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ABSTRACT

The Rust programming language is one of the fastest-growing pro-
gramming languages, thanks to its unique blendof highperformance
execution and memory safety. Still, programs implemented in Rust
can contain critical bugs. Apart from logic bugs and crashes, code
in unsafe blocks can still trigger memory corruptions. To find these,
the community uses traditional fuzzers like LibFuzzer or AFL++,
in combination with Rust-specific macros. Of course, the fuzzers
themselves are still written in memory-unsafe languages.

In this paper, we explore the possibility of replacing the input gen-
erators with Rust, while staying compatible to existing harnesses.
Based on the Rust fuzzer library LibAFL, we develop CrabSand-
wich, a drop-in replacement for the C++ component of cargo-fuzz.
We evaluate our tool, written in Rust, against the original fuzzer
LibFuzzer.We show thatwe are not only able to successfully fuzz all
three targets we tested with CrabSandwich, but outperform cargo-

fuzz in bug coverage. During our preliminary evaluation, we already
manage to uncover new bugs in the pdf crate that could not be found
by cargo-fuzz, proving the real-world applicability of our approach,
and giving us high hopes for the planned follow-up evaluations.
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1 INTRODUCTION

In recent years, the Rust programming language has emerged as a
compelling choice for developing secure and high-performance soft-
ware systems. Rust’s unique design philosophy, combining strong
memory safety guarantees with an expressive and modern syntax,
offers developers a powerful tool to mitigate common programming
pitfalls such as memory leaks, null pointer dereferences, and data
races. The language’s emphasis on zero-cost abstractions and mini-
mal runtime overhead hasmade it particularly attractive for systems
programming, network services, and embedded applications.

However, despite Rust’s built-in safety features, software faults,
and security vulnerabilities can still surface due to complex inter-
actions, corner cases, and unforeseen scenarios. Denial-of-service
is not the only kind of vulnerability concerning Rust code but the
usage of unsafe code such as foreign function interface (FFI) in-
vocations to memory unsafe languages with broken assumptions
and invariants can propagate these issues to the “safe” part of the
codebase. Traditional testing methodologies, such as unit testing
and manual code review, have limitations in detecting these subtle
flaws and ensuring comprehensive coverage of the codebase.

This is where fuzz testing (fuzzing for short) plays a crucial role
in identifying software vulnerabilities in Rust. Fuzzing comple-
ments traditional testing methods by automatically generating and
injecting a variety of random or targeted inputs into a program,
systematically exploring its execution paths, and identifying po-
tential weaknesses. By subjecting Rust programs to unexpected
and unconventional inputs, fuzz testing can uncover hidden bugs,
memory corruption issues, undefined behaviors, and other security
vulnerabilities that might otherwise remain undetected.

The standard tools to deploy fuzzing on Rust codebases are wrap-
pers around popular fuzzers for C/C++ targeting LLVM bitcode for
instrumentation. One of the most used tools in practice is cargo-
fuzz, a wrapper around LLVM’s LibFuzzer [28], both because Rust
is built on LLVM and is thus trivially compatible, and because Lib-
Fuzzer proves to be an effective in-process fuzzer. With the impor-
tance of fuzzing for ensuring safety in Rust programs, it is critical
to ensure that developers and researchers have the most effective
fuzzing strategies available. Unfortunately, LibFuzzer recently en-
tered maintenance mode [30] and will thus only receive bug fixes
in the future. In effect, LibFuzzer’s development has stopped.

https://doi.org/10.1145/3605157.3605176
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In this paper, we present CrabSandwich, a cargo-fuzz-compa-
tible fuzzer runtime using LibAFL [18] – a new powerful framework
for fuzzers development in Rust– instead of LibFuzzer designed
to address the challenges of testing Rust programs. We discuss the
key features and design principles of CrabSandwich, showcasing
its ability to efficiently generate diverse inputs and provide insight-
ful feedback to aid vulnerability discovery. In short, our LibFuzzer
replacement allows changing nothing in cargo-fuzz while main-
taining its widely used interface for fuzzing the same, while we
implement a LibFuzzer replacement with many advanced features
integrated into LibAFL such as the corpus scheduler fromAFL++ [17]
or the Grimoire [10] mutator for textual inputs.

In this preliminary report, we showcase a preliminary small-scale
experiment involving just three target programs. CrabSandwich
was able to find two more bugs than cargo-fuzz in one of those
targets, bugs that are under the process of being reported to the
project authors at the time of writing, and our prototype was able to
reach more code coverage than the baseline tool in two out of three
benchmarks. We hope that the preliminary evaluation can hint that
CrabSandwich is an improvement for the fuzzing ecosystem in
Rust and, through comprehensive evaluation and case studies, in
the complete evaluation, we will demonstrate the effectiveness of
CrabSandwich in detecting real-world vulnerabilities in a signifi-
cant amount of Rust projects, contributing to the community with a
dataset of applications that can be reused to evaluate future fuzzers
targeting Rust programs.

As a final goal, we aim to provide an up-to-date alternative to Lib-
Fuzzer using the latest advancements in fuzzing research and with
an active community maintaining it to the Rust ecosystem without
any effort for the end user that has only to change a dependency
in the cargo configuration file of the target program under test. To
achieve that, every artifact will be free and open source software and
the CrabSandwich implementationwill be available on crates.io
to the end users to facilitate adoption.

Contributions. In short, we make the following contributions in
this paper:

• We develop and open-source CrabSandwich, a cargo-fuzz-
compatible fuzzer runtime utilizing LibAFL for its implemen-
tations of recent fuzzing advancements

• We create a benchmark suite of open-source Rust projects
to evaluate CrabSandwich, cargo-fuzz, and future Rust
fuzzers

• Wepropose a range of improvements to and advancements in
LibAFL to improve compatibility and performance for Rust
targets

• We develop and improve existing Rust target harnesses, re-
sponsibly disclosing discovered bugs and contributing test
harnesses to the project developers

• Wecontributemissingpieces tocargo-fuzzandlibfuzzer-sys
to expand compatibility for other runtimes, including Crab-
Sandwich and others.

2 BACKGROUND

In this section, we discuss the background concepts on which our
approach is built, namely fuzz testing, Rust code testing, and the
LibAFL fuzzing framework.

2.1 Fuzz Testing

Fuzz testing, also known as fuzzing, is a widely-used technique for
discovering software vulnerabilities. It involves running a target
programwith mutated inputs in quick succession, in order to trig-
ger novel and potentially buggy program points. The first fuzzers
appeared in the early 1990s [37] and relied primarily on blackbox

testing, which involves providing the program under test with ran-
domlygenerated inputs andusing crashes anderror conditions as the
only guidelines for the fuzzing campaign. More advanced blackbox
fuzzers [14] take into account the structure information of test cases
for their mutations, but the limitations of such approaches canmake
them ineffective at bypassing even simple conditional statements.

To overcome the lack of target introspection in blackbox fuzzing,
two other paradigms exist:whitebox and graybox fuzzing.Whitebox
fuzzing [20] relies on complex instrumentations and code analysis to
inspect the state space of the target systematically, but introduces a
non-negligible performance slowdown. Graybox fuzzing [17, 28, 45],
on the other hand, uses only lightweight code instrumentation –
usually to trace code coverage – to produce feedback that is used to
evaluate the quality of a test case that is kept for further mutations
if “interesting”. This approach has become the leading technique to
discover vulnerabilities in modern codebases, thanks to the popular-
ity of AFL [19, 51] and Google’s OSS-Fuzz [1] being a prime example
of a large-scale deployment of graybox fuzzing.

Researchers continue to refine graybox fuzzing techniques by
developing newmethodologies for mutating test cases [3, 21, 33, 39],
managing test cases [11, 43, 48], providing feedback on program
behavior [15, 23, 35, 47, 49] and more [13, 34, 41, 50].

2.2 Rust and the Rust Ecosystem

The Rust programming language is a programming languagewhich
features memory safety, strong typing, and a very powerful build
system at its core. For these reasons, Rust has recently exploded in
popularity for its ease of use, the simplicity of dependency manage-
ment, and the guarantees provided by the compiler.

Implementing the paradigm of ownership, the Rust memory
model strongly prevents developers from implementing code which
causes data races or memory corruption. Users can circumvent parts
of these restrictions by the use of the unsafe keyword, which indi-
cates thatunsafemethodsoroperations, suchaspointerdereferences,
may be used, but the safety of the operation must be checked by the
user and cannot be guaranteed by the compiler. These regions are no-
toriouslydifficult toverify, oftenhavingedgecaseswhichmay lead to
the use of uninitialized memory or indexing outside of valid bounds.

An overwhelming majority of Rust executables and libraries are
developed in a “crate”, a single organizational unit that can be built,
tested, and run with the cargo command. Users can specify depen-
dencies for their crates using a markdown language, which will be
fetched from the crates.io repository or elsewhere, as specified.
This dynamicmakes dependency and buildmanagement simple, and
is collectively referred to as the “Rust Ecosystem”. In addition, users
can install extensions to cargo, allowing them to do more complex
tasks which involve the crate.
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2.3 Testing Rust Code

Albeit being a safe programming language, Rust projects are widely
tested with fuzz testing tools to catch panic errors or memory safety
issues in unsafe code. The OSS-Fuzz [1] platform continuously tests
Rust libraries using cargo-fuzz [6], a cargo– the most used Rust
build system – extension that builds the target program and fuzz
it with LibFuzzer. Other wrappers around the most used fuzzers
for C/C++ code are also available in the Rust fuzzing ecosystem,
namely afl.rs [5] that bridge AFL++ to Rust and honggfuzz-rs [7]
that does the same for HonggFuzz.

The interface used by cargo-fuzz resembles the harness function
that LibFuzzer requires to fuzz C/C++ code. The libfuzzer-sys
crate exposes the fuzz_targetmacro that takes a harness closure
as an argument. The harness closure is called by the fuzzer passing
the generated bytes slice as input to the closure. An example is the
code in Listing 10, a harness to fuzz Rust’s url crate.

#![no_main]

#[ macro_use] extern crate libfuzzer_sys;

extern crate url;

fuzz_target! (|data: &[u8]| {

if let Ok(s) = std::str:: from_utf8(data) {

let _ = url::Url::parse(s);

}

});

Listing 1: cargo-fuzz harness to fuzz the url crate.

Being an extension of the build system, cargo-fuzz takes care of
building the target with the right instrumentation flags for Sanitiz-
erCoverage [26], more specifically the inline 8-bit counters instru-
mentation used by LibFuzzer to track edge coverage at runtime and
comparison tracing to identify what values determine the “choice”
of conditional branches (such as if, while, and so on). Additionally,
it can compile the target with the LLVM sanitizers to spot silent
memory unsafety issues related to unsafe code or C/C++ libraries
linked to the Rust code as well as more specialized memory safety
sanitizers related to Rust-specific memory model violations.

When a cargo-fuzz fuzzer is executed, the fuzzer harness is com-
piled, linked to libfuzzer, and then executed by translating cargo-
fuzz flags into LibFuzzer flags. From this point onward, the fuzzer
behaves identically to a classical LibFuzzer-based C or C++ fuzzer.

2.4 LibAFL

While state-of-the-art fuzzers like AFL++ [17] are effective in finding
bugs, their design does not prioritize extensibility, resulting in mul-
tiple incompatible fuzzers. A novel fuzzing framework written in
Rust, LibAFL [18], solves this problem by providing reusable pieces
and a modular design to build custom-tailored fuzzers. It integrates
techniques from over 20 previous works providing a solid base for
comparative and extensible research.

LibAFL has been designed with three key principles in mind:
extensibility, portability, and scalability. It enables the seamless com-
bination of orthogonal techniques and simplifies the development
of new components, making it highly extensible. Furthermore, it
supportsmultiple operating systems, includingLinux,Windows,ma-
cOS,Android, and *BSD,while its core library is system-independent,

enabling users towrite code that can run even on bare-metal systems.
Finally, LibAFL is highly scalable, with an event-based interface for
fuzzers communication and an implementation based on shared
memory that allows in-process fuzzers to scale linearly over cores.

Core Concepts. ThecoreconceptsonwhichLibAFL isbasedare these
generic components that can be used to describe various fuzzers:

Input: The data taken from external sources that affect the behav-
ior of a program. Different fuzzers may use different representations
of inputs, such as byte arrays, system call sequences, abstract syntax
trees, or encoded token sequences.

Corpus: It is a storage for inputs and their associated metadata.
The corpus can be stored in memory or on disk, each with its own
trade-offs in terms of speed and resource usage.

Scheduler: The scheduler selects the next testcase to be fuzzed
from the corpus. It can use different policies like FIFO, random selec-
tion, or more advanced techniques based on statistics or interesting
properties of testcases.

Stage: A stage defines an action performed on a single testcase
from the corpus. It can involve mutators that modify the input, anal-
ysis stages, or minimization phases to reduce the size of testcases
while maintaining coverage.

Observer: An observer provides information about a single exe-
cution of the target program. Common observers include coverage
maps that track executed edges or other metrics beyond code cov-
erage.

Executor: The executor is responsible for executing the target
system using an input from the fuzzer. It defines how the target is
executed and handles volatile operations related to each run, such
as informing the program about the input.

Feedback: The feedback entity classifies the outcome of a program
execution as interesting or not. It uses information from observers
to determine if an execution is novel or satisfies specific objectives,
such as crashing the program.

Mutator : A mutator generates new derived inputs based on one
or more existing inputs. It can perform bit-level mutations or mod-
ify the internal representation of inputs, depending on the specific
fuzzer and input type.

Generator: A generator is responsible for creating new inputs
from scratch. While less common in feedback-driven fuzzing, some
fuzzers use generators to create initial inputs, such as random gen-
erators or grammar-based generators.

Implementingnewcomponents based on this classification is how
LibAFL can be extended. To discuss CrabSandwich, we will point
to these components discussing what we implemented or changed
in our approach.

3 DESIGN

In the following,wediscuss the design decisions forCrabSandwich,
as depicted in Figure 1. Our main goal was to minimize the user ef-
fort when creating new fuzzers and whenmigrating existing fuzzers
to CrabSandwich. For these reasons, we make the user interface
for CrabSandwich as similar to cargo-fuzz as possible. A typical
workflow for cargo-fuzz is the following:

(1) Install cargo-fuzz with cargo install -f cargo-fuzz
(2) Create the fuzz environment with cargo fuzz init, gener-

ating a new crate containing the fuzz harness(es)
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Linked CrabSandwich Binary

libfuzzer-sys replacement SanitizerCoverage

     Target     CrabSandwich Runtime

Custom
Extensions

Harness Function
fuzz_target!(..)

    LibAFL 
Input

Observations

Figure 1: High-level Ovewiew of CrabSandwich: The
runtime gets linked into the final binary, and the target is

instrumented with the usual LLVM instrumentation passes.

(3) Fill in the fuzz harness with code and dependencies to call
and tests the target using fuzzer-provided input.

Internally, cargo-fuzz uses the libfuzzer-sys crate to expose
the fuzz_targetmacro. This crate additionally compiles and links
a recent version of LibFuzzer. Since we intend to keep the workflow
unchanged,where possible,we replace the LibFuzzer library linking
step to use our library instead. This is the least invasive approach
to introduce CrabSandwich.We provide a runtime that keeps the
same parameters as LibFuzzer and thus remains compatible with
cargo-fuzz. By exporting the symbols defined by libfuzzer-sys,
we ensure that users do not need to change the harnesseswhatsoever
and can continue to use their cargo-fuzz infrastructure to benefit
from CrabSandwich.

To make this possible, on a technical level, CrabSandwich is
composed of two crates: the CrabSandwich runtime, which uses
LibAFL to replace and extend LibFuzzer’s features, and the compo-
nent to link this runtime to the fuzz harness and exports the symbols
from libfuzzer-sys.

3.1 CrabSandwich Runtime

The runtime component of CrabSandwich is a bytes input-based
LibAFL fuzzer runtime. To implement the required compatibility
features and to leverage the existing components of LibAFL, we
implement a range of novel components in CrabSandwich.

General LibFuzzer Compatiblity. To remain compatible with
cargo-fuzz and fuzz infrastructure for existing harnesses, Crab-
Sandwich utilizes LibAFL Observers specifically designed to re-
place LibFuzzer and LLVM’s SanitizerCoverage. We restrict them
to features present in the original LibFuzzer-compatible compila-
tion, retrofitting most of LibAFL’s advanced features to the prese-
lected instrumentation options. CrabSandwich needs to accept the
command-line flags in the same format and style as LibFuzzer. This
dictates what functionality must be present. For CrabSandwich,
we implemented supports for all flags that are immediately used
by cargo-fuzz, as well as other common flags for convenience in
evaluation (namely, -ignore_crashes and related flags to ensure
that the fuzzerwould continue after the first discovered crash during
evaluation).

Like LibFuzzer, CrabSandwich assumes that the harness will
return to a clean state after each target execution and uses in-process
fuzzing. In this form of fuzzing, a harness function is invoked in a
loop rather than forking and resetting the state on every execution,

reducing the overhead of the runtime’s invocation of the harness.
To accomplish this, CrabSandwich uses the InProcessExecutor
wrapped in a TimeoutExecutor to invoke the locally exported
LLVMFuzzerTestOneInput harness function. In the case of a time-
out,out-of-memory,orcrash (byexplicitpanicorotherwise),LibAFL’s
crash handler will emit the testcase in the format specified by Lib-
Fuzzer (prefixed by the crash cause and followed by the hash of
the input) before either completely halting (if -ignore_crashes
or its counterparts are unset or -fork=... is unset) or committing
the current state of the fuzzer to a shared memory region before
restoring from it and continuing.

LLVMFuzzerCustomMutator Support. One critical feature of Lib-
Fuzzer is the ability to use custom mutators, implemented in the
fuzzer harness, to specialize mutations when performing structural
fuzzingor fuzzinga target forwhich the input is expected in a specific
format. This feature is also supported by libfuzzer-sys, so Crab-
Sandwich will conditionally invoke LLVMFuzzerCustomMutator
and LLVMFuzzerCustomCrossover instead of the built-in mutators,
exposing the built-in mutators via LLVMFuzzerMutate. In addition,
CrabSandwich ensures that inputs are only mutated according to
the custommutation strategies, applied by conditionally configuring
whichmutations are available depending onwhich custommutators
are detected, something not present in LibFuzzer.

Harness Input Rejections. LibFuzzer harnesses are permitted
to explicitly emit an exit code which specifies whether to retain or
reject themost recently executed input in order to only retain inputs
which guide towards the desired region [29]. To accomplish this, a
rather straightforward observer component was implemented to
observe the return value of the harness, which is used in part to
determine whether an input will be considered for addition to the
corpus.

3.2 Advanced Features

Apart from general LibFuzzer compatibility, we improve fuzzer effi-
ciency by using strongmutation scheduling. As a long-time leader in
FuzzBench[36],AFL++hasconsistentlyproventochooseverystrong
strategies for corpus scheduling or the selection of which inputs to
mutate next. Hence, rather than recreating the “entropic” scheduling
strategy as LibFuzzer, CrabSandwich uses LibAFL components
which implement AFL++-style power scheduling and dynamic min-
imization of which inputs are available to select. Additionally, we
have implemented novel functions to optimize LibFuzzer for Rust
fuzzing:

Conditional Grimoire. CrabSandwich is not restricted to just
LibFuzzer mutations. A recent paper, Grimoire [10], implements
mutations which preserve and mine structure from inputs. Support
for Grimoire-style mutations has been present in LibAFL for some
time. Since Grimoire mutations are primarily useful for targets
whichexpect structured string inputs,CrabSandwichconditionally
enables these mutations depending on the fraction of valid UTF-8
inputs present in the corpus at initialization, and also permits the
user to override this setting via a flag.

Comparison Interceptors and String-oriented Mutations.

LibFuzzer intercepts multiple common comparison functions in
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order to detect longer comparison data than what is available via
comparison log [31]. While not implemented in the initial version
of CrabSandwich, we intend to implement and evaluate this ad-
dition for the full implementation. In addition to using comparison
interceptors to collect longer binary and string data, LibFuzzer ad-
ditionally implements mutators which target string-based inputs
[32]. Historical FuzzBench experiments have indicated that these
are quite powerful for targets which accept primarily string-based
inputs1. As such, CrabSandwich in future iterations will similarly
implement string-oriented mutations, which will be evaluated in
secondary experiments to determine their efficacy. Where the Gri-
moire mutations preserve structure [10], these mutations would
preserve datatype information (like a mutation applied to a number
encoded in a string).

Comparison Log. LibFuzzer is able to use feedback from Sanitiz-
erCoverage’s comparison tracing to guide mutations. CrabSand-
wich implements a similar strategy, using the comparison log algo-
rithm from AFL++ to guide mutations.

3.3 libfuzzer-sys Replacement Design

Unlike the runtime crate, the libfuzzer-sys replacement crate
serves primarily as the front-facing interface to the user while guar-
anteeing that the harness is linked to the runtime crate. Its implemen-
tation is comparatively straightforward, as this crate itself merely
provides a thin interface to the actual runtime. As previously stated,
to make CrabSandwich easily accessible to developers, developers
should have as fewmigration requirements as possible. To support
this, CrabSandwich’s libfuzzer-sys replacement crate itself de-
pends on libfuzzer-sys, re-exporting all of its symbols and crate
features. In this way, users of CrabSandwich can simply swap out
the dependency and require no additional changes to the harness.

Building and Linking CrabSandwich’s Runtime. Since cargo-
fuzz instruments both the harness and the dependencies of the har-
ness, CrabSandwich’s runtime must be built and linked separately.
To do so, the build script for the libfuzzer-sys replacement crate
builds the runtime while discarding the sanitization flags exported
by cargo-fuzz, and then links the unsanitized runtime.

Harness Input Rejection. LibFuzzer harnesses are permitted
to explicitly emit an exit code which specifies whether to retain or
reject themost recently executed input in order to only retain inputs
which guide towards the desired region [29]. To accomplish this, a
rather straightforward observer component was implemented to
observe the return value of the harness, which is used in part to
determine whether an input will be considered for addition to the
corpus.

Publishing CrabSandwich. To make CrabSandwich widely
available and easy to use, we will publish CrabSandwich to the
crates.io package repository andGitHub. In thisway, anyonewho
wishes to try, inspect, or modify CrabSandwichmay easily do so.

4 EVALUATION

In this section, we describe the methodology that we plan to follow
for the full-scale experiments and we provide a small preliminary
experiment involving just three targets.

4.1 Methodology

To evaluate the performance of CrabSandwich versus the baseline,
the vanilla cargo-fuzz using LibFuzzer, we plan to conduct exten-
sive experiments targeting many more Rust targets with different
design choices – such as the usage of unsafe code or not, or the
presence of custommutators – and different input formats.

The fuzzers will be tested in terms of uncovered bugs and code
coverage. The bugs will be manually deduplicated from the set of
crashing testcases produced by the fuzzers and the time to discover
the first crashing testcase for each bug will be reported to measure
the bug-finding ability of the fuzzers. Each experiment will last 24
hours, a commonly chosen time for fuzzing experiments [25]. To
copewith the effect of randomness in fuzzing, we plan to repeat each
measurement 10 times computing themean values to represent each
result. TheMann-Whitney U test will be used to verify the statistical
significance of the results by comparing differences between the two
independent groups of values representing the twoevaluated fuzzers.

For the preliminary evaluation of our approach, we focus on just
3 target programs restricting the campaign time to just 12 hours and
three trials. The code coverage is reported only at the end of the
campaign, while we plan to extend the measure to coverage over
time in the final evaluation to understand if a fuzzer is faster than
another to reach the same coverage.

4.1.1 Benchmarks. For the preliminary evaluation, we choose 3
common Rust crates with an already available cargo-fuzz harness:

• image, version 0.24.6
• pdf, version 0.8.1, “cache” feature enabled
• regex, version 1.8.1

The pdf crate was slightly modified to make it compile with the
current version and with an additional function call to explore mode
code.

As there is no benchmark suite for fuzzers evaluationwith known
vulnerabilities in Rust such as Fuzzbench [36] or Magma [22] for
C/C++ fuzzing, we will build a benchmark suite from scratch se-
lecting old and vulnerable versions of crates as well as improving
existing harnesses for current versions of crates. For the preliminary
evaluation, we selected the latest version of such projects to show
that CrabSandwich is able to discover novel bugs.

4.1.2 Setup. The preliminary experiments were conducted on a
Ubuntu 22.04.2 x86_64 machine with a 12 cores 11th Gen Intel(R)
Core(TM) i5-11400 2.60GHz CPU and 32 GB of RAM. The bugs
found during the campaigns were manually deduplicated as the
number of crashing testcases is not a valid metric to assess the per-
formance of a fuzzer [25]. The coverage was computed using the
cargo fuzz coverage built-in utility of cargo-fuzz that uses the
-Cinstrument-coverage flags of rustc to compute line coverage.

1Note the high performance of LibFuzzer on inputs which expect string-based inputs
versus those which expect binary data inputs: https://www.fuzzbench.com/reports/
experimental/2023-04-27-main/index.html

https://www.fuzzbench.com/reports/experimental/2023-04-27-main/index.html
https://www.fuzzbench.com/reports/experimental/2023-04-27-main/index.html
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Table 1: Mean corpus size, mean and max unique bugs

coverage and mean line coverage after 12h with 3 trials for CrabSandwich and cargo-fuzz over the 3 preliminary benchmarks.

Mean Corpus size Mean bugs coverage Max bugs coverage Mean line coverage

Benchmark CrabSandwich cargo-fuzz CrabSandwich cargo-fuzz CrabSandwich cargo-fuzz CrabSandwich cargo-fuzz

image 1141.6 1591.3 0 0 0 0 8.25% 8.23%
pdf 630.6 687 5 3 7 5 17.86% 17.42%
regex 62.6 75.6 0 0 0 0 30.06% 34.09%
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Figure 2: Mean unique bugs coverage and standard error

over time until the 12h limit with 3 trials for CrabSandwich
and cargo-fuzz on the pdf target benchmark.

4.2 Preliminary Experiments

The preliminary experiments results are summarized in Tab. 1. Only
in one benchmark, we could find crashes corresponding to a total
of 8 novel bugs that we are in the process of reporting to the project
authors. Our variant of cargo-fuzz outperforms the baseline in both
the mean and max number of bugs, finding 2 more bugs than the
baseline in total.CrabSandwichisalso faster indiscovering thebugs
over time, as plotted in Fig. 2, in which the curve of the mean bugs
coverage found by CrabSandwich is always above the baseline.

Among the 8 bugs that we discovered in the pdf crate, 5 bugs
are caused by index-out-of-range, 2 are panics, and 1 is caused by
assertion failure. During the 3 fuzzing campaigns, CrabSandwich
discovered 4 of the index-out-of-range bugs, and all of the panics
and assertion failures, but missed one index-out-of-range bug.

In terms of code coverage, CrabSandwich is the best performer
in 2 out of 3 benchmarks. Being image a huge codebase, the small
percentage points of difference matters, while the improvement in
coverage in pdf can explain the additional bugs found. cargo-fuzz
is still the best in regex, a hard-to-fuzz program as the initial seed
is empty and a generic fuzzer has difficulties in generating valid
or almost valid regular expressions. LibFuzzer, however, can take
advantage of the string-oriented mutations [32], which still are a
work-in-progress for CrabSandwich at the time of this preliminary
evaluation, but will be available in the final version.

An additionalmetric thatwe report is the corpus size, not to assess
the performance of the fuzzers in terms of coverage as the number
of saved testcases highly depends on the type of feedback used and

cannot be used to compare effectiveness, but as a metric useful to
understand if a fuzzer is saving too many redundant testcases for
the uncovered coverage causing wastage to the internal state of the
fuzzing algorithm. In general, CrabSandwich seems to achieve
more coverage requiring a smaller corpus, except for regex inwhich
the greater corpus size of cargo-fuzz seems to correlate with the
additional coverage uncovered.

4.3 Discussion

For our initial evaluation, CrabSandwich had marginal improve-
ments over base cargo-fuzz in two of the targets and worse cover-
age in one. Despite this, CrabSandwich consistently maintained a
smaller corpus size and, for the target with bugs present, found two
more bugs than base cargo-fuzz both bymean andmax. Simultane-
ously, it would be unreasonable to state that this evaluation is near
complete or sufficient. As discussed in 4.1, the full evaluation will
include several additional targets.

In addition, these results support themotivation for implementing
comparison interceptors and string-oriented mutations. Observing
the behavior of the regex fuzzer, LibFuzzer records several strings
while running the fuzzer. After some investigations, it becomes clear
that it records the names of Unicode character classes. These names
are used by the regex crate for matching based on a Unicode charac-
ter class [46]. As of now, neither CrabSandwich nor LibAFL is able
to replicate this behavior as it does not record strings or memory
regions passed to comparison functions. As a result, CrabSandwich
is unable to cover significant portions of the regex crate.

A secondary objective of this work is to develop and improve
existing harnesses of Rust libraries, as needed for evaluating Crab-
Sandwich. In thecourseofour initial evaluation,wediscovered eight
newbugs in thepdf crate.A fuzzharness for this target alreadyexists,
and yet with minor modifications, we were able to discover several
new bugs. In this way, we expect that, in the process of evaluating
CrabSandwich, we will develop other additional improvements to
harnesses already present in the community, responsibly disclosing
to project owners and reporting on our findings in our final sub-
mission. Moreover, by standardizing, developing, and improving
existing fuzz harnesses for Rust targets, we will inherently create
a benchmark suite for Rust-oriented fuzzers.

5 RELATEDWORK

In this section,we discuss some relatedworks that focus onRust vul-
nerability discovery and advancing the capabilities of C/C++ fuzzers
that can be potentially used in combination with our approach.
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5.1 Vulnerabilities in Rust

Vulnerabilities in Rust codebases can be usually linked to the usage
ofunsafe code [8].Developers canuse the “unsafe”keyword togobe-
yondthe language’s typesystemandbypass thatmemorysafetyguar-
antees of the language with the Rust compiler that assumes that the
providedunsafe code is correct andbug-free. Thismeans that a single
bug in unsafe code, whether it originates from the developer’s own
code or from a library, can destroy the safety guarantees of the entire
program and thus the usage of unsafe code patterns must be strictly
limited to the necessary usage. In addition, there is always the possi-
bility of having bugs in the Rust type system itself [44] breaking the
safety guarantees for the programs compiled with a buggy compiler.

Recentworks invulnerabilitydiscovery tried to focusonRustpro-
gramsusingbothstaticanddynamicapproaches.Rudra[8]analyzed
staticallyeverypackage in theonlineRustecosystemreportingmore
than200bugs linked to theusageof unsafe code.On theother handof
the testing spectrum, Rulf [24] address the lack of fuzzing harnesses
for libraries with automatic harness generation for Rust crates.

5.2 Modern Fuzzing Advancements

5.2.1 Code Coverage Roadblocks. Code coverage roadblocks are
a challenge to code exploration in fuzzing as standard mutations
struggle to satisfy comparison sequences within the input. Magic
values and checksum fields in input formats are two common types
of roadblocks. Magic values involve multi-byte comparisons, while
traditional structure-blind mutators treat the input as a byte stream,
making it highly improbable to match all the involved bytes. Poten-
tial solutions include using specialized feedback for partial progress
in comparisons [2, 27] employing concolic execution for white-box
fuzzing [12, 50], or techniques that extract comparison operands to
replace input segments [4, 40]. Checksums, often used for validation
in binary formats, pose even greater difficulty. Existing solutions
involve format-specific mutators or code transformations that tem-
porarily override checksum checks [4, 38].

5.2.2 Input Generation. General-purpose fuzzers often generate a
high proportion of invalid inputs, which tend to exercise code only
in the early parsing stages of a program, failing to explore deeper
regions. To effectively explore these regions, a fuzzer must prior-
itize producing valid inputs. Some approaches, like [3, 39], utilize
hand-written input format specifications to guide the mutator. More
recent works have attempted to automatically learn approximate
specifications [9, 10, 16].

5.2.3 Bug Oracles. Whilemost fuzzers aim to expose bugs thatmay
indicate potential vulnerabilities, some bugs do not immediately trig-
ger observable crashes. To catch such bugs, fuzzing users instrument
the program under test with additional checks to detect the silent
bugswith enhanced oracles. Source-based fuzzers, for instance, offer
the option to instrument programs with sanitizers like ASan [42].
However, current sanitizersmay not capture certain pure-logic bugs,
and automatically uncovering such bugs through fuzzing, without
manual assertions, remains an active area of research.

6 CONCLUSION

As part of the extended study, we hope to further prove that Rust
is the perfect fit to fuzz Rust programs. CrabSandwich is still in

an early stage of development and will improve over time, driven by
advancements in the underlying LibAFL. In contrast to the original
cargo-fuzz runtime, LibFuzzer, the preliminary results look very
promising, and we are confident that future evaluations will con-
tinue this positive trend. The results of the evaluation support the
motivation for implementing comparison interceptors and string-
oriented mutations. These features allow CrabSandwich to find
bugs that cargo-fuzz cannot, and they are likely to be even more
effective when used in conjunction with other fuzzing techniques.

Overall, the preliminary evaluation of CrabSandwich is promis-
ing. We have made significant progress in developing a more effec-
tive fuzzer for Rust, and we have identified several areas for future
improvement. With further development, CrabSandwich has the
potential to be a valuable tool for finding an increasing amount of
bugs in Rust software.

All tooling we develop will be open-sourced upon publication of
this paper.
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