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ABSTRACT
The complexity of Information and Communications Technology
(ICT) systems, such as enterprise or Internet access provider net-
works, entails uncertainty in causal reasoning for efficient incident
management. In this work, we propose to use knowledge graphs
and explicit representation of incident context to enable support
teams to provide a quick and effective response to complex incident
situations. Formal analysis and expert opinions are used to analyze
challenges in providing knowledge about relationships between
events and incidents in network operations. We make use of an
RDF knowledge graph generated from a real industrial settings and
representing the network topology in terms of equipments and
applications, past incidents and their resolutions. We then demon-
strate the effectiveness of using a graph embeddings-based classifier
to categorize incident tickets based on context and link anomaly
models with their logical representation.

CCS CONCEPTS
• Networks→ Network performance evaluation; • Information
systems→ Decision support systems; • Computing methodolo-
gies→ Artificial intelligence; Logical and relational learning.
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1 INTRODUCTION
The complexity of Information and Communications Technology
(ICT) systems, such as enterprise or Internet access provider net-
works, entails uncertainty in causal reasoning for incident manage-
ment. Indeed, the complexity of these systems extends beyond the
sole set of equipments and links to include behavioral rules defined
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at both the network and application levels for resilient routing of
the data and feature-rich services. Quick and efficient response to
incident situations (e.g. network traffic disruption, cyber security
attack) on top of this complexity involves specific expertise for
accurate understanding of system behavior. Tools such as Network
Monitoring Systems (NMSs) [23, 36] and Security Information and
Event Monitoring systems (SIEMs) [24] are used to assist operators
with incident management. However, ICT systems have interac-
tions with other external systems and are characterized by multiple
stacks of configuration, yielding incoherences between the local
understanding of a subsystem’s state and observable artifacts of a
situation at a higher level of analysis. The consequences for incident
management include long recovery times, difficulties in capitalizing
on new incidents, and difficulties in generalizing when problems
occur.

Mastering this complexity has been a long-standing effort by
the industry and academic communities, including standardization
for smooth knowledge sharing between practitioners, and logical
and statistical modeling of the network dynamics [15, 18, 26, 30, 44,
46]. Yet, there is still a gap to fill in order to achieve the learning
or use of a manipulable representation of anomalies for decision
support: rule-based models require constant update efforts and
do not scale because of computational complexity (e.g. a single
national backbone router typically has 10,000 configuration lines),
and black-box models hardly suits explainability requirements for
decision-making systems on critical networks.

In order to enhance decision support tools, we propose to better
capture the context of labeled anomalies through a multi-faceted
knowledge graph and to use it to classify incident types. More pre-
cisely, we make use of an RDF knowledge graph [3] structured by
the NORIA-O [27] ontology and we explore how graph embeddings
provide a suitable representation for categorizing incident tickets.
Our main contributions are the following. Firstly, we present a de-
tailed study including expert opinions on the challenges and nature
of inference techniques required for capturing explicit anomaly
models in relation to incident management processes. Secondly,
we introduce a method for capturing the context of anomalies
and examine how it can partially correspond to logical formula-
tions. This analysis includes exploring whether logical formulations
could suffice and how statistical approaches can compensate for
their limitations. These contributions lead to the development of
a graph embeddings-based classification method for categorizing
incident tickets, and the identification of SPARQL query patterns
for anomaly detection based on a qualitative analysis of incident
tickets. Finally, we provide an illustration of the synergy between
knowledge graph modeling with NORIA-O and anomaly detection
approaches.
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The remainder of this paper is organized as follows. Section
2 analyzes the challenges inherent in the incident management
process for a detailed understanding of situations. Section 3 details
our approach that makes use of the knowledge graph. Section 4
describes our experiments and evaluations. Section 5 presents some
related work. Finally, we conclude the paper and outline some
future work in Section 6.

2 CHALLENGES AND MOTIVATIONS
This Section, through the analysis of challenges inherent to inci-
dent management processes and tools (Section 2.1), the definition
of use cases by experts (Section 2.2), and the analysis of anomaly
detection techniques based on explicit representation (Section 2.3),
elaborates on the principles for situation categorization with rea-
soning services (Section 2.4). These principles serve as the basis for
the approach developed in Section 3.

2.1 Incident Management Process
Within the fields of IT networks and telecommunication services,
the study of tasks and actions related to incident management is
an active research area for many years and has led to a consensus
on the forms of organization to be adopted in order to effectively
respond to various situations. For example, the ITIL Incident Man-
agement process [45] and NIST SP 800-61 [37] recommendations
apply respectively to IT management and cybersecurity domains.

In both cases, the process is described as a sequence of iterative
steps including the diagnosis of the situation and leading to the
remediation and correction of an undesirable situation. As such,
it is akin to an “action-observation-reward-goal” process model
with the following scenario: 1) a failure (issue) on an asset induces
events and alarms on the asset’s neighborhood; 2) responding to a
trouble ticket (an alert), a network or security administrator ana-
lyzes events and alarms to distinguish primary events (causes) from
secondary events (effects); 3) contextualizing events and alarms
with respect to “in policy” or “out of policy” activity models enables
the administrator to select a remediation action; 4) based on the re-
mediation action results, the administrator closes the trouble ticket
(the issue) or loops back for further analysis and corrective actions.

To support network and security administrators in their task,
numerous tools and procedures are available for diagnosing the
state of the systems (decision support tools such as NMSs [23, 36]
or SIEMs [24], remote access to devices, on-site measurements and
indicators), monitoring the life cycle of incidents, and capitalizing
on knowledge of the causes and solutions to incidents (help desk
ticketing systems, knowledge bases). This variety of tools and solu-
tions is a wealth in itself that corresponds to the variety of technical
or functional scopes to be managed. However, this is at the same
time a challenge for a unified approach to the diagnostic stage: in
practice, decision-making on the remediation action to be taken
for a given situation must be based on a multiplicity of viewpoints
stemming from various specialized tools.

2.2 Scoping the Diagnostic Phase with Experts
Assuming that the above-mentioned unified approach to the diag-
nostic stage is an achievable goal, decision-making depends heavily
on how the operating parameters of the systems are obtained and

represented. We argue that observables (i.e. artifacts of the network
assets’ events and states) result from a generative process in a semi-
open world: as assets’ states dynamically vary with respect to other
agents (e.g. neighboring assets, servicing technicians, end users,
randomness) based on behavioral rules (e.g. failovermechanisms, re-
mediation procedure), sets of states are interpreted through higher
level (composite) concepts. Although these perspectives provide
indications on the entities to represent and how to do it, the nature
of the processing carried out on these concepts for the diagnostic
phase remains a broad subject.

To get more specific on the nature of the analysis and responses
that are performed, we conducted interviews with a panel of sup-
port experts from Orange, an international telecommunications
infrastructure and service provider. This panel consists of 16 experts
who collectively represent 150 operations team members. We used
the following methodology: 1) ask experts for “pitfalls and wishes”;
2) analyze responses with clarifying questions following ideas from
the Agile framework [43] and ISO/IEC/IEEE 29148:2011 guide [1];
3) write exemplified anomaly detection use cases following the
Cockburn-style template [4]. As a result, six use cases were defined
to serve as a framework for the implementation of an automated
reasoning system. Table 1 provides a short version of these use
cases.

Table 1: List of use cases from expert panel interviews

# Description

1 Circumscribe assets and causes search space for multi-applications incident situa-
tions

2 Alert on impaired service situations occurring on (distributed) fail-over architec-
tures

3 Assess legitimacy of a given network flow
4 Track single identity from a set of various activity traces
5 Analyze false-positive and recurrent cyber security alerts
6 Analyze compliance of web navigation traces from institutional website

We notice that the use case #1 is the most challenging and en-
compasses the other use cases in that it generalizes the heuristic
established in the incident diagnostic phase. During the interviews,
the experts notably regularly raised the need for a confidence in-
dicator alongside the inference results, which supports the need
to search for a general mechanism. Therefore, we further study
the use case #1 in the remainder of this paper. We observe that the
effectiveness of the situation understanding relates to the compo-
sition of successive interpretation functions 𝑇𝑃 , 𝑇𝑆 , 𝑇𝐻 applied to
operating parameters of the managed systems (Eq. 1):

𝐸 ∼ 𝑇𝐻 (𝑇𝑆 (𝑇𝑃 (𝑜𝑝))) (1)

where 𝑜𝑝 is the data representative of a system state, measured
by a probe 𝑃 , encoded into the decision support system 𝑆 and
then understood by a human operator 𝐻 for a potential decision-
making. Hence, the inference process (e.g. alerting on undesirable
user/system trajectory, predicting next user/system action for cor-
rective maintenance action) is akin to a sequential decision-making
problem under uncertainty, where states and transitions are two
different ways of representing the system’s dynamics.

The experts also emphasized that the confidence indicator, seen
as uncertainty about the interpretation to be given to a situation,
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should not be systematically used to reject inferences because it can
itself contain information about complex situations (common cause
failures, multi-application failures) for relating trouble tickets. To
illustrate this, let us consider that each trouble ticket holds for a
single independent incident or problem. However, it may occur that
several tickets are linked, thus covering related incidents. Network
assets being linked, mutual information arise about causes and
consequences from the knowledge of the faults at hand. Hence, it
is possible to infer and exploit a parent/child relationship reflecting
the hierarchy of incidents from this confidence indicator: the child
tickets describe incidents which are considered as consequences
of the incident described in the parent ticket. Eq. (2) expresses this
with modal logic in order to give substance to this idea:

∃𝑥, ∃𝑦 : (𝐹 .𝑥 → 𝑇 .𝑥) ∧ (𝐹 .𝑦 → 𝑇 .𝑦)
∀𝑥,∀𝑦 : ♦(𝐹 .𝑥 → 𝐹 .𝑦)

|= ∃𝑥, ∃𝑦 : 𝑇 .𝑥 → 𝑇 .𝑦

(2)

where (𝑥,𝑦) are network assets (e.g. router, server, application), 𝐹
a fault indicator, 𝑇 a trouble ticket, and ♦ a possibility operator.

In fact, the notion of probability in the association of tickets
for common cause failures directly relates to the need to capture
incident contexts broadly, which would make it possible to generate
a single incident ticket for a complex situation instead of soliciting
various teams simultaneously and without coordination through
multiple tickets. We remark that to further develop on this approach
with tractable computational complexity, we may hypothesize that
alarm spreading and cascading failures are bounded with respect
to time and space.

2.3 Anomaly Modeling Techniques
For representing ICT systems and associated events, we consider
RDF knowledge graphs [3], which are directed acyclic graphs
where every nodes and edges are universally identified (URIs)
and equipped with formal semantics. RDF knowledge graphs have
proven to be flexible for data integration and logical reasoning over
heterogeneous data, notably thanks to shared semantics provided
by ontologies. We also use the SKOS standard [5] to represent vo-
cabularies: terms defined in these vocabularies get a structured
definition and an identity enabling re-use across applications.

SPARQL is the standard language to query RDF knowledge
graphs. We can rely on SPARQL to query for anomalies that would
have been already detected and either materialized in the graph or
could be deduced using the semantics of the model. This approach
constraints anomaly detection to logic-related use cases, which fits
some expectations from Table 1. Going beyond logical reasoning
is nevertheless required, as shown with the above uncertainty ex-
ample (Eq. 2). We also remark that the use case #1 (Table 1) holds
an implicit sub-graph computation requirement not available from
the SPARQL 1.1 standard (e.g. 𝐴∗ search algorithm).

To overcome these apparent limitations, we define three families
of anomaly modeling techniques (Table 2) including the notion of
time and explainability capabilities thanks to the use of explicit
representation:

• Model-Based Design assumes that the knowledge graph holds
the necessary and sufficient data to infer unwanted situations
with information retrieval (e.g. SPARQL queries);

• Process Mining, including conformance checking tools and
Petri nets (P/T nets) representation, is effective for situations
tied to a decision-model and bounded in time and space;
• Statistical Learning with graph embeddings [20] assumes
that anomaly models (i.e. the generalizing context of a set
of situations) derive from the structure of the knowledge
graph.

Table 2: Anomaly modeling technique families

Principles Strengths Weaknesses
Model-Based Design

Query the graph to re-
trieve anomalies and their
context.

Detecting anomalies
“recorded” somehow in
the graph thanks to the
alarm system; straightfor-
ward translation of simple
anomaly detection rules;
multiple abstraction levels
(subsumption).

Relies on expert knowl-
edge; lack of probabilistic
reasoning; hard to repre-
sent sequential decisions;
may require to infer more
prior information about
the anomaly, e.g. its type
using classification.

Process Mining

Align a sequence of en-
tities to activity models,
then use this relatedness
to guide the repair.

Detecting anomalies with
multiple alerting signals
and sequential decisions;
replayable models.

Relies on expert knowl-
edge; may require denois-
ing models; probabilistic
relatedness.

Statistical Learning

Relate entities based on
context similarities, then
use this relatedness to
alert and guide the repair.

Detecting anomalies with
multiple alerting signals.

Requires fine tuning of the
context definition depend-
ing on use case and tempo-
rality requirements; prob-
abilistic relatedness.

2.4 Towards Reasoning Services
We posit that we are working with explicit representation tech-
niques that allow, in particular, to provide assistance for the auto-
matic filling of trouble tickets. Such incident situation categoriza-
tion can be done at several stages: before the ticket creation (early
detection), at the ticket opening (cause/solution similarity based on
ticket descriptors and context), during the resolution (cause/solu-
tion refinement and proposal of next action based on the actions
taken). According to the use cases list defined in Table 2, we summa-
rize the above analysis by proposing the following set of reasoning
and inference services:

(1) Predicting the category of a trouble ticket (i.e. the initial
nature or technical impact, such as “isolated customer site”,
“traffic disruption”, “integrity violation”). This is a classi-
fication problem, with classes defined in a user-provided
controlled vocabulary represented as SKOS concepts.

(2) Predicting the probable cause of a trouble ticket. We can
imagine that this would also be a classification problem with
references to a controlled vocabulary.

(3) Detecting anomalies before a trouble ticket is even created.
This service could be implemented with Link Prediction
techniques [22]. The link being predicted is not necessarily
related to incident remediation initially, but can rather be a
link that would lead to the creation of an alarm or a trouble
ticket.
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(4) Adding comments to a given trouble ticket, namely, a com-
ment proposing the next best action to undertake based on
the observations of a given situation.

(5) Calculate the 𝑛 closest anomalies given an observed anomaly
(with the ambition of then transposing/adapting the remedi-
ation plans that have worked in the past).

We notice that these five services have a common point concerning
the capture of the context related to the nature of the incident.
Therefore, we choose to start by addressing the first case in the
next section to provide guidance on the incremental construction
of these services in the future.

3 APPROACH
In this section, we present two approaches to explicitly represent
anomaly models. Firstly, we approach decision support in Section
3.1 as a classification problem and develop a model to predict the
category of a trouble ticket using graph embeddings. Secondly, we
assume that the anomaly models learned by the classifier have a
correspondence, possibly partial, with a logical representation. We
analyze trouble tickets qualitatively in Section 3.2 and highlight
corresponding SPARQL queries for comparison with the classifier.
We intentionally set aside the process mining approach discussed
in Section 2.3 because it only captures local processes and therefore
misses out on the need for learning from a larger context that is
enabled by graph embeddings. We present the related experiments
and results in Section 4.

3.1 Multiclass Classifier with Graph
Embeddings

Understanding a network-impacting incident based only on net-
work monitoring functions is an ill-posed problem (as explained
in Section 2). We propose that using graph embeddings could help
solve the inverse problem. Indeed, we assume that a trouble ticket
represents an approximate dual of the anomaly structure in the
network’s parameter space. Thus, we can create an anomaly model
by aggregating the graph representations of each incident in the
network’s parameter space that have the same characteristics (e.g.
problem category, probable cause). In what follows, we focus on
the task of predicting the category of a trouble ticket by building a
multiclass classifier upon the context of trouble ticket entities.

For knowledge representation of ICT systems, we leverage on
the NORIA-O conceptual model [27], an OWL-2 ontology published
at https://w3id.org/noria that re-uses and extends well-known on-
tologies such as SEAS [32, 33], FOLIO [14], UCO [52], ORG [17],
BOT [29] and BBO [6]. This model allows to describe a network
infrastructure, its events (user login, network route priority re-
configuration), diagnosis and repair actions (connectivity check,
firmware upgrade) that are performed during incident management.
Therefore, it is used as the main data model for the experiments de-
scribed in this paper as it can model complex ICT system situations
and serve as a basis for anomaly detection and root cause analysis.

From a NORIA-O vocabulary perspective, building the classifier
involves learning the relational model on events near the resource
that is reported in a given incident (i.e. walking the graph and
computing embeddings), and then linking the relational model to a

category:{
𝐸𝑣𝑒𝑛𝑡𝑅𝑒𝑐𝑜𝑟𝑑.𝑙𝑜𝑔𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑖𝑛𝑔𝐴𝑔𝑒𝑛𝑡

(
𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 (𝑖 )

)
.𝑙𝑜𝑔𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑖𝑛𝑔𝐴𝑔𝑒𝑛𝑡

(
𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 (𝑖 )𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

)}
∼𝑇𝑟𝑜𝑢𝑏𝑙𝑒𝑇𝑖𝑐𝑘𝑒𝑡 .

(
𝑟𝑒𝑙𝑎𝑡𝑒𝑑𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒

(
𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 (𝑖 )

)
⊓𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦

) (3)

where noria:problemCategory is an attribute describing the fi-
nal nature or technical impact of a noria:TroubleTicket entity.
This attribute is part of the key fields used in the trouble ticket
system to fully qualify incident resolution upon closure1. It is an
owl:ObjectPropertywith values from the kos/TroubleTicket/-
trouble-category controlled vocabulary, a SKOSConcept Scheme
defining 9 concepts.

Wemake use of the pyRDF2Vec library [13] and the scikit-learn li-
brary [38]. pyRDF2Vec2 is a Python implementation of the RDF2Vec
algorithm [40], which captures the context of RDF graph nodes
(properties and neighboring nodes) as latent feature vectors and is
inspired by node2vec and word2vec. The data processing steps for
our approach are the following: 1) we create graph walks (i.e. se-
quence of vertices) by traversing the RDF dataset with noria:Trou-
bleTicket entities as the starting points, and filtering out the
noria:problemCategory property as it is used for classification;
2) we compute embeddings for the noria:TroubleTicket entities
by training a Word2Vec model on the graph walks; 3) we train
a random forest classifier with the embeddings as training input
samples, and noria:problemCategory ranged entities as target
values. The choice of the random forest classifier is based on its
intrinsic interpretability as it is using decision trees.

A potential interest with this approach is that for any new trou-
ble ticket matching a certain set of characteristics, projecting the
anomaly model onto the rich graph representation of the network
would be equivalent to circumscribe the search space in the net-
work’s parameter space (i.e. assets and features of interest to fur-
ther scrutinize for anomalies). This meets the circumbscribe assets
need raised for network and security operations (use case #1 in
Table 1). With network administrators’ commands also logged as
noria:EventRecord entities, projecting the model could also rec-
ommend remediation and repair actions to perform (Eq. 4):

𝑇𝑟𝑜𝑢𝑏𝑙𝑒𝑇𝑖𝑐𝑘𝑒𝑡𝑠𝑖𝑚𝑖𝑙𝑎𝑟 × 𝑇𝑟𝑜𝑢𝑏𝑙𝑒𝑇𝑖𝑐𝑘𝑒𝑡𝑎𝑐𝑡𝑢𝑎𝑙
→ {𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒,𝐴𝑐𝑡𝑖𝑜𝑛}𝑎𝑐𝑡𝑢𝑎𝑙 (4)

3.2 Model-Based Anomaly Detection
In addition to statistical learning, we develop an anomaly retrieval
approach using SPARQL queries. The Listing 1 presents such a
query, derived from expert panel interviews (Section 2), to assert a
risk alert for Applications with k out-of n (50%) Resources in alarm
(EventRecord).

A limited set of queries is available beforehand due to the lack of
comprehensive knowledge about the situations to be detected. We
posit that similar queries apply for similar trouble tickets. Thereon,
we use the following analysis scheme on a user-provided dataset to
identify the form of the queries and gain additional insight on simi-
larities: 1) for each trouble ticket, display it and provide an expert

1Other fields are noria:problemResponsibility, noria:troubleTicketCause and
pep:forProcedure.
2See INK [11] for an alternative to pyRDF2Vec.

https://w3id.org/noria
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analysis about the SPARQL query to implement for anomaly detec-
tion; 2) retrieve the 𝑘 most similar trouble tickets based on their em-
beddings using a cosine distance; 3) display these 𝑘 tickets with all
known attributes (e.g. creation date, services or resources involved,
etc.) and provide an expert analysis as whether we could consider
these tickets indeed related to the origin ticket and according to
which dimension. We analyze the reciprocal alignment between in-
cident tickets grouped according to the noria:problemCategory
attribute and grouped according to the clusters obtained from a
similarity graph on the embeddings (Algorithm 1).

1 CONSTRUCT { ?App noria:atRisk "K out-of N (50%)" . } WHERE {
2 SELECT ?App
3 (COUNT(DISTINCT ?Res) AS ?ResTotal)
4 (COUNT(DISTINCT ?ResImp) AS ?ResWithImpact)
5 WHERE { ?Res a noria:Resource ; noria:resourceForApplication ?App .
6 OPTIONAL {
7 ?Event a noria:EventLog ;
8 noria:eventLogOriginatingManagedObject ?Res .
9 BIND (?Res AS ?ResImp) } }
10 GROUP BY ?App HAVING ( (?ResWithImpact / ?ResTotal) >= 0.5) }

Listing 1: SPARQL query formodel-based anomaly detection.

Algorithm 1 Similarity graph of entities embeddings
𝐸 ← embeddings entities
𝑘 ← number of entities for similarity
𝑆𝐺 ← ∅ ⊲ Empty graph
for all 𝑒 ∈ 𝐸 do

𝑆𝐺 ← 𝑒 ⊲ Add vertex
𝑆𝐼𝑀 ← 𝑀𝑜𝑠𝑡𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑐𝑜𝑠𝑖𝑛𝑒 (𝑒, 𝐸, 𝑘 ) ⊲ Similarity on embeddings
for all 𝑒𝑠𝑖𝑚 ∈ 𝑆𝐼𝑀 do

𝑆𝐺 ← 𝑒𝑠𝑖𝑚 ⊲ Add vertex
𝑆𝐺 ← (𝑒, 𝑒𝑠𝑖𝑚 ) ⊲ Add edge

end for
end for
𝑆𝐺 ← 𝑃Louvain modularity (𝑆𝐺 ) ⊲ Node partitioning
𝑆𝐺 ← 𝑅Centrality (𝑆𝐺 ) ⊲ Node ranking

The potential interest for this approach is twofold. First, it brings
to enumerate query patterns for anomaly models, including for
trouble tickets describing complex situations like a network outage
impacting multiple applications. Second, it enables to explore how
the embedding space is correlated with the semantic similarity [19]
based on the logical form of the anomaly model (i.e. the SPARQL
query).

4 EXPERIMENTS AND RESULTS
This section details the experiments conducted based on the ap-
proaches described in Section 3 and analyzes their results.

4.1 Dataset
For our experiments, we use a RDF dataset generated using the
NORIA knowledge graph construction platform [28]. The input
data of the platform is based on 15 tables distributed across 10
sources such as: trouble tickets, change requests, logs & alarms
monitoring, network topology, applications, teams, users, etc. The
size of the resulting RDF dataset is approximately 4 million triples
for 400K entities, including streamed events spanning over 111 days.
The Table 3 provides an overview of the dataset.3

3Due to confidentiality, this dataset is not made public.

Table 3: Dataset overview
Class names are provided in the ⟨𝑝𝑟𝑒 𝑓 𝑖𝑥 ⟩ : ⟨𝐶𝑙𝑎𝑠𝑠 ⟩ form. Percentage is the ratio of the
entities count for a given class over the total number of entities.

Class name Entity count Percentage
noria:Resource 236’318 54.535
noria:EventRecord 89’606 20.678
foaf:Person 26’879 6.203
noria:CorporateUserIdentifier 26’879 6.203
noria:Locus 22’662 5.230
noria:ApplicationModule 9’314 2.149
noria:ProductModel 4’306 0.994
org:OrganizationalUnit 3’677 0.849
noria:Application 3’170 0.732
bot:Storey 2’869 0.662
noria:Room 2’869 0.662
bot:Building 1’656 0.382
bot:Site 1’374 0.317
org:Organization 366 0.084
noria:NetworkInterface 346 0.080
prov:Activity 324 0.075
noria:ChangeRequest 190 0.044
noria:NetworkLink 181 0.042
noria:TroubleTicket 150 0.035
noria:TroubleTicketNote 110 0.025
noria:AnomalyMode 75 0.017
pep:Procedure 9 0.002
TOTAL 433’330

4.2 Multiclass Classifier with Graph
Embeddings

Computing embeddings and training the model. Prior to com-
puting embeddings, we generate 9 sets of walks with a random
walk strategy [12], walk depth𝑊𝐷 ∈ {4, 8, 10} (vertices) and walk
counts𝑊𝐶 ∈ {10, 20, 30} (per entity). Then, the Word2Vec training
for embeddings holds on 10 epochs for each set of walks. These
sets of walks are referred to asWDxx/WCyy in the Table 5.

We use the random forest algorithm as the classifier. The in-
put values of the model are the embeddings. Target classes are
values from the noria:troubleTicketCategory4 property. The
Table 4 presents the possible values and their distribution in the
dataset. We use a stratified fixed-split strategy to build the train-
ing dataset while taking into account the target class imbalance,
with a proportion of 25% of the dataset to include in the test split.
Tuning the model’s hyper-parameters relies on a grid-search heuris-
tic, with parameters: the number of trees ∈ {10, 20, 30, 50, 70, 100},
split criterion ∈ {gini, entropy}, maximum depth of the trees
∈ {3, 5, 10, pure leaves}, and feature selection weight ∈ {𝑠𝑞𝑟𝑡 (
#𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠), 𝑙𝑜𝑔2 (#𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠), (#𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠)}. We use a weighted F1
score for model selection.

Evaluation & discussion. Table 5 reports on the classifier per-
formance with respect to the weighted F1 score and the model
parameters for eachWDxx/WCyy set of walks. The WD08-WC30
shows the best performance for the classification task with a 0.81
weighted F1 score. Table 4 reports on the per class weighted F1
score for the best model (WD08-WC30) in order to discover if some
classes are harder to predict than others, regardless of their fre-
quency.

We observe from Table 5 that the model performance globally
increases with the walk counts (𝑊𝐶) parameter. The performance
does not appear to increase proportionally to the walk depth (𝑊𝐷)

4https://w3id.org/noria/ontology/troubleTicketCategory

https://w3id.org/noria/ontology/troubleTicketCategory
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Table 4: Target class distribution
Class labels relate to the NORIA-O skos:Concept skos:prefLabel for the no-
ria:troubleTicketCategory property. Percentage is the ratio of the noria:TroubleTicket
entities count for a given class over the total number of entities. F1 weighted and Support
are classification performances for the WD08-WC30 random forest model over the test
data.

Class label Entities Percentage F1 weight. Support
Interrupted service 77 55.8 0.97 19
Degraded QoS 22 15.9 0.75 5
No service impact 22 15.9 0.62 6
Defect to be qualified 13 9.4 0.57 3
Equipment failure 4 2.9 0.00 1
TOTAL 138 100.0 0.81 34

Table 5: Classifier performance
F1 weighted score and random forest best model parameters as a function of graph walks
parameters.WC=WalkCount,WD=WalkDepth,model parameters in the form <criterion>-
<max depth>-<max features>-<n estimators>.

WC10 WC20 WC30

WD04 0.64
gini-05-SQRT-030

0.59
gini-05-SQRT-020

0.73
gini-05-SQRT-030

WD08 0.49
gini-05-SQRT-100

0.75
gini-05-SQRT-050

0.81
gini-05-SQRT-020

WD10 0.52
gini-05-SQRT-020

0.60
gini-05-SQRT-020

0.76
gini-05-SQRT-020

parameter. However, the F1 score reaches a peak at𝑊𝐷 = 8. In-
depth analysis of the dataset to better understand the phenomenon
shows that the available context for trouble ticket entities is not sys-
tematically consistent. For examples, some noria:TroubleTicket
entities refer to noria:Resource entities out of the scope of the
knowledge graph construction process, hence the context from
the network neighborhood is absent from the embeddings. Sim-
ilarly, the time frame of some noria:EventRecord entities (e.g.
alarms, device logs) does not overlap with the creation date of the
noria:TroubleTicket. We also observe some non standard values
for the noria:troubleTicketCategory (i.e. values absent from
the NORIA-O controlled vocabulary), hence the 150 − 138 = 12
delta between the number of noria:TroubleTicket from Table 3
and Table 4.

Overall, we conclude that the classifier works relatively well but
that the dataset is too small (for some classes in particular) and
inconsistent for generalizing and tackling the circumbscribe assets
need (use case #1 in Table 1). The typical approach to overcome
this issue is to improve the knowledge graph construction stage
with broader data sources and data quality assessment.

4.3 Model-Based Anomaly Detection
Qualitative analysis of trouble tickets. To identify query patterns

for anomaly models, we first retrieve all attributes values associated
with noria:TroubleTicket entities from the RDF dataset with a
SPARQL query. Next, we employ the model-based anomaly detec-
tion analysis scheme developed in Section 3. In a second step, we
compute the similarity graphs (Algorithm 1) over the WD08-WC30
embeddings with parameter 𝑘 ∈ {3, 4, 5}, and then compare the
overlap of query patterns with the partitions resulting from the
Louvain community detection algorithm. We use the Szymkiewicz-
Simpson coefficient for analyzing the overlap.

Results & discussion. From the qualitative analysis step, we identi-
fied 12 query patterns over 139 trouble ticket entities. The details of

Table 6: Retrieval patterns distribution and overlap coeffi-
cients
“C&O” stands for Count & average Overlap coefficient. Columns [𝐶0, . . . ,𝐶6, 𝑁𝑜𝑛𝑒 ] reports
on the pattern count and overlap coefficient for the WD08-WC30 / 𝑘 = 3 similarity graph.
𝑁𝑜𝑛𝑒 stands for entities that were rejected by the Algorithm 1 due to syntax issues.

Pattern name C0 C1 C2 C3 C4 C5 C6 None C&O
AlarmState 2 2 1 1 25 15 3 49

0.13 0.13 0.06 0.07 0.96 0.88 0.14 0.00 0.30
AuthError 1 4 2 2 9

0.11 0.00 0.44 0.00 0.00 0.00 0.22 0.22 0.13
CoFailure 3 3

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13
Complex 7 6 1 1 15

0.47 0.00 0.40 0.07 0.00 0.00 0.00 0.08 0.13
Debug 1 1 2 2 6

0.00 0.17 0.17 0.33 0.00 0.00 0.00 0.33 0.13
ErroneousRes. 2 6 1 9

0.00 0.00 0.22 0.67 0.00 0.11 0.00 0.00 0.13
HeartBeat 11 2 13

0.00 0.85 0.00 0.00 0.00 0.00 0.15 0.00 0.13
Overbilling 6

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RecurringFai. 1 1

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13
RequestForIn. 1 1 1 1 5 8 17

0.06 0.00 0.06 0.00 0.06 0.06 0.29 0.62 0.14
RiskPreventi. 2 1 4 10 17

0.13 0.00 0.06 0.29 0.00 0.00 0.59 0.00 0.13
RMA 10

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C&O 16 15 16 14 26 17 22 13 139

0.16 0.18 0.12 0.12 0.09 0.09 0.12 0.10 0.12

these patterns are detailed below with indications on the involved
classes and properties and examples of corresponding situations5.
Table 6 reports on the overall distribution of the patterns, and how
they were captured by the community detection algorithm for the
𝑘 = 3 similarity graph. Running the Algorithm 1 with 𝑘 ∈ {3, 4, 5}
led to generate |𝑃 (𝑆𝐺, 𝑘) | = {7, 6, 5} partitions respectively.

We observe that a significantly lower number of patterns emerge
from the dataset compared to the number of tickets considered
(12/139 ≃ 0.09 reduction factor). Furthermore, it appears that some
patterns, such as “AlarmState” and “HeartBeat”, can capture diverse
situations while remaining very specific by using restrictions on the
objects and values of properties. This provides valuable insights on
the detection and implementation of new patterns, in the perspec-
tive of an increase in the size of the dataset. However, as discussed
in Section 4.2, the inconsistency of the data prevents us from di-
rectly validating the queries and their relevance on the dataset. As
a consequence of this, we are currently not able to establish a cor-
respondence between the patterns, the incident categories reported
by the classifier, and the relevant anomaly models. Despite this, we
can observe from Table 6 a connection that, although not entirely
clear, suggests that there might be 𝑛-to-1 or 𝑛-to-𝑚 relationships
between the patterns and the trouble ticket categories.
AlarmState: Alarm state w.r.t. noria:EventRecord.* and

(noria:Resource or noria:Service). Examples: Service disrup-
tion on Optical Network Terminal (ONT). Unable to access
http://example.org

AuthError: User role conformance w.r.t. noria:EventRecord.type()
and noria:EventRecord.logOriginatingAgent() and org:-
OrganizationalUnit. Examples: Authentication error. User does
not have access to the ’xxx’ role. Please check my rights.

5See https://w3id.org/noria/dataset/ for query examples.

https://w3id.org/noria/dataset/
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CoFailure: Alarm state w.r.t. noria:TroubleTicket.troubleTicket-
RelatedResource() and seas:connectedTo and noria:Event-
Record.logOriginatingManagedObject() and noria:Event-
Record.type(). Example: Co-occurring alarm in a network device
neighborhood and creation of a parent/child relationship between
trouble tickets for Service Level Agreement (SLA) tracking.

Complex: Requires further expertise for providing a pattern.
Debug: Non-relevant trouble ticket entity, present for debugging purposes

of the ticketing system.
ErroneousResourceInOperationPlan: Non-existing resource in opera-

tion plan with respect to noria:EventRecord.type(). Example:
The processing flow references a resource that does not exist.

HeartBeat: Value conformance and event frequency w.r.t. noria:Event-
Record.type() and noria:EventRecord.alarmMonitoredAttri-
bute() and noria:EventRecord.logText(). Examples: The num-
ber of failed calls has increased significantly. No response to SNMP
polling and Ping. Agent not running or cannot communicate. Ex-
treme slowness or even unavailability of the service when opening
and closing documents on the platform.

Overbilling: Value conformance w.r.t. noria:EventRecord.log-
OriginatingManagedObject() and noria:EventRecord-
.type() and noria:EventRecord.alarmMonitoredAttribute()
and noria:EventRecord.logText() and foaf:Person and
org:OrganizationalUnit.

RecurringFailure: Repeated situation w.r.t. noria:TroubleTicket.-
troubleTicketRelatedResource() and noria:TroubleTicket.-
problemCategory(). Example: Repeated occurrence of the same
type of failure on a device within a short period of time.

RequestForIntervention: Resource or service w.r.t. noria:ChangeRe-
quest.changeRequestPlannedStartTime() and noria:Change-
Request.changeRequestStatusCurrent(). Examples: Please de-
commission the ’xxx’ system. The Customer is calling about the
Request For Change (RFC) status.

RiskPreventionNotification: Presence of en event w.r.t. noria:-
Resource and noria:OperationPlan. Example: Automated deploy-
ment flow triggered on resource.

RMA: Alarm type w.r.t. noria:EventRecord.* and noria:Resource.re-
sourceProductModel(). Example: Return Merchandise Authoriza-
tion (RMA) for redundant Power Supply Unit (PSU).

5 RELATEDWORK
This section briefly reviews related works from the perspectives of
anomaly detection, knowledge graphs and IT management. To the
best of our knowledge, our work is the first of its kind to address
incident management over ICT systems through the combination
of RDF knowledge graphs and graph embeddings. However, there
exist works on specific aspects that are close to our research, notably
in terms of graph representation or the application domain.

Close to the field of IT management, [47] proposes to speed up
the triage of trouble tickets by using Natural Language Processing
(NLP) techniques to provide an a priori categorization of the tickets.
Using RDF knowledge graphs for anomaly detection: [14] presents
a solution for mapping Failure Mode and Effect Analysis (FMEA)
data with ontologies, which allows for the detection of anomalies
and the derivation of their underlying causes through reasoning;
[10] uses the APriori algorithm [42] for mining association rules
on graph triples depicting user activities.

In the field of cybersecurity, various research trends coexist
around RDF knowledge graphs, with a strong emphasis on ontology

implementation. A first trend, led by forensic experts, links Indica-
tors of Compromise (IoCs) to attack typologies through knowledge
base construction [34, 50, 52]; knowledge extraction techniques
from incident reports or through expert opinions aggregation are
prominently at play in this context. A second trend focuses on
modeling and classifying attack scenarios, with applications in
detection tools using reasoning techniques [7, 35], knowledge man-
agement [9, 41, 49], and risk assessment based on the combination
of infrastructure descriptions and a vulnerability repository [8].
Ultimately, these trends and projects could converge under the
guidance of an ontology describing the management and response
to cybersecurity incidents, with vocabulary alignment to standard
cybersecurity repositories, as discussed in [16, 41]. We observe
that many of cybersecurity-related projects have remained at the
intention stage or have been developed without public sharing.

Without considering RDF knowledge graphs, [25, 39] review the
literature related to anomaly detection with graph representations,
including some of which are related to the IT/telecommunication
domain. The works mentioned mainly refer to inference techniques
based on a statistical model of the graph structure (relational learn-
ing) or graph traversal techniques. For example, [48] presents three
Graph-Based Anomaly Detection (GBAD) algorithms for identify-
ing abnormal sub-structures through modifications (vertex label or
edge label different than expected), insertions (unexpected vertex or
edge), and deletions (vertex or edge absent) compared to normative
sub-structures. The detection principle is based on the idea that
malicious behavior is close to normal behavior, which, in mathemat-
ical terms, corresponds to a percentage of isomorphism between
the considered sub-structure and the normative sub-structure. Sim-
ilarly, [51] provides assistance in analyzing cybersecurity incidents
by applying a community detection algorithm to attack reports
linked by similarities. In these two examples, the graph construc-
tion process implicitly incorporates the domain knowledge to be
analyzed.

6 CONCLUSION AND FUTUREWORK
In this work, we aimed to simplify incident management activities
related to broad scale Information and Communications Technology
(ICT) systems, using knowledge graphs and learning an explicit
representation of the context of each incident. We notably tackle
the emblematic “common cause failures” and “alarm spreading
phenomenon” cases since they require considering simultaneous
situations that are seemingly unrelated as a whole.

Providing knowledge about the potential relationships between
events and incidents occurring in networks is a way to simplify the
diagnostic phase. Based on this idea, we firstly hypothesized that
relating situations requires a common language to describe them,
both in their variety and in the context that groups them together.
We posit that RDF knowledge graphs are adequate knowledge
representation formalism as they bring an abstraction level for
standard interpretation and logical reasoning over heterogeneous
data. We also consider that learning the relational structure for
each type of incident, to a greater or lesser extent, would allow us
to gain an explicit understanding of the complex phenomena that
occur in network operations.
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In a first analytical phase, the formal analysis of the incident man-
agement process led us to identify three families of anomaly detec-
tion techniques (model-based, process-mining, statistical learning)
and how they could be implemented as a set of reasoning services. In
a second step, we developed a dual statistical learning/model-based
approach for modeling anomalies to overcome the lack of exhaus-
tive knowledge of the situations to be addressed. The statistical
learning approach led to the development of a graph embeddings-
based classification method for categorizing incident tickets using
a random forest model. For our experiments, we used a RDF dataset
generated using the NORIA knowledge graph construction plat-
form [28] and making use of the NORIA-O conceptual model [27].
Based on our evaluation of the classifier, we have determined that
while it performs reasonably well (0.81 weighted F1 score), the
dataset is too small and inconsistent (particularly for certain classes)
to effectively address advanced inference services, such as project-
ing back the anomaly models onto the knowledge graph for guiding
support teams on similar incidents. The model-based approach led
to the identification of 12 SPARQL query patterns for anomaly de-
tection based on a qualitative analysis of 139 incident tickets from
the RDF dataset. The rather small number of patterns and the ver-
satility of some of them provided valuable insights on the detection
and implementation of new patterns, notably in the perspective
of an increase in the size of the dataset. We also explored the lim-
its of the model-based approach and the complementarity of the
statistical approach through the projection of the query patterns
onto the embeddings. We observed that there might be 𝑛-to-1 or
𝑛-to-𝑚 relationships between the patterns and the trouble ticket
categories. This should be further investigated as we found some
data inconsistency during the classifier evaluation step.

Future work will first focus on addressing data quality issues
to improve the performance of the classification model and con-
tinue our research efforts in connecting query patterns to the latent
space of embeddings. We also plan to continue exploring ways to
improve the capture of the context of incidents at the knowledge
graph embeddings stage. Hence, we aim to automatically process
the description of incidents or the description of recovery interven-
tions written in natural language. Indeed, traditional knowledge
graph embeddings techniques just go through object properties to
build the embeddings of a node since a datatype property breaks
the graph (i.e. a literal cannot be a subject). Alternative knowledge
graph embeddings approaches exist to handle literals [2]. However,
this gives rise to further challenges, including the requirement to
discretize the literals (for example, determining a general criterion
for discretizing dates, numbers, etc.). An alternative consists in
annotating datatype properties with semantic entities using a lan-
guage model. Next, we aim to explore additional sampling and walk
strategies [21]. This could notably allow us to guide the extraction
of network topology data from the knowledge graph according to
infrastructure or time criteria. Finally, we would like to test our ap-
proach using dynamic graph generation tools [31] to open it up for
comparative studies, particularly regarding scalability. Ultimately,
future research could explore automating IT support functions by
reasoning on these shared explicit models of infrastructure and
service behavior and past incidents management.
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