
6G Wireless Foundations Forum 10-11 July 2023

Coloring of Cyclic Graphs

Mohammad Reza Deylam Salehi∗, and Derya Malak∗
∗ Communication Systems Department, EURECOM, Sophia Antipolis, France

Coloring of Cyclic Graphs

Mohammad Reza Deylam Salehi∗, and Derya Malak∗
∗ Communication Systems Department, EURECOM, Sophia Antipolis, France

Motivation for functional compression

• An example: Consider a student database with information including the rentalrecords, and health, etc, of individuals.
• The Ministry of Science wants to offer housing aid to a particular group of stu-dents, which does not require any other information than the rental contract,and the payslips of the students, due to privacy and redundancy constraints.
• This scenario avoids compressing and transmitting large volumes of distributeddata and is tailored to the specifics of the function.

Functional compression (NP-hard)
•Goal: to compute a function f (X1, X2) of the distributed sources X1 and X2with a joint distribution p(x1, x2).
• Source X1 builds a characteristic or confusion graph GX1

for distinguishing theoutcomes of f (X1, X2).
•GX1

is represented by GX1
= G(V , E), where V = X1, and for x11, x21 ∈ V thatare distinct vertices, ∃ an edge (x11, x21) ∈ E iff ∃ a x12 ∈ X2 such that

p(x11, x
1
2) · p(x21, x12) > 0 and f (x11, x12) ̸= f (x21, x

1
2) .

OR powers of characteristic graphs

• For n > 1, the n-th OR power of characteristic graph GX = G(V , E) isrepresented as Gn
X = (Vn, En) where Vn = X n, and for distinct vertices

xn
1 = x11, . . . , x1n ∈ Vn , xn

2 = x21, . . . , x2n ∈ Vn.
• It holds that (xn

1 ,x
n
2) ∈ En , when ∃ at least one q ∈ [n] such that (x11q, x21q) ∈

E , which is determined for characteristic graphs.
Distributed functional compression

• Comparison of distributed sources: Let f (X1, X2) = (X1 +X2) mod 2, twosourcesX1 andX2 and one receiver.
• Source one X1 is uniform over the alphabet X1 = {0, 1, 2, 3, 4, 5}, and X2 isuniform over X2 = {0, 1}.
• At each source, even outcomes do not need to be distinguished from eachother and are assigned the colorG, while odd outcomes are assigned Y .
• To decode f , the receiver needs the color pairs (Y,G) or (G, Y ), which corre-spond to outcome of 1.
• Conversely, the pairs (Y, Y ) and (G,G) indicate an outcome of 0.

OR power graph degree

• Derivation of the degrees in the n-th OR power of a cycle graphCn
i for n ≥ 2:

deg(xn) = 2 +

n−1∑
j=1

2(V j) , ∀xn ∈ Vn .

Main contributions

• Evaluation of the exact degree of a vertex of n-th OR power for both odd andeven cycles.
• Characterization of the exact value of the chromatic number, denoted by χC2k

,for even cycles C2k and their OR powers, for k ∈ Z+.
• An achievable coloring scheme for odd cycles C2k+1 for k ∈ Z+.
• Computation of the largest eigenvalue, λ1, of the adjacencymatrixAn

f for the n-th OR power of cycle graphs. Which helps with bounding the chromatic numberof a graph.
• A polynomial time valid coloring of a characteristic graph, which is in the formof a cycle, exploiting the structure of the characteristic graph and its OR powers.

Coloring Even and odd Cycles Power Graphs

Even cycles

1. The graph, denoted by C2l, l ∈ Z+, is colored in an alternating fashion.
2. Even vertices are assigned one color, while odd vertices are represented witha different color.

χ(Cn
2l) = 2n , l ∈ Z+ , n ≥ 1 .

Odd cycles

1. Odd cycles, denoted as C2l+1, l ∈ Z+, have an odd number of vertices, e.g.,
C3 is a cycle with 3 vertices, requiring 3 distinct colors.

2. For coloring the second power, C2
3 , sub-graphs {C3(1), C3(2), C3(3)}, re-quires 3 different colors each (complete graph C3).

3. For C5, it needs 3 colors to cover all nodes.
4. A coloring scheme was devised for the coloring ofC5 powers and other oddcyclic graphs based on the color set of sub-graphs.
5. Coloring set of sub-graphs in C2

5 :
C2
5(1) = {c1, c2, c3}, C2

5(2) = {c4, c5, c6},
C2
5(3) = {c7, c8, c1}, C2

5(4) = {c2, c3, c4},
C2
5(5) = {c5, c6, c7} .

Chromatic number of odd cycles: Our scheme for optimal coloring
χCn+1

i
= 2χCn

i
+
⌈χCn

i

2

⌉
, n ≥ 1 .

Bounds on Chromatic Number

1. Bounds on χG, i.e., the chromatic number of graph G, where the lower boundis based on the work of Hoffman and the upper bound is derived fromWilf:
1− λ1(G)

λV (G)
≤ χG ≤ ⌊λ1(G)⌋ + 1 .

The eigenvalues of the all-ones matrix JV with size V × V are 0 with analgebraic multiplicity V − 1 and V with multiplicity 1.
2. The adjacency matrix of the n-th OR power, An

f , of a cycle Ci = G(V , E) ispresented as follows:

An
f =


An−1

f JV n−1 0 . . . 0 JV n−1

JV n−1 An−1
f JV n−1 0 . . . 0... ... ... . . . ... ...

JV n−1 0 0 . . . JV n−1 An−1
f

 ,

3. The largest eigenvalue λ1(C
n
i ) of the n-th OR power of a cycle graph Cn

i is de-termined as follows:
λ1(Ci) = 2 , λ1(C

n
i ) = 2 +

n−1∑
j=0

(2V j) , n ≥ 2 .

4. The An
f for the n-th OR power of cyclic graphs, where n ≥ 2, has the samedistinct eigenvalues of An−1

f as well as two new distinct eigenvalues.
5. The following bound holds for χCn

i
:

1−
2 +

∑n−1
j=0 (2V

j)

−
√
(V n/2)[(V n + 1)/2]

≤ χCn
i
≤

n−1∑
j=0

(2V j) + 3 .


