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ABSTRACT
Many studies have proposed machine-learning (ML) models for
malware detection and classification, reporting an almost-perfect
performance. However, they assemble ground-truth in different
ways, use diverse static- and dynamic-analysis techniques for fea-
ture extraction, and even differ on what they consider a malware
family. As a consequence, our community still lacks an understand-
ing of malware classification results: whether they are tied to the
nature and distribution of the collected dataset, to what extent the
number of families and samples in the training dataset influence
performance, and howwell static and dynamic features complement
each other.

This work sheds light on those open questions by investigating
the impact of datasets, features, and classifiers on ML-based mal-
ware detection and classification. For this, we collect the largest
balanced malware dataset so far with 67k samples from 670 families
(100 samples each), and train state-of-the-art models for malware de-
tection and family classification using our dataset. Our results reveal
that static features perform better than dynamic features, and that
combining both only provides marginal improvement over static
features. We discover no correlation between packing and classifica-
tion accuracy, and that missing behaviors in dynamically-extracted
features highly penalise their performance. We also demonstrate
how a larger number of families to classify makes the classification
harder, while a higher number of samples per family increases accu-
racy. Finally, we find that models trained on a uniform distribution
of samples per family better generalize on unseen data.
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1 INTRODUCTION
Modern Windows malware analysis has to cope with a large num-
ber of samples that have been steadily increasing for two decades.
In 2022, both the AV-TEST Institute and Kaspersky registered over
400,000 new malicious programs daily [21, 27]. In order to counter
such numbers, research and industry have begun to rely on Ma-
chine Learning (ML)-driven malware classification models. They
can be applied over a large number of files and offer more flexible
classification mechanisms than signature-based methods. Never-
theless, they have to contend with human attackers’ imagination,
which consistently produces new variants to fly under the radar.
At their core, ML techniques capture the statistical correlation be-
tween training data and classification targets. As a result, such
statistics-based classification models lose their effectiveness when
going beyond the knowledge encoded in the training data. Human
attackers aware of this limitation can thus always be one step ahead
to choose attacks unseen in the training data, in order to evade the
detection of ML-based methods. Moreover, ML-based classification
models are often performed in a pipeline [19, 32, 59]. For example,
given a suspicious file, a typical ML pipeline should first figure out
whether it is malicious (binary classification), and then find out
whether it belongs to a known family (family classification). Even
though these classification tasks achieve high accuracy in previous
literature [19, 32, 59], most of these works have been carried out
with unrealistic assumptions, mainly because of how the dataset
was constructed.

In addition, a ground-truth of malware families is hard to obtain.
Antivirus companies will not likely use the same name for the
same family. Although the CARO (Computer Antivirus Research
Organization) naming convention has been proposed to mitigate
this issue, it still faces usage obstacles. Scientific research tackled
this problem and produced AVClass [52]: given a list of AV labels
(e.g., from a VirusTotal JSON report), the tool returns the single
most likely family name. However, even if AVClass returns a single
family name according to a consensus algorithm by default, it can
also output a ranking of all alternative family names. Thus, the
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problem is that AVClass is often used to carry out studies using its
default output as ground truth, even though it is probabilistic in
nature.

Moreover, while it is straightforward to collect a high number
of samples for popular families, collecting a large diverse malware
dataset remains difficult and time-consuming [9, 29, 39, 54]. In this
work, we collect PE malware executables from the VirusTotal (VT)
feed [58], a real-time stream of JSON-encoded reports of samples
submitted to VirusTotal. Despite the appearance of more than 44M
VT reports over a period of nearly three months and the collection
of 227k samples from 13.8k families, only 780 malware families of
those contain at least 100 samples.

To further complicate the matter, malware authors often use off-
the-shelf packers and protectors [34, 36]. Both modify a program
to hinder its analysis while still preserving its original behavior.
Based on their design, different malware that undergo the packing
or protection procedures may generate executables that share a
highly similar structure. This easily makes a ML classifier trained
over these malware samples overfit the packed or protected file
structure, rather than capturing its true malicious component.

Therefore, in this work, we put considerable effort to create four
heterogeneous datasets for a total of 118,111 samples to perform
a large-scale measurement study. Three of them are composed of
malicious samples with varying numbers of families, while the
fourth contains benign samples. We devoted particular attention
during the construction of the datasets, trying both to reproduce the
datasets usually used in research, but also considering real-world
scenarios typical of malware analysis. Such datasets allowed us to
create well-controlled experiments for studying how the effective-
ness of ML-based binary and family classification change under
different testing scenarios.

Finally, there is also another crucial aspect that influences ML
algorithms that we further explored: feature extraction. The meth-
ods by which one can analyze executable files fall into two main
categories, depending on what facets one wants to study, namely
static properties and dynamic behavior; nonetheless, the previous
two can also be combined. Since we wanted to study existing ML
state-of-the-art solutions and not design new ones, we build our
static and dynamic feature extraction approaches on what was de-
scribed in recent papers [8, 10]. Therefore, this means that we have
statically analyzed and dynamically executed in a sandbox more
than a hundred thousand samples were used in this study.

Our work contributes by answering the following research ques-
tions for both binary and family classification tasks:
⟨R1⟩ How do static, dynamic, and combined models perform
on different malware families/classes in binary and family
classification?
⟨R2⟩ On which families and classes of malware does each
model fail to produce accurate classification?
⟨R3⟩ What is the contribution of static and dynamic feature
classes to the classification performance and does their con-
tribution change when joining the two sets?
⟨R4⟩ Does the presence of off-the-shelf packers and protec-
tors bring harm to classification accuracy?
⟨R5⟩ Do missing feature values in the runtime behaviors
negatively impact the classification results?

Table 1: Dataset summary

Dataset Samples Families
Malware Balanced (𝑀𝐵 ) 67,000 670
Benign (𝐵) 16,611 -
Malware Unbalanced (𝑀𝑈 ) 18,000 1,500
Malware Generic (𝑀𝐺 ) 16,500 -
All 118,111 -

⟨R6⟩ Is theAVClass2 confidence score correlatedwithML-based
decisions?
⟨R7⟩ How does the training dataset construction strategy
affect the model performance?
⟨R8⟩ How does the ML-driven malware classifier perform
over the families unseen in the training data?

2 DATASET COLLECTION
To conduct our experiments we collected 118,111 Windows PE32
executables, divided in four datasets, as summarized in Table 1. This
section describes the process for building those datasets.

2.1 Malware Samples
We collect PEmalware executables from the VirusTotal (VT) feed [58].
The VT feed is a real-time stream of JSON-encoded reports. Each
report contains the analysis results of a sample submitted to Virus-
Total – including file hashes, filetype, size, and the detection labels
assigned by a large number of antivirus (AV) engines. These reports
are generated both by new samples submitted by VT users, as well
as by user-requested re-analysis of files already known to VT. Sam-
ples in the feed can be of various file types (e.g., PE, APK, PDF),
but our collection focuses on Windows PE executables. Samples
that appear in the feed can be downloaded within 7 days from the
moment they appear in the feed.

We want our dataset to be as diverse as possible in terms of the
number of families, but also to be balanced, so that no malware
family is over-represented or under-represented. Our initial target
was to collect 1,000 malware families with a hundred samples each.
The threshold of 100 samples per family was chosen to have enough
samples per family to performing multi-class classification experi-
ments, taking into account that samples are split into 60% training,
20% validation, and 20% testing. However, due to the collection,
filtering, and reclassification process described below, we ended up
with 670 families satisfying that threshold, as shown in Table 1.

To the best of our knowledge, this is the most diverse labeled mal-
ware dataset in terms of families to date. The most recent dataset
was Motif [24] with 454 families. While the number of families in
Motif is also large, it is 21 times smaller than our balanced dataset
with 3,095 samples, and is unbalanced with a median of three sam-
ples per family. Only one family in Motif reaches 100 samples and
29% of the families have only one sample. Such a small number
of samples for most families does not allow building an accurate
multi-class classifier, as we will show in our evaluation.

Initial collection from VT feed. We collected reports and samples
from the VT feed for 82 non-consecutive days between August 2021
and March 2022. We only retained reports of samples detected by at
least one AV engine, and with a trID [41] filetype identification field
(available in the report) equal to ‘32-bit non-installer PE executable’.
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We excluded 64-bit PE executables, dynamic-link libraries (DLLs),
and executables generated by popular installer software (e.g., NSIS,
InnoSetup). These restrictions are placed by our dynamic analysis
sandbox, described in Section 3.2, which currently does not support
running 64-bit PE executables or DLLs, and does not interact with
GUIs in order to complete the installation of other programs. How-
ever, an analysis of the whole VT feed during the 82 collection days
shows that from all malicious PE samples in the feed, 87.6% are
32-bit executables, 8.2% are DLLs (32-bit or 64-bit), 3.9% are 64-bit
executables, and the remaining 0.3% are other PE types (e.g., OCX,
CPL, SCR).

The retained reports are fed to the AVClass2 malware labeling
tool [52], which outputs the most likely family name for the sam-
ple as well as a confidence factor that captures the number of AV
engines assign that family to the sample (after removing duplicates
due to AV engines that copy each other). For each family reported
by AVClass2, our system downloaded 100 distinct samples. Each
downloaded sample was then checked again to exclude any remain-
ing non-32-bit PE executables and installers that were missed by
trID. In particular, samples are removed if their PE header does
not indicate they are 32-bit executables, or if they are detected as
installers using public Yara rules by Avast [7]. As stated, our initial
target was to collect 1,000 malware families with 100 samples each.
However, when this target was reached, many other families had
been collected with less than 100 samples, resulting in an initial
dataset of 239,417 PE32 malware samples from 23,555 families.

Reclassification and family filtering. The AV labels of a sample
may change over time as AV vendors refine their detection rules.
These label changes may in turn change the family that AVClass2
outputs for a sample. To account for such changes, we re-collect
the updated VT report for our samples 54 days after the end of
our collection process, and feed the new reports to AVClass2 to
obtain the (possibly) updated family. From the 239,417 samples,
9.7% (23,171) were at this point re-classified as a different fam-
ily. AVClass2 uses a taxonomy to identify a wide range of non-
family tokens that may appear in the AV labels. These include
file properties (e.g., FILE:packed:asprotect, FILE:exploit: gingerbreak),
malware classes (e.g., CLASS:virus, CLASS:worm), behaviors (e.g.,
BEH:ddos, BEH:filedelete), and generic tokens (e.g., GEN:malicious,
GEN:behaveslike). However, the AVClass2 taxonomy is assumed
to be incomplete by design [52]. Thus, it may output a label for a
sample that does not correspond to a real family, but rather to a
previously unknown instance of the above categories. To address
this issue, we manually inspected the collected family labels and
conservatively filtered out any labels that may not correspond to
real family names. This step identified 86 likely non-family tokens
not in the AVClass2 taxonomy, such as gametool, testsample, nsis-
mod, dllinject, and processhijack. We also removed random-looking
labels (e.g., 005376ae) that AVClass2 failed to filter. As a byproduct
of our effort, we will contribute our extended AVClass2 taxonomy
to the open-source AVClass2 project.

After reclassification and family filtering, the dataset contained
227,296 samples from 13,894 families, out of which 780 families
had at least 100 samples. Thus, despite examining more than 44M
VT reports over a period of nearly 3 months, we were unable to

reach our goal of 1,000 families with 100 samples. This illustrates
the difficulty of building a diverse malware dataset.

Feature filtering. We performed static and dynamic feature ex-
traction (as detailed in Section 3) for all samples of the 780 families
with at least 100 samples. This required executing each sample in a
sandbox to obtain a behavioral report. We discarded 122 samples
for which the static feature extraction pipeline failed. The failure
reasons were corrupted headers (26 binaries), empty output from
the disassembler probably due to obfuscation techniques (95 sam-
ples), and the absence of the entry point in one binary. We also
discarded samples that did not exhibit any runtime behavior, and
sub-sampled families to keep only 100 samples each. The result is
a balanced dataset (hereinafter 𝑀𝐵 ) that contains 67,000 samples
from 670 families. According to AVClass2, those families belong
to 13 malware classes: 36% (282) of the families are classified as
grayware (including its adware subclass), 15% (120) as downloaders,
11% (87) as worms, 10% (78) as backdoors, 5% (41) as viruses, and
the remaining 23% (62) includes ransomware, rogueware, spyware,
miners, hacking tools, clickers, and dialers.

Dataset statistics. Over 93% of the samples in the𝑀𝐵 dataset are
detected by at least 20 AV engines, while only 0.3% have a VT score
less or equal to 3. It is worth noting that the minimum number of
detections for samples in the dataset is two since AVClass2 requires
at least two AV engines to assign a label to a sample. Samples on
the VT feed can be new (i.e., collected and scanned for the very first
time by VT) or resubmitted (i.e., first submitted in the past but re-
scanned on the day they were collected). We compute the freshness
of samples in the 𝑀𝐵 dataset as the number of days between a
sample’s collection date and its VT first seen date. We observe that
53.4% of the samples were collected within a day of being first
observed by VT, 7.6% within a year, and 37.8% are old samples first
seen over one year before our study.

Packer and protector detection. To hamper analysis, malware au-
thors may use packers that compress a sample and de-compress it at
runtime, as well as more sophisticated protectors that may combine
different obfuscations such as packing, encryption, and code virtu-
alization. To evaluate the impact of packers and other protectors
on malware classification, we determine whether a sample uses
an off-the-shelf packer or protector by using the signature-based
Detect It Easy (DIE) [3] tool, as well as the well-maintained Yara
rules of Avast RetDec [7]. Overall, 22% of the samples in𝑀𝐵 use a
packer or protector. The most popular packer is upx detected on
14.0% the samples, followed by aspack (3.2%) and pecompact (1.0%).
The most popular protectors are vmprotect (1.9%) and asprotect
(0.4%).

2.2 Testing Datasets
We create two other disjoint malware datasets, which we use in
Section 4 to test the ability of ML classifiers to generalize beyond
the 𝑀𝐵 dataset they were built upon. The first dataset, referred
as Malware Unbalanced (or𝑀𝑈 ) in Table 1, contains 18K samples
from 1.5K families. These samples were part of the initial VT feed
collection, passed the filtering and re-classification steps, but their
families never reached the threshold of 100 samples and thus were
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excluded from 𝑀𝐵 . All samples are detected by at least 20 AV en-
gines and none of the samples nor their families are part of𝑀𝐵 .

The second dataset, Malware Generic (𝑀𝐺 ), contains 16.5K sam-
ples for which AVClass2 was unable to output a family, due to AV
engines using only generic labels. These samples were separately
collected from the VT feed between June 23rd and July 6th 2022
and underwent the filtering steps to keep only 32-bit non-installer
PE executables. All samples are detected by at least 20 AV engines
and none of the samples are part of𝑀𝐵 .

2.3 Benign Samples
Building a benign dataset by just relying on the number of AV
detections in the VT report is prone to errors due to the presence
of malicious files that are still unknown to AV engines. There-
fore, we took a more conservative strategy and decided to build a
benign dataset by using a fresh installation of all the community-
maintained packages of Chocolatey [2] (which undergo a rigorous
moderation review process to avoid pollution) in a clean machine
running Windows 10. After each package was installed, we ex-
tracted all the executable files present on the hard disk, which may
correspond to Windows system files or third-party publishers.

We exclude files that are not 32-bit PE executables and those
with more than three detections on VT. This allowed us to discard
borderline cases, i.e., benign files with characteristics very similar to
malware, like hacking and scanning tools. Using this procedure we
collected a dataset 𝐵 of 16,611 benign samples. The code signatures
of those samples indicate a large diversity of publishers with over
1.4K different signers – including both small companies and large
software publishers such as Microsoft, Oracle, and Google.

3 METHODOLOGY
Our work aims to answer the 8 research questions raised in the
introduction. Notably, we aim to explore the performances of ML-
driven malware classifiers that use features extracted statically,
dynamically, or a combination of both with varied coverage of mal-
ware families and changed volumes of training samples. Developing
novel ML-based malware classification models is beyond the scope
of our study. Instead, we focus on discussing and evaluating the
analysed issues using state-of-the-art ML models for malware clas-
sification. As explained next, we use features presented in previous
works [8, 10, 19, 20]. This imposes a limitation as other features
could provide better results.

3.1 Static Features
Hojjat et al. [8] performed a literature review to identify the static
features that carry the most useful information for binary classifica-
tion. We implement their feature extraction methodology to extract
the same classes of static features. Similar to Hojjat et al. [8], we
do not attempt to unpack the executables and perform the same
feature extraction regardless of whether the files are packed or not.

The upper half of Table 2 summarizes the static feature classes
(prefixed by s-). The s-headers class captures 29 integer features
([16]) from the Optional and COFF headers of the executable [14].
The s-sections class captures 590 Boolean features from each section
in the executable ([16]). The s-file features capture the file size in
bytes and the whole file Shannon entropy [33].

Table 2: Feature classes used in the classifiers.

ID Class Extraction Features
s-headers PE headers static 29
s-sections PE sections static 590
s-file File Generic static 2
s-dll DLL imports static 131
s-imports API imports static 3,732
s-strings Strings static 10,402
s-bytegrams Byte n-grams static 13,000
s-opcodegrams Opcodode n-grams static 2,500
d-network Network activity dynamic 438
d-file File activity dynamic 60,555
d-mutex Mutexes used dynamic 7
d-registry Registry operations dynamic 60
d-service Services activity dynamic 736
d-process Process activity dynamic 28,198
d-thread Thread actitivy dynamic 7

For the remaining 5 feature classes the exact number of fea-
tures may differ from those reported by [8] because they undergo
a dataset-dependent feature selection step that retains only the
features that show variability or that provide higher information
gain (IG) [42]. For instance, in s-bytegrams and s-opcodegrams, the
selection process enumerates all values observed in the validation
set (20% of samples in𝑀𝐵 ), excludes rare values appearing in less
than 1% of the samples, computes IG, uses the elbow method to
identify a threshold value for IG, and only retains features with at
least that threshold IG. As in [8], for s-dll, s-imports, and s-strings,
the selection process only excludes rare values, but does not select
an IG threshold.

The s-dll and s-imports class contain Boolean features extracted
from the import table (imported libraries in case of s-dll and im-
ported functions for s-imports). We extracted 637 unique libraries
and 28,667 functions and retained only those that appear in at least
1% of the files in the validation set, reducing the number to 131
DLLs and 3,732 library functions. Similarly, for the s-strings class,
we extracted 106,352,885 strings of at least 4 characters, filter those
that appear in over 1% of the files, and kept 10,402 Boolean fea-
tures capturing whether the string appears or not in the binary.
The s-bytegrams class captures the presence of selected 4-grams,
5-grams, and 6-grams. As proposed in [8], to keep memory usage
manageable, the selection process for this feature class is performed
on 1,000 randomly chosen files from 𝑀𝐵 , instead of the full vali-
dation dataset. From the 1,363,150,788 s-bytegrams extracted, the
selection retained the 13,000 features with the highest IG ([16]). The
s-opcodegrams class captures 1-gram, 2-grams and 3-grams from
the sequence of opcodes disassembled using Capstone [13]. Given
an initial set of 255,812 opcode n-grams, we computed the TF-IDF
and used the elbow method on the IG distribution to retain the top
2,500 float features ([16]).

3.2 Sandbox
We have built a sandbox for executing malware using the best
practices proposed by previous works [34, 36, 47, 60]. We config-
ured a Windows 10 Pro 32-bit virtual machine (VM) with 2 CPUs
(Intel Xeon Platinum 8160 @ 2.10GHz) and 2 GiB of RAM. We in-
stalled popular apps and populated the file system with common
file types to resemble a legitimate desktop workstation as suggested
by Miramirkhani et al. [36]. Malware runs on clones of this VM
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orchestrated using Proxmox VE [6]. To improve performance, we
stored all virtual disk images and VM snapshots in a RAM disk.
As recommended by Rossow et al. [47], each machine runs on its
isolated local network with full Internet access through an ADSL
line of our institution dedicated to this purpose. Recent works have
measured that 40%–80% of modern malware use at least one evasive
technique [17, 34]. To limit the impact of such evasions, we base our
analysis on the Intel PIN-based JuanLesPIN tool [4, 34], which han-
dles common evasive techniques, thereby increasing the likelihood
that malware detonates. Unfortunately, it does not support 64-bit
Windows executables, so we focus on 32-bit malware. We modified
JuanLesPIN to monitor Windows APIs responsible for network,
processes, services, registry, mutexes, file system, and DLL loading.
Finally, we tested our analysis environment with the Al-Khaser [5]
tool to confirm that our sandbox could not be identified. To measure
the overhead introduced by our analysis system we executed 1,000
malware samples randomly chosen among those that: (i) terminate
the execution, (ii) use at least one evasive technique, and (iii) deto-
nates according to the threshold proposed in [28], i.e., the sample
calls at least 50 Windows APIs. We measured their execution time
with and without instrumentation by observing a percentage in-
crease of 𝜇 = 125, 𝜎 = 31,𝑚𝑖𝑛 = 26,𝑚𝑒𝑑 = 106,𝑚𝑎𝑥 = 206. This
overhead is in line with that in [34]. Kuechler et al. [28] recently
showed that the amount of code executed by malware samples
plateaus after two minutes, and little additional information can
be obtained thereafter. Thus considering the overhead mentioned
above, we took a conservative approach and ran each sample for
up to five minutes.

3.3 Dynamic Features
We extract 7 classes of dynamic features from the API calls (in-
cluding their arguments) invoked by the malware during execu-
tion in the sandbox. The features were chosen to cover those used
in previous works that built classifiers from malware executions
(e.g., [10, 19, 20]).

The lower half of Table 2 summarizes the 7 dynamic feature
classes (prefixed by d-). Categorical features such as filenames and
domains are one-hot encoded to Boolean features. To encode each
feature, we count all its possible values and exclude those appearing
less than five times in the training set. The d-network class (438
features) captures the HTTP, TCP, and UDP traffic. Of those, 430 fea-
tures capture unique domains contacted by the malware and HTTP
User-Agent strings used; three count the number of HTTP requests,
TCP connections, and UDP pseudo-sessions; and 5 randomness-
related features capture the mean/median/min/max/std likelihood
of domain names and URLs contacted according to a recently pro-
posed Markov Chain model [10]. The d-file class features (60,555)
capture the name and extension of 60,547 files created or accessed
by the malware, the number of files read, written, and deleted;
and 5 capture the randomness of the filenames. The d-mutex class
features (7) capture the number of mutex objects created and the
randomness of the mutex names. The d-registry class features (60)
capture 55 unique registry keys written, and the count of registry
keys created, opened, read, written, and deleted. The d-service class
features (736) capture the count, randomness, and names of services
and service managers created, started, and halted. The d-process

class features (28,198) capture the count of processes created, pro-
cesses terminated, and shell commands invoked, as well as 28,195
unique process names. The d-thread class features (7) capture the
number of the threads opened, created, resumed, terminated, and
suspended, as well as the number of the interactions with the con-
text of a given thread and the number of asynchronous procedure
calls (APC) queued to a thread. The last two features help capture
suspicious behaviors.

Missing features. When a dynamic feature cannot be computed
(e.g.,due to lack of activity), we assign them default place-holder
values that do not belong to the domain of the features. We refer to
such features as missing features. For example, if a sample has no
file system activity, we cannot compute the d-file filename random-
ness features. As a result, the 5 statistical features related to the
randomness of the file names are thus not available. We perform
dynamic feature extraction only over detonated malware samples
(i.e., those that called at least 50 APIs as defined in 3.2), but even for
detonated samples, there are still missing observations of feature
values. To facilitate the analysis of the impact of the missing fea-
tures, we define the feature missing rate (FMR) of a malware family
as the fraction of family samples that have missing values in the
file, registry, service, and process features (which, among the seven
dynamic features classes we consider, are the most relevant for
classification according to Table 5). Missing values over all these
four feature classes considerably degrades both the amount and
quality of useful information available to the classifier. According
to our analysis, over 54% of the malware families studied in our
work contain on average 77% of the malware samples per family
with missing feature values in these four dynamic feature classes.
Missing observations can negatively impact ML classifiers by over-
fitting the data and reducing the model’s accuracy. Recently, Aonzo
et al. [10] showed that classifier models tend to focus on static fea-
tures, rather than dynamic ones, precisely because static features
are rarely missing. In Section 4.2 we analyze the impact of missing
features in the classification results.

3.4 Models
We train multiple models to capture different axis: classification
task (i.e., binary or family classification), features (i.e., static, dy-
namic, combined), classifiers (i.e., Random Forest, XGBoost), dataset
construction (i.e., distribution of families in training dataset), and a
different number of families and samples.

Classification task. We build models for binary and family clas-
sification tasks. The binary classification models detect whether a
given sample is malicious (positive class) or benign (negative class).
The family classification models identify the family of a given ma-
licious sample, that is, there is one class per malware family and
no goodware class. We prefix the name of a model with binary- or
family- to indicate the classification task.

Features. We build models that use all static features, all dynamic
features, and all combined features (i.e., all static and all dynamic).
The name of a model includes -static-, -dynamic-, or -combined- to
indicate the features used.
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Classifiers. Given a large number of ML classifiers, it is not possi-
ble for us to systematically evaluate all of them. In our experiments
we selected Random Forest and XGBoost because they are consis-
tently among the best-performing classifiers evaluated in previous
works (summarized in Table 9 and Section 5). Moreover, being
tree-based, they are easier to interpret, they allow direct analysis
of feature importance, and they are also intrinsically capable of
handling both categorical features (e.g., unique filenames accessed
during execution) and continuous features (e.g., filename mean ran-
domness). We also considered neural networks, but discarded them
because to achieve good performance they require larger training
datasets (e.g., ≥ 400𝑘 samples in [44]). It was not clear whether
we could build a balanced family dataset of the required size. In
addition, there exist many potential neural architectures to evaluate
and their training times are longer, which is critical given the large
number of models we evaluate.

Dataset construction. For the binary classification task, we ex-
periment with two ways of building our dataset, namely uniform
and not nonUniform. The uniform approach builds datasets that
balance the number of goodware and malware, using a sampling-
with-replacement approach, as follows. We uniformly select from
each family in𝑀𝐵 a number of samples so that the total number of
malicious samples matches the size of the benign dataset (i.e., each
family in𝑀𝐵 provides 24–25 samples for a total of 16,611 malware
samples). We repeat the process five times avoiding repetitions (i.e.,
each time selecting a different set of malware samples from each
family in𝑀𝐵 ), to completely cover all the malicious samples in each
family. These steps produce 5 balanced datasets. Each dataset is split
into 60% of samples for training, 20% for validation (i.e., selecting
the classifier hyper-parameters), and 20% for testing. To evaluate
a model, for each of the five datasets, we perform a 10-fold cross
validation to ensure that all the samples equally contribute to the
training and testing datasets. We report average results across the
five rounds and their respective folds. Thus, obtaining the accuracy
results from one model requires us to train and test 50 times.

The nonUniform approach replicates the unbalanced distribution
of samples per family in the Motif dataset [24]. The motivation
for this dataset is to study whether the family distribution in the
training set of a binary classification task (where family labels are
not used) affects the detection accuracy. In Motif, 29% of families
have only one sample, 41% have 2-5 samples, 12% 6-10, 10% 11-20, 4%
21-30, 2% 31-40, 1% 41-50, and 1% has over 142 samples. We replicate
this distribution on the 670 families in 𝑀𝐵 . For example, we select
one sample from 29% (randomly-chosen without replacement) of
the 670 𝑀𝐵 families and 142 samples from one randomly-chosen
family. The resulting dataset comprises all 16,611 benign samples
and 4,821 samples from 670 families that follow the per-family
sample distribution in Motif.

Number of families and samples. To measure the impact that the
number of families to classify and the available samples for each
family have on the results, we build multiple ML-based classifiers
for the family classification task by uniformly sampling 70, 170,
270, 370, 470 and 570 families from the total 670 families. For each
of them, we also experiment with a version trained and tested on
50, 60, 70, and 80 malware samples for each family. As indicated
above, we have 20% samples used as the validation data. Therefore,

at maximum, there are 80 malware samples for training and testing
use.

4 EXPERIMENTAL STUDY
This section presents the results of the experiments we conducted
to answer the research questions presented in the introduction. We
have adopted the following structure for ease of reading: the reader
will find the discussion to ⟨Rx⟩ in Section 4.x and a summary with
the answer ⟨Ax⟩ at the end of each subsection.

4.1 Overall Classification Results
In this section, we examine how static, dynamic, and combined
features impact binary and family classification. In this version, we
only discuss the results using Random Forest. We refer the reader
to our extended report [16] in which we also report the perfor-
mance when adopting XGBoost and the reasons behind the choice
of the first architecture. Table 4 summarizes the accuracy results
using Random Forest. The results correspond to the uniform dataset
construction approach. Each line in the table reports the averaged
precision, recall, and F1 score of 10-fold cross validation. It also
reports the fraction of malware families with 100% family-wise
accuracy. In binary classification, 100% family-wise accuracy for
a family denotes that the family can be perfectly differentiated
from goodware. In family classification, 100% family-wise accuracy
instead means that samples from a malware family are not mis-
classified as another malware family. The static features achieve
a higher F1 score than the dynamic features in both binary and
family classification. However, the fraction of perfectly classified
malware families is higher for dynamic features, suggesting that
dynamic features work very well for some malware families, but
poorly on others. The combination of static and dynamic features
brings marginal improvements in F1 score over static-only features.
It improves it by 1% for family classification, but decreases it by 2%
for binary classification. On the other hand, adding dynamic fea-
tures increases the percentage of perfectly classified families over
the static case, although for binary classification the fraction re-
duces compared to dynamic-only features. The accuracy reduction
with more features might seem counter-intuitive, but it can happen
when the two feature sets are not independent and bring different
strengths and weaknesses that lead to mistakes on different parts of
the input space. It is well known as the curse-of-dimensionality in
machine learning [56]. Adding more features does not necessarily
improve the overall accuracy, more features may bring unexpected
variance and noise into the classification module [30].

Our results may raise concerns about the value of dynamic analy-
sis. On the one hand, dynamic features outperform static features for
a fraction of families, significantly raising the number of perfectly
classified families (e.g., nearly doubling it for binary classification).
This confirms the value of dynamic analysis, for example when
researchers are interested to build behavioral signatures for spe-
cific malware families. On the other hand, the overall impact of
adding dynamic features to static features is unclear. This might be
the consequence of malware families for which dynamic features
do not work well, because of intrinsic properties of the malware
family (or malware class), but also because the sandbox might fail
to stimulate samples adequately (e.g., due to evasion techniques or
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Table 3: Classification accuracy for malware classes.

Class Binary class. Recall Family class. F1 score
Static Dyn. Comb. Static Dyn. Com.

Adware 0.905 0.915 0.981 0.926 0.761 0.925
Backdoor 0.966 0.943 0.996 0.830 0.730 0.838
Clicker 0.971 0.929 1.000 0.817 0.692 0.821
Dialer 0.994 0.875 1.000 0.988 0.888 0.984
Downloader 0.974 0.899 0.996 0.864 0.695 0.874
Grayware 0.932 0.895 0.986 0.832 0.675 0.852
Miner 0.989 0.972 0.999 0.927 0.807 0.962
Ransomware 0.967 0.945 0.997 0.839 0.580 0.853
Rogueware 0.984 1.000 0.992 0.616 0.401 0.663
Spyware 0.972 0.829 0.998 0.869 0.704 0.879
Tool 0.992 0.929 1.000 0.864 0.778 0.830
Virus 0.885 0.939 0.971 0.819 0.719 0.809
Worm 0.978 0.899 0.996 0.922 0.721 0.921

Average 0.967 0.920 0.9907 0.848 0.704 0.865

to the lack of a live command-and-control server). Adding dynamic
features to the models may still provide other benefits. For exam-
ple, recent work has shown that dynamic features are preferred by
humans for interpretability [10]. Furthermore, dynamic features
can increase the robustness of the model, making it more resilient
to obfuscations designed to hamper static analysis.

Time-aware experiments. To avoid the temporal bias that cross-
validation may introduce, Pendlebury et al. [39] suggested to split
training samples into temporal bins. However, since our dataset
only contains 100 samples per family, the individual bins would be
too small and thus we decided to not perform temporal binning.
Instead, in Section 4.8 we perform a separate out-of-distribution
(OOD) evaluation with unseen families and singletons not present
in the training dataset, which addresses the main bias that cross-
validation introduces.

⟨A1⟩ For both binary and family classification tasks, models
trained on static features alone provide higher accuracy than the
models trained only on dynamic features. The latter is able to
perfectly classify more families, but perform poorly on others,
producing an overall lower classification accuracy.
Adding dynamic features on top of the static features brings mar-
ginal accuracy improvement for family classification and even
negatively affects binary classification. On the other hand, dy-
namic features may offer benefits for model robustness and inter-
pretability.

4.2 Hard-to-Detect Malware
This section analyzes which malware classes and families pose a
greater challenge for classifiers based on static and dynamic features.
Note that our multi-class classification models are for families. We
only use here the coarser malware class (e.g., virus, worm) to draw
conclusions on similar families.

Table 3 shows Recall and F1-scores for each malware class in
binary and family classification respectively. In binary classifica-
tion, the recall value is defined as the number of correctly classified
samples in the class over the total number of samples in the class.
The numbers differ from those in Table 4 because Table 3 only con-
siders the classification results of malware samples, while Table 4

Table 4: Overall classification results using Random Forest.

Task Features Precision Recall F1-score Families with
100% accuracy

Binary Static 0.956 0.957 0.957 242 (36.12%)
Binary Dynamic 0.945 0.892 0.926 465 (69.40%)
Binary Combined 0.963 0.934 0.948 450 (67.16%)

Family Static 0.856 0.850 0.848 68 (10.15%)
Family Dynamic 0.734 0.708 0.704 114 (17.17%)
Family Combined 0.874 0.867 0.865 138 (20.60%)

covers the classification of both goodware and malware samples
(thus taking also false positives into account).

As we can see, the recall and F1 score are not uniform across
all classes and can widely vary depending on the task and the
features used. Static features are considerably better at detecting
downloaders, dialers, and worms. In contrast, dynamic features
perform better on rogueware, miner, and ransomware.

These results are confirmed also if we look at individual families.
We show in Table 6 of our extended report [16] the 10 families
with the lowest accuracy in both classification tasks using static
and dynamic features. For instance, among the 10 malware families
for which the static classifier makes more mistakes, we count four
viruses (i.e., file infectors) and six grayware. This is even more
remarkable if we consider the fact that there are only 40 families of
Viruses in our entire dataset. The fact that viruses typically append
their code to benign files results in a wide variation in terms of
static features among samples of the same family, and this can
explain why it is hard for a static classifier to differentiate them from
goodware and from other families. Similarly, grayware is defined as
undesirable code, which is not outright malicious per se, therefore
making it difficult to find a clear boundary to isolate these families.
In the worst 10 families using dynamic features, we can observe
a similar pattern: grayware and viruses dominate the list. Besides,
adware and spyware are also among the worst families. Malware
samples in each of the classes have similar behaviors.

⟨A6⟩ Models employing static features find it more difficult to
classify grayware and viruses. Dynamic features can identify ran-
somware, spyware, and adware asmalware, but they have great dif-
ficulty in properly identifying their families, probably due to very
similar runtime behaviors of different families in these classes.

4.3 Feature Class Importance
This section examines the importance of the static and dynamic
features for binary and family classification using a Random Forest
classifier. We measure feature importance using the average Mean
Decrease Impurity (MDI) score. In a tree-based classifier, the MDI
score of a feature captures how often the feature was used in the tree.
The more a feature is used, the more important it is to distinguish
different classes. For feature classes, we average the MDI Score
across all the features belonging to the same feature class and over
all the trees in the Random Forest model.

Feature classes. Table 5 summarizes the feature class importance.
Overall, static features are ranked higher than dynamic features, es-
pecially for family classification. This matches results in Section 4.1
where dynamic features provide marginal improvements over static
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Table 5: Feature class importance using MDI score.

Feature Class Binary classification Family classification
Comb. Static Dyn. Comb. Static Dyn.

s-bytegrams 40.88 51.38 - 38.60 41.67 -
d-registry 17.19 - 25.00 0.51 - 0.60
s-opcodegrams 13.44 21.08 - 23.48 20.87 -
s-strings 9.09 15.27 - 17.62 19.27 -
d-file 7.74 - 29.70 3.16 - 56.20
s-sections 3.05 6.73 - 5.62 6.48 -
s-imports 2.48 4.17 - 7.87 9.30 -
d-thread 2.06 - 7.34 0.16 - 5.26
d-network 1.51 - 3.50 0.35 - 3.70
d-process 1.47 - 32.90 0.87 - 30.70
s-headers 0.34 0.72 - 0.73 0.96 -
d-mutex 0.25 - 0.16 0.03 - 1.19
d-service 0.19 - 1.40 0.07 - 2.39
s-dll 0.17 0.28 - 0.52 0.57 -
s-file 0.13 0.35 - 0.39 0.87 -

features. This observation is in line with recent findings that al-
though humans prefer dynamic features, ML algorithms rely more
on the always present static features [10]. The most contributing
static feature classes for both classification tasks are s-bytegrams,
s-opcodegrams, and s-strings. This confirms what was previously
observed in the literature, with raw and opcode ngrams dominating
over other static features [8]. On the other hand, the most contribut-
ing dynamic feature classes for both classification tasks are d-file
and d-process. It is interesting to note that even expert human ana-
lysts used widely file and process operations to identify malicious
behaviours [10].

In our dataset, over 50% of the malware samples contain missing
features values in the d-network and d-service feature classes, thus
missing feature values is likely the reason for their low importance.
We evaluate this in Section 4.5. It is interesting that d-registry ranks
second for binary classification, but only 10th for family classifica-
tion. This means that registry operations are useful to differentiate
malware from goodware, but they do not provide enough diversity
to separate different malware families. This likely happens because
multiple malware families operate on the same registry keys such
as those related to achieving persistence (e.g., auto-start) and those
that disable OS security features. In contrast, goodware does not
need to operate on those keys.

Individual features. The most contributing static feature classes
are s-bytegrams and s-opcodegrams, but their individual features
are hard to interpret. For binary classification, the top 10 s-strings
features capture 5 API names (exit, CreateThread, cexit, CopyFileA,
WinExec), one section name (.idata), onemodule name (MSVCRT.dll),
a string possibly related to the .NET runtime (<assemblyIdentity),
and two short strings with unclear meaning (:0806, L$ H ). The top
s-sections features capture section entropy and bit 31 in the section
characteristics field, which states if the section can be written to.
These features are likely related to packing. We further examine
which static features allow to detect packed malware in Section 4.4.
The top s-imports features have some overlap with the top strings
(e.g., exit, cexit), but also contain APIs possibly used for evasion
(e.g., queryperformancecounter, getsystemtimeasfiletime) and popu-
lar C runtime functions (e.g., free, calloc, malloc, fprintf ). For family
classification, the top static individual features differ from those

for binary classification with no intersection between the top 10
s-strings and s-imports for binary and family classification. For
example, the top strings contain 6 API names (WNetOpenEnumA,
WNetEnumResourceA,WNetCloseEnum, RegisterServiceProcess, Path-
FileExistsA, UpdateResourceA), a third-party library name (StringX ),
and some short strings (QQQQS3, lllll, 3.91). These strings are not
highly ranked for binary classification and are possibly associated
with specific families.

Among the dynamic features, the most contributing classes are
d-file and d-process. In contrast to the static features, the top con-
tributing dynamic features largely overlap between binary and
family classification. The top process features are the number of
processes invoking shell commands, and the number of terminated,
opened, and created processes. The top file features capture the
entropy of the files accessed, as well as the name of some specific
files, such as appdata\local\temp\ 7zipsfx.000, which likely indicates
the executable is an SFX installer. One difference between binary
and family classification is that for family classification the number
of mutexes created is a top contributor. Mutexes are often used
by malware creators to avoid re-infecting the same host and their
number and values are intuitively family-specific.

Overall, the interpretability of individual features can be hard,
especially for n-grams. In fact, we argue that one benefit of ML
classifiers is that they can select the features they consider most
useful, which a human may not be able to identify based on domain
knowledge. Our data release [1] includes the top individual features
for the different models.

⟨A5⟩ Static features are more important than dynamic features
for both classification tasks, but especially for family classification.
Raw and opcode n-grams are the most important feature classes
in both classification tasks. The importance of a feature class
may depend on the classification task. For example, d-registry
is important to distinguish malware from goodware, but is not
relevant for family classification.

4.4 Impact of Packers and Protectors
This section evaluates whether the presence of off-the-shelf packers
and protectors harms the classification accuracy when considering
static features. Our dataset comprises real malware collected from
a commercial feed, so we expect the fraction of packed samples
to approximate that in the wild. Overall, we identified 119 unique
known packers, including highly sophisticated ones like VMProtect
and Themida, covering 22% of the samples in our dataset. However,
this ratio is certainly a lower bound as packer detection tools may
not identify custom packers. Tables ??–?? show that the packing
rate largely varies per family: some have 99% of their samples
packed while others have none. As explained in Section 3.1, we did
not attempt to unpack samples, but follow prior work in extracting
static features regardless of whether a file is packed or not. The
packer information is only used for the analysis of the results.

We first investigate whether the models overfit the packers or
instead can capture data that allows them to classify samples cor-
rectly. To answer this question, we first compute the family-wise
classification accuracy for both binary and family classification us-
ing static features. We then compute the Pearson correlation scores
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Table 6: Feature class importance using MDI score when con-
sidering all, packed only, and not-packed samples only.

Feature Class Binary classification Family classification
All Packed Not-Packed All Packed Not-Packed

s-bytegrams 51.38 62.22 49.30 41.67 53.66 38.59
s-opcodegrams 21.08 8.30 22.69 20.87 9.95 25.02
s-strings 15.27 16.80 16.16 19.27 18.17 17.80
s-sections 6.73 7.50 6.29 6.48 9.39 10.17
s-imports 4.17 2.29 4.35 9.30 5.32 6.09
s-headers 0.72 1.42 0.63 0.96 1.30 1.17
s-dll 0.28 1.06 0.21 0.57 0.91 0.78
s-file 0.35 0.40 0.36 0.87 1.29 0.36

between the family-wise accuracy scores and the rate of packed
samples in each family. If packing negatively affects the ability
to classify a sample, we would expect lower accuracy for families
where packing is more prevalent. However, the correlation scores
are 0.015 and 0.0001 respectively for binary and family classification.
To statistically support these results, we run a T-test with the null
hypothesis being that there is not a significant correlation between
classification accuracy and packing presence. We respectively ob-
tain 0.51 and 0.98 as p-values that do not allow us to reject the
null hypothesis. Thus, we conclude that there is not a statistically
significant correlation between the two variables. This might seem
surprising, as one might expect a high correlation between packing
and misclassification rate at least for models that rely only on static
features. After all, packing was one of the main reasons that led
researchers to introduce malware analysis sandboxes and dynamic
analysis. However, this is a common misconception. In fact, while
packing is very effective at impeding static analysis (i.e., the abil-
ity to examine a sample and statically derive its behavior), other
works [8] have shown that common packers leave certain areas of
the binary untouched, thus having a limited effect on the ability
of a ML classifier to identify a sample. While our static models
seem capable to detect samples protected with off-the-shelf pack-
ers, newer protectors can be designed to specifically target static
models. Also, it is possible that some of the hard-to-detect families
use (undetected) custom packers that indeed hamper the detection.

To understand which static features are more effective at identi-
fying packed malware, we compute the importance of the feature
classes separately for two sets: packed samples on one side and
unprotected (i.e., not packed) samples on the other. Table 6 summa-
rizes the results for both binary and family classification. The All
column captures the feature importance for all samples (regardless
of packing) and thus matches the values already reported in Table 5.
The results show that for both binary and family classification of
packed samples, the relative importance of s-bytegrams increases
significantly (compared to all samples) and there are also relevant
increases in the importance of s-sections, s-headers, and s-dll. On the
other hand, the relative importance of s-opcodegrams and s-imports
is greatly reduced.

This is likely due to the fact that much of the code in packed
samples is compressed or encrypted, reducing the amount of useful
opcodes that can be extracted statically to those in the unpacking
routine. On the other hand, raw bytegrams are still able to capture
distinctive sequences of bytes, which may act like signatures for
the packed samples. Those sequences can be extracted from parts of

the executable that are not code (e.g., PE header and data sections).
The classifier focusing on those parts for packed samples would
also explain the increased importance of s-sections, s-headers, and
s-strings. In addition, some packers use weak encryption schemes
based on XOR operations with a fixed key, which may make dis-
tinctive byte sequences in the unpacked code to still be distinctive
(in their encrypted form) in the packed executable. The decrease
in importance for s-imports is likely linked to packers obfuscating
the import table. Finally, most packers leave a very reduced import
table that tends to use the same Windows libraries, which could
explain the slight increase for s-dll.

⟨A3⟩ Packed or protected samples (with off-the-shelf tools) do
not significantly correlate with their classification accuracy using
static features. This means that although these technologies func-
tion well to deter static analysis (in particular reverse engineering),
they do not significantly affect ML classifiers, which are still able
to successfully identify byte-level signatures.

4.5 Impact of Missing Dynamic Feature Values
Some possible explanations for the worse results of dynamic fea-
tures compared to static features are that a sandbox may fail to
stimulate samples adequately to cause them to ‘detonate‘, or that
samples may not work properly due to missing local or remote
components. As a result, the classifier might need to take a decision
based on a partial view of the malware runtime behavior.

We computed the Pearson correlation coefficient between the
family-wise recall of binary classification and the FMR to study the
link between the two. Interestingly, the correlation is not statisti-
cally significant for the binary classification task (pearson -0.1 and
p-value 0.11). However, there is a clear negative correlation (-0.43,
p-value of 7.61 ∗ 10−16) for the family classification task. In this
case, as the fraction of samples with missing feature values for a
family increases, its classification accuracy decreases. This is also
confirmed by looking at the malware families that are the most
difficult to classify with dynamic features, i.e., those for which the
classifier has the lower accuracy (see Tables ?? and ?? in Section.4.2).
Among the top-10 all have an FMR > 65%.

This outcome demonstrates that the ML classifier might still be
able to identify signs of malicious behavior in incomplete dynamic
analysis reports, but more feature values are needed to precisely
distinguish among different families (in particular for those, like
downloaders, that might have similar behavioral profiles). In ad-
dition, binary classification is also affected by the quality of the
behaviors collected from benign samples, while family classifica-
tion accuracy is solely associated with the feature completeness of
malware samples in each family.

⟨A2⟩ Globally, a statistically significant inverse correlation in the
family classification task between the family-wise classification ac-
curacy using dynamic features and the amount of missing dynamic
feature values exist. The correlation is instead not significant for
the binary classification task.
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4.6 Impact of Ground Truth Confidence
To assign a family to a sample AVClass2 computes a list of (tag, con-
fidence) pairs, e.g., (FAM:sality, 5), (CLASS:virus, 4), (FAM:zpevdo,
1). Then, it selects as family the highest confidence tag that is either
a family in its taxonomy or an unknown tag not in its taxonomy.
The confidence score roughly represents the number of AV engines
that assign a tag to the sample, after accounting for aliases and dis-
counting groups of AV engines that copy their labels. This section
examines whether the AVClass2 confidence score for the selected
family impacts the classification accuracy.

To examine this issue, we first compute the confidence score for
each family. For each sample, we obtain a normalized confidence
in the [0,1] range by dividing the confidence score of the assigned
family over the sum of the confidence scores for all family and un-
known tags for the sample. In the case above, this step returns 0.83
as the FAM:sality confidence was 5, but FAM:zpevdo also appeared
in the output. Then, we average the normalized confidence factor
across all samples in the family to produce a family confidence
score.

Next, we compute the correlation between the family-wise clas-
sification accuracy and the family confidence score. The hypothesis
is that higher family confidence scores correlate with higher family
classification accuracy, i.e., the more agreement AV engines have
when tagging the sample, the easier it should be to classify the sam-
ple. The Pearson correlation coefficient is 0.083 for static features
(p-value 0.03) and 0.062 for dynamic features (p-value 0.01). The
correlation is positive but extremely small. Thus, we can conclude
that poor family classification is not influenced by a low AVClass2
confidence score and the result is statistically significant. This is
further confirmed by examining the 10 families with the lowest
classification accuracy using either static-only or dynamic-only
features (Table 6 of our extended report [16]). Of those 20 families,
all have a confidence score above 0.5 and 15 have a confidence
score above 0.8. This suggests that even when the AV engines do
not fully agree on the name of a sample, the majority vote likely
selects the correct family, which provides further confidence on
our AVClass2-based ground truth generation approach.

⟨A4⟩ The accuracy of family classification is not correlated with
the AVClass2 confidence score, which captures the agreement
between different AV vendors on the family name of a sample.
This observation supports that AVclass2 is a valid tool for getting
ground truth when it is necessary to obtain the family name of
malware.

4.7 Impact of Training Dataset Construction
This section evaluates the effect of the construction of the training
dataset on classification accuracy. We specifically investigate the
impact of the size of the training dataset, the variety of malware
families represented, and the uniformity of the sample-family selec-
tion. To the best of our knowledge, the question of how diversity in
terms of families impact binary classification has not been studied
before.

To study this aspect we plot a number of heatmaps. In each
experiment, as described in Section.3, we reserved randomly 20
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Figure 1: F1 score heatmap for binary classification using
static model.
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Figure 2: F1 score heatmap for binary classification using
dynamic model.

70 170 270 370 470 570 670

Families

10
0

Sa
m

pl
es

0.985 0.975 0.963 0.956 0.951 0.948 0.948

0.950 0.955 0.960 0.965 0.970 0.975 0.980

Figure 3: F1-score heatmap for binary classification with
combined model.

samples in each family for validation (e.g., hyper-parameter tun-
ing) and we choose 𝑝 samples from the remaining 80 samples and
use them for training and testing. To study the impact of number
of available samples, we vary 𝑝 from 50 to 80. To study instead
the impact of the number of different families in the dataset, we
progressively vary the number of families involved in both binary
and family classification from 70 to 670. For each combination of
number of families and number of samples per family, we conduct
a 10-fold cross validation test and report the averaged F1 score in
the corresponding cell of each heatmap.

Figure 1 and Figure 2 present heatmaps of the F1 score for binary
classification, using static features and dynamic features respec-
tively. Figure 3 shows the heatmap for the combined model, for
brevity only showing the variation with the number of families.
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Figure 4: F1 score heatmap for family classification using
Random Forest on static analysis features.
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Figure 5: F1 score heatmap for family classification using
Random Forest on dynamic analysis features
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Figure 6: F1-score heatmap for family classification when
combining features derived from static and dynamic analysis

Figure 4, Figure 5, and Figure 6 are similar but for the family classi-
fication task.

Overall, the results indicate that as the number of samples per
family increases, the classification accuracy also increases. The
exception is for the binary classification using static features, where
increasing the samples per family may cause a decrease in overall
accuracy. For example, when using 50 samples for each of the 670
families the F1 score is 0.960, but when using 80 samples it slightly
decreases to 0.958. However, the trend is different if we consider
more families. We consider these very small changes as fluctuations
due to the randomness of the sample selection process. With respect
to family diversity, the results confirm that the more families in
the training dataset the more difficult their classification is. As
expected, the decrease in classification accuracy is more marked

Table 7: Impact of uniform and non-uniform sample selec-
tion in training dataset.

Model Prec. Recall F1 Acc.

binary-static-uniform 0.956 0.957 0.957 0.957
binary-dynamic-uniform 0.962 0.892 0.926 0.929
binary-combined-uniform 0.963 0.934 0.948 0.948
binary-static-nonUniform 0.961 0.960 0.961 0.960
binary-dynamic-nonUniform 0.959 0.886 0.921 0.924
binary-combined-nonUniform 0.955 0.927 0.940 0.927

for the family classification task, where intuitively the higher the
number of classes the more difficult the classification becomes. The
decrease is also more marked for the dynamic features than for
the static ones, likely due to their lower discriminatory power as
discussed in Section 4.1.

Non-uniform sampling. We also evaluate the impact of a non-
uniform downsampling strategy for binary classification. For this
purpose, we mimic the distribution of the recently-proposed MO-
TIF dataset [24], which contain 3,095 PE malware samples from
454 families with an unbalanced distribution (e.g., the median is 3
samples per family and 29% of families have a single sample). We
create a new dataset by applying the MOTIF distribution to 𝑀𝐵 .
This new MOTIF-like dataset comprises 4,821 samples from all 670
families with the following distribution: 29% of the families are
singletons, 41% have 2-5 samples, 12% 6-10, 10% 11-20, 4% 21-30, 2%
31-40, 1% 41-50, and 1% has over 50 samples (up to 100).

We use this to compare two sampling approaches: the uniform
approach (which is the one we adopted so far in the paper) where
we keep a balanced number of samples for each family, versus
a nonUniform approach, where we consider a real-world case in
which the number of available samples varies from one family to
another, as captured by the MOTIF-like dataset. Table 7 shows the
results for both approaches and different feature sets. We could not
identify any significant difference between the two approaches, thus
suggesting that training a classifier with a non-uniform amount of
samples does not significantly impact its performance, under the
important assumption that the testing dataset also follows the same
distribution.

⟨A7⟩ Increasing the number of malware families in the training
set makes the classification more complex and generally results
in lower accuracy. While not surprising, this is very important
because previous studies were often performed on only a few
dozens of families, with the risk of reporting inflated results that
do not generalize to larger and more realistic datasets. Increas-
ing the number of samples per family can help to increase the
classification accuracy, in particular for models based on dynamic
analysis. Finally, the choice between a non-uniform and a uniform
downsampling strategy does not significantly affect the binary
classification accuracy.

4.8 Model Generalization
In this section, we test how well our models for binary and family
classification generalize on unseen data. To this extent, we validate
the performance of the previously-trained models on the singleton
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Table 8: Binary classification accuracy on singletons and un-
seen families datasets.

Model Singletons Unseen

binary-static-uniform 0.943 0.815
binary-dynamic-uniform 0.805 0.898
binary-combined-uniform 0.985 0.908
binary-static-nonuniform 0.810 0.653
binary-dynamic-nonuniform 0.328 0.855
binary-combined-nonuniform 0.758 0.637
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Figure 7: Binary classification accuracy on singletons and
unseen families of the uniform dynamic and static models.
(SS: Static Singleton. SU: Static Unseen. D is for Dynamic)

and unseen datasets introduced in Section 2.2, which include new
families and have different distributions from the training data.
This scenario is known as the "out-of-distribution" (OOD) test [31],
where training and testing data have different distributions in the
feature space. The distribution gap between the training and testing
data has been frequently witnessed in malware analysis [23], as
malware families evolve rapidly over time. Theoretically, one should
expect the performance of a ML model to drop drastically in this
more realistic scenario, as OOD samples directly violate the IID
assumption of ML techniques.

Binary Classification. Table 8 summarizes the binary classifica-
tion results over the singletons and unseen families using the static,
dynamic, and joint feature pool. "Uniform" and "non-uniform" in
the table denote training with the 670 families with uniformly and
non-uniform dataset construction methods (§ 3.4) The empirical
measurements shown in Table 8 can be summarized around three
main observations.

First, the accuracy of binary classification using only static or dy-
namic features deteriorates significantly over singleton and unseen
family files. Using the combined feature set, the binary classifica-
tion accuracy with the uniform setting augments over the singleton
samples, whereas it deteriorates over the unseen families. In the
non-uniform setting, we can observe the same tendency of accuracy
drop over the OOD samples. The observations echo closely to the
out-of-distribution challenge of machine learning raised in [31].

Second, the accuracy deterioration over the out-of-distribution
samples is more significant in the non-uniform setting of training
than that in the uniform setting, regardless of the used features.

This is different from the results of the in-distribution evalua-
tion in Table 7, where we observe no major difference in accuracy
between the uniform and non-uniform settings. These results show
an important point: classifiers built on very unbalanced datasets
may perform equally well when tested on samples with the same
unbalanced distribution, but generalize more poorly to other testing
datasets, likely because many families were underrepresented in
the training and thus the model failed to properly capture them.

Third, we can notice that static features generalize poorly to
unseen families, while dynamic features perform better in this
scenario. This is due to the nature of the features themselves: static
information can precisely pinpoint only known samples, while
dynamic behavior can better generalize also to unknown ones.
Thus, compared to static features, dynamic features may provide
more rich information to capture new types of malicious behaviors
that never appear in the training phase.

We investigate this aspect in more detail by varying the num-
ber of families we used for training. In Figure 7, we can see that
dynamic features perform poorly when the number of malware
families for training is low (as there was not enough example of
behaviors to learn from) but, with a sufficient number of families,
they offer better classification results than static features. Dynamic
features usually have a high dimensional and highly sparse feature
representation. For example, some files or processes only appear
a few times in the training set for specific malware families. A
smaller number of families may aggravate the curse of dimension-
ality, which results in an overfitting of the classifier. Furthermore,
we can observe the classification accuracy over unseen samples
improves as the number of families increases, regardless of the
features used in the test.

Family Classification. So far, we only tested the generalization
of our models in a binary classification scenario. We now apply our
family classifier trained using the 670 families over the singleton
and unseen families as another out-of-distribution test scenario.
Achieving high or low classification accuracy over these out-of-
distribution samples is not interesting, as most of these samples
share no common families as the training data and we don’t have
the ground truth family labels for these samples. Thus, the purpose
of organizing this test is only to study how the uncertainty level of
the family classifier changes over the out-of-distribution malware
samples.

To measure the uncertainty difference, we define the Relative En-

tropy Score (RES) of the classifier’s output as
∑𝐶

𝑘=1 𝑝𝑘 log𝑝𝑘
𝑇

, where
𝑇 =

∑𝐶
𝑘=1 1/𝐶 log 1/𝐶 and 𝐶 is the number of the families covered

by the training data building the classifier. In this experiment, 𝐶
is therefore set to 670. For an input sample, the output of the fam-
ily classifier is a 670-dimensional probability-valued vector {𝑝𝑘 }
(k=1,2,3,...,C=670). Each 𝑝𝑘 gives the probabilistic confidence that
the sample belongs to the corresponding family. By definition, the
numerator

∑𝐶
𝑘=1 𝑝𝑘 log 𝑝𝑘 provides the entropy of the classifier’s

output. The denominator
∑𝐶
𝑘=1 1/𝐶 log 1/𝐶 denotes the maximum

entropy that the classifier’s classification output may have. As a
result, the magnitude of RES is strictly normalized between 0 and 1.
Higher/Lower RES denotes that the classifier shows higher/lower
uncertainty level over the classification output.
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Table 9: Related work on ML-based Detection and family
Classification of Windows malware (S=Static, D=Dynamic)

Goal Features Dataset
Work Year D C S D # Fam.
Rieck et al. [46] 2008 ✗ ✓ ✗ ✓ 10k 14
McBoost [40] 2008 ✓ ✗ ✓ ✓* 5.5k -
PE-Miner [53] 2009 ✓ ✗ ✓ ✗ 16k -
Nataraj et al. [37] 2011 ✗ ✓ ✓ ✓ 67k 561*
OPEM [50] 2012 ✓ ✗ ✓ ✓ 1k -
Santos et al. [49] 2013 ✓ ✗ ✓ ✗ 1k -
Dahl et al. [15] 2013 ✓ ✗ ✗ ✓ 1.8M -
Kancherla et al. [25] 2013 ✓ ✗ ✓ ✗ 25k -
Saxxe et al. [51] 2015 ✓ ✗ ✓ ✗ 350k -
Miller et al. [35] 2016 ✓ ✗ ✓ ✓ 1.1M -
MtNet [20] 2016 ✓ ✓ ✗ ✓ 2.8M 98
MAAR [48] 2017 ✓ ✗ ✗ ✓ 3k -
MalConv [44] 2018 ✓ ✗ ✓ ✗ 284k -
EMBER [9] 2018 ✓ ✗ ✓ ✗ 400k -
Rhode et al. [45] 2018 ✓ ✗ ✗ ✓ 5.1k -
MalDy [26] 2019 ✓ ✓ ✗ ✓ 20k 15
NeurLux [22] 2019 ✓ ✗ ✗ ✓ 34k -
MalInsight [19] 2019 ✓ ✓ ✓ ✓ 3.5k 5
MalDAE [18] 2019 ✓ ✗ ✓ ✓ 5.5k -
MALDC [61] 2020 ✓ ✗ ✗ ✓ 54k -
IMCFN [57] 2020 ✓ ✗ ✓ ✗ 9.4k -
Zhang et al. [62] 2020 ✓ ✗ ✗ ✓ 27.7k -
Rabadi et al. [43] 2020 ✓ ✗ ✗ ✓ 7.1k -
Joyce et al. [24] 2022 ✗ ✓ ✓ ✗ 3k 454
This work 2023 ✓ ✓ ✓ ✓ 67k 670

Consistently with theoretical studies [31], we can find that the
uncertainty level of the family classification output over the single-
ton and malware samples of previously unseen families increases
significantly, compared to those derived with the testing samples
sharing the same families of the training data. We refer the inter-
ested reader to our extended report for more details [16].

⟨A8⟩ Our experiments confirm a significant performance drop
in binary classification over out-of-distribution samples, both in
the case of singleton and unseen families. At the same time, the
confidence of the ML-based classifier decreases significantly over
these out-of-distribution samples. This implies that ML-based
models tend to be less certain over malware samples drifted from
the training samples. Our results also show that models trained
on a very unbalanced dataset generalize more poorly, and that
dynamic features generalize better than static over new families.
Overall, as the distribution gap between training and testing mal-
ware samples is common in practice, these results raise concern
over the utility of ML-based malware classification for real-world
scenarios.

5 RELATEDWORK
Table 9 presents a categorization of previous works on Windows
malware classification, according to their goal (binary detection
or family classification), features (static or dynamic), and dataset
size (both in terms of malware executables and malware families).
Among the approaches in Table 9, the choice of the models varies
widely including classical models like Support Vector Machine,
GradientBoost, and Random Forest, as well as neural networks.
Most approaches perform feature extraction, e.g. extract n-grams
of bytes, opcodes, or system calls, but a couple of work directly
operate on raw bytes and API sequences [22, 44].

MalInsight [19] is the only study so far to provide a comprehen-
sive coverage over the choice of features and classification tasks.

However, their dataset includes only 5 families. At the other end of
the spectrum, Nataraj et al. [37] studied only family classification
on an unbalanced dataset with over 500 classes. However, the au-
thors consider each full AV label a different class, so that number
does not correspond to real malware families. In contrast, our study
investigates the factors impacting the performance of ML classifiers
using a large-scale balanced dataset with 670 families.

ML challenges and pitfalls. In cyber security research, two major
challenges are raised in the practices of ML-based analysis. First
of all, the issue of missing observations affects the prediction accu-
racy, e.g., in network intrusion detection [38, 55]. Secondly, most
ML models follow a core assumption: the training and test data
of a ML model should be drawn identically and independently
from the same underlying distribution, i.e. the I.I.D. assumption.
However, the I.I.D assumption does not hold in practice. Highly
diversified and quickly evolving malware technologies make the
implementations and behaviours of malware vary significantly and
frequently. New variants of malware arise to exploit novel vul-
nerabilities and evade the detection of anti-virus services. Once
a machine-learning-driven malware classifier is deployed in prac-
tical security applications, the fast-changing profiles of malware
samples break the I.I.D, assumption and cause the deterioration of
the classification accuracy [12]. The design of a robust classifier for
frequently drifting malware profiles is still an open problem.

Arp et al. [11] review the use ML-based classification in cyber
security published over the past 10 years. The study summarizes the
existing issues at the different stages of the ML-based pipelines for
cyber security data analysis. For example, the authors demonstrate
that the statistical bias introduced by training sample sampling and
inaccurate class label tagging may introduce spurious correlations
into the ML classifiers. In addition, employing inappropriate per-
formance metrics ignoring the class imbalance in the testing phase
may lead to incorrect interpretation to the quality of ML-based
predictive analysis. In general, according to [11], the performance
metrics of a ML-based analysis pipeline in cyber security practices
should be defined by considering the characteristics of the secu-
rity data collected and the requirements raised in the concerned
applications. Otherwise, the pipelines may produce unrealistic per-
formance and interpretations of security incidents. In our work,
we focus instead on the bottlenecks of ML-based malware classifi-
cation encountered in practices, which may obstruct the accurate
classification of malware. For instance, we focus on the impact of
the coverage of malware families for training and we dive into
the potential reasons causing failure of ML-based models over cer-
tain malware samples. We also explore how the classifier behaves
over out-of-distribution malware samples, which is an interesting
problem in the practical deployment of ML-driven pipelines.

Dataset construction. In 2015, the Microsoft Malware Classifi-
cation Challenge [54] was developed as a Kaggle competition to
conduct malware family classification. The corresponding dataset
is composed of disassembly and bytes of 20K Windows malware
samples from 9 families. It was released in the Kaggle competition
and has since been used in several studies. [29, 39] built larger-
scale Android malware datasets for evaluating the performances of
ML-driven classification models. More specifically, [39] evaluates
the spatial and temporal bias of binary classification accuracy over
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129,728 Android apps. [29] explores the variance-bias trade-off of
malware clustering on 134,698 Android apps. By comparison, our
work focuses on the measurement study of large-scale Windows
malware collections. Our goal is to characterize the applicability
and limits of ML-driven malware classifiers for practical use. In [24],
Joyce et al. built a multi-family dataset containing 3,095 malware
samples collected from 454 families. This work offers the most diver-
sified coverage over different malware families in public malware
datasets with manually verified labels. Interestingly, this dataset has
a highly skewed distribution over the number of malware samples
per family. Over half of the families contain less than 5 samples per
family, which poses a few-shot learning challenge to ML-driven
malware classification. Our study tried to mimic this distribution
to assess the impact of the skewed distribution of malware sam-
ples over the accuracy of the trained ML-based classifiers. We also
compare the impact of the skewed distribution and that of varying
malware coverage regarding classification accuracy. The empirical
study helps identify the limits of ML-based classification methods
in practical malware analysis.

6 FINAL RECOMMENDATIONS
The goal of this work was to understand the key factors that in-
fluence the performance of ML models for malware detection and
family classification. Based on our experimental results, we can
draw some general recommendations on the use of ML for malware
classification:

1. Ideally, experiments on malware classification (both binary and
family) should be performed on hundreds of different families,
each containing a sufficient and balanced number of samples.
However, this is often difficult to achieve in the malware field.
Thus, we believe the contribution of our paper is not to simply
re-state this obvious finding, but to provide for the first time
a quantitative assessment of the impact of the lack of these
characteristics on the classification results. For instance, we
show that classifiers trained on a few families (like the ones using
the popular Microsoft dataset) can provide misleadingly high
accuracy scores while experiments conducted on unbalanced
datasets tend to generalize poorly when tested over different
distributions.
Our findings can also be used to better understand and compare
results reported in previous studies. For example, our results
show that a family classifier with a F1 score of 0.89 over 600
families is likely better than a classifier with a score of 0.93 on
30 families.

2. Static features dominate detection and classification of samples
from known families, by relying on signature-like information
extracted from sequences of bytes and opcodes. Packing, in its
current widespread implementation, does not seem to have a
considerable negative effect on this. The addition of dynamic
features, which are much more time-consuming and error-prone
to extract, has only a marginal impact on the classification ac-
curacy and therefore its use should be carefully considered if
the goal is to detect known families. However, static features
are unable to capture samples from unknown families, where
instead models based on dynamic behavior show a better ability
to generalize. Therefore, our findings suggest that today static

features alone are sufficient for family classification, but a com-
bination of static and dynamic features is probably preferable
for binary classification.

3. The performance of all ML models drop drastically when tested
onOOD samples.While the feature completeness and the regular
update of the training data to cover new malware families are
key to obtaining good classification accuracy, both of them are
difficult to achieve in the real world. It is due to the data-driven
nature of ML-based classification mechanisms. The quality and
coverage of training data play a core role in determining the
classification performance. Beyond improving the quality of
training data, our experiments suggest that the inclusion of
dynamic features into the classification task can be used to
alleviate the impact of the OOD issue. More specifically, we
show that using dynamic features still allows us to successfully
flag suspicious previously-unseen malware samples, even if with
less accuracy and higher false positive rates in binary and family
classification tasks.

Our work opens several directions for future work. For example,
we would like to explore how to mitigate the impact of missing
features in dynamic analysis, e.g., through feature selection. We
also plan to analyze the reasons behind hard-to-detect families,
which could be due to custom packers, benign functionality in the
malware, generic families that cover different malware, or other
reasons.
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