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Abstract—In the Generalized Linear Model (GLM), the un-
knowns and the measurements may be non-identically indepen-
dent distributed (niid), as, for instance, in the Sparse Bayesian
Learning (SBL) problem. The Generalized Approximate Message
Passing (GAMP) algorithm performs computationally efficient
belief propagation for Bayesian inference. The GAMP algorithm
predicts the posterior variances correctly in the case of mea-
surement matrices with (n)iid entries. In order to cover more
ill-conditioned measurement matrices, the (right) rotationally
invariant model was introduced in which the (right) singular
vectors are Haar distributed. The associated extension of (G)AMP
is the Vector (G)AMP ((G)VAMP) algorithm, which yields correct
posterior variance predictions in the case of iid unknowns
and measurements. However, due to averaging operations, these
predictions become inexact in the case of niid unknowns and/or
measurements. In this paper we apply Haar Large System
Analysis (LSA) to characterize the variance prediction errors
that can occur. We also introduce Unitary AMP (UAMP), which
can continue to yield correct results with AMP style complexity.

I. INTRODUCTION

The recovery of sparse signal vectors is a fundamental problem
in signal processing with a wide range of applications, includ-
ing compressive sensing, image and speech processing, and
machine learning. The Gaussian signal model is commonly
employed for the recovery of sparse signals due to its sim-
plicity and effectiveness.
In the Gaussian case, the signal model for recovering a sparse
signal vector x can be formulated as follows: y = Ax + v,
where y represents the observations or data. The matrix A,
known as the measurement or sensing matrix, has dimensions
M ×N , where N/M is a constant typically greater than one.
In the sparse model, the vector x contains only K non-zero
(or significant) entries, where K < M < N .
Sparse Bayesian Learning (SBL) [1] is a well-known method
for sparse signal recovery. However, SBL can be compu-
tationally demanding, particularly when dealing with high-
dimensional data. This complexity is due to the requirement
of performing matrix inversions within each iteration.
To address this challenge, approximation inference methods
have been developed, and one popular and efficient approach is
Approximate Message Passing (AMP) [2]. AMP is particularly
effective for recovering high-dimensional signals, and its dy-
namics can be fully characterized through state evolution [3].
However, the convergence of AMP can become problematic
when dealing with ill-conditioned measurement matrices A.
To tackle this problem, the Vector AMP (VAMP) algorithm
was introduced [4]. VAMP splits the variable node x into
two variable nodes x1 = x2 = x within the factor graph. It
utilizes an Expectation-Propagation (EP)-like message passing
algorithm that iteratively operates on the factor graph using

vector-valued messages. VAMP has demonstrated strong per-
formance when dealing with right rotationally invariant (RRI)
A, and its state evolution has been rigorously established [4].

A. Prior Work
In previous research [4], the optimality of VAMP has been
analyzed using the replica method [5]. The replica method
yields a system of equations that describes the fixed point of
the VAMP state evolution and the optimal (sum) mean squared
error (MSE). While the (G)AMP method provides individual
MSEs, its convergence is not guaranteed when dealing with
ill-conditioned A. To enhance the robustness of AMP to A,
the Unitary Transformation AMP (UTAMP) [6] transforms the
linear model.
B. Main Contribution
In this paper, we propose a new method to perform large
system analysis for the VAMP algorithm with niid Gaussian
distributed prior x and RRI A by using the deterministic
equivalent approach for Haar matrices [7]. We show that the
optimal MSE and the VAMP posterior variances correspond to
the fixed point of the same equations. By using large system
analysis, it is also shown that with niid A, (G)AMP also gives
optimal individual MSE. A new method called Unitary AMP
(UAMP) is proposed to provide the optimal individual MSEs
as posterior variances. This method can be applied when A
is RRI. We demonstrate that UAMP introduces a necessary
correction term that allows it to reach the optimal MSE.
C. Notations
The symbol ⟨·⟩ denotes the sample mean of a given set of
data. The operations x.y and x./y represents the element-
wise multiplication and division of two vectors. We use D(τ )
to represent a diagonal matrix constructed from vector τ . We
use DM for a general diagonal matrix of dimension M .

II. VECTOR APPROXIMATE MESSAGE PASSING

The data model considered in VAMP is essentially a linear
mixing model

y = Ax+ v , px(x) , pv(v) (1)

with (possibly) niid prior px(x) =
∏N

i=1 pxi
(xi) and iid

measurements noise pv(v) =
∏N

i=1 pv(vi). Furthermore, we
assume M < N . In [4], the authors proposed an expectation
propagation [8] (EP)-like derivation to derive VAMP. Splitting
x into two identical random vectors x1 = x2 gives an
factorization

p(y,x1,x2) = p(x1)p(y|x2)δ(x1 − x2), (2)



Algorithm 1 VAMP
Require: y, A, px(x), pv(v)

1: Initialize: r01 = 0, γ0
r = 1

2: repeat
3: [Estimate x1]
4: x̂t

1 = g1(r
t
1, γ

t
r)

5: γt
1 = γt

r⟨g′
1(r

t
1, γ

t
r)⟩

6: [Generate messages for x2]
7: rt2 = (γt

rx̂
t
1 − γt

1r1)/(γ
t
r − γt

1)
8: γt

p = γt
1γ

t
r/(γ

t
r − γt

1)
9: [Estimate x2]

10: x̂t
2 = g2(r

t
2, γ

t
p)

11: γt
2 = γt

p⟨g′
2(r

t
2, γ

t
p)⟩

12: [Generate messages for x1]
13: rt+1

1 = (γt
px̂

t
2 − γt

2r2)/(γ
t
p − γt

2)
14: γt+1

r = γt
2γ

t
p/(γ

t
p − γt

2)
15: until Convergence

where δ(·) is the Dirac delta distribution. The VAMP is
illustrated in Algorithm 1.
If we consider the Gaussian case, with niid Gaussian px(x)
and iid Gaussian pv(v), we have the following distributions:

x ∼ N
(
0, D(σ2

x)
)
, v ∼ N (0, σ2

vI), (3)

where D(·) denotes a diagonal matrix constructed from the
vector argument, and σ2

x =
[
σ2
x1 . . . σ2

xN

]T
. With MMSE

estimation, the function g1(r1, γr) can be interpreted as the
MMSE estimation given the prior x1 ∼ N (r1, γrI) and
likelihood N (0;x1, D(σ2

x)). Similarly, function g2(r2, γp)
can be interpreted as the MMSE estimation with prior x2 ∼
N (r2, γpI) and likelihood N (y;Ax2, σ

2
vI).

Thus, g1(r1, γr) and g2(r2, γp) are

g1(r1, γr) = σ2
x.r1./(γr1+ σ2

x),

g2(r2, γp) =

(
1

σ2
v

ATA+
1

γp
I

)−1(
1

σ2
v

ATy +
1

γp
r2

)
.

(4)

Note that posterior variances of x1 and x2 can be calcu-
lated from the derivative of the MMSE estimators w.r.t. their
first arguments. However, in order to reduce computational
complexity, the VAMP algorithm approximates the posterior
variances as multiples of identity matrices. This results

γ1 =
1

N

N∑
i=1

σ2
xiγr

σ2
xi + γr

,

γ2 =
1

N
tr

[(
1

σ2
v

ATA+
1

γp
I

)−1
]
.

(5)

III. LARGE SYSTEM ANALYSIS FOR VAMP .

Following the approach described in [4], we model A as a RRI
matrix. We obtain the economy singular value decomposition
(SVD) of A as follows:

A = UΣV
T
, (6)

where U ∈ RM×M is an orthogonal deterministic matrix, Σ =
D(σ) ∈ RM×M is a diagonal deterministic matrix with σ =

[
σ1 . . . σM

]T
and V ∈ RM×N is obtained by selecting

M columns from a Haar-distributed N ×N random matrix.
The analysis of the large system primarily relies on the
deterministic equivalent proposed in [9], which states

Lemma 1. Let P be any Hermitian matrix with bounded
spectral norm and let V ∈ RN×M be M < N columns
of a Haar distributed (unitary) random matrix. Let B be a
nonnegative definite matrix with ||B|| < ∞ (||B|| represents
the spectral norm) and D be any diagonal matrix with positive
entries. Then the following convergence result holds almost
surely,

1

N
tr
[
B
(
VPVT +D

)−1
]
− 1

N
tr
[
B(e I+D)−1

] a.s.−−→ 0.

(7)
The scalar e can be obtained as the unique solution (fixed
point) of the following system of equations,

e =
1

N
tr
[
P (eP + (1− e e)I)

−1
]
,

e =
1

N
tr
[
B(eI+D)−1

]
.

(8)

The MMSE solution for (1) is given by

x̂MMSE =

(
1

σ2
v

ATA+D
(
1./σ2

x

))−1
1

σ2
v

ATy,

CMMSE =

(
1

σ2
v

ATA+D
(
1./σ2

x

))−1

.

(9)

Thus, the MSE is

MSE =
1

N
tr[CMMSE]. (10)

By using Lemma 1, we obtain the large system approximation

MSE
a.s.−−→ 1

N
tr
[
(e0I+D(1./σ2

x))
−1
]

(11)

with

e0 =
1

N
tr

[
1

σ2
v

Σ
2
(
e0

σ2
v

Σ
2
+ (1− e0e0)I

)−1
]
,

e0 =
1

N
tr
[
(e0I+D(1./σ2

x))
−1
]
.

(12)

Now we try to derive the steady state of niid Gaussian prior
VAMP. At convergence, we have

γ∞
1 =

1

N

N∑
i=1

σ2
xiγ

∞
r

σ2
xi + γ∞

r

γ∞
p =

γ∞
1 γ∞

r

γ∞
r − γ∞

1

γ∞
2 =

1

N
tr

[(
1

σ2
v

ATA+
1

γ∞
p

)−1
]

γ∞
r =

γ∞
2 γ∞

p

γ∞
p − γ∞

2

.

(13)

We first examine the extrinsic γ∞
p and γ∞

r . From (13), we
have

1

γ∞
1

=
1

γ∞
p

− 1

γ∞
r

=
1

γ∞
2

. (14)



Apply Lemma 1 to find the deterministic equivalent

γ∞
2 =

γ∞
p

e∞γ∞
p + 1

; (15)

with

e∞ =
1

N
tr

[
1

σ2
v

Σ
2
(
e∞

σ2
v

Σ
2
+ (1− e∞e∞)I

)−1
]
,

e∞ = γ∞
2 =

γ∞
p

e∞γ∞
p + 1

.

(16)

Combining equations (13), (15), and (16), we can conclude
that

e∞ = γ∞
1 =

1

N
tr
[
(e∞I+D(1./σ2

x))
−1
]
. (17)

The system of equations describing the relation between
(e0, e0) is equivalent to the system of equations corresponding
to (e∞, e∞). This implies that if the system of equations in
(12) has a unique solution, then applying VAMP to linear
systems with niid Gaussian prior results in the optimal MSE.
In the case where the prior distribution of x is iid Gaussian,
x ∼ N (0, σ2

xI), we examine the message generated for the
node x2 as follows:

rt2 = 0; γt
p = σ2

x. (18)

This implies that regardless of the matrix A and the initial-
ization, x̂2 always returns the MMSE estimate of x, and γ2
always provides the MSE.

IV. UNITARY AMP

The VAMP algorithm can only provide the optimal (sum)
MSE. However, we are currently exploring a method to
obtain the optimal element-wise MSE of x. To achieve this,
we employ a similar method as proposed in [6], where we
transform the linear model by left-multiplying the matrix UT :

UTy = ΣV
T
x+UTv, (19)

where U, Σ, and V are obtained by applying economy SVD
on A. Since we assume v to be iid Gaussian, the equivalent
noise remains invariant under orthogonal transformation. Thus,
we have UTv ∼ N (0, σ2

vI).
For simplicity, let’s denote y′ = UTy, v′ = UTv, σ2

v = σ2
v1,

A′ = ΣVT , S′ = A′.A′ and λ = Σ
2
1.

To state the AMP algorithm more easily, we also reformulate
(1) as

z = A′x, y′ = z+ v′ . (20)

Now, we will utilize the AMP algorithm [10] [11] for this
model and summarize it in Algorithm 2. In this algorithm, we
introduce τx and τz as the posterior variances of x and z,
respectively, similar to γ1 and γ2 in Algorithm 1.

V. LARGE SYSTEM ANALYSIS OF UAMP

We will first prove that under the assumption that V is Haar-
distributed, the averaged τx, namely 1

N 1T τx, does not match
the optimal MSE defined in (10). Then in the next section,
we will propose a correction term such that τx matches the

Algorithm 2 UAMP
Require: y, A′, S′ = A′.A′, fx(x), fz(z)

1: Initialize: t = 0, x̂t, τ t
x, st−1 = 0

2: repeat
3: [Output node update]
4: τ t

p = S′ τ t
x

5: pt = A′ x̂t − st−1.τ t
p

6: ẑt = pt.σ2
v./(σ

2
v + τ t

p) + y.τ t
p./(σ

2
v + τ t

p)
7: τ t

z = σ2
v.τ

t
p./(σ

2
v + τ t

p)
8: st = (ẑt − pt)./τ t

p

9: τ t
s = 1./(σ2

v + τ t
p)

10: [Input node update]
11: τ t

r = 1./(S′T τ t
s)

12: rt = x̂t + τ t
r .A

′T st

13: x̂t+1 = rt.σ2
x./(σ

2
x + τ t

r)
14: τ t+1

x = τ t
r .σ

2
x./(σ

2
x + τ t

r)
15: until Convergence

optimal MSE. The steady state of variances in UAMP can be
summarized as follows

1./τ∞
s = σ2

v + S′τ∞
x

1./τ∞
x = 1./σ2

x + S′T τ∞
s .

(21)

With the large system assumptions, as N tend to infinity,
we approximate V

T
DNV and VDMV

T
to 1

N tr(DN )I and
1
N tr(DM )I respectively. Thus, we have

S′τ∞
x = diag

[
ΣV

T
D(τ∞

x )VΣ
]
=

1

N
1T τ∞

x λ,

S′T τ∞
s = diag

[
VΣD(τ∞

s )ΣVT
]
=

1

N
λT τ∞

s 1.
(22)

Now we show the following.

Lemma 2. In AMP with equivalent measurement matrix A′,
the variance prediction 1

N 1T τ∞
x does not match the optimal

MSE in (11).

Proof. If the noise is iid, the MSE remains unchanged under
a unitary transformation. Therefore, equations (11) and (12)
remain the same in this transformed system. We will prove by
contradiction.
Suppose that τ∞

x matches the optimal MSE, we then have

1

N
tr[D(τ∞

x )] =
1

N
tr
[(
D(S′T τ∞

s ) +D(1./σ2
x)
)−1
]

= e0 =
1

N
tr
[
(e0I+D(1./σ2

x))
−1
]
,

(23)

which implies

e0 =
1

N
λT τ∞

s =
1

N
tr
[
Σ

2
D(τ∞

s )
]

=
1

N
tr

[
Σ

2
(

1

N
tr[D(τ∞

x )]D(λ) + σ2
vI

)−1
]

=
1

N
tr
[
Σ

2
(
e0Σ

2
+ σ2

vI
)−1

] (24)

One can observe that e0 in (24) only equals e0 in (12) if
e0e0 = 0.



VI. CORRECTION TERM FOR τs

Considering the asymptotic MSE expression in (11), and the
second equations in (21), (22), we can still write

1

N
tr[D(τ∞

x )] =
1

N
tr
[(
D(S′T τ∞

s ) +D(1./σ2
x)
)−1
]

=
1

N
tr

[(
1

N
λT τ∞

s I+D(1./σ2
x)

)−1
] (25)

Introduce

ec =
1

N
tr[D(τ∞

x )] , ec =
1

N
λT τ∞

s . (26)

Now compare (25),(26) with (11),(12), then we require ec to
be of the form

ec =
1

N
tr
[
Σ

2
(
ecΣ

2
+ (1− ecec)σ

2
vI
)−1

]
. (27)

From the definition of ec in (26), we have

ec =
1

N
λT τ∞

s =
1

N
tr
[
Σ

2
D(τ∞

s )
]
. (28)

Comparing (28) with (27), we want to design the update
scheme of τs such that at steady state,

D(τ∞
s ) =

(
ecΣ

2
+ (1− ecec)σ

2
vI
)−1

. (29)

From the definition of ec in (26), we have

ecΣ
2
=

1

N
tr[D(τx)]Σ

2
=

1

N
1Tτx Σ

2
=

1

N
1Tτx D(λ). (30)

Under the large system approximation (22), we obtain

ecΣ
2
= D(

1

N
1Tτx λ) = D(S′τ∞

x ). (31)

Substituting (26) and (31) into (29), we get

D(τ∞
s )=

[
D(S′τ∞

x )+σ2
vI−

1

N2

(
1T τ∞

x

) (
λT τ∞

s

)
σ2
vI

]−1

.

Therefore, we propose a simple correction for the update of
τ t
s in line 9 of Algorithm 2

τ t
s = 1./

[
σ2
v −

1

N2

(
1T τ t

x

) (
λT τ t−1

s

)
σ2
v + τ t

p

]
(32)

One can verify by Lemma 1 that with this correction, (ec, ec)
converge to a fixed point of (12) and hence τx will converge
to the optimal MSE.

VII. RELATION TO AMP

The original AMP algorithm can be derived by substituting all
instances of A′ with A and all occurrences of S′ with S =
A.A in Algorithm 2. We will now demonstrate that in a more
general scenario with niid matrix A and niid noise signals
v, τ∞

x provides the optimal individual MSE. To analyze the
steady state of AMP, we rely on the theorem presented in [12].

Theorem 1. Let QN ∈ CN×N be a Hermitian deterministic
matrix and AN = XNDXH

N =
∑M

i=1 dixix
H
i , with diagonal

D and XN containing M independent columns xi with
covariance matrix Θi. Also, assume that QN , Θi and D′

N

have uniformly bounded spectral norms. Then, as M,N → ∞
at constant ratio

1

N
tr
[
QN (AN +D′

N )−1
]
− 1

N
tr [QNT]

a.s.−−→ 0, with

T =

(
M∑
i=1

diΘi

1 + ei
+D′

N

)−1

, where

ek = tr

dkΘk

(
M∑
i=1

diΘi

1 + ei
+D′

N

)−1
 .

(33)

We now show that AMP with niid A leads to correct variance
predictions.

Proof. We assume the columns of AT = [a1 . . .aM ] to be
zero mean and independent with diagonal covariance matrix
E
(
aia

T
i

)
= Θi. The optimal MSE is given by (10). By

applying Theorem 1 with an arbitrary diagonal weighting
matrix QN , we obtain the weighted optimal MSE (WMSE):

WMSE(QN )=
1

N
tr
[
QN

(
ATD(1./σ2

v)A+D(1./σ2
x)
)−1
]

a.s.−−→ 1

N
tr

QN

(
M∑
i=1

Θi

σ2
v,i(1 + ei)

+D(1./σ2
x)

)−1


(34)

with

ek = tr

 Θk

σ2
v,k

(
M∑
i=1

Θi

σ2
v,i(1 + ei)

+D(1./σ2
x)

)−1
 . (35)

On the other hand, the steady-state equations of variances in
AMP can also be represented as

1./τ∞
s = σ2

v + Sτ∞
x

1./τ∞
x = 1./σ2

x + ST τ∞
s .

(36)

With large A, Sτ∞
x and ST τ∞

s converge to their expected
values

E [Sτ∞
x ]i = E

[
AD(τ∞

x )AT
]
ii
= tr[ΘiD(τ∞

x )]; (37)

ED
(
STτ∞

s

)
= E diag

(
ATD(τ∞

s )A
)
=

M∑
k=1

τ∞s,kΘk. (38)

Therefore, the weighted mean of the posterior τ∞
x with the

same weighting matrix QN becomes

1

N
tr[QND(τ∞

x )]=
1

N
tr

QN

(
D(1./σ2

x)+
M∑
k=1

τ∞s,kΘk

)−1
.

(39)

From (36) and (38), we obtain

τ∞s,k =
1

σv,k + tr[ΘkD(τ∞
x )]

. (40)

Define e′k =
tr[ΘkD(τ∞

x )]

σ2
v,k

and substituting (40) into (39), we
obtain



1

N
tr[QND(τ∞

x )]

=
1

N
tr

QN

(
D(1./σ2

x) +
M∑
i=1

Θi

σv,i(1 + e′i)

)−1
 ;

e′k = tr

 Θk

σ2
v,k

[
D(1./σ2

x) +

M∑
i=1

Θi

σv,i(1 + e′i)

]−1
 .

(41)

We can now observe that for any diagonal weighting matrix
QN , the weighted mean of τ∞

x is equal to the weighted
optimal MSE.

VIII. RELATION TO UNITARY TRANSFORMATION AMP
In [6], the authors also proposed an AMP method based on a
unitarily transformed model. However, due to the complexity
limitations, they used the large system approximation in every
iteration. UAMP can be modified to UTAMP by applying (22)
to line 4 and line 12 in Algorithm 2, which then become resp.

τ t
p =

1

N
(1T τ t

x)λ , τ t
r =

1
1
N (λT τ t

s)
1. (42)

The same proof as in section V can be used here to show that
averaged τ∞

x does not converge to the optimal MSE. However,
we can apply the same correction stated in (32).

IX. SIMULATION RESULTS

In our simulation, we considered a sparse signal recovery
problem with niid Gaussian priors. The system dimensions
were set to M × N = 512 × 1024, and the signal-to-noise
ratio (SNR) was fixed at 0dB. The noise was assumed to
be white Gaussian with unit variance. To ensure a specific
condition number for the measurement matrix A, we followed
the approach described in [4]. We set the condition number
as s1

sM
= 1000, where s1 and sM represent the largest and

smallest singular values of A, respectively. The sequence of
singular values s =

[
s1, . . . , sM

]T
was generated as a geo-

metric sequence. The measurement matrix A was constructed
using the economy SVD: A = UD(s)V

T
, where the singular

vector matrices U and V were drawn from a Haar distribution.
In order to compare the individual MSE of different methods,
we define

rdiff =
(τx − τMMSE)

T
(τx − τMMSE)

τT
MMSEτMMSE

, (43)

where τMMSE = diag(CMMSE). In Figure 1, we present the
results of our comparison between two cases: one where the
variances of σx are set to be 1, and the other where the
variances follow an exponential decay with a base of 0.991.

X. CONCLUDING REMARKS
In this study, we have investigated the recovery of a sparse
signal vector with niid priors. The VAMP algorithm assumes
the measurement matrix A to be RRI. Thus, we study the
Haar large system analysis based on Lemma 1. We find out
that at convergence, we have equality of the MSEs for the two
VAMP nodes γ∞

1 = γ∞
2 . Furthermore, they both correspond

to the optimal MSE. In the trivial case, in which the prior
distribution of x is iid Gaussian, γ2 will become the optimal
MSE in the first iteration.
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Fig. 1. Variance differences to LMMSE.

We have proposed UAMP. It is similar to UTAMP, but UAMP
does not approximate the posterior variances of x to be equal
(in which case VAMP becomes of high complexity). We then
perform the new Haar based large system analysis to UAMP.
In order for it to give the optimal MSE value, a correction
is needed for the update of τ t

s . The same correction terms
could also be added in UTAMP, to give optimal (sum) MSE
(whereas UAMP may provide correct element-wise MSEs).
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