

How Informative are Network Quantum Measurements? Arun Padakandla EURECOM, Sophia-Antipolis, France.

(2)

A Quantum Measurement (Msmt) is our **only** window into the quantum world. Any interaction with a quantum state is via quantum measurement. The outcome of a quantum measurement is **random**. *How much information does the outcome of a quantum measurement contain?* Can we *quantify* the information content in the outcome of a quantum measurement? How do we even formulate this question? How do we *quantify the information content in a random outcome*?

1. Quantum Measurement with post-Msmt States

An Information-Theoretic Formulation

Given a quantum state φ_{ρ} and a POVM $\lambda_{y} = \{\lambda_{y} : y \in \mathcal{Y}\}$, the post Msmt state is

$$\Upsilon_{\boldsymbol{\lambda}} \triangleq \operatorname{tr}_{A} \circ \mathcal{E}^{\boldsymbol{\lambda}}(\varphi_{\boldsymbol{\rho}}) = (i_{\boldsymbol{R}} \otimes \operatorname{tr}_{A}) \circ (i_{\boldsymbol{R}} \otimes \mathcal{E}^{\boldsymbol{\lambda}})(\varphi_{\boldsymbol{\rho}}) = \sum_{\boldsymbol{y} \in \boldsymbol{\mathcal{Y}}} \sqrt{\boldsymbol{\rho}} \lambda_{\boldsymbol{y}} \sqrt{\boldsymbol{\rho}} \otimes |\boldsymbol{y}\rangle \langle \boldsymbol{y}|$$
(1)

Defn. 1 An $(n, K, M, \theta, \Delta)$ (POVM) simulation protocol consists of (i) a bank of K POVMs $\theta_k : k \in [K]$, wherein each POVM $\theta_k = \{\theta_{k,m} : m \in [M]\}$ has at most M outcomes, (ii) a (decoder) POVM $\Delta = \{\Delta_{y^n} : y^n \in \mathcal{Y}^n\}$ wherein each Δ_{y^n} is an operator on \mathcal{H}_{KM} . We let θ denote the POVM $\{\theta_{k,m} \otimes |k\rangle\langle k| : (k,m) \in [K] \times [M]\}$. The post-measurement state of the $(n, K, M, \theta, \Delta)$ simulation protocol is¹

Even a perfectly well prepared & controlled quantum states yield **random** outcomes to precise Msmts. *Does it carry information?* If yes, how much?

Formulation : What does the outcome tell us?

$\Upsilon_{\theta,\Delta} \triangleq \mathfrak{E}_{sim}(\varphi_{\boldsymbol{\rho}_K}) \triangleq (\operatorname{tr}_K \otimes \operatorname{tr}_A \circ \mathcal{E}^{\theta} \otimes \operatorname{tr}_{KM} \circ \mathcal{E}^{\Delta})(\varphi_{\boldsymbol{\rho}_K}).$

Defn. 2 An $(n, K, M, \theta, \Delta)$ POVM simulation simulates action of $\lambda_{\mathcal{Y}}$ on ρ within $\eta > 0$ if $\|\Upsilon_{\lambda} - \Upsilon_{\theta,\Delta}\|_{1} \leq \eta$. The action of $\lambda_{\mathcal{Y}}$ on ρ can be simulated with communication cost (R, C) if for every $\eta > 0$, there exists an $N_{\eta} \in \mathbb{N}$ such that for all $n \geq N_{\eta}$ there exists an $(n, K, M, \theta, \Delta)$ POVM simulation protocol that simulates the action of $\lambda_{\mathcal{Y}}$ on ρ within $\eta > 0$ and $\frac{\log K}{n} \leq C + \eta$ and $\frac{\log M}{n} \leq R + \eta$. We define

 $\mathscr{C}(\rho, \lambda_{\mathcal{Y}}) \triangleq \{(R, C) : Action of \lambda_{\mathcal{Y}} on \rho can be simulated with communication cost <math>(R, C)\}(3)$

Theorem

The action of $\lambda_{\mathcal{Y}}$ on ρ can be simulated with communication cost (R, C) iff there exists $(\mathcal{W}, \mu_{\mathcal{W}}, p_{Y|W}) \in \mathcal{C}(\rho, \lambda_{\mathcal{Y}})$ for which $(R, C) \in \mathscr{A}(\mathcal{W}, \mu_{\mathcal{W}}, p_{Y|W})$.

Distributed Separable and Jointly Measurable POVMs

The two problems addressed and solved in this work are depicted on the left and right panels above. Left Panel : How much information is contained in the outcome of a separable measurement on a pair of distributed entangled particles? Right Panel : How much information is contained in the outcome of jointly measurable POVMs operated on a single particle? **Our Contributions are** :

Developed a new simplified measurement simulation protocol based on Likelihood POVMs
Developed new techniques for analyzing Performance Of simulation POVMs

3. Established Likelihood POVMs can *optimally simulate* POVMs in diverse network scenarios including the single terminal and the above two scenarios depicted.

Inner Bound for Simulating Distributed Separable POVMs

Defn. 3 For $\rho_{AB} \in \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B)$ and POVMs $\lambda_{\mathcal{Y}_j} = \{\lambda_{y_j} \in \mathcal{P}(\mathcal{H}_j) : y_j \in \mathcal{Y}_j\} : j \in [2], let <math>\mathcal{C}(\rho_{AB}, \lambda_{\underline{\mathcal{Y}}})$ be a collection of quintuples $(\mathcal{W}_1, \mathcal{W}_2, \mu_{\mathcal{W}_1}, \mu_{\mathcal{W}_2}, p_{\underline{Y}|\underline{W}})$ wherein, for $j \in [2]$ (i) \mathcal{W}_j is a finite set, (ii) $\mu_{\mathcal{W}_j} = \{\mu_{w_j} \in \mathcal{P}(\mathcal{H}_j) : w_j \in \mathcal{W}_j\}$ is a POVM, and (iii) $(p_{\underline{Y}|\underline{W}}(\underline{y}|\underline{w}) : (\underline{w}, \underline{y}) \in \underline{\mathcal{W}} \times \underline{\mathcal{Y}})$ is a stochastic matrix such that

 $\operatorname{tr}_{\underline{W}}(\sigma^{R\underline{WY}}) = (i_R \otimes \operatorname{tr}_{AB} \circ \mathscr{E}^{\lambda_{y_1} \otimes \lambda_{y_2}})(\varphi_{\rho_{AB}}), \text{ where } \sigma^{R\underline{WY}} \triangleq (i_R \otimes \operatorname{tr}_{AB} \circ \mathscr{E}^{\mu_{W_1} \otimes \mu_{W_2}} \otimes \mathscr{E}_p^{\underline{Y}|\underline{W}})(\varphi_{\rho_{AB}})(4)$ where, as stated earlier, $\underline{W}, \underline{Y}, \underline{w}, \underline{y}$ abbreviate $W_1, W_2, Y_1, Y_2, (w_1, w_2)$ and (y_1, y_2) respectively. For $(\underline{\mathcal{W}}, \mu_{\underline{\mathcal{W}}}, p_{\underline{Y}|\underline{W}}) \in \mathcal{C}(\rho_{AB}, \lambda_{\underline{Y}}), \text{ we let } \sigma_1^{RBW_1} \triangleq (i_R \otimes \operatorname{tr}_A \circ \mathscr{E}^{\mu_{W_1} \otimes I_B})(\varphi_{\rho_{AB}}), \sigma_2^{RAW_2} \triangleq (i_R \otimes \operatorname{tr}_B \circ \mathscr{E}^{I_A \otimes \mu_{W_2}})(\varphi_{\rho_{AB}}) \text{ and } \mathscr{A}(\underline{\mathcal{W}}, \mu_{\underline{\mathcal{W}}}, p_{Y|W}) \text{ be the set of all quadruples } (\underline{R}, \underline{C}) \text{ satisfying}$

What are the **minimum values for** R and C that can ensure the components in the two blue ellipses are **statistically indistinguishable**?

 $\begin{aligned} &(I_B \cup \mathcal{C} \cap \mathcal{H}_2)(\mathcal{Q}_{\rho_{AB}}) \ \text{and} \ \mathcal{Q}(\underline{\mathcal{V}}, \mu_{\underline{W}}, p_{\underline{Y}|\underline{W}}) \ \text{be the set of all quadruples}} (\underline{\mathbf{n}}, \underline{\mathbf{C}}) \ \text{satisfying} \\ &R_1 > I(W_1; RB)_{\sigma_1} - I(W_1; W_2)_{\sigma} \ R_1 + R_2 > I(W_1; RB)_{\sigma_1} + I(W_2; RA)_{\sigma_2} - I(W_1; W_2)_{\sigma} \\ &R_2 > I(W_2; RA)_{\sigma_2} - I(W_1; W_2)_{\sigma} \ R_1 + R_2 + C_1 > I(W_1; R\underline{Y})_{\sigma} + I(W_2; RA)_{\sigma_2} - I(W_1; W_2)_{\sigma} \\ &R_1 + C_1 > I(W_1; R\underline{Y})_{\sigma} - I(W_1; W_2)_{\sigma} \ R_1 + R_2 + C_2 > I(W_2; R\underline{Y})_{\sigma} + I(W_1; RB)_{\sigma_1} - I(W_1; W_2)_{\sigma} \\ &R_2 + C_2 > I(W_2; R\underline{Y})_{\sigma} - I(W_1; W_2)_{\sigma} \ R_1 + R_2 + C_1 + C_2 > I(\underline{W}; R\underline{Y})_{\sigma} - I(W_1; W_2)_{\sigma}. \end{aligned}$

Theorem

The action of $\lambda_{\underline{\mathcal{Y}}}$ on ρ_{AB} can be simulated with communication cost $(\underline{R}, \underline{C})$ if there exists $(\underline{\mathcal{W}}, \mu_{\underline{\mathcal{W}}}, p_{\underline{Y}|\underline{W}}) \in \mathcal{C}(\rho_{AB}, \lambda_{\underline{\mathcal{Y}}})$ for which $(\underline{R}, \underline{C}) \in \mathscr{A}(\underline{\mathcal{W}}, \mu_{\underline{\mathcal{W}}}, p_{\underline{Y}|\underline{W}}).$

Inner Bound for Multiple Jointly Measurable POVMs

Suppose $\rho \in \mathcal{D}(\mathcal{H})$, $\lambda_{\mathcal{Y}_1}, \lambda_{\mathcal{Y}_2}, \lambda_{\mathcal{Y}_2}$ are POVMs such that there exists *commuting* POVMs $\mu_{\mathcal{W}_1}, \mu_{\mathcal{W}_2}, \mu_{\mathcal{W}_2}$ and a conditional PMF $p_{\underline{W}|\underline{W}}$ such that certain Markovity conditions hold, then we provide sufficient conditions analogous to the above theorem under which the simultaneous action of jointly measurable POVMs $\lambda_{\mathcal{Y}_1}, \lambda_{\mathcal{Y}_2}, \lambda_{\mathcal{Y}_2}$ can be simultaneously at the decoder.