
FlexSlice: Flexible and real-time programmable
RAN slicing framework
Chieh-Chun Chen∗, Chia-Yu Chang†, Navid Nikaein∗

∗EURECOM, Sophia-Antipolis, France, Email: {chieh-chun.chen, navid.nikaein}@eurecom.fr
†Nokia Bell Labs, Antwerp, Belgium, email: chia-yu.chang@nokia-bell-labs.com

Abstract—Radio Access Network (RAN) slicing aims to
roll out various services in the same network deployment
while ensuring performance guarantee and resource isola-
tion, it is identified as one work item of 3GPP Release 18
and as a specific O-RAN use case. However, the current O-
RAN architecture lacks control flexibility for real-time pro-
grammability of less than 10ms. In this work, we propose
the FlexSlice framework, which entails the realization of
flexible control logic topologies (i.e., centralized, decentral-
ized, and distributed) by evolving the O-RAN architecture
to achieve lower control loop latency. In addition, the
radio resource scheduler at the Medium Access Control
(MAC) layer is redesigned for recursive operations to
facilitate virtualization for multi-level resource allocation.
Finally, a concrete prototype is developed to demonstrate its
efficiency, real-time programmability and control flexibility.

I. INTRODUCTION

Radio Access Network (RAN) slicing is a key enabler
for 5G and beyond, unlocking the multi-service offering
within the same network deployment while ensuring
performance guarantees and resource isolation. To meet
a variety of service requirements, many control options
are standardized, leading to an increase in the control
complexity of RAN User Plans (UPs).

In the envisioned RAN openness sketched by the O-
RAN Alliance, the complexity of control grows further
in that an App (e.g., xApp in the O-RAN architecture)
running on top of the RAN controller (e.g., near Real-
Time RAN Intelligent Controller [nearRT-RIC]) needs
to control multiple RAN-Nodes, e.g., Centralized Unit
(CU) and Distributed Unit (DU) that are called E2-
Nodes. Additionally, when controlling the underlying
RAN-Nodes, the RAN controller coordinates several
Apps and mitigates any conflict. Another challenge is the
lack of flexibility for real-time control and monitoring
of sub-10ms control loops to accomplish RAN slicing
in 5G-Advanced services.

To present a generalized approach and delve into
the details of our proposed FlexSlice framework, three
components are illustrated on the left side of Fig. 1: (1)
business logic, (2) control logic, and (3) RAN UPs. The
business logic is defined by service providers in terms
of the required Key Performance Indicators (KPIs), e.g.,
expected throughput and latency, in the Service Level
Agreement (SLA). By invoking the exposed service
Application Programming Interfaces (APIs), business

Fig. 1: Hierarchical control for RAN user plans (left)
and three potential topologies for control logic (right).

logic is converted into control logic, e.g., scheduling
algorithms and parameters. Finally, the control logic is
applied to RAN UPs, e.g., radio resource scheduler at
the Medium Access Control (MAC) layer, by using the
exposed RAN APIs.

From the viewpoint of service providers, the control
logic can be centralized in the App, decentralized in the
RAN controller, or distributed in RAN-Nodes, as shown
on the right side of Fig. 1. Their trade-off is mainly in
terms of control loop latency and RAN-Node complexity.
Take the centralized one (i.e., current O-RAN approach)
as an example; the control logic is mostly located in
the App; thus, it has the lowest RAN complexity but
the highest control loop latency, which limits its real-
time control capability. In contrast, decentralized and
distributed topologies can not only reduce such control
loop latency, but also enable App interoperability across
various RAN controller platforms.

In this work, we propose FlexSlice, a flexible RAN
slicing framework supporting all three topologies that
offers both control flexibility and real-time programma-
bility. We also redesign the radio resource scheduler to
show how it controls RAN UPs. In short, this paper
makes the following contributions: (1) real-time control
down to microseconds, evolving the O-RAN architec-
ture, (2) a flexible RAN slicing framework with loosely
coupled control logic locations, and (3) a recursive
scheduler for a multi-level resource allocation.

TABLE I: State-of-the-art comparison for RAN slicing framework.

Name Programmable Control Logic Control Logic Minimum Control Average RAN
Granularity Location(s) Topologies Latency Complexity

O-RAN [1] Service App Centralized High Low
NexRAN [2] Service App Centralized High Low
HexRAN [3] RAN function App Centralized High Low
FlexApp [4] RAN function RAN Controller Decentralized Medium Low

RAN Engine [5] RAN function RAN-Node Distributed Low High
dApp [6] RAN function RAN-Node Distributed Low High

JANUS [7] RAN function RAN-Node Distributed Low High

FlexSlice RAN function App, RAN Controller,
and RAN-Node

Centralized, Decentralized,
and Distributed Low Medium

II. RELATED WORKS

In the following, we first compare the FlexSlice
framework with other works, and then outline the radio
resource scheduler to control RAN UPs.

A. RAN slicing framework

A comparison of the FlexSlice framework with cur-
rent O-RAN approach and other works can be found
in TABLE I. As mentioned earlier, it supports all three
control logic topologies shown in Fig. 1, so a bal-
ance can be struck between control latency and RAN
complexity. However, other works rely on a specific
control logic topology and thus can only be suitable for
certain deployments. For example, centralized control
logic reduces RAN complexity, but each App must
translate business logic into control logic, which adds
control latency in heterogeneous RAN deployments. In
contrast, distributed control logic can reduce control
latency by incorporating control logic and RAN UPs
at RAN-Nodes, but at the cost of a more complicated
RAN implementation. Then, the decentralized one relies
on the abstraction layer at the RAN controller to handle
business logic to be applied on the RAN-Nodes. Note
that the FlexSlice framework supports programmability
down to the RAN function for finer control granularity
compared to prior state-of-the-arts [1], [2].

B. Radio Resource Scheduler

Radio resource scheduling aims to use limited spec-
trum for distinct criteria, e.g., Proportional Fairness (PF).
Several works explore further performance metrics, like
the ones introduced in NVS [8] and Earliest Deadline
First (EDF) [9] algorithms, by taking particular service
requirements into account. Another aspect is how radio
resources are allocated, e.g., the work in [10] provides a
two-level radio resource scheduler (slice- and user-level)
by abstracting radio resources from Physical Resource
Blocks (PRBs) to virtual RBs (vRBs). In this regard, our
objective is to increase the modularity and extensibility
of the radio resource scheduler, so that the control
logic in the FlexSlice framework can flexibly construct
a multi-level scheduling function. To achieve it, we
redesign the MAC scheduler recursively in Section IV.

III. FLEXSLICE OVERVIEW

Our proposed FlexSlice framework evolves the cur-
rent O-RAN architecture by flexibly deploying control
logic in centralized, decentralized, or distributed topolo-
gies (see Fig. 1) to achieve a shorter control loop latency.
Also, the radio resource scheduling function is realized
recursively to achieve adaptability and extensibility. This
concept of recursion can be applied to other RAN
functions, enabling RAN nodes to support multi-service
and multi-tenancy.

In Fig. 2, a high-level architecture of FlexSlice is
shown, containing business logic (yellow), control logic
(blue), and RAN UPs (gray). The service provider de-
fines the business logic, which specifies the required
KPIs for a particular service, such as throughput and
latency, as part of the SLA1. Control logic is then
responsible for meeting these SLAs by instantiating
appropriate network slices in RAN UPs, and it can be
located in the App, the RAN controller, or the RAN-
Node, depending on the topology used (cf. Fig. 1):

• Centralized: Apps handle business logic and control
logic. As shown in Fig. 2, App-I abstracts the
expected throughput of Service-1 into control logic,
e.g., PRB number, in a comprehensible manner to
the radio resource scheduler at RAN-Node A.

• Decentralized: Apps define business logic and use
service APIs exposed by the RAN controller. In
Fig. 2, App-II and App-III request the expected
throughput for Services 2 and 3, respectively, and
Service 2 asks for extra expected latency for its
two sub-services (2a and 2b). The RAN controller
abstracts all these requests into the control logic and
uses RAN APIs toward RAN-Node B.

• Distributed: RAN-Nodes have RAN UPs and con-
trol logic, allowing shorter control loops in real-
time. Consider App-III and App-IV in Fig. 2: RAN-
Node C embeds the abstracted control logic from
the expected latency for Services 4 and 5 directly
into the radio resource scheduler.

1Business logic is used to encode real-world business rules as a
sequence of commands or actions, and can be defined in a nested way.

Fig. 2: High-level architecture of FlexSlice framework
with three abstract control logic examples.

Moreover, the abstract control logic shown in Fig. 2
unifies the underlying RAN UP functions and Ser-
vice Models (SMs) across various dimensions, including
multi-vendor and multi-Radio Access Technology (RAT)
RAN-Nodes. Thus, it allows tailoring the control logic to
the service requirements in terms of the requested KPIs.
Such an “abstraction layer” is essential to FlexSlice and
will be detailed in Section IV-A.

Entering RAN UPs in Fig. 2, three scheduling func-
tions are shown in RAN-Nodes A, B, and C for Services
1, Services 2 and 3, as well as Service 4 and 5,
respectively. These functions are realized by employing
the recursive approach (denoted as SCH in Fig. 2 and
will be detailed in Section IV) which allows for multi-
level scheduling. At the slice level, radio resources
are partitioned based on (sub-)slice information (e.g.,
SLA). These per-slice resources are then allocated to the
associated UEs based on UE information, e.g., Quality
of Service (QoS).

IV. CONTROL LOGIC ABSTRACTION AND
REDESIGNED RADIO RESOURCE SCHEDULER

In this section, we elaborate on two key enablers
of FlexSlice: (a) control logic abstraction, and (b) re-
designed RAN function to support recursive operations.

A. Control Logic Abstraction

The aim of control logic abstraction is to allow
network operators to define the characteristics of each
slice in a flexible manner based on the KPIs of each
service without disclosing specific deployment details
(e.g., multi-vendor and multi-RAT at various sites). As
depicted in Fig. 3, the process of controlling RAN slices

Fig. 3: Control logic abstraction and Redesigned radio
resource scheduler for recursive operation.

is done by the “mix-and-match” control logic abstrac-
tion between the requested KPIs for each service and
the respective slice configuration (e.g., radio resource
share), which includes setting up slices, and deciding the
scheduling algorithm and parameters. Specifically, four
tasks are included as shown in Fig 3:

1) Sorting: Arrange services based on their requested
KPIs or non-technical criteria,

2) Virtualization: Virtualize radio resources of RAN-
Nodes with tailored approach (e.g. PRB to vRB),

3) Filtering: Adjust the requested KPIs in accordance
with the (virtualized) resources of RAN-Nodes,

4) Mapping: Create slice configurations by mapping
the requested KPIs to use respective RAN functions
(e.g., scheduling algorithm and parameters).

B. Redesigned Radio Resource Scheduler

RAN function redesign is key to FlexSlice, and
we focus on the radio resource scheduler. First, it is
divided into two parts in Fig. 3: (a) pre-processor and
(b) post-processor. The former incorporates the radio
resource scheduling function and can be controlled as
a RAN function, while the latter allocates resources to
physical channels based on the results from the pre-
processor. Then, the radio resource scheduling function
is redesigned recursively (denoted as SCH in Fig. 3) to
dynamically apply different algorithms and parameters
based on performance requirements and scheduling con-
straints, effectively realizing both slice- and user-level
scheduling. By doing so, the original scheduling problem
can be decomposed, further increasing flexibility and
extensibility.

Practically, this recursive approach is provided in
details in Algorithm 1, and we first define two sets:
C :=

{
c1, · · · , c|C|

}
contains all slices to be scheduled,

and Ui :=
{
u1, · · · , u|Ui|

}
,∀ci ∈ C includes all associ-

ated UEs with the i-th slice. Then, two global variables
are formed in Algorithm 1: C is a vector of size |C|
comprising all slice configurations, and Si is a vector of
size |Ui|+1 including the number of scheduled resources
for the i-th slice (i.e., Si [0] as the first element of Si)
and for its associated UEs (i.e., Si [j], ∀j ∈ [1, |Ui|]).
Finally, Si, ∀ci ∈ C will be passed to the post-processor
as the scheduling results.

Then, three inputs are defined: l denotes the schedul-
ing level, r is the number of available RBs, and set N
contains the unscheduled slices. To start the recursive
operation, the following arguments are used: l ← slice,
N ← C, and r ← R, where R is the maximum number
of RBs can be scheduled. At the slice-level from line 4 in
Algorithm 1, we first select an unscheduled slice using
the SelectSlice (·) function, allocate RBs to this slice
using the AllocRB (·) function, recursively call SCH to
assign RBs to its associated UEs (see line 9), and move
to the next unscheduled slice (see line 12). At the user-
level from line 15, every associated UE is looped through
to schedule all slice-level resources, i.e., Si [0].

Algorithm 1 Recursive radio resource scheduling
Global variable

C is a vector of size C with slice configuration (scheduling
algorithm and associated user information).
Si is a vector containing the number of scheduled
resources to i-th slice slice and its associated UEs.

Input
l is the scheduling level, equal to slice or user.
r is the number of available resource blocks.
N is the set of unscheduled slices.

1: procedure SCH(l, r,N)
2: if r > 0 then
3: if l = slice then
4: i← SelectSlice(C,N)
5: Si[0]← min (r, AllocRB(r,C[i], 0))
6: r ← r − Si[0]
7: N ← N \ {ci}
8: if length(Si) > 1 then
9: SCH(user,Si[0],N)

10: end if
11: if |N | > 0 then
12: SCH(slice, r,N)
13: end if
14: else
15: j ← 1
16: while r > 0 and j < length(Si) do
17: Si[j]← min (r, AllocRB(r,C[i], j))
18: r ← r − Si[j]
19: j ← j + 1
20: end while
21: end if
22: end if
23: end procedure

V. PERFORMANCE EVALUATION

In this section, we prototype the FlexSlice framework
on top of a platform comprising components from Ope-
nAirInerface (core network, gNB as E2-Node, UEs) and
FlexRIC (nearRT-RIC, xAPP). Specifically, the control
logic abstraction is developed in xApp, nearRT-RIC, and
E2-Node, and messages in between are encapsulated into
SLA SM and Slice SM [11]. Our evaluation includes two
aspects: (1) network and user performance when RAN
is dynamically sliced, and (2) quantitative comparison of
three control logic topologies.

A. Network and user performance
In this part, we aim to show the capability of FlexSlice

for dynamic RAN slicing when applying different algo-
rithms and changing parameters on-the-fly. Specifically,
a single E2-Node is used to serve UE1 and UE2, and
its maximum number of schedulable RBs is R=106.
Moreover, due to radio condition, the maximum cell
capacity is about 130Mbps, and we send fixed 120Mbps
downlink User Datagram Protocol (UDP) traffic to each
UE. It is worth emphasizing that this scenario is created
to observe the impacts on dynamic RAN slicing even
when RAN UPs is fully loaded.

Moreover, six scenarios are described in TABLE II
to serve both UE1 and UE2, with the number of slices
varying between zero (Scenario 1), one (Scenarios 2 and
5) and two (Scenarios 3, 4, and 6). Also, both NVS [8]
and EDF [9] algorithms apply different parameters in
these scenarios: NVS uses the cap parameter to identify
the slice radio resource share in percentage, while EDF
uses the d parameter to indicate the maximum delay and
the n parameter to denote the number of RBs provided
during this period2.

As follows, we go through the results of each scenario
in terms of RB utilization percentage and MAC sched-
uler processing time at E2-Node (Fig. 4a), the perceived
throughput at UE (Fig. 4b), and both one-way delay and
packet loss percentage (Fig. 4c):

1) Scenario 1: At 5 sec, both UE1 and UE2 consume
50% of RBs because no slicing is employed and the PF
algorithm is used at the user-level. Since the sum of UP
traffic (240 Mbps) is much higher than the cell capacity
(130 Mbps), the one-way delay and loss rate are high,
but seem fair to both UEs.

2) Scenario 2: At 22 sec, we use the NVS algorithm
and set 70% of the radio resources to slice 1, so that
each UE takes 35% of the radio resources. Moreover,
both one-way delay and loss rate increase accordingly
(around 1.3x) due to traffic overload of a finite queue
size (i.e., first-in, first-out blocking queue).

3) Scenario 3: At 40 sec, the second slice is set up
with 30% of the radio resource for UE2; thus, UE1 will
occupy all 70% of the radio resource for slice 1. As for
the one-way delay in Fig. 4c, it is inversely proportional
to cap values, but UE1 has a larger latency than in
Scenario 1. This is because the NVS algorithm selects
one slice at a time, so higher throughput (cf. Fig. 4b)
does not imply lower delay (cf. Fig. 4c).

4) Scenario 4: At 62 sec, both slices use cap=50, so
compared to Scenario 1, both UEs use a similar number
of RBs and have similar throughput and loss rates. Due
to the above characteristic of the NVS algorithm, the
one-way delay is slightly higher than Scenario 1.

2The EDF algorithm creates a priority list of network slices based
on their current deadline, but the number of RBs will not exceed n.

TABLE II: Description of six scenarios (Here s1 and s2 represent slice 1 and slice 2, respectively).
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

No s1(NVS, cap=70): s1(NVS, cap=70): UE1 s1(NVS, cap=50): UE1 s1(EDF, d=2, n=150): s1(EDF, d=2, n=150):UE1
Slicing UE1, UE2 s2(NVS, cap=30): UE2 s2(NVS, cap=50): UE2 UE1, UE2 s2(EDF, d=20, n=620):UE2

(a) RB utilization and MAC scheduler processing time (b) Downlink throughput

(c) One-way delay and packet loss percentage
Fig. 4: Network and User performance in a fully-loaded scenario with a centralized topology.

5) Scenario 5: At 79 sec, the EDF algorithm is ap-
plied and the second slice is removed. Note that the
EDF algorithm will preserve n=150 RBs within the
maximum delay of d=2 slots. So about 70% of RBs will
be allocated to Slice 1, similar to Scenario 2; however,
this scenario has a lower one-way delay because the
preserved resources are fixed periodically, which is not
the case for the NVS algorithm.

6) Scenario 6: At 98 sec, the second slice is set up,
and it requests about 30% of RBs in a relaxed deadline
d=20. In Fig. 4a, UE1 takes about 60% of RBs, while
UE2 occupies 30% of RBs. It is worth noting that about
10% of RBs are unused, since we do not over-provide the
values of n, which is smaller than the maximum number
of schedulable RBs per slot. We also see that UE1 now
has a lower latency and loss rate than Scenario 1, because
it has a smaller deadline and thus takes precedence over
UE2 most of the time, while both UEs are only handled
by the PF algorithm in Scenario 1.

In short, the FlexSlice framework enables dynamic
RAN slicing no matter what algorithms or parameters are
changed on-the-fly. Also, the redesigned radio resource
scheduler has a very small footprint (cf. Fig. 4a), even
when RAN UPs is fully loaded.

B. Trade-off between different control logic topologies
In this part, we quantify the trade-off between three

distinct control logic topologies (i.e., centralized, decen-
tralized, and distributed) in terms of control loop latency
and resource consumption. In their respective cases, con-
trol logic abstraction is deployed in the xApp, nearRT-
RIC, and E2-Node to handle the service requirements
in SLA SM (received through service APIs), which are
then mapped to the slice configuration in Slice SM (sent
via RAN APIs).

First, the control loop latency is measured between the
control logic abstraction location and the corresponding
RAN function in Fig. 5. We can see that the distributed
topology has the lowest mean value and least variation,
the reason behind this is that there is no need to leverage
the protocol stack, i.e., Stream Control Transmission
Protocol (SCTP), between E2-Node and nearRT-RIC as
well as between xAPP and nearRT-RIC [4] for commu-
nication. Such benefit is essential to realize time-critical
business logic into the real-time programmable RAN
UP functions for deterministic behavior. In contrast, the
decentralized and centralized topologies take 8x and 17x
more latency, due to the extra one-hop and two-hop
operations, respectively.

We then measure the memory usage of xApp, nearRT-
RIC, and E2-Nodes in TABLE III before and after
introducing the control logic abstraction. First, the extra
memory incurred by realizing the control logic abstrac-
tion in nearRT-RIC (decentralized topology) is minimal.
This is because the nearRT-RIC was originally designed
to communicate with xApp and E2-Node via SLA SM
and Slice SM, so no extra message handling is required.
Also, when we compute the ratio of the extra memory
usage to the baseline memory usage, the smallest result
occurs in the distributed topology. This is because an
E2-Node already requires a larger baseline memory to
accommodate all RAN functions. But when a single
business logic would like to control N E2-Nodes (N>1),
this extra memory usage for control logic abstraction
needs to be deployed in every E2-Node due to the
distributed nature.

To sum up, there are pros and cons to deploying
control logic in different locations. First, the central-
ized topology enables the xApp to directly define its

Fig. 5: Control loop latency comparison.

TABLE III: Memory consumption comparison.
Control Control Baseline Extra Scaled

logic logic memory memory to N
topology location usage usage E2-Nodes

Centralized xApp 3.41MB 0.23MB 1
Decentralized nearRT-RIC 3.50MB 0.10MB 1

Distributed E2-Nodes 1.19GB 0.26MB N

requirements for all RAN-Nodes, and it can naturally
control multiple E2-Nodes without additional resources
(cf. Table III), but at the cost of a higher control
loop latency (cf. Fig. 5). In contrast, the decentralized
topology requires minimal resources and can control
multiple underlying E2-Nodes without further resources
(cf. Table III). Also, the control loop latency is reduced
compared to the centralized one (cf. Fig. 5). Finally,
the distributed topology shows minimal control loop
latency with the smallest variance to enable deterministic
business logic; however, control logic abstraction needs
to be performed at each E2-Node.

C. Summary and Discussions

In summary, our FlexSlice prototype is evaluated in
two aspects. First, we show its capability to facilitate
dynamic RAN slicing over the redesigned radio resource
scheduler. In detail, there is no performance degradation
or system interruption even when we change the number
of slices, slicing algorithm, and UEs-slice associations
on-the-fly. Next, three distinct control logic topologies
are compared. The centralized topology is currently used
in the O-RAN architecture, giving xApps full control
over how their business logic is realized, at the cost
of higher control loop latency and App/platform depen-
dency. The decentralized topology can control multiple
E2-Nodes with lower control loop latency and smaller
resource usage. Lastly, the distributed topology is effec-
tive for the real-time control of deterministic business
logic on few E2-Nodes.

In addition, we see that FlexSlice is paving the
way for 5G-Advanced and 6G in several ways. First,
it provides <50us (cf. distributed topology in Fig. 5)
control loop latency, which can not only cope with
shorter Transmission Time Interval (TTI) but also handle
real-time control for rapid channel variation. Moreover,
the enhanced interoperability of xApps after extending
the centralized topology can naturally establish a cross-
platform App marketplace to serve neutral hosts [12] and
new verticals.

VI. CONCLUSIONS

Our proposed FlexSlice framework provides flexible
control and real-time programmability for RAN UPs
beyond the current O-RAN architecture to enable RAN
slicing. Specifically, three control logic topologies are
supported, and to realize this framework, both control
logic abstraction and redesigned RAN functions are
crucial. Finally, the FlexSlice prototype demonstrates
its capability in supporting dynamic RAN slicing and
adaptable control logic topologies.

ACKNOWLEDGMENTS

This work has been funded by the European Com-
mission as part of the H2020 program 6GBrain project,
under the grant agreement 101017226, the Horizon Eu-
rope 2022 ImagineB5G project, under grand agreement
101096452, and the imec.icon project 5GECO, which
is co-financed by imec and receives financial support
from Flanders Innovation & Entrepreneurship (project
nr. HBC.2021.0673).

REFERENCES

[1] O-RAN Working Group 1, “Slicing Architecture,” Tech.
Rep., 2023, Technical Specification O-RAN.WG1.Slicing-
Architecture-R003-v09.00.

[2] D. Johnson et al., “NexRAN: Closed-loop RAN slicing in
POWDER-A top-to-bottom open-source open-RAN use case,” in
Proceedings of the 15th ACM Workshop on Wireless Network
Testbeds, Experimental evaluation & CHaracterization (Win-
TECH), 2022, pp. 17–23.

[3] A. Kak et al., “HexRAN: A Programmable Multi-RAT Platform
for Network Slicing in the Open RAN Ecosystem,” arXiv preprint
arXiv:2304.12560, 2023.

[4] C.-C. Chen et al., “FlexApp: Flexible and low-latency xApp
framework for RAN intelligent controller,” in ICC 2023 - IEEE
International Conference on Communications, 2023, pp. 1–7.

[5] R. Schmidt and N. Nikaein, “RAN Engine: Service-Oriented
RAN Through Containerized Micro-Services,” IEEE Transac-
tions on Network and Service Management, vol. 18, no. 1, pp.
469–481, 2021.

[6] S. D’Oro et al., “dApps: Distributed Applications for Real-
Time Inference and Control in O-RAN,” IEEE Communications
Magazine, vol. 60, no. 11, pp. 52–58, 2022.

[7] X. Foukas et al., “Taking 5G RAN Analytics and Control to
a New Level,” in Proceedings of the 29th Annual International
Conference on Mobile Computing and Networking (ACM Mobi-
Com ’23), 2023, pp. 1–16.

[8] R. Kokku et al., “NVS: A Substrate for Virtualizing Wireless
Resources in Cellular Networks,” IEEE/ACM Transactions on
Networking, vol. 20, no. 5, pp. 1333–1346, 2012.

[9] T. Guo and A. Suárez, “Enabling 5G RAN Slicing With EDF
Slice Scheduling,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 3, pp. 2865–2877, 2019.

[10] A. Ksentini and N. Nikaein, “Toward Enforcing Network Slicing
on RAN: Flexibility and Resources Abstraction,” IEEE Commu-
nications Magazine, vol. 55, no. 6, pp. 102–108, 2017.

[11] R. Schmidt et al., “FlexRIC: An SDK for next-generation SD-
RANs,” in Proceedings of the 17th International Conference on
Emerging Networking EXperiments and Technologies (CoNEXT
’21), 2021, p. 411–425.

[12] J. F. N. Pinheiro et al., “5GECO: A Cross-domain Intelligent
Neutral Host Architecture for 5G and Beyond,” in IEEE INFO-
COM 2023 - IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), 2023, pp. 1–7.

