## Motivation for functional compression

- An example: Consider a student database with information including the rental records, and health, etc, of individuals.
- The Ministry of Science wants to offer housing aid to a particular group of students, which does not require any other information than the rental contract, and the payslips of the students, due to privacy and redundancy constraints.
- This scenario avoids compressing and transmitting large volumes of distributed data and is tailored to the specifics of the function.


## Functional compression (NP-hard)

- Goal: to compute a function $f\left(X_{1}, X_{2}\right)$ of the distributed sources $X_{1}$ and $X_{2}$ with a joint distribution $p\left(x_{1}, x_{2}\right)$.
- Source $X_{1}$ builds a characteristic or confusion graph $G_{X_{1}}$ for distinguishing the outcomes of $f\left(X_{1}, X_{2}\right)$.
- $G_{X_{1}}$ is represented by $G_{X_{1}}=G(\mathcal{V}, \mathcal{E})$, where $\mathcal{V}=\mathcal{X}_{1}$, and for $x_{1}^{1}, x_{1}^{2} \in \mathcal{V}$ that are distinct vertices, $\exists$ an edge $\left(x_{1}^{1}, x_{1}^{2}\right) \in \mathcal{E}$ iff $\exists$ a $x_{2}^{1} \in \mathcal{X}_{2}$ such that

$$
p\left(x_{1}^{1}, x_{2}^{1}\right) \cdot p\left(x_{1}^{2}, x_{2}^{1}\right)>0 \text { and } f\left(x_{1}^{1}, x_{2}^{1}\right) \neq f\left(x_{1}^{2}, x_{2}^{1}\right) .
$$

## OR powers of characteristic graphs

- For $n>1$, the $n$-th OR power of characteristic graph $G_{X}=G(\mathcal{V}, \mathcal{E})$ is represented as $G_{\mathrm{X}}^{n}=\left(\mathcal{V}^{n}, \mathcal{E}^{n}\right)$ where $\mathcal{V}^{n}=\mathcal{X}^{n}$, and for distinct vertices $\mathbf{x}_{1}^{n}=x_{11}, \ldots, x_{1 n} \in \mathcal{V}^{n}, \mathbf{x}_{2}^{n}=x_{21}, \ldots, x_{2 n} \in \mathcal{V}^{n}$.
- It holds that $\left(\mathbf{x}_{1}^{n}, \mathbf{x}_{2}^{n}\right) \in \mathcal{E}^{n}$, when $\exists$ at least one $q \in[n]$ such that $\left(x_{1 q}^{1}, x_{1 q}^{2}\right) \in$ $\mathcal{E}$, which is determined for characteristic graphs.


## Distributed functional compression



- Comparison of distributed sources: Let $f\left(X_{1}, X_{2}\right)=\left(X_{1}+X_{2}\right) \quad \bmod 2$, two sources $X_{1}$ and $X_{2}$ and one receiver.
- Source one $X_{1}$ is uniform over the alphabet $\mathcal{X}_{1}=\{0,1,2,3,4,5\}$, and $X_{2}$ is uniform over $\mathcal{X}_{2}=\{0,1\}$.
- At each source, even outcomes do not need to be distinguished from each other and are assigned the color $G$, while odd outcomes are assigned $Y$.
- To decode $f$, the receiver needs the color pairs $(Y, G)$ or $(G, Y)$, which correspond to outcome of 1.
- Conversely, the pairs $(Y, Y)$ and $(G, G)$ indicate an outcome of 0 .

OR power graph degree

- Derivation of the degrees in the $n$-th OR power of a cycle graph $C_{i}^{n}$ for $n \geq 2$ :

$$
\operatorname{deg}\left(\mathbf{x}^{n}\right)=2+\sum_{j=1}^{n-1} 2\left(V^{j}\right), \quad \forall \mathbf{x}^{n} \in \mathcal{V}^{n}
$$

## Main contributions

- Evaluation of the exact degree of a vertex of $n$-th OR power for both odd and even cycles.
- Characterization of the exact value of the chromatic number, denoted by $\chi_{C_{2 k}}$, for even cycles $C_{2 k}$ and their OR powers, for $k \in \mathbb{Z}^{+}$
- An achievable coloring scheme for odd cycles $C_{2 k+1}$ for $k \in \mathbb{Z}^{+}$.
- Computation of the largest eigenvalue, $\lambda_{1}$, of the adjacency matrix $A_{f}^{n}$ for the $n$ th OR power of cycle graphs. Which helps with bounding the chromatic number of a graph.
- A polynomial time valid coloring of a characteristic graph, which is in the form of a cycle, exploiting the structure of the characteristic graph and its OR powers.


## Coloring Even and odd Cycles Power Graphs

## Even cycles

1. The graph, denoted by $C_{2 l}, l \in \mathbb{Z}^{+}$, is colored in an alternating fashion.
2. Even vertices are assigned one color, while odd vertices are represented with a different color.


Odd cycles

1. Odd cycles, denoted as $C_{2 l+1}, l \in \mathbb{Z}^{+}$, have an odd number of vertices, e.g., $C_{3}$ is a cycle with 3 vertices, requiring 3 distinct colors.
2. For coloring the second power, $C_{3}^{2}$, sub-graphs $\left\{C_{3}(1), C_{3}(2), C_{3}(3)\right\}$, requires 3 different colors each (complete graph $C_{3}$ ).
3. For $C_{5}$, it needs 3 colors to cover all nodes.
4. A coloring scheme was devised for the coloring of $C_{5}$ powers and other odd cyclic graphs based on the color set of sub-graphs.
5. Coloring set of sub-graphs in $C_{5}^{2}$ :

$$
\begin{array}{ll}
\mathcal{C}_{5}^{2}(1)=\left\{c_{1}, c_{2}, c_{3}\right\}, & \mathcal{C}_{5}^{2}(2)=\left\{c_{4}, c_{5}, c_{6}\right\}, \\
\mathcal{C}_{5}^{2}(3)=\left\{c_{7}, c_{8}, c_{1}\right\}, & \mathcal{C}_{5}^{2}(4)=\left\{c_{2}, c_{3}, c_{4}\right\}, \\
\mathcal{C}_{5}^{2}(5)=\left\{c_{5}, c_{6}, c_{7}\right\} . &
\end{array}
$$



Chromatic number of odd cycles: Our scheme for optimal coloring

$$
\chi_{C_{i}^{n+1}}=2 \chi_{C_{i}^{n}}+\left\lceil\frac{\chi_{C_{i}^{n}}}{2}\right\rceil, n \geq 1 .
$$

## Bounds on Chromatic Number

1. Bounds on $\chi_{G}$, i.e., the chromatic number of graph $G$, where the lower bound is based on the work of Hoffman and the upper bound is derived from Wilf:

$$
1-\frac{\lambda_{1}(G)}{\lambda_{V}(G)} \leq \chi_{G} \leq\left\lfloor\lambda_{1}(G)\right\rfloor+1
$$

The eigenvalues of the all-ones matrix $J_{V}$ with size $V \times V$ are 0 with an algebraic multiplicity $V-1$ and $V$ with multiplicity 1.
2. The adjacency matrix of the $n$-th OR power, $A_{f}^{n}$, of a cycle $C_{i}=G(\mathcal{V}, \mathcal{E})$ is presented as follows:

$$
A_{f}^{n}=\left[\begin{array}{cccccc}
A_{f}^{n-1} & J_{V^{n-1}} & 0 & \ldots & 0 & J_{V^{n-1}} \\
J_{V^{n-1}} & A_{f}^{n-1} & J_{V^{n-1}} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ldots & \vdots & \vdots \\
J_{V^{n-1}} & 0 & 0 & \ldots & J_{V^{n-1}} & A_{f}^{n-1}
\end{array}\right]
$$

3. The largest eigenvalue $\lambda_{1}\left(C_{i}^{n}\right)$ of the $n$-th OR power of a cycle graph $C_{i}^{n}$ is determined as follows:

$$
\lambda_{1}\left(C_{i}\right)=2, \quad \lambda_{1}\left(C_{i}^{n}\right)=2+\sum_{j=0}^{n-1}\left(2 V^{j}\right), \quad n \geq 2
$$

4. The $A_{f}^{n}$ for the $n$-th OR power of cyclic graphs, where $n \geq 2$, has the same distinct eigenvalues of $A_{f}^{n-1}$ as well as two new distinct eigenvalues.
5. The following bound holds for $\chi_{C_{i}^{n}}$ :

$$
1-\frac{2+\sum_{j=0}^{n-1}\left(2 V^{j}\right)}{-\sqrt{\left(V^{n} / 2\right)\left[\left(V^{n}+1\right) / 2\right]}} \leq \chi_{C_{i}^{n}} \leq \sum_{j=0}^{n-1}\left(2 V^{j}\right)+3 .
$$

