Coloring of Cyclic Graphs

Mohammad Reza Deylam Salehi^{*}, and Derya Malak^{*}

* Communication Systems Department, EURECOM, Sophia Antipolis, France

Motivation for functional compression

- An example: Consider a student database with information including the rental records, and health, etc, of individuals.
- The Ministry of Science wants to offer housing aid to a particular group of students, which does not require any other information than the rental contract, and the payslips of the students, due to privacy and redundancy constraints.
- This scenario avoids compressing and transmitting large volumes of distributed data and is tailored to the specifics of the function.

Functional compression (NP-hard)

Coloring Even and odd Cycles Power Graphs

Even cycles

1. The graph, denoted by C_{2l} , $l \in \mathbb{Z}^+$, is colored in an alternating fashion. 2. Even vertices are assigned one color, while odd vertices are represented with a different color.

- Goal: to compute a function $f(X_1, X_2)$ of the distributed sources X_1 and X_2 with a joint distribution $p(x_1, x_2)$.
- Source X_1 builds a characteristic or confusion graph G_{X_1} for distinguishing the outcomes of $f(X_1, X_2)$.
- G_{X_1} is represented by $G_{X_1} = G(\mathcal{V}, \mathcal{E})$, where $\mathcal{V} = \mathcal{X}_1$, and for $x_1^1, x_1^2 \in \mathcal{V}$ that are distinct vertices, \exists an edge $(x_1^1, x_1^2) \in \mathcal{E}$ iff \exists a $x_2^1 \in \mathcal{X}_2$ such that $p(x_1^1, x_2^1) \cdot p(x_1^2, x_2^1) > 0$ and $f(x_1^1, x_2^1) \neq f(x_1^2, x_2^1)$.

OR powers of characteristic graphs

• For n > 1, the *n*-th OR power of characteristic graph $G_X = G(\mathcal{V}, \mathcal{E})$ is represented as $G_{\mathbf{X}}^n = (\mathcal{V}^n, \mathcal{E}^n)$ where $\mathcal{V}^n = \mathcal{X}^n$, and for distinct vertices $\mathbf{x}_{1}^{n} = x_{11}, \ldots, x_{1n} \in \mathcal{V}^{n}, \, \mathbf{x}_{2}^{n} = x_{21}, \ldots, x_{2n} \in \mathcal{V}^{n}.$

• It holds that $(\mathbf{x}_1^n, \mathbf{x}_2^n) \in \mathcal{E}^n$, when \exists at least one $q \in [n]$ such that $(x_{1q}^1, x_{1q}^2) \in \mathcal{E}^n$ \mathcal{E} , which is determined for characteristic graphs.

Distributed functional compression

Odd cycles

- 1. Odd cycles, denoted as C_{2l+1} , $l \in \mathbb{Z}^+$, have an odd number of vertices, e.g., C_3 is a cycle with 3 vertices, requiring 3 distinct colors.
- 2. For coloring the second power, C_3^2 , sub-graphs { $C_3(1)$, $C_3(2)$, $C_3(3)$ }, requires 3 different colors each (complete graph C_3).
- 3. For C_5 , it needs 3 colors to cover all nodes.
- 4. A coloring scheme was devised for the coloring of C_5 powers and other odd cyclic graphs based on the color set of sub-graphs.
- 5. Coloring set of sub-graphs in C_5^2 :

$$\mathcal{C}_{5}^{2}(1) = \{c_{1}, c_{2}, c_{3}\}, \qquad \mathcal{C}_{5}^{2}(2) = \{c_{4}, c_{5}, c_{6}\}, \\ \mathcal{C}_{5}^{2}(3) = \{c_{7}, c_{8}, c_{1}\}, \qquad \mathcal{C}_{5}^{2}(4) = \{c_{2}, c_{3}, c_{4}\}, \\ \mathcal{C}_{5}^{2}(5) = \{c_{5}, c_{6}, c_{7}\}.$$

- Comparison of distributed sources: Let $f(X_1, X_2) = (X_1 + X_2) \mod 2$, two sources X_1 and X_2 and one receiver.
- Source one X_1 is uniform over the alphabet $\mathcal{X}_1 = \{0, 1, 2, 3, 4, 5\}$, and X_2 is uniform over $X_2 = \{0, 1\}.$
- At each source, even outcomes do not need to be distinguished from each other and are assigned the color G, while odd outcomes are assigned Y.
- To decode f, the receiver needs the color pairs (Y,G) or (G,Y), which correspond to outcome of 1.
- Conversely, the pairs (Y, Y) and (G, G) indicate an outcome of 0.

OR power graph degree

• Derivation of the degrees in the *n*-th OR power of a cycle graph C_i^n for $n \ge 2$:

$$deg(\mathbf{x}^n) = 2 + \sum_{j=1}^{n-1} 2(V^j), \quad \forall \mathbf{x}^n \in \mathcal{V}^n.$$

Main contributions

• Evaluation of the exact degree of a vertex of *n*-th OR power for both odd and

Chromatic number of odd cycles: Our scheme for optimal coloring

$$\chi_{C_i^{n+1}} = 2\chi_{C_i^n} + \left[\frac{\chi_{C_i^n}}{2}\right] , \ n \ge 1.$$

Bounds on Chromatic Number

1. Bounds on χ_G , i.e., the chromatic number of graph G, where the lower bound is based on the work of Hoffman and the upper bound is derived from Wilf:

$$1 - \frac{\lambda_1(G)}{\lambda_V(G)} \le \chi_G \le \lfloor \lambda_1(G) \rfloor + 1 .$$

The eigenvalues of the all-ones matrix J_V with size $V \times V$ are 0 with an algebraic multiplicity V - 1 and V with multiplicity 1.

- 2. The adjacency matrix of the *n*-th OR power, A_f^n , of a cycle $C_i = G(\mathcal{V}, \mathcal{E})$ is presented as follows:
- even cycles.
- Characterization of the exact value of the chromatic number, denoted by $\chi_{C_{2k}}$, for even cycles C_{2k} and their OR powers, for $k \in \mathbb{Z}^+$.
- An achievable coloring scheme for odd cycles C_{2k+1} for $k \in \mathbb{Z}^+$.
- Computation of the largest eigenvalue, λ_1 , of the adjacency matrix A_f^n for the nth OR power of cycle graphs. Which helps with bounding the chromatic number of a graph.
- A polynomial time valid coloring of a characteristic graph, which is in the form of a cycle, exploiting the structure of the characteristic graph and its OR powers.

6G Wireless Foundations Forum 10-11 July 2023

$$A_{f}^{n} = \begin{bmatrix} A_{f}^{n-1} J_{V^{n-1}} & 0 & \dots & 0 & J_{V^{n-1}} \\ J_{V^{n-1}} A_{f}^{n-1} J_{V^{n-1}} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ J_{V^{n-1}} & 0 & 0 & \dots & J_{V^{n-1}} A_{f}^{n-1} \end{bmatrix},$$

3. The largest eigenvalue $\lambda_1(C_i^n)$ of the *n*-th OR power of a cycle graph C_i^n is determined as follows:

$$\lambda_1(C_i) = 2$$
, $\lambda_1(C_i^n) = 2 + \sum_{j=0}^{n-1} (2V^j)$, $n \ge 2$.

- 4. The A_f^n for the *n*-th OR power of cyclic graphs, where $n \ge 2$, has the same distinct eigenvalues of A_f^{n-1} as well as two new distinct eigenvalues.
- 5. The following bound holds for $\chi_{C_i^n}$:

$$1 - \frac{2 + \sum_{j=0}^{n-1} (2V^j)}{-\sqrt{(V^n/2)[(V^n+1)/2]}} \le \chi_{C_i^n} \le \sum_{j=0}^{n-1} (2V^j) + 3.$$