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Motivation



Decision-Making

Decision-making is a critical step in several domains [Norvig and Russell, 1995]:

• Policy-making for the environment
• Healthcare
• Society
• . . .

Decision Theory = Probabilistic reasoning + Utility theory
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Learning from Data – Function Estimation

• Consider these two examples
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• We are interested in estimating a function f(x) from data
• Many problems in Statistics/Machine Learning can be cast this way!
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Deep Neural Networks

• Implement a composition of parametric functions

f(x) = f(L)
(

f(L−1)
(
· · · f(1) (x) · · ·

))
with

f(l)(h) = g
(

W(l)h
)

f(1)x f(2) f(3) f(4) y

W (1) W (2) W (3) W (4)
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Optimizing Deep Nets

• Quadratic Loss Minimization (regression case):

Ŵ = arg min
W

∑
i
‖yi − f(xi )‖2 + regularization
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Over-confidence of Deep Learning Models

UpdateUpdate: NHTSA con+rmed the news that the Autopilot was not at fault –
 Tesla’s crash rate was reduced by 40% after introduction of Autopilot based
on data reviewed by NHTSA

Following the tragic death of 45-year-old Joshua Brown in a collision with a truck while
using the Autopilot of his Tesla Model S in Florida back in May 2016, the U.S. National
Highway TraPc Safety Administration (NHTSA) launched a preliminary evaluation of
Tesla’s Autopilot and requested a lot of information from the automaker.

Citing a source briefed on the matter, Reuters reports that NHTSA is closing investigation
today without Vnding any defect or issuing a recall.

The report said:

“The auto safety agency did not +nd evidence of a defect that would have
required a safety recall of the cars, the source said.”

As we reported last year in our piece ‘Understanding the fatal Tesla accident on
Autopilot and the NHTSA probe‘, the Florida Highway Patrol described the accident:

When the truck made a left turn onto NE 140th Court in front of the car, the
car’s roof struck the underside of the trailer as it passed under the trailer. The
car continued to travel east on U.S. 27A until it left the roadway on the south
shoulder and struck a fence. The car smashed through two fences and struck a
power pole. The car rotated counter-clockwise while sliding to its +nal resting
place about 100 feet south of the highway.

Here’s our birds-eye visualization of what happened based on the information released
by the police:

     Exclusives Autos Alt. Transport Autonomy Energy Tesla Shop 

At the time, Tesla added its own understanding of the events in a blog post:

“What we know is that the vehicle was on a divided highway with Autopilot
engaged when a tractor trailer drove across the highway perpendicular to the
Model S. Neither Autopilot nor the driver noticed the white side of the tractor
trailer against a brightly lit sky, so the brake was not applied. The high ride
height of the trailer combined with its positioning across the road and the
extremely rare circumstances of the impact caused the Model S to pass under
the trailer, with the bottom of the trailer impacting the windshield of the Model
S.”

Autopilot is meant to be used with constant monitoring from the driver and therefore,
drivers shouldn’t rely on it to prevent this type of accident, which is likely why the system
is not found to be at fault by NHTSA.

Tesla has since introduced a new radar technology that CEO Elon Musk said he believes
could potentially prevent this type of accident going forward.

But again, Tesla always highlights the fact that Autopilot is only meant to be used while
the driver remains vigilant and ready to take control at any time.

FTC: We use income earning auto aSliate links. More.

Subscribe to Electrek on YouTube for exclusive videos and subscribe to the podcast.

World Defense Show

The global stage for defense
interoperability. 6-9 March 2022, Riyadh,
Saudi Arabia

World Defense Show Open

Ads by 

Send feedback Why this ad? 

Apollo Phantom electric scooter review: Totally new everything
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Over-confidence of Deep Learning Models - Online Meme

Image prediction: ping-pong ball
Confidence: 99.99%

Illustration: Dianna “Mick” McDougall, Photo: ResNeXtGuesser
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Over-confidence of Deep Learning Models - Online Meme

Image prediction: pineapple
Confidence: 99.3%

Illustration: Dianna “Mick” McDougall, Photo: ResNeXtGuesser
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Bayesian Deep Learning



Back-propagation – Probabilistic Interpretation Loss

• Inputs : X = {x1, . . . , xN}
• Labels : Y = {y1, . . . , yN}
• Weights : W = {W(1), . . . ,W(L)}

Quadratic Loss p(Y|X,W) ∝ exp(−Loss)
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• Back-propagation minimizes a loss function
• . . . equivalent as optimizing likelihood p(Y|X,W)
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Bayesian Inference

• Inputs : X = {x1, . . . , xN}
• Labels : Y = {y1, . . . , yN}
• Weights : W = {W(1), . . . ,W(L)}

p(W) p(W|Y,X)

p(W|Y,X) = p(Y|X,W)p(W)∫
p(Y|X,W)p(W)dW
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Bayesian Deep Nets

• Predictions consider an infinite number of parameter configurations

p(y∗|x∗,Y,X) =
∫

p(y∗|x∗,W)p(W|Y,X)dW
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Bayesian Deep Learning Time-line

• Bayesian Deep Nets have been though about since the nineties [MacKay, 1992]
• Deep Nets as Gaussian processes [Neal, 1996]

• Mini-Batch variational inference for Deep Nets [Graves, 2011]
• Mini-Batch MCMC sampling [Chen et al., 2014]
• TensorFlow is released [Abadi et al., 2016]
• Dropout as Variational Inference [Gal and Ghahramani, 2016]

First ever practical approach for approximate Bayesian Conv Nets

• First workshop on Bayesian Deep Learning at NeurIPS 2016
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Challenges with Bayesian Deep Learning

• Urban legend: Slow and cumbersome to tune/implement compared to optimization

• Predictive performance is usually worse than non-Bayesian solutions

• People started questioning the optimality of Bayesian principles
• Literature flooded with alternative approaches
• Improvements to Variational Inference for deep models

[Rossi et al., ICML 2019, NeurIPS 2020]

• The problem of choosing sensible priors has been overlooked!
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Prior for Bayesian Neural Networks

Specifying a sensible prior for Bayesian neural networks (BNNs) is difficult!

• Neural networks are extremely high-dimensional and nonidentifiable.
−→ Reasoning about parameters is very challenging.

• Most work has resorted to priors of convenience.
−→ Gaussian priors such as N (0, 1) and N (0, 1/Dl−1) are the most popular priors for Bayesian
neural network (BNN).
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Prior for Bayesian Neural Networks

The prior on the parameters of a BNN induces an unpredictable prior over functions.

p(f) =
∫

p(f |w)p(w)dw
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Some Emerging Trends in
Bayesian Deep Learning



Gaussian Process Priors

• Gaussian Processes (GPs) are a useful tool for choosing sensible priors on functions we intend
to model.

• A popular covariance function is the radial basis function (RBF):

κα,l (x, x′) = α2 exp
(
−‖x− x′‖2

2
l2

)
.
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Research Question

How to impose functional priors on BNNs exhibit interpretable properties, similar to GPs?

Bayesian NN samples
Gaussian process

?

This is a challenging task!

• We aim at matching two stochastic processes → infinite-dimensional distributions.
• We don’t know closed-form of the density of BNNs.

• Minimize the KL divergence between BNN and GP priors.

KL [pnn ‖ pgp ] = −
∫

pnn (f;ψ) log pgp (f) df +
∫

pnn (f;ψ) log pnn (f;ψ) df︸ ︷︷ ︸
Entropy – intractable!

.
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Wasserstein distance

Definition
Given a measurable space Ω, the Kantorovich dual form of the 1-Wasserstein distance between two
Borel’s probability measures π and ν in P(Ω) is

W1(π, ν) = sup
‖φ‖L≤1

Eπ[φ(x)]− Eν [φ(x)] ,

where φ is a 1-Lipschitz function.

3 No need to know the closed-form of π and ν as we can estimate expectations with samples.

3 The 1-Lipschitz function φ can be parameterized by a neural network.
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Proposed Method

• Minimize the 1-Wasserstein distance between the BNN functional prior and a GP prior

3 The objective is fully sampled-based!

−→ Not necessary to know the closed-form of the marginal density pnn (f;ψ).
−→ Can consider any stochastic process as a target prior over functions.

3 The objective can be optimized with gradient descent algorithms with back-propagation.
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Matching BNN Prior to GP Prior
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1D Regression Synthetic Data
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1D Regression Synthetic Data
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Bayesian Convolutional Neural Networks - CIFAR-10

Architecture Method Accuracy - % (↑) NLL (↓)

VGG16

Deep Ensemble 81.96 ± 0.33 0.7759 ± 0.0033

Fixed Gauss. prior 81.47 ± 0.33 0.5808 ± 0.0033

Fixed Gauss. prior + Temp. Scaling 82.25 ± 0.15 0.5398 ± 0.0015

GPi Gauss. prior (ours) 83.34 ± 0.53 0.5176 ± 0.0053

Fixed Hierar. prior 86.03 ± 0.20 0.4345 ± 0.0020

GPi Hierar. prior (ours) 87.03 ± 0.07 0.4127 ± 0.0007

PRERESNET20

Deep Ensemble 87.77 ± 0.03 0.3927 ± 0.0003

Fixed Gauss. prior 85.34 ± 0.13 0.4975 ± 0.0013

Fixed Gauss. prior + Temp. Scaling 87.70 ± 0.11 0.3956 ± 0.0011

GPi Gauss. prior (ours) 86.86 ± 0.27 0.4286 ± 0.0027

Fixed Hierar. prior 87.26 ± 0.09 0.4086 ± 0.0009

GPi Hierar. prior (ours) 88.20 ± 0.07 0.3808 ± 0.0007
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Autoencoders

• An autoencoder (AE) is a neural network used for unsupervised learning

• Encoder : transforms an unlabelled dataset, x := {xn}N
n , into latent codes, z := {zn}N

n

• Decoder : transforms latent codes into reconstructions, x̂ := {x̂n}N
n

• We can do Bayesian Autoencoders! [Tran et al., NeurIPS, 2021]
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Bayesian Autoencoders

3 Breaking away from Variational Autoencoders – separating modeling from inference

7 Lack of generative modeling – Easy to bypass by modeling distribution of the latent codes
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Experiments on CelebA Dataset

Reconstructions Generated Samples

Ground Truth

WAE

VAE

β-VAE
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Ongoing Work



Ongoing Work

Bayesian Deep Learning and Physics
• Emulation
• Physics-based priors
• Tackling identifiability issues of Bayesian calibration

[Lorenzi and Filippone, ICML 2018 – Marmin and Filippone, Bayesian Analysis 2022]
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Ongoing Work

Structured priors for Bayesian Autoencoders

• Beyond Score-based Diffusion Models
• Interpretability
• Causality

[Tran et al., ICML 2023]
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Ongoing Work

Applications to problems and where decision-making matters

• Environment and Sustainability
• Life Sciences

28 / 29



Thank you!

Questions?
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