Li, “Qos flow mapping method of multi-
service 5g communication for urban energy interconnection,” in 2021
International Conference on Wireless Communications and Smart Grid
(ICWCSG), 2021, pp. 75–78.

[14] A. Varga and R. Hornig, “An overview of the omnet++ simulation
environment,” in Proceedings of the 1st International Conference on
Simulation Tools and Techniques for Communications, Networks and
Systems & Workshops, SimuTools 2008, Marseille, France, March 3-7,
2008, S. Molnár, J. R. Heath, O. Dalle, and G. A. Wainer, Eds.
ICST/ACM, 2008, p. 60. [Online]. Available: https://doi.org/10.4108/
ICST.SIMUTOOLS2008.3027

[15] J. Suárez-Varela, P. Almasan, M. F. Galmés, K. Rusek, F. Geyer,
X. Cheng, X. Shi, S. Xiao, F. Scarselli, A. Cabellos-Aparicio, and
P. Barlet-Ros, “Graph neural networks for communication networks:
Context, use cases and opportunities,” CoRR, vol. abs/2112.14792, 2021.
[Online]. Available: https://arxiv.org/abs/2112.14792

[16] K. Rusek, J. Suárez-Varela, P. Almasan, P. Barlet-Ros, and A. Cabellos-
Aparicio, “Routenet: Leveraging graph neural networks for network
modeling and optimization in SDN,” IEEE J. Sel. Areas Commun.,
vol. 38, no. 10, pp. 2260–2270, 2020. [Online]. Available: https:
//doi.org/10.1109/JSAC.2020.3000405

[17] Z. Ge, J. Hou, and A. Nayak, “Forecasting sdn end-to-end latency using
graph neural network,” in 2023 International Conference on Information
Networking (ICOIN), 2023, pp. 293–298.

[18] D. Heo, S. Lange, H. Kim, and H. Choi, “Graph neural network
based service function chaining for automatic network control,” in 21st
Asia-Pacific Network Operations and Management Symposium, APNOMS
2020, Daegu, South Korea, September 22-25, 2020. IEEE, 2020, pp.
7–12. [Online]. Available: https://doi.org/10.23919/APNOMS50412.2020.
9236954

[19] J. Henry, T. Szigeti, and L. M. Contreras, “Diffserv to QCI Mapping,”
IETF, Internet-Draft draft-henry-tsvwg-diffserv-to-qci-04, Apr. 2020,
work in Progress. [Online]. Available: https://datatracker.ietf.org/doc/
draft-henry-tsvwg-diffserv-to-qci/04/

[20] ONF, “Software-Defined Networking: The New Norm for Networks,” Apr.
2012.

[21] M. Ferriol-Galmés, J. Paillisse, J. Suárez-Varela, K. Rusek, S. Xiao,
X. Shi, X. Cheng, P. Barlet-Ros, and A. Cabellos-Aparicio, “Routenet-
fermi: Network modeling with graph neural networks,” arXiv preprint
arXiv:2212.12070, 2022.

