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Abstract—The Network Data Analytics Function (NWDAF) is
a key component of the 5G Core Network (CN) architecture
whose role is to generate analytics and insights from the network
data to accommodate end users and improve the network perfor-
mance. NWDAF allows the collection, processing, and analysis
of network data to enable a variety of applications, such as User
Equipment (UE) mobility analytics and UE abnormal behaviour.
Although defined by 3GPP, realizing these applications is still an
open problem. To fill this gap: (i) we propose a microservices
architecture of NWDAF to plug the 3GPP applications as mi-
croservices enabling greater flexibility and scalability of NWDAF;
(ii) devise a Machine Learning (ML) algorithm, specifically an
LSTM Auto-encoder whose role is to detect abnormal traffic
events using real network data extracted from the Milano dataset
[1]; (iii) we integrate and test the abnormal traffic detection
algorithm in the NWDAF based on OpenAirInterface (OAI) 5G
CN and RAN [2]. The experimental results show the ability of
NWDAF to collect data from a real 5G CN using 3GPP-compliant
interfaces and detect abnormal traffic generated by a real UE
using ML.

Index Terms—NWDAF, 5G, ML, LSTM Auto-encoder, Abnor-
mal traffic detection, OAI

I. INTRODUCTION

The current advances in 5G networks have led to thriv-
ing mobile communication by targeting broad services and
applications. In contrast to previous generations, which are
consumer-based technologies, 5G and beyond systems, besides
the regular customers, target industry verticals, such as Indus-
try 4.0, Virtual Reality (VR), and Internet of Things (IoT).
These new vertical applications require high reliability, partic-
ularly at the network level. Further, due to the huge size of
data and its complexity, model-based approaches became less
efficient, while data-driven approaches have become promising
solutions to improve and optimize network performances. In
this context, the Network Management System (NMS) should:
(i) monitor data from different sources (Network Functions
(NFs), Radio Access Network (RAN), Infrastructure, etc.);
(ii) derive analytics and insights from the collected data in
order to detect events and react by applying relevant actions.
For example, the NMS monitors the CPU and RAM usage
of the NFs as well as the users’ generated load to predict
anomalies that may happen due to insufficient RAM resources.

Hence, the NMS should increase the resources dedicated to
the concerned NFs. However, a large proportion of NFs/RAN
vendors use closed and proprietary systems, making collecting
data difficult or even impossible. To overcome this limitation,
the 3rd Generation Partnership Project (3GPP) introduced the
Network Data Analytics Function (NWDAF) starting from
Release 15 and maintaining till the current standard (i.e.,
Release 17) [3].

The NWDAF is a data-aware NF that aims to provide data
analytics services to support network optimization, service
assurance, and business intelligence. The NWDAF can provide
insights about network performances, traffic patterns, and
users’ behaviour, which can help network operators optimize
their networks for better efficiency, reliability, and Quality of
Service (QoS) support. Besides, NWDAF contributes to the
entire life cycle of network planning, construction, operations,
and maintenance.

Table I summarizes the NWDAF services according to
Release 17 of the 3GPP standard and briefly describes each
service. To provide analytics services, the NWDAF collects
raw data from different sources, including NFs, Application
Functions (AFs), and Operation Administration and Mainte-
nance (OAM) using well-established Application Program-
ming Interfaces (APIs) standardized by 3GPP. Then, the
NWDAF performs intelligent analytics on the raw data and
outputs the analytics results to consumers, including other NFs
and the OAM. Thus, using the provided analytics, NWDAF
consumers (such as NMS) can make smart decisions about
network operations, service delivery, and customer experience.

Among the key use cases of NWDAF, detecting User
Equipment (UE)s Abnormal behaviour attracted the attention
of mobile operators. Indeed, the number of connected devices
and the data volume are growing exponentially, making the
abnormal detection task very challenging for mobile oper-
ators. Moreover, only limited research has been conducted
in the area, and only a few functional 5G Core Network
(CN) and NWDAF experimental prototypes are available, such
as [5]. Until this point, most of the previous works have
relied on using 4G cellular and internet traffic to extrapolate
relationships for 5G core networks. Authors of [6] explain



TABLE I
A CLASSIFICATION OF 3GPP DEFINED NWDAF EVENTS [4].

Categorie Event ID Description

Network Conditions

slice load level Network slice load level computation and prediction.
nsi load level Network slice instance load level computation and prediction.
nf load Load analytics information and prediction for a specific network function.
user data congestion Congestion information—current and predicted for a specific location.
network performance Network performance computation and prediction on the gNB status information, gNB resource usage,

communication performance and mobility performance in an Area of Interest.
qos sustainability QoS sustainability—reporting and predicting QoS change.

Device Behaviour
ue mobility UE mobility analytics and expected behaviour prediction.
ue comm UE communication analytics and pattern prediction.
abnormal behaviour UE abnormal behaviour detection and anomaly detection, e.g., being misused or hijacked.

Service Experience

service experience Service experience computation and prediction for an application or UE group.
red trans exp Redundant Transmission Experience related analytics. These analytics may be used by the SMF to

determine whether redundant transmission shall be performed, or shall be stopped.
wlan performance Quality and performance of WLAN connection of UE computation and prediction.
dn performance User plane performance computation and prediction.
sm congestion Session Management Congestion Control Experience information for specific DNN and/or S-NSSAI.

Network Planning dispersion Location or network slices where UEs disperse most of their data volume and sessions transactions.

abnormal behavior detection in NWDAF according to 3GPP.
Furthermore, they extensively review the related work, sum-
marize open problems, and provide possible future research
directions. However, they did not provide a solution to the
problem. The authors of [5] show the integration of Open5GS
5G CN with a NWDAF prototype. However, they only focused
on NFs interaction data, ignoring UE data. Authors of [7]
proposed a functional prototype of NWDAF integrated with
Open5GS 5G CN. However, they did not leverage ML to
provide advanced use cases.

In this paper, we design a fully 3GPP-standardized NWDAF
based on the microservices architecture that allows new use
cases to be added in a plug-and-play fashion. The proposed
architecture includes three layers: (i) the Exposure layer that
implements the 3GPP NWDAF open API [8] to provide a fully
3GPP-standardized northbound interface; (ii) the Analytics
layer that implements the NWDAF intelligence using Machine
Learning (ML) techniques; and (iii) the Monitoring layer
that uses the NFs service based interface to collect data
from NFs, the O-RAN xApps to collect data from the RAN
and the Virtual Infrastructure Manager (VIM) to collect data
from the infrastructure. Then, we integrated our NWDAF
with OpenAirInterface (OAI) 5G CN1, mainly with AMF
and SMF. Moreover, we designed and implemented a traf-
fic anomaly detection algorithm based on Long-Short-Term-
Memory (LSTM) Auto-encoder and plugged the algorithm
into the NWDAF architecture as a microservice. We trained
the LSTM Auto-encoder using real data from the Milano
dataset [1]. Finally, we tested the algorithm at EURECOM
5G facility [9] using Commercial Off-The-Shelf (COTS) UE
and real network conditions. The results show the efficiency
of the proposed algorithm in detecting traffic anomalies.

The remaining sections of this paper are structured as
follows: Section II describes the NWDAF realization. In

1https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-fed

Section III, we present use cases that highlight the practical
applications of NWDAF. Section IV provides an analysis of
NWDAF performance. Finally, Section V concludes the paper.

II. NWDAF REALIZATION

The section is structured into three subsections, covering
different aspects of NWDAF. Subsection II-A provides an
overview of NWDAF’s architecture, while subsection II-B
delves into technical details of the NWDAF’s implementation.
Finally, subsection II-C explores NWDAF interoperability
aspects with OAI 5G CN.

A. NWDAF Architecture Aspects

The overall architecture of NWDAF is depicted in Figure 1,
which comprises three layers: (i) Exposure, (ii) Monitoring,
and (iii) Analytics. The Exposure layer is the system’s entry
point, where clients can submit requests following 3GPP
specifications. The Monitoring layer collects data from the
infrastructure and stores it in a database. The Analytics layer
performs computing tasks to derive the requested information.

1) The Exposure layer: The Exposure Layer is responsible
for communication with external entities, such as service
providers and NFs. One of its key components is the North-
Bound Interface (NBI) Gateway module, which acts as a
3GPP-compliant interface between NWDAF and its clients.
The latter can either request information or subscribe for an
event (i.e., the client waits till an event occurs to receive
information from the NWDAF). The client request is routed
to either the NBI Analytics Info module or the NBI Events
Subscription module, depending on the nature of the request.
On the one hand, the NBI Analytics Info module enables
external entities to obtain real-time analytical data from the
NWDAF, offering valuable insights into network performance.
Its main responsibilities include: (i) handling requests from
the NBI Gateway module; (ii) requesting the Analytics layer
to compute the desired information; (iii) and generating and
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Fig. 1. Microservices-based NWDAF architecture.

transmitting responses to clients based on the Analytics layer’s
output. On the other hand, the NBI Events Subscription
module allows external entities to subscribe to specific network
events and receive notifications when those events occur. This
component performs several tasks, including: (i) handling
requests from the NBI Gateway module; (ii) keeping track of
existing subscriptions; (iii) communicating with the Analytics
layer to compute the desired information; (iv) and delivering
notification messages to the corresponding clients based on
the responses received from the Analytics layer.

2) The Analytics layer: Within the microservices architec-
ture of NWDAF, each service (summarized in Table I) is
mapped to an engine located in the Analytics layer. Each
engine performs the required computations to derive the target
service information. The Exposure layer is responsible for
selecting the appropriate engine based on the type of service
requested. For instance, The Anomaly Detection Engine de-
picted in Figure 1 employs an ML-based model to calculate
the probability of traffic anomalies based on the history of the
UE traffic patterns. The latter are retrieved from the database
of the Monitoring layer by the engines. By comparing the
current data pattern with the past, the engines can detect po-
tential issues, and network administrators can take preventive
measures. The ML models are stored in a ML repository
which is populated by the network administrator as shown
in Figure 1. The engines pull the ML model that corresponds
to their proposed service.

3) The Monitoring layer: The SouthBound Interface (SBI)
component is a vital element responsible for collecting and
storing network data. It communicates with several entities,
such as NFs for CN-related data, VIM for Edge Network-
related data, and xApps for RAN-related data. Upon startup
of the NWDAF, the SBI module subscribes to the CN NFs to

receive notifications and stores the received notification data in
the database. Furthermore, it requests VIM to collect the RAM
and CPU utilization of various NFs in the Edge network. For
more details on the KPIs collection mechanism, readers can
refer to [10]. The NWDAF can also request RAN information
leveraging O-RAN xApps and KPM Service Model (SM) [11].

B. NWDAF Implementation Aspects

NWDAF was built using multiple technologies and pro-
gramming languages. The RESTful API architecture is used
for all components due to its scalability, ability to manage
multiple data formats, and utilization of HTTP, a widely used
network communication protocol. Python is used for the de-
velopment of engines that use ML models due to its extensive
libraries and frameworks for data analysis and machine learn-
ing. GoLang is used for the remaining system components due
to its efficient code generation, essential for high-performance
system components. This language combination allows greater
system flexibility and efficiency, resulting in a more robust
architecture. MongoDB is selected as the database due to its
scalability and ability to manage unstructured data.

C. NWDAF Interoperability Aspects

The few experimental NWDAF prototypes are coupled with
Open5GS CN. The latter does not expose a standardized
Event Exposure API. Thus, we selected OAI 5G CN, which
implements the 3GPP-compliant Event Exposure API, to test
our NWDAF. OAI offers a 3GPP-compliant Release 16 5G
CN and RAN that support COTS UEs in real radio conditions.
The integration with the CN is done by subscribing to AMF
and SMF Event Exposure APIs while the integration with the
RAN is done using FlexRIC [12] as O-RAN RIC. The latter
hosts monitoring xApps used by the NWDAF to collect radio
information.



III. NWDAF USE CASES

As mentioned earlier, the NWDAF provides two main
services: event subscriptions and analytics information. The
NBI Events Subscription module enables clients to subscribe
or unsubscribe to/from various analytics events, while the NBI
Analytics Info module allows clients to request and receive
specific types of analytics information. Our NWDAF provides
both Core and ML-based services, which we will explore
further.

A. Core services

Our proposed NWDAF supports three Core services:
• Network Performance: The NWDAF provides support for

two types of network performance events: “num of ue,”
which measures the number of attach requests during
a time window, and “sess succ rate,” which measures
the session success rate during a time window specified
in the request. The NWDAF computes “num of ue”
using the AMF notifications, specifically, the registration
event. The NWDAF also supports filtering the number of
attach requests according to a specific network area or
a specific operator. “sess succ rate” is computed using
SMF notifications, i.e., the PDU session establishment
event. The NWDAF also supports filtering according to
a specific data network name or a network slice.

• UE communications: “ue comm” refers to the number of
packets and bytes exchanged in the uplink and downlink
directions for each PDU session. To incorporate these
statistics into SMF notifications, OAI-UPF-VPP2 was
used during core network deployment. The SMF collects
measurement reports from the UPF using the N4 interface
for the usage report procedure of the N4 interface.

• NF Load: As mentioned earlier, the NWDAF computes
the “nf load” event data using data received from the
VIM component. This data includes information on the
CPU and RAM consumption of each NF.

Whenever a client subscribes for an event, the associated
engine retrieves the required data from the MongoDB database
and performs computation on the requested time window, i.e.,
the time interval of the client’s interest.

B. ML-based services

One of the key services of our NWDAF is ML-based
abnormal traffic detection, which is identified in the 3GPP
standard by the event ID “abnormal behaviour” and exception
ID “unexpected large rate flow”.

• Abnormal Traffic: The NWDAF clients can subscribe
to the ”abnormal behaviour” event to receive periodic
updates on the probability of abnormal traffic. The latter
is computed by the Anomaly Detection Engine leveraging
an LSTM-based Auto-encoder. The LSTM-based Auto-
encoder learns the traffic pattern using the history of the
UE data measured from the UPF in both uplink and

2https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-upf-vpp
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Fig. 2. LSTM Auto-encoder architecture.

downlink directions. The traffic pattern contains informa-
tion such as the data size in bytes at a given timestamp
during a week. Figure 2 depicts a basic illustration of the
LSTM Auto-encoder model architecture.
An Auto-encoder is a type of artificial neural network
that consists of an encoder and a decoder. During the
encoding phase, the input data, represented as X =
{x1, x2, . . . , xn}, is compressed into a lower-dimensional
space according to Equation 1.

Z = σ (WX + b) (1)

Where Z is the output of the LSTM encoder, σ is
the activation function of the LSTM encoder, W is the
weights of the encoder layers, and b is the bias vector
of the encoder layers. Similarly, the decoding phase is
trained according to Equation 2 to obtain the output
data X ′ = {x′

1, x
′
2, . . . , x

′
n} that is similar to the input

dimension.
X ′ = σ′ (W ′Z + b′) (2)

Where Z is the input of the LSTM decoder, σ′ is the
activation function of the LSTM decoder, W ′ is the
weights of the decoder layers, and b is the bias vector
of the decoder layers. The Auto-encoder architecture’s
motivation is that it reduces the variance between input
and output by training on only normal traffic without
considering abnormal traffic. Whereas, the motivation be-
hind combining LSTM and the Auto-encoder architecture
is due to the nature of the input, which is correlated
with time, e.g., traffic during the night is different from
traffic during the day. Besides, the LSTM is well known
for dealing with the vanishing gradient problem [13],
which makes the training more stable. In Equation 3, σ
represents the Mean Absolute Error (MAE) between the
input and output of the Auto-encoder.

MAE =

∑n
i=1 |x′

i − xi|
n

=

∑n
i=1 |ei|
n

(3)

Let β denote the average MAE over the training data and
β′ the MAE of the inference data. Equation 4 calculates
the traffic anomaly probability p using the difference
between β and β′.

p = min(α× |β′ − β|, 1) (4)

Where α is a weight to control the impact of the distances
scale,i.e., when α is small enough, the distances will have
less impact on the probability.



• ML-based services perspectives: The suspicion of Dis-
tributed Denial Of Service (DDOS) attack service, which
is identified by the event ID “abnormal behaviour” and
exception ID “suspicion of ddos attack,” can be per-
formed by analyzing the number of users in a similar
way to abnormal traffic detection. The Auto-encoder will
be trained with normal historical data, and if the current
data pattern deviates significantly from past patterns, the
likelihood of a suspicion of DDOS attack increases. This
probability can be used in a closed-control loop to help
the 5G CN mitigate DDOS attacks [14]. Additionally, ra-
dio link failures, identified by the ”abnormal behaviour”
event ID and ”unexpected radio link failures” exception
ID, can be predicted using a combination of LSTM and
Support Vector Machine (SVM), as proposed in [15].

IV. PERFORMANCE EVALUATION

The section is structured into three subsections: Experimen-
tation setup, which details the experimental setup; Experimen-
tation results, which presents and analyzes the performance of
the NWDAF; and Experimentation conclusion, which offers
additional insights related to the experiment.

A. Experimentation Setup

Our experimental setup includes two machines, each
equipped with 36 Intel(R) Xeon(R) Gold 6154 CPUs running
at 3.00GHz. One of these machines is used to run the gNB
based on OAI and is connected to a USRP B210, while the
second machine hosts the 5G Core Network based on OAI
and the NWDAF. In addition, we have a laptop with Ubuntu
Operating System (OS) connected to a Quectel RM500Q-GL
module, which is considered as a 5G UE. To train our LSTM
Auto-encoder, we leveraged the Milano dataset [1]. This
dataset was collected by Telecom Italia for a year. It contains
various information regarding user connectivity events. Our
experiment focused on the volume of data exchanged with
users. We filtered the dataset and organized the records into
the following structure: (weekday, hour, minute, and internet
data). We included the weekday as traffic varies from day to
day, and the hour as traffic during night time differs from
that during the day. The internet data metric, introduced by
Telecom Italia, is proportional to the traffic volume and is used
to conceal the true values. To test the LSTM Auto-encoder, we
generate the anomalies by introducing long traffic flows that
do not follow the Milano dataset pattern. The LSTM Auto-
encoder includes two hidden layers for both the encoder and
the decoder. We employ a learning rate of 0.001, batch size
of 128, tanh activation function, and train the model using
Adam optimizer for 20 epochs. The input sequence size is
set to 12. An expert opinion was considered to set the weight
α of Equation 4 to 0.6, as it produces reasonable anomaly
probabilities and a realistic number of anomalies.

B. Experimentation Results

Figure 3 shows the training and validation loss over the
number of epochs. We observe that the loss trend is similar for
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training and validation sets and converges after approximately
ten epochs. On the other hand, Figure 4 illustrates the Milano
internet data for one week and the generated data using LSTM
Auto-encoder. The figure shows that our LSTM Auto-encoder
is able to learn the Milano dataset data, which is characterized
by high data volume during the day hours and low data volume
during the night hours. In addition, the Milano training data
with injected anomalies and anomaly probabilities are plotted
in Figure 5. This figure demonstrates that the LSTM Auto-
encoder reconstructs input data but deviates when anomalies
occur. Further, the distance between input and generated data
correlates with the anomaly probability. The probabilities
increase as the generated data diverges from the input data.
The anomaly probability threshold is set to 0.5 to determine
whether or not the traffic is an anomaly. Consequently, se-
quences that deviate from normal behaviour are highlighted
in Fig 6. For instance, Internet data values that are unusually
high or unusually low are flagged as potential problems.
As previously stated, the sequence size is 12 time steps.
As a result, points preceding and following the anomalies
are highlighted, as they are in the sequence containing the
anomaly.

We have created a video demonstration to showcase the
utilization of the LSTM Auto-encoder in NWDAF. The video
link can be found here: https://lnkd.in/e-b2jaHk. In the video,
we have shown the subscription of an anomaly detector client
to NWDAF to obtain abnormal traffic probability. We first
generated normal uplink data at the UE using the Milano
data pattern, which resulted in receiving low probabilities. We
then generated abnormal traffic, and the client received a high
abnormal traffic probability. Finally, we reverted the traffic to
normal, and the probability also decreased.

C. Experimentation Conclusion

According to the outcomes of our experimentation, NWDAF
can contribute significantly to improving 5G network orches-
tration. For instance, it can inform clients about the probability
of abnormal traffic, which can be used to conduct corrective
actions. Then, these clients can use Root Cause Analysis
(RCA) tools to identify the underlying causes of network
failures. For example, eXplainable AI (XAI) and Machine
Reasoning-based techniques can be used in conjunction with
expert knowledge to identify the reasons for anomalies using
other NWDAF services. In the context of 6G Network’s Zero-
touch Service Management (ZSM), this can lead to an AI-
based closed-loop fault management that will enable a self-
managed network and minimize human intervention. This can
also be integrated into NWDAF services by plugging a new
microservice Engine for RCA that alerts NWDAF clients of
the root cause.

V. CONCLUSION

In this paper, we have proposed a microservices architecture
for NWDAF to address the challenge of realizing the various
use cases defined by 3GPP. By plugging the 3GPP use cases as
microservices, we have increased the flexibility and scalability

of the NWDAF. We have also designed and implemented
an LSTM Auto-encoder algorithm to detect abnormal traffic
events. The proposed model is integrated in the NWDAF as
a microservice. The experimental results showed the ability
of NWDAF to collect data from a real 5G CN and detect
abnormal traffic generated by a real UE. Our solution can help
enable a self-managed network in the context of 6G’s Zero-
touch Service Management and reduce human intervention,
ultimately improving the network performance and end-user
experience. Overall, this research contributes to the develop-
ment of NWDAF and its applications in Beyond 5G networks,
particularly abnormal traffic detection.
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