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Decision-Making

Decision-making is a critical step in several domains [Norvig and Russell, 1995]:

= Policy-making for the environment
= Healthcare
= Society
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Decision-Making

Decision-making is a critical step in several domains [Norvig and Russell, 1995]:

= Policy-making for the environment
= Healthcare
= Society

Decision Theory = Probabilistic reasoning + Utility theory
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Learning from Data — Function Estimation

= Consider these two examples
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= We are interested in estimating a function f(x) from data

= Many problems in Statistics/Machine Learning can be cast this way!
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Deep Neural Networks

= Implement a composition of parametric functions

f(x) = £ (f(L—l) ( D (%) - ))

with
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Optimizing Deep Nets

= Quadratic Loss Minimization (regression case):

W = arg mv\iln Z lyi — £(x)||? + regularization
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Over-confidence of Deep Learning Models

“What we know is that the vehicle was on a divided highway with Autopilot
engaged when a tractor trailer drove across the highway perpendicular to the
Model S. Neither Autopilot nor the driver noticed the white side of the tractor
trailer against a brightly lit sky, so the brake was not applied. The high ride
height of the trailer combined with its positioning across the road and the
extremely rare circumstances of the impact caused the Model S to pass under
the trailer, with the bottom of the trailer impacting the windshield of the Model
S’
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Over-confidence of Deep Learning Models

Uber suspends self-driving car testing
after cyclist is killed

Uber has suspended testing of its selfdriving cars after one
struckand killed a female cyclist in Phoenix
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Over-confidence of Deep Learning Models
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Google Photos labeled black people 'gorillas'

JESSICA GUYNN | USA TODAY

SAN FRANCISCO — Google has apologized after its new Photos
application identified black people as "gorillas."

On Sunday Brooklyn programmer Jacky Alciné tweeted a screenshot of
photos he had uploaded in which the app had labeled Alcine and a
friend, both African American, "gorillas.

Image recognition software is still a nascent technology but its use is
spreading quickly. Google launched its Photos app at Google /0 in May,
touting its machine-learning smarts to recognize people, places and
events on its own.
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Over-confidence of Deep Learning Models - Online Meme

Image prediction: ping-pong ball
Confidence: 99.99%

Illustration: Dianna “Mick” McDougall, Photo: ResNeXtGuesser
6/29



Over-confidence of Deep Learning Models - Online Meme

Image prediction: pineapple
Confidence: 99.3%

Illustration: Dianna “Mick” McDougall, Photo: ResNeXtGuesser
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Bayesian Deep Learning




Back-propagation — Probabilistic Interpretation Loss

s Tnputs: X = {xg,...,xy}

= Labels: Y ={y1,...,yn}
= Weights : W = {w® . . wb}

Quadratic Loss p(Y[X, W) o exp(—Loss)

1

= Back-propagation minimizes a loss function

= ... equivalent as optimizing likelihood p(Y|X, W)

8/29



Bayesian Inference

= Inputs: X ={xy,...,xy}

» Labels: Y ={y1,...,yn}
= Weights : W = {w® _  wb)}

p(W) p(W[Y, X)

—>
—>
—>

p(Y|X, W)p(W)

p(WIY, X) =

[ ptrix wpwyaw
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Bayesian Deep Nets

= Predictions consider an infinite number of parameter configurations

p(y*|x*, Y, X) :/p(y*|x*,W)p(W|Y7X)dW
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Bayesian Deep Learning Time-line

= Bayesian Deep Nets have been though about since the nineties [MacKay, 1992]
= Deep Nets as Gaussian processes [Neal, 1996]
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Bayesian Deep Learning Time-line

= Bayesian Deep Nets have been though about since the nineties [MacKay, 1992]
= Deep Nets as Gaussian processes [Neal, 1996]
= Mini-Batch variational inference for Deep Nets [Graves, 2011]
= Mini-Batch MCMC sampling [Chen et al., 2014
= TensorFlow is released [Abadi et al., 2016]
= Dropout as Variational Inference [Gal and Ghahramani, 2016]
First ever practical approach for approximate Bayesian Conv Nets

= First workshop on Bayesian Deep Learning at NeurlPS 2016
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Challenges with Bayesian Deep Learning

= Urban legend: Slow and cumbersome to tune/implement compared to optimization
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Challenges with Bayesian Deep Learning

= Urban legend: Slow and cumbersome to tune/implement compared to optimization
= Predictive performance is usually worse than non-Bayesian solutions

= People started questioning the optimality of Bayesian principles @
= Literature flooded with alternative approaches
= |Improvements to Variational Inference for deep models

[Rossi et al., ICML 2019, NeurlPS 2020]

= The problem of choosing sensible priors has been overlooked!
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Prior for Bayesian Neural Networks

x £ @ y

Specifying a sensible prior for Bayesian neural networks (BNNs) is difficult!
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Prior for Bayesian Neural Networks

x £(1) £(2) y

Specifying a sensible prior for Bayesian neural networks (BNNs) is difficult!

= Neural networks are extremely high-dimensional and nonidentifiable.

— Reasoning about parameters is very challenging.

= Most work has resorted to priors of convenience.
— Gaussian priors such as A/(0,1) and N(0,1/D,_1) are the most popular priors for BNN.
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Prior for Bayesian Neural Networks

The prior on the parameters of a BNN induces an unpredictable prior over functions.

Distribution on prior functions p(f)

p(0) = [ bl | wip(a)dw
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Some Emerging Trends in
Bayesian Deep Learning




Gaussian Process Priors

= Gaussian Processes (GPs) are a useful tool for choosing sensible priors on functions we intend
to model.
= A popular covariance function is the radial basis function (RBF):

x — x'||2
Ko (x,X) = a? exp (—”/2”2>

Distribution on prior functions p(f) Covariance of f
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Research Question

How to impose functional priors on BNNs exhibit interpretable properties, similar to GPs?

. Gaussian process
Bayesian NN samples P
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This is a challenging task!

= We aim at matching two stochastic processes — infinite-dimensional distributions.

= We don't know closed-form of the density of BNNs.

16 /29



Research Question

How to impose functional priors on BNNs exhibit interpretable properties, similar to GPs?

. Gaussian process
Bayesian NN samples P

A - A
fo L £ f

= We aim at matching two stochastic processes — infinite-dimensional distributions.

= We don't know closed-form of the density of BNNs.

This is a challenging task!

= Minimize the KL divergence between BNN and GP priors.

KL [pnn || pgp] = —/pnn(f;w)logpgp(f)dH/pnn(f;¢) log pun (f; 1) df .

Entropy — intractable!
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Wasserstein distance

Definition
Given a measurable space 2, the Kantorovich dual form of the 1-Wasserstein distance between two

Borel's probability measures 7 and v in P(Q) is

A1) = s EL[60] - B[00

where ¢ is a 1-Lipschitz function.

17 /29



Wasserstein distance

Definition
Given a measurable space 2, the Kantorovich dual form of the 1-Wasserstein distance between two
Borel's probability measures 7 and v in P(Q) is

A1) = s EL[60] - B[00

where ¢ is a 1-Lipschitz function.

v No need to know the closed-form of 7 and v as we can estimate expectations with samples.

v/ The 1-Lipschitz function ¢ can be parameterized by a neural network.
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Proposed Method

= Minimize the 1-Wasserstein distance between the BNN functional prior and a GP prior

v The objective is fully sampled-based!
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Proposed Method

= Minimize the 1-Wasserstein distance between the BNN functional prior and a GP prior

v The objective is fully sampled-based!
— Not necessary to know the closed-form of the marginal density p,, (f; ).

— Can consider any stochastic process as a target prior over functions.

v/ The objective can be optimized with gradient descent algorithms with back-propagation.
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Matching BNN Prior to GP Prior

Target GP prior BNN prior
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ression Synthetic Data

GP prior BNN - Fixed Gauss. prior BNN - Fixed NormFlow prior
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1D Regression Synthetic Data

BNN - Fixed Gauss. prior BNN - Fixed NormFlow prior

GP prior

BNN - GPi Gauss. prior BNN - GPi NormFlow prior
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1D Regression Synthetic Data

GP prior BNN - Fixed Gauss. prior BNN - Fixed NormFlow prior
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1D Regression Synthetic Data

GP teri BNN posterior BNN posterior
posterior Fixed Gauss. prior Fixed NormFlow prior
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1D Regression Synthetic Data

GP teri BNN posterior BNN posterior
posterior . (Fixed Gauss. prior) . (Fixed NormFlow prior)
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Bayesian Convolutional Neural Networks - CIFAR-10

Architecture

Method

Accuracy - % (1)

NLL (1)

Deep Ensemble 81.96 + 033 0.7759 + 0.0033

Fixed Gauss. prior 81.47 + o033 0.5808 + 0.0033

VGG16 Fixed Gauss. prior + Temp. Scaling 82.25 + o015 0.5398 + 0.0015
GPi Gauss. prior (ours) 83.34 + 053 0.5176 -+ 0.0053

Fixed Hierar. prior 86.03 + o020 0.4345 + 0.0020

GPi Hierar. prior (ours) 87.03 + o.07 0.4127 =+ 0.0007

Deep Ensemble 87.77 +0.03 0.3927 + 0.0003

Fixed Gauss. prior 85.34 + o013 0.4975 + 0.0013
PRERESNET20  Fixed Gauss. prior + Temp. Scaling 87.70 +on 0.3956 + o.0011
GPi Gauss. prior (ours) 86.86 + 027 0.4286 + 0.0027

Fixed Hierar. prior 87.26 + 0.09 0.4086 =+ 0.0009

GPi Hierar. prior (ours) 88.20 + o.07 0.3808 -+ 0.0007
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Autoencoders

= An autoencoder (AE) is a neural network used for unsupervised learning
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Autoencoders

= An autoencoder (AE) is a neural network used for unsupervised learning
= Encoder: transforms an unlabelled dataset, x := {x,}/, into latent codes, z := {z,}V
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Autoencoders

= An autoencoder (AE) is a neural network used for unsupervised learning
= Encoder: transforms an unlabelled dataset, x := {x,}/, into latent codes, z := {z,}V

= Decoder: transforms latent codes into reconstructions, % := {&,}"
= We can do Bayesian Autoencoders! [Tran et al., NeurlPS, 2021]
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Bayesian Autoencoders

v Breaking away from Variational Autoencoders — separating modeling from inference
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Bayesian Autoencoders

v Breaking away from Variational Autoencoders — separating modeling from inference

X Lack of generative modeling — Easy to bypass by modeling distribution of the latent codes
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Experiments on CelebA Dataset

Test log-likelihood (1
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Ongoing Work

Bayesian Deep Learning and Physics
= Emulation
= Physics-based priors
= Tackling identifiability issues of Bayesian calibration

Schematic for Global
Atmospheric Model

Horizontal Grid (Latitude-Longitude)

Vertical Grid (Height or Pressure)

[Lorenzi and Filippone, ICML 2018 — Marmin and Filippone, Bayesian Analysis 2022]

26 /29



Ongoing Work

Structured priors for Bayesian Autoencoders

= Beyond Score-based Diffusion Models
= Interpretability
= Causality

Yi

High-dim. data

7~ GP (0, k(x, %))
Gaussian Process Prior 5,

Bayesian Decoder

X0 X1 XN-1 XN

Low-dim. auxiliary data

[Tran et al., ICML 2023]
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Ongoing Work

Applications to problems and where decision-making matters

= Environment and Sustainability
= Life Sciences
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Thank you!

Questions?
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