EURECOM, Sophia-Antipolis, France.

A Quantum Measurement (Msmt) is our only window into the quantum world. Any interaction with a quantum state is via quantum measurement. The outcome of a quantum measurement is random. How much information does the outcome of a quantum measurement contain? Can we quantify the information content in the outcome of a quantum measurement? How do we even formulate this question? How do we quantify the information content in a random outcome?

1. Quantum Measurement with post-Msmt States

Even a perfectly well prepared \& controlled quantum states yield random outcomes to precise Msmts. Does it carry information? If yes, how much?

Formulation : What does the outcome tell us?

Formulation : A Probabilistic Relationship

What are the minimum values for R and C that can ensure the components in the two blue ellipses are statistically indistinguishable?

An Information-Theoretic Formulation

Given a quantum state φ_{ρ} and a POVM $\lambda_{y}=\left\{\lambda_{y}: y \in \mathcal{Y}\right\}$, the post Msmt state is

$$
\begin{equation*}
\Upsilon_{\boldsymbol{\lambda}} \triangleq \operatorname{tr}_{A} \circ \mathcal{E}^{\boldsymbol{\lambda}}\left(\varphi_{\boldsymbol{\rho}}\right)=\left(i_{\boldsymbol{R}} \otimes \operatorname{tr}_{A}\right) \circ\left(i_{\boldsymbol{R}} \otimes \mathcal{E}^{\boldsymbol{\lambda}}\right)\left(\varphi_{\boldsymbol{\rho}}\right)=\sum_{\boldsymbol{y} \in \mathcal{Y}} \sqrt{\boldsymbol{\rho}} \lambda_{y} \sqrt{\boldsymbol{\rho}} \otimes|\boldsymbol{y}\rangle\langle\boldsymbol{y}| \tag{1}
\end{equation*}
$$

Defn. 1 An (n, K, M, θ, Δ) (POVM) simulation protocol consists of (i) a bank of K POVMs $\theta_{k}: k \in[K]$, wherein each POVM $\theta_{k}=\left\{\theta_{k, m}: m \in[M]\right\}$ has at most M outcomes, (ii) a (decoder) POVM $\Delta=\left\{\Delta_{y^{n}}: y^{n} \in \mathcal{Y}^{n}\right\}$ wherein each $\Delta_{y^{n}}$ is an operator on $\mathcal{H}_{K M}$. We let θ denote the POVM $\left\{\theta_{k, m} \otimes|k\rangle\langle k|:(k, m) \in[K] \times[M]\right\}$. The post-measurement state of the $(n, K, M, \theta, \Delta)$ simulation protocol is ${ }^{1}$

$$
\begin{equation*}
\Upsilon_{\theta, \Delta} \triangleq \mathfrak{E}_{s i n}\left(\varphi_{\rho_{K}}\right) \triangleq\left(\operatorname{tr}_{K} \otimes \operatorname{tr}_{A} \circ \mathcal{E}^{\theta} \otimes \operatorname{tr}_{K M} \circ \mathcal{E}^{\Delta}\right)\left(\varphi_{\boldsymbol{\rho}_{K}}\right) . \tag{2}
\end{equation*}
$$

Defn. 2 An (n, K, M, θ, Δ) POVM simulation simulates action of $\lambda_{\mathcal{Y}}$ on ρ within $\eta>0$ if $\left\|\Upsilon_{\lambda}-\Upsilon_{\theta, \Delta}\right\|_{1} \leq \eta$. The action of $\lambda_{\mathcal{y}}$ on ρ can be simulated with communication cost (R, C) if for every $\eta>0$, there exists an $N_{\eta} \in \mathbb{N}$ such that for all $n \geq N_{\eta}$ there exists an (n, K, M, θ, Δ) POVM simulation protocol that simulates the action of $\lambda_{\mathcal{Y}}$ on ρ within $\eta>0$ and $\frac{\log K}{n} \leq C+\eta$ and $\frac{\log M}{n} \leq R+\eta$. We define
$\mathscr{C}\left(\rho, \lambda_{\mathcal{Y}}\right) \triangleq\left\{(R, C):\right.$ Action of $\lambda_{\mathcal{Y}}$ on ρ can be simulated with communication cost $\left.(R, C)\right\}(3)$

Theorem

The action of $\lambda_{\mathcal{y}}$ on ρ can be simulated with communication cost (R, C) iff there exists $\left(\mathcal{W}, \mu_{\mathcal{W}}, p_{Y \mid W}\right) \in \mathcal{C}\left(\rho, \lambda_{\mathcal{Y}}\right)$ for which $(R, C) \in \mathscr{A}\left(\mathcal{W}, \mu_{\mathcal{W}}, p_{Y \mid W}\right)$.

Distributed Separable and Jointly Measurable POVMs

The two problems addressed and solved in this work are depicted on the left and right panels above. Left Panel : How much information is contained in the outcome of a separable measurement on a pair of distributed entangled particles? Right Panel : How much information is contained in the outcome of jointly measurable POVMs operated on a single particle? Our Contributions are

1. Developed a new simplified measurement simulation protocol based on Likelihood POVMs
2. Developed new techniques for analyzing Performance Of simulation POVMs
3. Established Likelihood POVMs can optimally simulate POVMs in diverse network scenarios including the single terminal and the above two scenarios depicted.

Inner Bound for Simulating Distributed Separable POVMs

Defn. 3 For $\rho_{A B} \in \mathcal{D}\left(\mathcal{H}_{A} \otimes \mathcal{H}_{B}\right)$ and POVMs $\lambda_{y_{j}}=\left\{\lambda_{y_{j}} \in \mathcal{P}\left(\mathcal{H}_{j}\right): y_{j} \in \mathcal{Y}_{j}\right\}: j \in[2]$, let $\mathcal{C}\left(\rho_{A B}, \lambda_{\mathcal{Y}}\right)$ be a collection of quintuples $\left(\mathcal{W}_{1}, \mathcal{W}_{2}, \mu_{\mathcal{W}_{1}}, \mu_{\mathcal{W}_{2}}, p_{\underline{Y} \mid W}\right)$ wherein, for $j \in[2]$ (i) \mathcal{W}_{j} is a finite set, (ii) $\mu_{\mathcal{W}_{j}}=\left\{\mu_{w_{j}} \in \mathcal{P}\left(\mathcal{H}_{j}\right): w_{j} \in \mathcal{W}_{j}\right\}$ is a POVM, and (iii) $\left(p_{\underline{Y} \mid \underline{W}}(\underline{y} \mid \underline{w}):(\underline{w}, \underline{y}) \in\right.$ $\underline{\mathcal{W}} \times \underline{\mathcal{Y}})$ is a stochastic matrix such that
$\operatorname{tr}_{\underline{W}}\left(\sigma^{R \underline{W Y}}\right)=\left(i_{R} \otimes \operatorname{tr}_{A B} \circ \mathscr{E}^{2} \nu_{1} \otimes \lambda y_{2}\right)\left(\varphi_{\rho_{A B}}\right)$, where $\sigma^{R \underline{W Y}} \triangleq\left(i_{R} \otimes \operatorname{tr}_{A B} \circ \mathscr{E}^{\mu w_{1} \otimes \mu w_{2}} \otimes \mathscr{E}_{p}^{\underline{Y}} \underline{W}\right)\left(\varphi_{\rho_{A B}}\right)(4)$ where, as stated earlier, $\underline{W}, \underline{Y}, \underline{w}, \underline{y}$ abbreviate $W_{1}, W_{2}, Y_{1}, Y_{2},\left(w_{1}, w_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ respectively. $\operatorname{For}\left(\underline{\mathcal{W}}, \mu_{\underline{\mathcal{W}}}, p_{\underline{\underline{Y} \mid \underline{W}}}\right) \in \mathcal{C}\left(\rho_{A B}, \lambda \underline{\underline{y}}\right)$, we let $\sigma_{1}^{R B W_{1}} \underline{\underline{\Delta}}\left(i_{R} \otimes \operatorname{tr}_{A} \circ \mathscr{E}^{\mu_{\mathcal{W}_{1}} \otimes I_{B}}\right)\left(\varphi_{\rho_{A B}}\right), \sigma_{2}^{R A W_{2}} \triangleq\left(i_{R} \otimes\right.$ $\left.\operatorname{tr}_{B} \circ \mathscr{E}^{I_{A} \otimes \mu_{W_{2}}}\right)\left(\varphi_{\rho_{A B}}\right)$ and $\mathscr{A}\left(\underline{\mathcal{W}}, \underline{\mu_{\mathcal{W}}}, p_{\underline{\underline{Y} \mid \underline{W}}}\right)$ be the set of all quadruples $(\underline{R}, \underline{C})$ satisfying
$R_{1}>I\left(W_{1} ; R B\right)_{\sigma_{1}}-I\left(W_{1} ; W_{2}\right)_{\sigma} \quad R_{1}+R_{2}>I\left(W_{1} ; R B\right)_{\sigma_{1}}+I\left(W_{2} ; R A\right)_{\sigma_{2}}-I\left(W_{1} ; W_{2}\right)_{\sigma}$
$R_{2}>I\left(W_{2} ; R A\right)_{\sigma_{2}}-I\left(W_{1} ; W_{2}\right)_{\sigma} \quad R_{1}+R_{2}+C_{1}>I\left(W_{1} ; R \underline{Y}\right)_{\sigma}+I\left(W_{2} ; R A\right)_{\sigma_{2}}-I\left(W_{1} ; W_{2}\right)_{\sigma}$ $R_{1}+C_{1}>I\left(W_{1} ; R \underline{Y}\right)_{\sigma}-I\left(W_{1} ; W_{2}\right)_{\sigma} \quad R_{1}+R_{2}+C_{2}>I\left(W_{2} ; R \underline{Y}\right)_{\sigma}+I\left(W_{1} ; R B\right)_{\sigma_{1}}-I\left(W_{1} ; W_{2}\right)_{\sigma}$ $R_{2}+C_{2}>I\left(W_{2} ; R \underline{Y}\right)_{\sigma}-I\left(W_{1} ; W_{2}\right)_{\sigma} R_{1}+R_{2}+C_{1}+C_{2}>I(\underline{W} ; R \underline{Y})_{\sigma}-I\left(W_{1} ; W_{2}\right)_{\sigma}$.

Theorem
The action of $\lambda_{\underline{y}}$ on $\rho_{A B}$ can be simulated with communication cost $(\underline{R}, \underline{C})$ if there exists $\left(\underline{\mathcal{W}}, \mu_{\underline{\mathcal{W}}}, p_{\underline{\underline{Y}} \mid \underline{W}}\right) \in \mathcal{C}\left(\rho_{A B}, \lambda_{\underline{\mathcal{Y}}}\right)$ for which $(\underline{R}, \underline{C}) \in \mathscr{A}\left(\underline{\mathcal{W}}, \mu_{\underline{\mathcal{F}}}, p_{\underline{\underline{Y} \mid \underline{W}}}\right)$.

Inner Bound for Multiple Jointly Measurable POVMs

Suppose $\rho \in \mathcal{D}(\mathcal{H}), \lambda_{y_{1}}, \lambda_{y_{2}}, \lambda_{y_{2}}$ are POVMs such that there exists commuting POVMs $\mu_{\mathcal{W}_{1}}, \mu_{\mathcal{W}_{2}}, \mu_{\mathcal{W}_{2}}$ and a conditional PMF $p_{\underline{W \mid W}}$ such that certain Markovity conditions hold, then we provide sufficient conditions analogous to the above theorem under which the simultaneous action of jointly measurable POVMs $\lambda_{\mathcal{y}_{1}}, \lambda_{\mathcal{y}_{2}}, \lambda_{\mathcal{y}_{2}}$ can be simultaneously at the decoder.

