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1 Introduction

It is expected that the 6G air-interface will build upon the 5G standard and ad-
dress new pardigms for feedback-based cyber-physical systems combining com-
munications and sensing. In particular, there will be a need for tight control
loops using the air-interface to control 6G-enabled objects with high-reliability,
perhaps even requiring lower latencies than those achieved by current 5G tech-
nology, for example sub-1ms uplink application-layer latency in microwave spec-
trum. Although 5G transmission formats can provide very short-packet trans-
mission through the use of mini-slots, the ratio of tranining information to data
is not necessarily adapted to extremely short data transmission. Moreover, the
transmission formats are designed with conventional quasi-coherent receivers
which can be quite sub-optimal in such scenarios where accurate channel es-
timation is impossible because of sporadic transmission of short packets. One
such instance is because of stringent decoding latency constraints such as those
emerging in so-called Ultra-Reliable-Low-Latency Communication (URLLC) in-
dustrial IoT applications. This would be similar for evolved channel state infor-
mation (CSI) feedback control channels or future combined-sensing and commu-
nication paradigms requiring rapid sensory feedback to the network. The area
of short block transmission has garnered significant attention in recent years,
with extensive research conducted on various aspects, including the design of
signal codes and the establishment of state-of-the-art converse and achievability
bounds for both coherent and non-coherent communications [1–6].

In this work we investigate bit-interleaved coded modulation (BICM) and
detection strategies for packets in the range of 20-100 bits for these envisaged
beyong 5G/6G signaling scenarios.
Zehavi [7] proposed bit-interleaved coded modulation (BICM) as a pragmatic
approach to coded modulation. Its basic principle is the ability of an inter-
leaving permutation to separate an underlying binary code from an arbitrary
higher-order modulation [8]. Per-bit log-likelihood ratios are used to convey
soft metrics from the demodulator to the decoder in order to reduce information
loss. Thus, this fundamental observation spurred interest in BICM. In [9], Caire
et al., later, conducted a thorough analysis of BICM in terms of information
rate and error probability including both coherent and non-coherent detection.
Furthermore, BICM is seen as a standard coding approach for wireless commu-
nications channels and is the workhorse of today’s high spectral efficiency sys-
tems as well as low spectral efficiency orthogonal modulation systems, including
satellite communication, and broadband internet. Interestingly, one of the key
benefits of BICM is that it allows the data rate to be increased without signifi-
cantly increasing the error rate. This is because the error-correcting code helps
to compensate for errors that occur during transmission, allowing the data to
be transmitted at a higher rate without sacrificing reliability. It is particularly
useful in situations where the communication channel is prone to errors, and
a high level of reliability is required. 3GPP systems have made use of BICM
since the 3G-era. Therefore, in order to improve their efficiency and enable
high performance communication, schemes such as rate matching, scrambling
and other processes inherent to modern wireless communication standards are
de facto added to the reference BICM schematic. In addition, the underlying
detection and decoding metrics must provide enhanced performance and low
complexity trade-off in Ultra-Reliable-Low-Latency Communication (URLLC)
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perpectives. One of the main applications is in the field of mission-critical com-
munications, such as those used by emergency services or in industrial control
systems. In these cases, it is essential that the communication is both ultra
reliable (i.e. with a very low probability of failure) and has extremely low la-
tencies (i.e. the time it takes for a message to be transmitted and received).
Overall, in addition to mission-critical applications, URLLC is also expected
to have a number of other important use cases, and will enable a wide range
of new applications that require extremely high levels of reliability and low
latencies. In this paper, we look into bit-interleaved coded modulation met-
rics exploiting joint detection and estimation which are amenable to situations
where low-density DMRS are interleaved with coded data symbols. We are pri-
marily interested in situations where accurate channel estimation is impossible.
One such instance is because of stringent decoding latency constraints such as
those emerging in URLLC systems. Another similar instance would be in the
case extremely short and sporadic packets either for control channels or certain
machine-type communication paradigms. We show that by using a properly
conceived metric exploiting interleaved DMRS in the decoding metric compu-
tation, we can achieve performance approaching a receiver with perfect channel
estimation and significant coding gains compared to a conventional 5G OFDM
receiver. The scheme performs detection over contiguous groups of modulated
symbols including those from the DMRS to provide soft metrics for the bits in
each group to the channel decoder. We evaluate performance using a full 5G
transceiver chain for both polar and LDPC coded formats. The schemes are
applicable to both uplink and downlink transmission where packets are encoded
into a small number of OFDM symbols with interleaved DMRS. Additionally,
we investigate the impact of varying densities of reference signals on perfor-
mance. The article is structured as follows. Section II lays out the system
model, Problem reformulation and foundations of NR polar and LDPC-coded
modulations, Section III focuses on the proposed BICM metrics, Section IV
presents the results and performance analysis, and finally Section V concludes
the paper.

Notation : Scalars are denoted by italic letters, vectors and matrices are
denoted by bold-face lower-case and upper-case letters, respectively. For a
complex-valued vector x, ||x|| denotes its Euclidean norm, | · | denotes the
absolute value. E{·} denotes the statistical expectation. Re· denotes the real
part of a complex number. I0(·) the zero-th order Modified Bessel function of
the first kind. diag(A) denotes a diagonal matrix with each diagonal element
being the corresponding element in A. I is an identity matrix with appropriate
dimensions. Galois field is denoted by GF (2). m s.t. ej = b means the set of the
constellation symbols such that bit j − th bit e is equal to b. L (·) denotes log
likelihood function / ratio. The superscripts T , ∗ and H denote the transpose,
conjugate, and Hermitian (complex conjugate transpose).

2 System Model and Problem Formulation

2.1 System Model

Consider a discrete-time model in which the transmitted and received symbols
are N -dimensional column vectors, and thus a system is designed in such a way

3



that the relationship between the transmitted and received signals is as follows:

yr = diag(hr)xm + zr, r = 0, 1, · · · , NR − 1, (1)

where yr represents an observed vector in N complex dimensions, xm is and N -
dimensional modulated vector transporting B channel bits, so that the message
m = 0, 1 . . . , 2B −1, z is additive white Gaussian noise whose real and imaginary
components are independent and have variance σ2 in each dimension. Various
models for h will be used in this study and will be described along with the
corresponding receiver structures. NR represents the number of observations of
the transmitted vector over a multi-antenna receiver.
The transmitted vector xm is often composed of data independent components
which are known to the receiver. These are so-called pilot or demodulation
reference signals (DMRS) which are conceived in order to allow for resolving
channel ambiguity in time, frequency and space. In practice, the reference
signals are used for estimating the vector channels {hr} and are commonly in-
terleaved among the data-dependent components according the characteristics
of the propagation channel. It is notably the case in current OFDM systems. In
earlier CDMA systems, DMRS were sometimes superimposed on top of data-
dependent signals. We denote the number of data dimensions by Nd and ref-
erence signal dimensions by Np where Nd + Np = N . In 3GPP standard, N
is typically equal to 12KL. This represents the number of complex dimensions
or resource elements in the physical resource blocks. The number of physical
resource blocks, K ranges from 1 to 16, while the number of symbols, L, ranges
from 1 to 14, and can be increased if multiple slots are used for signaling the
B bits. The assumption in this work is that the data-dependent components of
xm are generated from a binary code whose output is interleaved and mapped
to an M -ary modulation symbol alphabet. We will assume that the binary
code generates E bits and the interleaver mapping is one-to-one so that E bits
are also fed to the modulator. The binary-code and interleaver combination
can thus be seen as a (E, B) binary block code. Denote the E coded bits as
ek, k = 0, 1, · · · , E − 1. Adjacent log2 M bit-tuples are used to select the NE

modulated symbols in the symbol alphabet. Typically, we will assume that a
Gray mapping is used in the case of non-binary modulation.

2.2 Problem Formulation

We denote the likelihood function for the observed vector on a particular re-
ceiver branch with respect to a given transmitted signal as

q (x(m), {y}) = P ({y} | x(m)) , (2)

and the resulting maximum-likelihood receiver for detecting m is

m̂ = argmax
m=0,1,··· ,2B−1

q (x(m), {y}) (3)

The likelihood of coded bit ej ∈ {0, 1} is

qj,b ({y})
∑

m s.t. ej=b

q (x(m), {y}) . (4)

ej is the j − th bit of symbol x, m s.t. ej = b is the set of the constellation
symbols such that bit b = {0, 1}. As is common in the case of BICM-based sys-
tems, the soft input to the binary channel decoder is given as the log-likelihood
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ratio (LLR) for coded bit j.

Lj ({y}) log
[

qj,0 ({y})
qj,1 ({y})

]
(5)

Note that in the above expressions we do not limit the dimensionality of
the observations when computing likelihoods of particular bits. In the original
work of Caire et al [9] the authors assume an ideal interleaving model which
allows limiting the observation interval of a particular coded bit to the symbol
in which it is conveyed. For long blocks this assumption is realistic for arbi-
trary modulation signal sets and is sufficient for BPSK and QPSK irrespective
of the block length when the channel is known perfectly. Nevertheless, practical
systems usually apply single symbol likelihood functions for short blocks and
high-order modulations. For the primary case of interest here, namely transmis-
sion without channel state information, single symbol detection is impossible.
At the very least, the observation of one reference symbol must be used to gen-
erate likelihoods of the coded bits of a data symbol, thus warranting the study
of block detection.

2.3 General Framework

2.3.1 Bit-Interleaved Polar-coded Modulation (BIPCM)

Bit Interleaved Polar Coded Modulation is referred to as BIPCM. In this in-
stance we are dealing with the CRC-Aided Polar (CA-Polar) coding scheme,
one of the basic code construction techniques established by the 3GPP Stan-
dard [10]. Using polar codes as a channel coding scheme for 5G control channels
has demonstrated the significance of Arikan’s invention [11], and its applicabil-
ity in commercial systems has been proven. This new coding family achieves
capacity rather than merely approaching it as it is based on the idea of channel
polarization. Polar codes can be used for any code rate and for any code length
shorter than the maximum code length due to their adaptability.

They are the first kind of forward error correction codes that achieve sym-
metric capacity for any binary-input discrete memoryless channel under low-
complexity encoding and low-complexity successive cancelation (SC) decoding
with order of O(N log N) for infinite length codes. In NR, the polar code is
used to encode broadcast channel as well as DCI and uplink control information
(UCI). 3GPP NR uses a variant of the polar code called distributed CRC (D-
CRC) polar code, that is, a combination of CRC-assisted and PC polar codes,
which interleaves a CRC- concatenated block and relocates some of the PC bits
into the middle positions of this block prior to performing the conventional po-
lar encoding [12]. This allows a decoder to early terminate the decoding process
as soon as any parity check is not successful.

Assume that the input message(UL/DL Control Information) before CRC
attachment is a(0), a(1), . . . , a(A − 1), where A is input sequence, parity bits
are
p(0), p(1), . . . , p(L−1), L is the number of parity bits. For the downlink, a CRC
of length L = 24 bits is used, and for the uplink, depending on the quantity
of A, CRCs of length L = 6 and L = 11 bits are used. The message bits
after attaching CRC are b(0), b(1), . . . , b(B − 1), where B is the size of Control
information with CRC bits: B = A + L.
The input bit sequence to the code block segmentation is denoted
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a(0), a(1), . . . , a(A − 1),where value of A is no larger than 1706. Assume that
the maximum code block size is A′ and C the number of existing code blocks,
the sequence
cr(0), cr(1), . . . , cr(A′/C − 1) is used to calculate the CRC parity bits
pr(0), pr(1), . . . , pr(L − 1).The sequence of bits resulting after attaching a CRC
to the r-th code block is denoted by cr(0), c(1), . . . , cr(Kr − 1) , where Kr is
the number of bits in the r − th Code block to be fed to the channel encoder.
Then, the coded bit are denoted by d(0), d(1), . . . , d(Nr − 1) where Nr = 2n.
Denote by Er the rate matching output sequence length of the r − th coded-
block: if Er ≤ (9/8) · 2(⌈log2 Er⌉−1) and K/Er < 9/16 n1 = ⌈log2 Er⌉ − 1
else n1 = ⌈log2 Er⌉. And then, Rmin = 1/8; n2 = ⌈log2 (K/Rmin )⌉; n =
max {min {n1, n2, nmax} , nmin }
where nmin and nmax provide a lower and an upper bound on the code length,
respectively. In particular, and nmin = 5 and nmax = 9 for the downlink control
channel, whereas nmax = 10 for the uplink control channel. The polar encoding
is based on the following procedure [10]:

• The sequence c(0), c(1), . . . , c(Kr − 1) is interleaved into bit sequence
c′(0), c′(1), . . . , c′(Kr − 1) via a definite interleaving pattern [10].

• The interleaved vector c′ is assigned to the information set along with
the PC bits, while the remaining bits in the N -bit vector u are frozen.
Hence, u = u(0), u(1), . . . , u(Nr − 1) is generated according to the clause
5.3.1.2 [10].

• Denote GNr = (G2)⊗n as the n−th Kronecker power of matrix G2 , where

G2 =
[

1 0
1 1

]
, the output after encoding d = d(0), d(1), . . . , d(Nr − 1) is

obtained by d = uGNr , where encoding is performed in GF (2).

As a result, a rate matching process is perfomred per coded block and con-
sists of sub-block interleaving, bit collection, and bit interleaving. The input
bit. Thus, the output bit sequence after rate matching are the sequences frk

, for r = 0, . . . , C − 1 and k = 0, . . . , Er − 1, where Er is the number of rate
matched bits for the r − th code block. At the rate matching stage, perforation,
shortening, or repetition (Er ≥ Nr) might be applied. The aim is to convert a
vector of Nr bits into a vector of Er bits. Afterwards, we perform code block
concatenation to recast all code block messages into a sequence of transport
block messages. The output bit sequence after the code block concatenation is
g(0), g(1), . . . , g(E − 1). The receiving chain is therefore the transmitting chain
in the reverse flow. Furthermore, currently, the main polar code decoding al-
gorithms are the SC algorithm [11] , the SCL algorithm [13, 14] , the CA-SCL
algorithm [15] , the BP algorithm [16] , the SCAN algorithm [17] , and various
simplified versions of the algorithm can be found in the literature [13, 15–23].
The SC algorithm was originally proposed by Arikan, but its performance is
poor in the case of finite length codes. SCL is an improved version of the SC al-
gorithm with better performance, and the principle is to provide multiple paths
over SC, while CA-SCL is a cyclic redundancy check on the message bits over
SCL [24]. It is an improvement on the SCL decoder where a high-rate CRC
code is added to the polar code to help choose the right codeword from the
final list of pathways. Every time a SCL-decoder fails, it has been seen that the

6



right codeword is included in the list. In terms of performance, these algorithms
are ranked as follows:CA-SCL> state of the art SCL>BP=SCAN>SC. In this
instance, the channel decoder technique must utilize the CRC-Aided Successive
Cancellation List decoding for downlink (DCI or BCH) or uplink (UCI) mes-
sages going forward to benefit from the performance improvements it provides.
Additionally, the well acknowledged potential of CA-SCL decoding to perform
better than Turbo or LDPC codes was one of the primary reasons the 3GPP
adopted polar codes.

The overall representation of the BIPCM/BILCM process, from the MAC
to the physical layer processing, is presented in Figure 1. This figure depicts
the transmit-end procedure for uplink channels, which encompasses the addi-
tion of a transport block CRC, code block segmentation with additional CRC
attachment, channel encoding, rate matching, code block concatenation, and
modulation. It is important to note that the receiving chain is simply the
reverse flow of the transmitting chain.

CRC
Attachment

B = A + CRC
CB Segment.
& CB crc att.

Channel
Encoding

intlv

Rate
matching

Sublk intlv,
bit select.,intlv

CB conca-
tenation

Modulation
(MPSK)

Resource
Mapping

A bits B Nd Nd + Np = N

Figure 1: Bit-Interleaved Polar/LDPC coded Modulation (BIPCM/BILPCM)
: Transmitter end

2.3.2 Bit-Interleaved LDPC-coded Modulation (BILCM)

Bit-Interleaved LDPC-Coded Modulation is referred to as BILCM. Originally
proposed by Gallager in early 1960s [25], low-density parity-check (LDPC) cod-
ing is currently adopted in 5G NR for both uplink and downlink shared trans-
port channels. LDPC codes are appropriate for 5G NR shared channels due to
its high throughput, low latency, efficient decoding complexity and rate com-
patibility. The performance of LDPC codes in 5G NR demonstrates an error
floor at or below the 105 block error rate (BLER), which is a significant advan-
tage over traditional coding techniques. The QC-LDPC family serves as the
foundation for 5G NR LDPC codes. NR LDPC code is constructed from a Base
Graph Matrix (BG) of dimension M × N , designated as HBG. The selection
of the HBG matrices in the 5G NR coding process is based on the coding rate
and the length of the transport block or code block. There are two base graphs,
BG1 with dimensions of N = 68 and M = 46 optimized for large information
block sizes of K ≤ 8448 and high coding rates between 1/3 ≤ R ≤ 8/9, and
BG2 with dimensions of N = 52 and M = 42 optimized for small information
block sizes of K ≤ 3840 and lower coding rates between 1/5 ≤ R ≤ 2/3. These
codes are suitable for high reliability scenarios due to their ability to achieve
additional coding gain at low-code rates. The maximum number of information
bits for BG1 is K = 22Zc and for BG2 is K = 20Zc, where Zc is the lifting
size. There are 51 lifting sizes ranging from 2 to 384 for each base graph. The
parity check matrix, denoted as H, is obtained by replacing each element of
HBG with a cyclic permutation identity matrix, I(Pij). In other words, each
element of HBG is replaced by the corresponding Cyclic Permutation Matrix
(CPM). The size of the matrix H is m × n, with m = M × Zc, n = N × Zc, and
k = n−m = (N −M)×Zc. Both BG1 and BG2 have similar structures. There
are various effective LDPC encoding techniques because of the structure and
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features of base graphs. As in [26], a brand-new effective encoding technique
that acts as a high throughput, low complexity coding architecture has been
proposed.

The transmission process involves first attaching CRC to the transport
block. CRC is an error detection code used to measure BLER after decoding.
Hence, the entire transport block is used to calculate CRC parity bits. Assume
that the transport message before CRC attachment is a(0), a(1), . . . , a(A − 1),
where A is the size of the transport block message. Parity bits are p(0), p(1), . . . , p(L−
1), where L is the number of parity bits. if A > 3824, L is 24, otherwise L is 16
is used. he message bits after attaching CRC are b(1), b(2), . . . , b(B), B is the
size of transport block information with CRC bits and B = A + L. LDPC base
graph is selected based on the size of transport block message A and trans-
port block coding rate R. If A ≤ 292 ,or if A ≤ 3824 and R ≤ 0.67 , or if
R ≤ 0.25, LDPC BG2 is used. Otherwise, LDPC BG1 is used [10]. The out-
put of code block segmentation + CRC attachment is cr(1), cr(2), . . . , cr(Kr),
assuming Kr = K ′

r + L, where K ′ is the number of bits in r − th code block ,
L is attached CRC on the r − th Code block. Thus, each code block message
is encoded independently. In 3GPP NR, the input bit sequence is represented
as c = [c(0), c(1), . . . , c(Kr − 1)]T , where Kr is the number of information
bits in a code block, the the redundant bits are called parity bits denoted by
w = [w(0), w(1), . . . , w(N +2Zc −Kr +1)]T .The LDPC-coded bits are denoted
by d(0), d(1), . . . , d(Nr − 1). A code block is encoded by the LDPC encoder
based on the following procedure [10]:

1. Find the set with index iLS which contains Zc in [10].

2. Set dk−2Zc = ck, ∀k = 2Zc, . . . , Kr − 1

3. Generate Nr + 2Zc − Kr parity bits w = [w(0), w(1), . . . , w(N + 2Zc −
Kr + 1)]T such that H × [c w]T = 0

4. The encoding is performed in GF (2).

5. Set dk−2Zc = wk−Kr , ∀k = Kr, . . . , Nr + 2Zc − 1

Thus, rate matching and code block concatenation processes proceed. The re-
ceiving chain serves as the inverse counterpart of the transmitting chain. The
decoding of Low-Density Parity-Check (LDPC) codes is carried out on each code
block individually, and a range of decoding techniques can be implemented.
Among these, belief propagation (BP) methods, which rely on iterative ex-
change of messages between bit nodes and check nodes, are the most commonly
utilized for LDPC decoding. Although the BP method presents a considerable
computational complexity, it offers near-optimal decoding performance [27]. To
achieve a better trade-off between performance and complexity, several effec-
tive decoding algorithms have been proposed in scientific literature. Among
these algorithms, layered message passing decoding appears to be a promis-
ing approach for ultra-reliable low-latency communication (URLLC) due to its
ability to speed up convergence time. Therefore, it is deemed suitable for inves-
tigation in the current study. The subsequent principle may be used to illustrate
the layered decoding principle as described in the work of WANG [28] :

• Each layer independently processes variable node operations and checks
node operations.
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• Current layer’s input LLR is the prior layer’s output LLR.

• The output LLR of the decoding algorithm, which is the output LLR of
the last layer, will be used to make the decision.

• The input LLR of the current layer can be updated according to the
equation Lk+1,i = Lk,i − Lk+1,i′ where Lk+1,i is the updated input LLR
of layer k + 1, Lk,i is the output LLR of previous layer Lk+1,i′ and is the
old input LLR of layer k + 1.

2.3.3 Modulation and Resource Mapping

In both scenarios, the encoded payload undergoes rate-matching and block con-
catenation prior to being fed to a QPSK modulator. This process yields a set of
complex-valued modulation symbols, represented as x(0), x(1), . . . , x (Nd/2 − 1).
Subsequently, the resource allocation process is executed, wherein one or multi-
ple OFDM symbols are utilized to allocate the modulated symbols to resource
blocks and insert the DMRS resources. The insertion of DMRS resources serves
the purpose of providing non-coherent detection and channel estimation. The
number of resource blocks is governed by the payload size and coding settings.
When the payload size is small, fewer resource blocks are required, thus main-
taining a constant effective coding rate. As illustrated in Figure 2, the resource
mapping here is embedded in the same spirit as in a 3GPP PUCCH2 transmis-
sion.

5
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• The input LLR of the current layer can be updated
according to the equation Lk+1,i = Lk,i �Lk+1,i0 where
Lk+1,i is the updated input LLR of layer k + 1, Lk,i is
the output LLR of previous layer Lk+1,i0 and is the old
input LLR of layer k + 1.

3) MIMO BICM Foundation:
In recent years, MIMO (Multiple-Input Multiple-Output)
technology has garnered substantial attention due to its
capacity to provide increased spectral efficiency and reliable
wireless communication in environments that exhibit
multipath propagation. This technology exploits the use of
multiple antennas at either the transmitter or the receiver,
or at both ends, to improve received signal power. MIMO
systems are recognized for their ability to offer enhanced
reliability through diversity and higher data rates via spatial
multiplexing. The utilization of MIMO techniques has
the potential to significantly enhance system capacity and
reduce bit/block error rates, which has led to a growing
interest in multi-antenna radio systems. The advancements in
3GPP LTE/NR and other MIMO-based technologies provide
evidence in support of the aforementioned statement. Ongoing
efforts continue to enhance the performance of such systems,
as well as reduce the complexity of receivers.
BICM MIMO OFDM presents an attractive prospect for
next-generation wireless networks, where MIMO enhances
spectrum efficiency, OFDM reduces equalization complexity,
and BICM provides reliable coded-modulations for both
coherent and noncoherent communications. There is a
wealth of literature on BICM MIMO systems from various
perspectives, demonstrating their potential impact and
importance in wireless communication. One approach
proposed in a seminal work by Hochwald et al. [45] involves
the use of lattice reduction and sphere decoding techniques
to achieve a Maximum Likelihood (ML) solution with high
probability. However, the implementation of these methods
in real-time can be computationally complex. Other studies
have focused on developing low complexity receiver designs
for BICM MIMO systems, such as those proposed in [46]
and [44], [43], particular focus on low-dimensional and
high-dimensional MIMO systems, but primarily restricted
to coherent communication techniques. Our work differs
from the existing literature by considering a BICM MIMO
system based on Polar and LDPC coded modulation, which
is operating in a scenario with Imperfect Channel State
Information (CSI). We explore the use of joint detection
and estimation techniques, which are applicable to situations
where low-density demodulation reference signals (DMRS)
are interleaved with coded data symbols. This method of
transmission is commonly referred to as Pilot-Assisted
Transmission (PAT) [48].

4) Modulation and Resource Mapping:
In both scenarios, the encoded payload undergoes rate-
matching and block concatenation prior to being fed
to a QPSK modulator. This process yields a set of
complex-valued modulation symbols, represented as
x(0), x(1), . . . , x (Nd/2 � 1). Subsequently, the resource
allocation process is executed, wherein one or multiple
OFDM symbols are utilized to allocate the modulated
symbols to resource blocks and insert the DMRS resources.
The insertion of DMRS resources serves the purpose of
providing non-coherent detection and channel estimation. The
number of resource blocks is governed by the payload size
and coding settings. When the payload size is small, fewer
resource blocks are required, thus maintaining a constant
effective coding rate. As illustrated in Figure 2, the resource
mapping here is embedded in the same spirit as in a 3GPP
PUCCH2 transmission.

OFDM Symbols in a slot

Subcarriers
in

a
R

esource
B

lock

DATA DMRS

Fig. 2. General resource mapping: 1 OFDM symbol

III. BICM RECEIVERS

A. Perfect Channel State Information

In the instance of perfect channel state information, the set
of observed random vectors needs to be augmented by the set
of channel vectors {hr} in equations (2-5). Thus, the perfect
LOS channel is defined as hr = Are

j✓rI where ✓r and Ar >
0 denote a known phase and gain respectively. The likelihood
function is

q (xm, {yr, hr}) = P ({yr, hr} | xm) =

P ({yr} | xm, hr) P ({hr} | xm)
(6)

If the transmitted signal xm is independent of the channel
realization {hr}, the term P ({hr} | xm) in (6) can be
dropped since it will disappear in (5). The likelihood function
is equivalent to

q (xm, {y, h}) =

NR�1Y

r=0

1

(⇡N0)N
exp

✓
�||yr � hrxm||2

N0

◆

(7)
Lemma 1: Given that,

||yr � hrxm||2 = ||yr||2 + ||hrxm||2 � 2Re (yrh
⇤
rx

⇤
m)

Figure 2: General resource mapping: 1 OFDM symbol

3 BICM Receivers

3.1 Perfect Channel State Information

In the instance of perfect channel state information, the set of observed random
vectors needs to be augmented by the set of channel vectors {hr} in equations
(2-5). Thus, the perfect LOS channel is defined as hr = Arejθr I where θr and
Ar > 0 denote a known phase and gain respectively. The likelihood function is

q (xm, {yr, hr}) = P ({yr, hr} | xm) =
P ({yr} | xm, hr) P ({hr} | xm)

(6)

9



If the transmitted signal xm is independent of the channel realization {hr}, the
term P ({hr} | xm) in (6) can be dropped since it will disappear in (5). The
likelihood function is equivalent to

q (xm, {y, h}) =
NR−1∏
r=0

1
(πN0)N

exp
(

−||yr − hrxm||2

N0

)
(7)

Lemma 1 : Given that,

||yr − hrxm||2 = ||yr||2 + ||hrxm||2 − 2Re (yrh∗
rx∗

m)

Corollary 1 : Then the likelihood function after removing multiplicative terms
independent of m is

q (xm, {y, h}) ∝
NR−1∏
r=0

exp
(

2 Re (yrh∗
rx∗

m) − ||hrxm||2

N0

)
(8)

Corollary 2 : The likelihood and log-likelihood ratio (LLR) of coded bit ej ∈
{0, 1} are respectively derived using (4, 5).
We typically simplify (5) via a max-log approximation log {

∑
i exp (λi)} ∼ maxi {λi}

letting (5) to be simplified as

Lj ({y}) = max
m s.t. ej=0

1
N0

NR−1∑
r=0

2 Re (yrh∗
rx∗

m) − ||hrxm||2

− max
m s.t. ej=1

1
N0

NR−1∑
r=0

2 Re (yrh∗
rx∗

m) − ||hrxm||2
(9)

Remark 1 : This is considered as our ideal performance metric when comparing
with those described in the subsequent section. They are also typically used in
conventional receivers by replacing hr with a least-squares estimate ĥr.

3.2 Fading Channels

We describe BICM metrics for a general non-coherent fading channel with un-
known phase on the line-of-sight components and fully unknown diffuse compo-
nents, but known average gain. The overall unknown channel gain is given by
hr = Ar

(√
αejθr +

√
1 − αhr,f

)
I where θr is assumed to be i.i.d. uniform ran-

dom variables on [0, 2π) and Ar > 0 denotes average gain, hr,f is a zero-mean
unit-variance circularly-symmetric complex Gaussian random variable and α
is the relative strength of the LOS component. The amplitude |hr,i| on each
receiver is thus Ricean distributed. It is worth noting that the i.i.d. assumption
for the θr is somewhat unrealistic for a modern array receiver with accurate cal-
ibration. The phase differences would be more appropriately characterized by
two random-phases, one originating from the time-delay between transmitter
and receiver and the other from the angle of arrival of the incoming wave. The
phase differences of individual antenna elements for a given carrier frequency
could then be determined from the angle of arrival and the particular geometry
of the array. To avoid assuming a particular array geometry, the i.i.d. uniform
model provides a simpler and universal means to derive a receiver metric.
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Proposition 1 : The corresponding likelihood function after neglecting multi-
plicative terms independent of the transmitted message, can be shown to be

q (xm, {y}) =
NR−1∏
r=0

1
Lm

exp
(

−αA2
r ∥xm∥2

Lm
+

βm

∣∣∣xH
myr

∣∣∣2)× I0

(
2
√

αAr

Lm

∣∣∣xH
myr

∣∣∣) ,

(10)

where Lm = N0 + 2(1 − α)A2
r ∥xm∥2, βm = 2(1−α)A2

r

N0(N0+2(1−α)A2
r∥xm∥2) and I0(x) is

the zero-order modified Bessel function. The likelihood and log-likelihood ratio
(LLR) of coded bit ej ∈ {0, 1} are respectively derived using (4, 5).
Proof : See Appendix section A.
Corollary 2 : Metric calculations based on (10) are computationally complex
from an implementation perspective and are typically simplified. As is the case
for the known channel, we can apply the max-log approximation after first using
an exponential approximation I0(z) ∼ ez

√
2πz

∼ ez yielding the approximated
log-likelihood ratio (LLR) for coded bit j given

Lj({y}) = max
m s.t. ej=0

NR−1∑
r=0

−αA2
r ||xm||2

Lm
+ βm

∣∣∣xH
myr

∣∣∣2 + 2
√

αAr

Lm

∣∣∣xH
myr

∣∣∣
−

∑
m s.t. ej=0

NR−1∑
r=0

log(Lm)

− max
m s.t. ej=1

NR−1∑
r=0

−αA2
r ||xm||2

Lm
+ βm

∣∣∣xH
myr

∣∣∣2 + 2
√

αAr

Lm

∣∣∣xH
myr

∣∣∣
−

∑
m s.t. ej=1

NR−1∑
r=0

log(Lm)

(11)
Remark 2 : Note that in (10), many of the terms can be dropped when |xm|

is constant for all m, as would be the case for BPSK or QPSK modulation for
instance. Strong LOS channels can also neglect the quadratic terms in (10).
when α = 1, corresponding to a pure LOS channel, the likelihood simplifies to
the case of the classical non-coherent channel [29][Sec. 5-4-2].

3.3 Joint Estimation and Detection Principle

For the case of polar or LDPC-coded data, we are motivated for complexity
reasons to segment the coded streams into small bloks for detection. Under an
ideal interleaving assumption [9] with known channels, detection can be per-
formed indivitual modulated symbols. With joint detection and estimation and
interleaved DMRS and data symbols, we will consider short blocks comprising
both data and DMRS over which to compute the above metrics. This consists
in subdividing the N -dimensional vectors y and x into smaller segments of Nb-
dimensional blocks and applying the bit LLR metric on each of the underlying
segments.
Proposition 2 : Noticing the form of the metrics and the fact that the data and
DMRS symbols do not overlap, we can easily see that an estimated channel im-
pulse response (CIR) is part of the metrics. By writing x

(i)
m = x

(i)
m,p+x

(i)
m,d where

d, p and i are subscripts representing data, DMRS components, ith segment of
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block respectively, we can reveal ĥLS
r in the metrics:

∣∣∣∣x(i)
m

H
y(i)

r

∣∣∣∣ =

∣∣∣∣∣∣∣ x(i)
m,p

H
y(i)

r,p︸ ︷︷ ︸
channel estimate

+x
(i)
m,d

H
y

(i)
r,d

∣∣∣∣∣∣∣
=
∣∣∣∣ĥLS

r + y
(i)
r,dx

(i)
m,d

H
∣∣∣∣ (12)

where ĥLS
r is the CIR after performing Least-squares (LS) channel estimation

using averaging or smoothing over an appropriate number of dimensions ex-
hibiting channel coherence. In the process of short-block detection, we can
make use of such a channel estimate that In general, the channel estimation
procedure will work as usual and the resulting estimates are fed into the met-
rics considered here. 8
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Fig. 3. Conceptual illustration of the Joint Estimation and Detection Principle
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Fig. 4. Block Error Rate, 48 bits(TBs+CRC), NRPOLAR BICM,R=48/64,
(CRC)-aided successive-cancellation list decoder(List length=8), QPSK mod-
ulation, 1 OFDM symbol, 4 PRBs, 48 REs (32 data, 16 dmrs), nRx = 4
classical non-coherent channel

that when the block error rate (BLER) reaches a threshold of
1%, the performance difference between the MC Bound and
the No-CSI(N = 4) is 0.5 dB, compared to 1.75 dB for the
No-CSI(N = 1), in a scenario with a single receive antenna.

B. Impact of DMRS density

In instances where the reference and data symbols are
jointly conveyed in common OFDM symbols, we can look
into the impact of dmrs density on performance. Figure IV-B
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Fig. 5. Block Error Rate, 48 bits(TBs+CRC), NRLDPC BICM, R=48/64,
Layered belief propagation decoder, iteration=30, QPSK modulation, 1 OFDM
symbol, 4 PRBs, 48 REs (32 data, 16 dmrs), nRx = 4, classical non-coherent
channel

illustrates the resources mapping process according to the
density of dmrs per PRB ranging from sparse to dense (i.e. 2,
3, 4 and 6

Figure 10 depicts the performance on the awgn channel
in the situations Perfect CSI and No CSI (N = 1, N = 4)
depending on the density of dmrs per PRB.

To achieve a comprehensive understanding of the results,
Table I presents the disparity between Perfect and Imperfect
Channel State Information (CSI) for N = 1 and N = 4
in correlation with the distribution of DMRS per Physical
Resource Block (PRB). In essence, fewer DMRS has merit
of additional coding rates. Therefore, performance improves
as DMRS density decreases. However, it should be noted that
even with N = 4, a low dmrs density setup expands the
performance gap between Perfect CSI and No CSI. It may

Figure 3: Conceptual illustration of the Joint Estimation and Detection Prin-
ciple

4 Numerial Results

4.1 Metric Performance Analysis

The simulations are based on NR POLAR and NR LDPC coding schemes paired
with QPSK and 16 QAM modulations. The transmission process involves a
transport block length of 48 bits. The resource population process is conducted
using a single OFDM symbol with 4 PRBs and 48 REs (32 REs for data com-
ponents and 16 REs for DMRS components), wherein the DMRS sequences
occupy 4 REs per PRB. This transmission structure, where the reference and
data components are transmitted concurrently within common OFDM symbols,
is commonly employed in the PUCCH or PUSCH, as well as in some downlink
control channels. Hence, from the perspective of the MAC and PHY layers,
the underlying transmission utilizing BICPM can be considered as a PUCCH2
transmission for medium to long block lengths (> 11 bits), while that utiliz-
ing BILCM can be viewed as a PUSCH transmission. The results illustrated
in Figure 4 show the performance of the Bit Interleaved Coded Modulation
(BICM) for joint estimation and detection over a gaussian channel, specifically
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when α = 1 is assessed to understand the performance discrepancy between the
Perfect CSI and No CSI situations in extreme coverage scenarios characterized
by low signal-to-noise ratio.
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Figure 4: Block Error Rate, 48 bits(TBs+CRC), NRPOLAR BICM,R=48/64,
(CRC)-aided successive-cancellation list decoder(List length=8), QPSK modu-
lation, 1 OFDM symbol, 4 PRBs, 48 REs (32 data, 16 dmrs), nRx = 4 classical
non-coherent channel

Note that the N = 1 case also corresponds to the conventional receiver in-
volving channel estimation. The joint estimation/detection approach yields a
perfomance gain of 1.25 dB, 1.5 dB and 1.75 dB using N = 4 over 2, 4 and 8
receive antennas respectively. From this insight, it is apparent that when the
number of antennas increases, the performance gap between the Perfect CSI
and the No CSI situations (e.g., N = 4) expands. Furthermore, the graphs
indicate that the max-log metric performs nearly as well as the accurate met-
ric (e.g., at nRx = 2). This leads to the conclusion that when Gray-mapped
constellations are employed, the max-log metric is known to have a minimal
impact on receiver performance. However, as the modulation order increases,
the difference in performance between optimal and suboptimal techniques for
generating LLRs becomes significant as discussed in [30] [31]. The logarithmic
calculations tied to the precise metric add an extra layer of complexity when
incorporating the requisite multiplicative and additive operations during LLR
processing. Given this, it is deemed more reasonable to employ the max-log ap-
proximation as a means of mitigating the underlying computational complexity.
Similarly, the results in Figure 4 using BIPCM are congruent with those pre-
sented in Figure 5 that employs BILCM, in both single and multiple antenna
configurations. Although the code rates and transmission parameters are iden-
tical, BIPCM offers significantly better performance gains than BILCM. This
is potentially due to the fact that the 3GPP polar code has been optimized
for very short block lengths, while the 3GPP LDPC code targets much longer
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transport block lengths.
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Figure 5: Block Error Rate, 48 bits(TBs+CRC), NRLDPC BICM, R=48/64,
Layered belief propagation decoder, iteration=30, QPSK modulation, 1 OFDM
symbol, 4 PRBs, 48 REs (32 data, 16 dmrs), nRx = 4, classical non-coherent
channel

In addition, to determine the potential benefit obtained from the joint es-
timation and detection principle, we perform evaluations on realistic frequency
selective channels, particularly over the TDL-C NLOS wireless channel. TDL-C
is a 3GPP reference channel model with a long delay-spread and are especially
used to emphasize non-MIMO assessments [32]. The simulations consider a de-
lay spread of 300 ns and a 4-antenna configuration with independent and identi-
cally distributed realizations at each antenna port. The metric utilized is given
by (10) with α = 1. For this purpose, we deal with low(QPSK) and high(16
QAM) order modulations for a comprehensive analysis. In fact, Quadrature
Amplitude Modulations are used in typical wireless digital communications.
The main difference between M-QAM and QPSK is that their spectral width is
narrower than that of QPSK. The findings reveal that employing block detec-
tion provides an advantage across all modulation orders, with discernible gains
in performance. A gain of 2.25 dB, and 2 dB is observed at N = 4 for QPSK
and 16 QAM configurations, respectively. In addition, it should be noted that
the BLER of 16-QAM is still much higher than that of QPSK.

Furthermore, the outcomes of the system’s performance in line-of-sight
(LOS) channels with varying levels of α are showcased in Figure 7.

When α = 1, the channel exhibits Rayleigh fading, while for α = 0, it be-
haves as a classical non-coherent Gaussian channel. Interestingly, when α is less
than or equal to 0.5, the system’s performance closely resembles that of a pure
Rayleigh channel, implying that the fading component dominates the Gaussian
component due to the quadratic term in the metric expression. Empirical find-
ings for α = 0.75 indicate a moderate level of performance, falling between the
results associated with α = 0 and α = 1. It is worth noting that the precise
value of alpha remains undisclosed to the receiver, necessitating the need for es-
timation. Nevertheless, regardless of the estimated value of α, it seems to have
no discernible impact at the receiver level when α ≤ 0.5 at the transmitter level.
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Figure 7: Block Error Rate, 48 bits(TBs+CRC), NRPOLAR BICM,R=48/64,
(CRC)-aided successive-cancellation list decoder(List length=8), QPSK modu-
lation, 1 OFDM symbol, 4 PRBs, 48 REs (32 data, 16 dmrs), nRx = 2, Fading
Channels, α = {0, 0.5, 0.75, 1}

Finally, we can assess the above results with respect to the finite block
length bounds that have been established in the scientific literature [3] [33] [34].
For a more comprehensive understanding of the bounds utilized in Figure 8,
interested readers are encouraged to refer to the works of authors [1] and [5].
For this purpose, we consider the metaconverse (MC) bound for a thorough
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comparative analysis. It can be observed that when the block error rate (BLER)
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Figure 8: Block Error Rate, 48 bits(TBs+CRC), NR POLAR BICM ,R=48/64,
(CRC)-aided successive-cancellation list decoder(List length=8), QPSK modu-
lation, 1 OFDM symbol, 4 PRBs, 48 REs (32 data, 16 dmrs), nRx = 1(SISO),
classical non coherent Channel, vs Metaconverse bounds

reaches a threshold of 1%, the performance difference between the MC Bound
and the No-CSI (N = 4) is 0.5 dB, compared to 1.75 dB for the No-CSI (N = 1),
in a scenario with a single receive antenna.

4.2 Impact of DMRS density

In instances where the reference and data symbols are jointly conveyed in com-
mon OFDM symbols, we can look into the impact of dmrs density on perfor-
mance. Figure 9 illustrates the resources mapping process according to the
density of dmrs per PRB ranging from sparse to dense (i.e. 2, 3, 4 and 6. Fig-10
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Fig. 9. Resource mapping depending on dmrs density
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successive-cancellation list decoder, QPSK modulation, 1 OFDM symbol, 4
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Fig. 11. Block Error Rate, 24 bits(TBs), NR POLAR BICM, (CRC)-aided
successive-cancellation list decoder, QPSK modulation, 1 OFDM symbol, 4
PRBs, 48 REs, (40REs= data, 8REs= dmrs), nRx = 4, over a classical non-
coherent channel, adaptive power adjustment via � with N = 4 and N=1

standard are significant. Specifically, it is feasible to reduce the
number of DMRS per PRB to one or two, while allowing the
User Equipment (UE) to adjust the power allocation between
the DMRS and data transmission. This flexibility in DMRS
density and power allocation is transparent to the receiver.

V. CONCLUSIONS

This paper presented novel bit-interleaved coded modulation
metrics for joint estimation detection using a training or
reference signal transmission strategy for medium to long
block length channels. We showed that it is possible to
enhance the performance and sensitivity of advanced receivers,
especially when channel state information is unknown and the
density of training dimensions is low. The proposed techniques
take advantage of joint estimation/detection. The performance
analysis made use of a full 5G transmitter and receiver
chain for both Polar and LDPC coded transmissions paired
with M-ary PSK/QAM modulation schemes. We considered
transmissions where reference signals are interleaved with
data and both are transmitted over a small number of OFDM
symbols so that near-perfect channel estimation cannot be
achieved. This is particularly adapted to mini-slot transmis-
sions for ultra-reliable low-latency communications or short-
packet random-access use-cases. We characterized the perfor-
mance for up to eight receiving antenna configurations in order
to determine the performance gain offered by the proposed

BICM detection in realistic basestation receiver scenarios. Our
findings demonstrate that BICM metrics combined with the
joint estimation/detection principle can be used to achieve
detection performance that is close to that of a coherent
receiver with perfect channel state information for both polar
and LDPC coded configurations. Furthermore, we show that
for transmissions with low DMRS density, a good trade-
off can be achieved in terms of additional coding gain and
improved channel estimation quality by adaptive DMRS power
adjustment. Future work will include investigations of higher-
spectral efficiency joint detection-estimation bit-metrics for
MIMO-QAM.
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Figure 9: Block Error Rate, 24 bits(TBs), NR POLAR BICM, (CRC)-aided
successive-cancellation list decoder, QPSK modulation, 1 OFDM symbol, 4
PRBs, 48 REs, set of ({24, 32, 36, 40} data, {24, 16, 12, 8} dmrs), nRx = 4,
classical non-coherent channel

ure 10 depicts the performance on the awgn channel in the situations Perfect
CSI and No CSI (N = 1, N = 4) depending on the density of dmrs per PRB.

To achieve a comprehensive understanding of the results, Table 1 presents
the disparity between Perfect and Imperfect Channel State Information (CSI)
for N = 1 and N = 4 in correlation with the distribution of DMRS per Physical
Resource Block (PRB). In essence, fewer DMRS has merit of additional coding
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Figure 10: Block Error Rate, 24 bits(TBs), NR POLAR BICM, (CRC)-aided
successive-cancellation list decoder, QPSK modulation, 1 OFDM symbol, 4
PRBs, 48 REs, set of ({24, 32, 36, 40} data, {24, 16, 12, 8} dmrs), nRx = 4,
classical non-coherent channel

Table 1: Performance gap between Perfect CSI (PCSI) vs No CSI (N=4 and
N=1) cases over nRx=4

dmrs per PRB Gap(N=4) [dB] Gap(N=1) [dB]
2 1.75 4.75
3 1 3.5
4 0.625 2.625
6 0.375 1.375

rates. Therefore, performance improves as DMRS density decreases. However,
it should be noted that even with N = 4, a low dmrs density setup expands the
performance gap between Perfect CSI and No CSI. It may be advantageous
in some instances to maintain the density of DMRSs in a certain sweet spot
or simply to rely on sparse or even low DMRS density while increasing their
power via an adaptive adjustment. More specifically, a precise approach is to
identify the configuration with the minimum number of DMRSs which allows
the transmitter to slightly increase the power of the underlying signals. How-
ever, choosing a low dmrs density has a detrimental effect on channel estimate
quality. Even if the receiver with block detection (N = 4) seems to be less
sensitive to it with respect to the conventional receiver (N = 1). There appears
to be a sweet spot in terms of dmrs density per PRB, as evidenced by the
results presented in Figure 10. Therefore, the ideal DMRS distribution setup
is obtained by incorporating four DMRSs per physical resource block (PRB)
compared to those employing two, three or six DMRSs per PRB , using the
block detection principle (N=1, N=4). In practice, transmission with a low
density of dmrs appears to be more valuable and should be favoured in future
communication standards in order to convey more data symbols than reference
signals. Consequently, it is advisable to consider configurations with either one
or two DMRs per PRB. However in order to reap from the low dmrs density,
it is important to carry out some sort of adaptive dmrs/data power adjustment
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that would enhance the channel estimate accuracy, leading to an improvement
in performance from a holistic perspective. For this purpose, the system model
can be reconceived as yr =

(
x

(d)
m + βx

(p)
m

)
hr + zr. The adaptive power ad-

justment procedure is contingent on the values of β. The dmrs Power is to be
slightly increased in a judicious fashion since β must be perfectly calibrated
to ensure compliance with potential radio frequency constraints. As depicted
in Figure 11, the performance improvement can be observed as a function of
varying values of β. The optimal performance enhancement is achieved when
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Figure 11: Block Error Rate, 24 bits(TBs), NR POLAR BICM, (CRC)-aided
successive-cancellation list decoder, QPSK modulation, 1 OFDM symbol, 4
PRBs, 48 REs, (40REs= data, 8REs= dmrs), nRx = 4, over a classical non-
coherent channel, adaptive power adjustment via β with N = 4 and N=1

β is set to 1.75. It is noted that by selecting β = 1.5, a gain of 1 dB and 2
dB can be attained when N is equal to 4 and 1, respectively. Overall, the im-
plications of varying DMRS density within the 3GPP standard are significant.
Specifically, it is feasible to reduce the number of DMRS per PRB to one or
two, while allowing the User Equipment (UE) to adjust the power allocation
between the DMRS and data transmission. This flexibility in DMRS density
and power allocation is transparent to the receiver.

5 Conclusions

This paper presented novel bit-interleaved coded modulation metrics for joint
estimation detection using a training or reference signal transmission strategy
for medium to long block length channels. We showed that it is possible to
enhance the performance and sensitivity of advanced receivers, especially when
channel state information is unknown and the density of training dimensions
is low. The proposed techniques take advantage of joint estimation/detection.
The performance analysis made use of a full 5G transmitter and receiver chain
for both Polar and LDPC coded transmissions paired with M-ary PSK/QAM
modulation schemes. We considered transmissions where reference signals are
interleaved with data and both are transmitted over a small number of OFDM
symbols so that near-perfect channel estimation cannot be achieved. This is
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particularly adapted to mini-slot transmissions for ultra-reliable low-latency
communications or short-packet random-access use-cases. We characterized
the performance for up to eight receiving antenna configurations in order to
determine the performance gain offered by the proposed BICM detection in
realistic basestation receiver scenarios. Our findings demonstrate that BICM
metrics combined with the joint estimation/detection principle can be used to
achieve detection performance that is close to that of a coherent receiver with
perfect channel state information for both polar and LDPC coded configura-
tions. Furthermore, we show that for transmissions with low DMRS density, a
good trade-off can be achieved in terms of additional coding gain and improved
channel estimation quality by adaptive DMRS power adjustment. Future work
will include investigations of higher-spectral efficiency joint detection-estimation
bit-metrics for MIMO-QAM.

Appendix

P ({yr} | xm) = 1
2π det Φ exp

(
−1

2 (yr − µ (xm, θr))H Φ−1 (yr − µ (xm, θr))
)

= 1
2π det Φ exp

(
−1

2
(
yr −

√
αArejθr xm

)H
Φ−1

(
yr −

√
αArejθr xm

))
Covariance Matrix

knowing that

yr −
√

αArejθr xm =
√

1 − αArhr,f xm + zr (13)

then

Φ ≜
1
2E
[(√

1 − αArhr,f xm + zr

) (√
1 − αArhr,f xm + zr

)H
]

≜ (1 − α)A2
rxmxH

mσ2
h + σ2

zIN , where σ2
h = 1

≜ (1 − α)A2
rxmxH

m + N0
2 IN

(14)

Determinant

det Φ = det
(
(1 − α)A2

rxmxH
m + σ2

zI
)

= det
(
σ2

zI + kxmxH
m

)
, where, k = (1 − α)A2

r

(15)

Applying the following mathematical properties:
(i) det(AB) = det(BA),
(ii) det(I + AB) = det(I + BA), Cf. Sylvester’s determinant theorem [35].

det Φ = 1
2
(
N0 + 2(1 − α)A2

r ∥xm∥2
)

(16)

Inverse of Φ (Φ−1)

Φ involves the sum of two matrices. Thus, some matrix inversion lemmas
must be introduced. The most common one is the Woodbury Matrix identity
(i.e. matrix inversion lemma, Sherman–Morrison–Woodbury formula, or just
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Woodbury formula).
Lemma :The Woodbury matrix identity [36]

(A + UCV )−1 = A−1 − A−1U
(
C−1 + V A−1U

)−1
V A−1, (17)

where A, U , C and V are conformable matrices: A is n × n, C is k × k, U is
n × k, and V is k × n.

Here we have the special case where V , U are vectors, as in Sherman–Morrison
formula where U = V = I.

let say : 
A = σ2

zI

C = (1 − α)A2
rI = kI, where, k = (1 − α)A2

r

U = xm

V = xH
m

(18)

Φ−1 = (A + UCV )−1

= 2
N0

− 2
N0

xm

[
2k

N0 + 2k ∥xm∥2

]
xH

m

= 2
N0

− 2
N0

xm

(
2(1 − α)A2

r

N0 + 2(1 − α)A2
r ∥xm∥2

)
xH

m

(19)

let say βm = 2(1−α)A2
r

N0(N0+2(1−α)A2
r∥xm∥2)

then
Φ−1 = 2

N0
− 2xmβmxH

m (20)

Likelihood function

let’s say µ =
√

αArejθr xm

q (xm, {y}) =
NR−1∏
r=0

1
2π det Φ exp

(
−1

2 (yr − µ)H
( 2

N0
− 2xmβmxH

m

)
(yr − µ)

)

=
NR−1∏
r=0

1
2π det Φ exp

(
− 1

N0
|yr − µ|2 + βm

∣∣∣(yr − µ)H xm

∣∣∣2)
By extending the terms into the exponential,
and ignoring those that are independent of m, we obtain

αA2
r ∥xm∥2

( 1
N0

− βm |xm|2
)

+ βm

∣∣∣xH
myr

∣∣∣2
+2

√
αAr

( 1
N0

− βm |xm|2
)

|xH
myr|cos (ϕr + θr)

since θ is unknown, the likelihood function is equivalent to

q (xm, {y}) =
NR−1∏
r=0

1
2π det Φ

∫ 2π

0
exp

(
− 1

N0
|yr − µ|2 + βm

∣∣∣(yH
r − µH

)
xm

∣∣∣2)dθr
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q (xm, {y}) =
NR−1∏
r=0

1
2π det Φ exp

(
−αA2

r ∥xm∥2
( 1

N0
− βm |xm|2

)
βm

∣∣∣xH
myr

∣∣∣2)
×
∫ 2π

0 exp
(
2
√

αAr

(
1

N0
− βm |xm|2

)
|xH

myr|cos (ϕr + θr)
)

dθr

knowing that 1
π

∫ π

φ=0
exp(zcos(φ))dφ = I0(z) [37], where I0(·) is the zero-th

order Modified Bessel function of the first kind.

q (xm, {y}) =
NR−1∏
r=0

2
N0 + 2(1 − α)A2

r ∥xm∥2 exp
(
−αA2

r

∥xm∥2
( 1

N0
− βm |xm|2

)
+ βm

∣∣∣xH
myr

∣∣∣2)×

I0

(
2
√

αAr

( 1
N0
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myr

∣∣∣)
(21)

Let Say Lm = N0 +2(1−α)A2
r ∥xm∥2, and then after ignoring multiplicative

term that are independent of m
it comes

q (xm, {y}) ∝
NR−1∏
r=0

1
Lm

exp
(

−αA2
r ∥xm∥2

( 1
N0

− βm ||xm| |2
)

+βm

∣∣∣xH
myr

∣∣∣2)× I0

(
2
√

αAr

( 1
N0

− βm ||xm| |2
) ∣∣∣xH

myr

∣∣∣) (22)

Expressing βm as a function of Lm , we have the relation

βm = 1
∥xm∥2 N0

− 1
∥xm∥2 Lm

(23)
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