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Abstract—Automated vehicles are emerging with the advance-
ment of driving algorithms and improvement in their sensing,
computing, and navigating capabilities. All leading stakeholders
are developing prototypes and testing them on roads. If safety
is of uttermost importance, efficiency and passenger comfort are
becoming critical to their success. In that context, roundabouts
are particularly challenging due to the difficulties to interpret
the situation and inject into traffic, leading to stop-go situations,
inefficient waiting time, and uncomfortable jerk values. In this
paper, we present an AI-driven comfort-oriented roundabout
control mechanism for automated vehicles. We propose a throttle
and steering control respecting passenger comfort metrics, an
AI-driven situational analysis to optimize yielding, and a model
predictive control algorithm to adjust maneuvers and minimize
waiting time at roundabouts.

Index Terms—Autonomous Driving, Machine Learning, Opti-
mization, Passenger Comfort, Roundabout Control

I. INTRODUCTION

Automated vehicles are a major upcoming innovation
promising to improve traffic safety and efficiency. All major
stakeholders are focusing on their development and studies
and anticipate a slow ramp up to 11% by 2030 and replacing
more than 60% of legacy vehicles by 2050 [1]. Several pitfalls
however lie on their road to success, ranging from dependable
sensing of vulnerable road users, handling of complex traffic
situations, cybersecurity, or passenger acceptance.

Over the past years, various approaches for motion or
trajectory planning have been investigated [2]. More recently,
Model Predictive Control (MPC) strategies [3], [4] have been
proposed and studied for Cooperative Adaptive Cruise Control
(CACC) or Platooning [5], [6]. Yet, when facing complex
scenarios with merging of trajectories typically observed at
intersections, trajectory planning adopts a combinatorial na-
ture [7], leading to optimizing control according to various
potential maneuvering options.

Among various types of intersections, roundabouts have
shown to provide potentially higher traffic safety and efficiency
if well optimized [8]. Accordingly, a large literature is avail-
able on optimizing delay and trajectories (e.g. [8]–[11]), but
the roundabout layout is over-simplified, optimizing flows with
optimal knowledge of traffic conflicts, and not considering real
vehicle’s dynamics or passenger comfort.

In this paper, we propose an AI-driven roundabout control
considering passenger comfort metrics, such as acceleration
and jerk limitations. To that objective, we integrate the impact
of realistic roundabout layout, vehicle dynamics, and unknown
conflicts to throttle and steering control. Our contributions
are threefold: we first introduce an acceleration and braking
motion control respecting passenger comfort; second, we de-
scribe a steering control minimizing the deviation to a target
trajectory respecting passenger comfort; finally, we rely on
an AI model predicting motion conflicts and apply an MPC
strategy to predict maneuvers, thus minimizing the roundabout
access time. We implemented the throttle and steering control
in the CARLA1 simulator, and release the code as open-
source2.

The rest of the paper is organized as follows: Section II
describes the control algorithm for comfort-based motion plan-
ning, whereas Section III introduces the AI-driven roundabout
decision-making for trajectory planning. In Section IV, we
provide implementation details and results. Finally, Section V
concludes the paper and sheds light on future directions.

II. COMFORT-ORIENTED ROUNDABOUT CONTROL

In this section, we describe the methodology followed to
develop longitudinal and lateral control mechanisms to drive
through a roundabout respecting passenger comfort, which is
defined jointly as a maximal acceleration/deceleration as well
as a jerk limit.

A. Throttle-Velocity Dynamics
To control the speed and acceleration of a vehicle, one needs

to access the nonlinear vehicle dynamics in terms of transfer
function or alternatively an adaptive state-space model. An
example of a first-order control system is one whose input-
output relation, usually referred to as a transfer function in
the frequency domain (s-domain), is a first-order differential
equation. Equation (1) shows such a frequency domain transfer
function from a throttle input U(s) to a velocity output V (s),
where kappa represents the gain and τ the time delay of the
first order dynamics.

V (s)

U(s)
=

κ

τs+ 1
(1)

1CARLA Simulator: https://carla.org/
2https://gitlab.eurecom.fr/cats/carla/ai-driven-roundabout-control978-1-6654-5530-5/23/$31.00 ©2023 IEEE



The state-space equations for a single-input single-output
Linear Time Invariant (LTI) control system are shown in (2).
The parameters a, b, c, and d are scalars; x(t) is the system’s
state, u(t) and y(t) are the input and the output of the system,
respectively. ®

ẋ(t) = ax(t) + bu(t)

y(t) = cx(t) + du(t)
(2)

According to the system’s first-order transfer function, (2)
may be simplified assuming a, c ̸= 0, b = 1, d = 0 and
considering velocity v(t) as the new state, leading to the
formulation of our state-space model for LTI system as:®

ax(t) = av(t) + cu(t)

y(t) = v(t)
(3)

B. Longitudinal Control

The LTI control described in (3) provides a match between
throttle input targeting a particular velocity output. Longitudi-
nal control mechanisms require optimizing a set of throttle
inputs to reach and maintain a given velocity respecting
acceleration and jerk constraints.

1) Stationary Throttle Optimization: In [12], Malaek and
Moradi introduced a longitudinal control of an aircraft to per-
form zero-gravity flights. An optimization approach identifies
the elevator control input (airplane nose up/down) under the
constraints of a target acceleration. The authors defined the
elevator deflection as a time series polynomial and found the
best coefficients that minimize the objective function. In this
paper, we use the same approach, but instead of elevator input,
we consider a throttle input, with the jerk as a complementary
constraint. Considering a first-order transfer function as system
dynamics and jerk being the second derivative of the system’s
state, it suffices to define a second-degree polynomial for the
throttle input as described in (4).

u(t) = P1t
2 + P2t (4)

The heuristic optimization method utilized in [12] is called
TCACS. It is developed based on the Tabu Search technique
removing the irrelevant (hyper-)balls from the search space at
each iteration, thus converging to the optimal solution (see [13]
for further details). According to (4), we have a 2-dimensional
search space including combinations of P1 and P2.

2) PID Speed Controller Optimization: The above ap-
proach considers an open-loop dynamic system and finds
the throttle that makes the vehicle reach an Operating Mode
to activate the speed controller. However, in case we want
to reach and keep a target velocity, we need a closed-loop
analysis. This can be reached by tuning the gains of a PID
controller using popular methods such as Ziegler-Nichols.
Considering passenger comfort, and without loss of generality,
we tune a PID controller gains, namely, kP , kI , and kD, for
a scenario where a vehicle has an initial Operational Mode
speed and aims to reach and maintain a Target speed.

We also need to find an integral bias so that the input
at t = 0 matches the initial throttle u0. Assume that the
PID controller calculates the input when the vehicle’s initial
velocity is v0 and its target speed is vf . The control input can
be calculated as follows:

e(t) = vf − v(t)

u(t) = kP e(t) + kI

∫ t

0

e(τ) dτ + bias

bias = u0 − kP (vf − v0)

(5)

C. Braking Control

The main forces decelerating the vehicle while braking are
aerodynamic force (fa), rolling resistance (fr), and the force
due to the brake torque( fb). With an air density ρ, a drag
coefficient Cd, and a frontal surface of S, the aerodynamic
force is computed as follows for a given speed v(t).

fa(t) =
1

2
ρSCdv(t)

2 (6)

For vehicles with air-filled tires on dry roads, the rolling
resistance force can be estimated by (7) where mg represents
the weight of the vehicle and Cr is the rolling resistance
coefficient.

fr(t) = Cr(t)mg (7)

To calculate fb, assuming a proportional brake torque τbmax

with respect to the brake pedal δb, a tire radius of RT and an
equal brake pressure on all tires, we will have (8).

fb(t) =
4τbmax

RT
δb(t) (8)

The aerodynamic and rolling resistance forces are larger
when the speed increases. Solving (9) considering the mass of
the vehicle m and the maximal deceleration amax, we obtain
the maximum brake pedal input δbmax

.

famax
+ frmax

+ fbmax
= m · amax (9)

More realistic brake inputs may be obtained by solving a
first-order differential equation like (10) , where η is a scalar
coefficient and δbmax

corresponds to the maximum brake input.

ηδ̇b(t) + δb(t) = δbmax
(10)

D. Steering Control

For steering and lateral control, we consider a simplified
bicycle model as depicted in Fig. 1. The steering input is δ,
the heading error with respect to the trajectory is ∆ψ, and the
cross-track error is e. According to the Stanley Control Law,
the cross-track error is the distance between the trajectory and
the center of the front axle. According to [14], (11) reflects
the steering input, which is a path-tracking solution and works
regardless of the vehicle under study. The parameters that vary
from one vehicle to another are the two gains Ke and Kv .



Fig. 1. The bicycle model of a vehicle following a trajectory for defining
Stanley Control Law. [source: www.shuffleai.blog]

δ(t) = ∆ψ(t) + tan−1(
Kee(t)

Kv + v(t)
) (11)

Lateral acceleration depends on the velocity and the turning
radius R. To keep lateral passenger comfort, we need to find
a minimum turning radius for a fixed speed and adjust the
steering input according to the Stanley Control Law (11).
However, since the trajectory is defined in roundabouts, we
need to adjust the vehicle’s velocity accordingly.

ay =
v2

R
⇒ vmax =

√
Raymax

(12)

E. Control Constraints respecting Passenger Comfort

Passenger comfort in the longitudinal direction for auto-
mated vehicles has been investigated in various literature
works. In [15], the maximum deceleration is set to −3.4m/s2.
In [16], maximum acceleration and jerk (the derivative of
acceleration j(t)) are set to 2m/s2 and 0.9m/s3, respectively.
The main challenge remains to control the longitudinal accel-
eration and specifically the jerk at low speed.

The lateral acceleration is also important to consider.
In [17], [18] authors propose that the centrifugal force should
not surpass 15% of the vehicle’s weight. This means,|ay(t)| ≤
0.15g; where ay(t) is the lateral acceleration in the vehicle’s
frame of reference and g represents the gravity of Earth
(g = 9.80665m/s2).

We therefore integrate both longitudinal and lateral acceler-
ation thresholds described in (13) to the previously described
control mechanisms to respect driver comfort.

−3.4 m/s2 ≤ ax(t) ≤ 2m/s2

|ay(t)| ≤ 0.15g m/s2

j(t) ≤ 0.9 m/s3

(13)

III. AI-DRIVEN ROUNDABOUT MANAGEMENT

In Section II, we describe control longitudinal and lateral
control for automated vehicles to drive through roundabouts.
Here, we extend them to consider if and where the vehicle will
conflict with other vehicles.

A. Machine Learning Exit Probability Model

We provide an answer to the if question by relying on an AI-
driven strategy to estimate the exit probability of a vehicle in
a roundabout, as proposed by Deveaux et al. [19]. The overall

scenario is depicted in Fig. 2, where three attributes have been
considered, namely, relative heading, lateral position, and exit
distance influencing the exit probability. The lateral position
influences the exit probability as vehicles located in the outer-
most lane have more chances to exit rather than those on the
inner-most lanes. The relative heading is considered as the
relative angle of the front tire with respect to the roundabout
trajectory and also provides indications of the likelihood to
exit. Finally, the Exit distance is computed as the normalized
distance on the roundabout arc in this paper, rather than the
euclidean distance as in [19].

Fig. 2. Input attributes for the Exit Probability machine learning model [19]

Training the AI model is done by continuously spawning
vehicles on all sides of the roundabout, letting them randomly
choose their exists. We initially label the vehicles as 0 at all
time frames. Whenever a vehicle departs, we back-propagate
to change the labels to 1 until we reach the location matching
the previous exit. We opted for a logistic regression method
thanks to the low dimensional dataset. The outcome of the
training indicated that the exit probability of any staying
vehicle does not exceed a certain threshold, i.e., Pexit ≤ 0.63.
Consequently, we set the departing threshold to Pexit ≥ 0.70.

B. Roundabout Collision Prediction

The where question is answered by calculating the merge
point between the approaching and the inbound vehicles.
According to Fig. 3, a merging point M needs to be located,
where vehicle A at a distance dA to the entry, will impact
vehicle B with an acceleration aB , a velocity vB , and a
distance dB to M .

Fig. 3. Decision-making schematic for the roundabout entrance to find Psafe.



The time tA it takes for vehicle A to reach the point M
is of the essence, as vehicle A may adjust its own control
inputs to set a speed avoiding the impact. We use a Model
Predictive Control (MPC) approach to compute the vehicle’s
velocity and distance at each time step and find tA accordingly.
Let’s assume that dB represents the distance for vehicle B
to reach point M in tA seconds. Hypothetically, this means
that both vehicles reach point M at the same time. Thus, we
have (14) for dB based on the kinematics of the vehicle B.

dB =
1

2
aBt

2
A + vBtA (14)

We also need to add the required braking distance dBbrake
.

We considered the worst-case scenario where the vehicle B
brakes to stop. This results in the larger value for dBbrake

.
Multiplying the calculated distance by a safety factor, which
we considered as η

SF
= 1.1, we can locate the point Psafe

on the roundabout arc ˝�MOPsafe in Fig. 3 as shown in (15).˝�MOPsafe = η
SF

(
1

2
aBt

2
A + vBtA + dBbrake

) (15)

IV. RESULTS AND DISCUSSION

Without loss of generalities, we selected the default Town03
roundabout scenario in CARLA3. Parameter optimizations for
the PID and steering controllers have been conducted via
a co-simulation framework between MATLAB and CARLA,
whereas we implemented a Python version of our throttle and
steering controller directly in CARLA to negate communica-
tion delays. Finally, we opted for a vehicle model supporting
automated gear changing, namely a Tesla Model 3, in both
MATLAB and CARLA simulation environments.

A. Longitudinal Control

In Table I, you can find the gains (κ) and the time delays (τ)
of the first-order vehicle dynamics for (1). We can interpolate
between these values according to the velocity of the vehicle
to have an adaptive model. Note that to have a system capable
of taking its initial condition as an input, we should obtain the
state-space representation of that system. This can be done by
applying the Inverse Laplace Transform to (1) or using the
tf2ss MATLAB command.

We applied the throttle input as a step function from 30%
up to 75% with a 5% increment. Then, we saved the velocity
output response until the vehicle reached the steady-state
condition. MATLAB System Identification Toolbox proposed
a first-order control system for the input-output data that we
fed to it.

We then implemented the state-space dynamic model de-
scribed in (3) in Simulink and optimized it separately for an
initial stationary regime and for a subsequent PID controller.

Without loss of generalities, we selected to activate the PID
speed controller at 12−15 km/h. We ran the optimization for 2
seconds while stabilizing the throttle at 50% until we reach the
target speed. Consequently, (16) represents our optimization

3https://carla.org/

TABLE I
SYSTEM IDENTIFICATION PARAMETERS FOR VEHICLE DYNAMICS

Step Dynamic System Parameters
Throttle S.S. Velocity (m/s) κ τ a c

30% 3.32 11.07 2.20 −0.451 5.023
35% 4.24 12.11 2.33 −0.429 5.200
40% 5.36 13.40 2.82 −0.355 4.752
45% 6.74 14.98 3.12 −0.321 4.801
50% 8.12 16.23 2.98 −0.336 5.446
55% 9.52 17.28 2.94 −0.340 5.878
60% 11.12 18.43 2.97 −0.337 6.205
65% 13.01 20.02 3.48 −0.288 5.755
70% 15.18 21.69 3.91 −0.256 5.551
75% 17.73 23.64 4.23 −0.237 5.594

∗Specific for Tesla Model 3 blueprint in the CARLA simulator.

argument. By applying the TCACS optimization to the vehicle
dynamic model, we obtain (17).

arg min
P1,P2

{∥j(t)− jmax∥+ ∥u(t = 2)− 0.5∥} (16)

u(t) = min{0.0401t2 + 0.1698t , 0.5} , 0 ≤ t ≤ 4 (17)

Figure 4 shows the throttle, acceleration, jerk, and speed
values from our longitudinal control. As can be seen, they
are close to ideal. First, as they correspond to the maximum
allowed jerk before reaching 50% throttle at 2 seconds, also
as they strictly respect the comfort requirements as defined
in Section II-E. The dynamic model values are taken from
Table I with a step throttle of 30%.

Fig. 4. The vehicle states when it starts moving for four seconds

We then relied on MATLAB PID Tuner to obtain the gains
of our PID controller, namely, kP , kI , and kD. Considering
an initial speed of 12 km/h and a target speed of 40 km/h,
we obtained the following PID gains:

kP = 0.08801 , kI = 0.04023 , kD ≈ 0 (18)

In Fig. 5 you can find the vehicle’s response to the PID
controller input. As may also be observed, the PID leads to
driving parameters strictly respecting the target comfort-based
values.



Fig. 5. The vehicle states showing the performance of the PI controller

Finally, the braking functions described in Section II-C
have been implemented considering an air density of ρ =
1.225kg/m3, drag coefficient of Cd = 0.30, and S = 2.22m2

for the frontal area, tire pressure of pt = 3 bars, a tire radius
of RT = 0.37m, a maximum torque of τbmax = 1500N ·m,
and a vehicle mass m = 1847kg. Thus, (6), (7) and (8)
maybe be simplified and δbmax

solved to respect the comfort-
based maximum deceleration value.

fa(t) = 0.408 · v(t)2

fr(t) = (0.005 + (
1

3
)[0.01 + 0.0095(

3.6× v(t)

100
)2]) ·mg

fb(t) = 16216 · δb(t)
δbmax

= 0.375

Setting δb(t = 1) = 0.95 δbmax , η = 1
ln 20 results. Thus, the

optimal brake input may be obtained as

δb(t) = 0.375(1− e3t)

Fig. 6 shows the vehicle’s response at 40 km/h to this brake
input. As it can be seen, the deceleration remains smooth and
respect the maximum comfort-based deceleration as required
in Section II-E.

Fig. 6. The vehicle response to the brake input at 40 km/h

B. Steering Control
To tune the Stanley control gains Ke and Kv from (11),

we considered a large enough search space for them to apply
the TCACS optimization algorithm. The objective function to
minimize is defined as the norm of the cross-track error for the
trajectory where the vehicle enters the roundabout, traverses
a full circle, and departs at the end. Upon convergence, the
optimal gain values Ke = 18.9 and Kv = 2.2 have been
selected, which provides the steering input as

δ(t) = ∆ψ(t) + tan−1(
18.9e(t)

2.2 + v(t)
) (19)

Considering the maximum comfort-related acceleration val-
ues in Section II-E, (12) is reduced to vmax =

√
0.15Rg,

where g is the gravity and R the turning radius. Accordingly,
we jointly adjust the steering and PID controller to respect the
target trajectory and the maximum speed corresponding to the
curvature of the trajectory.

Figure 7 compares our optimized comfort-based steering
controller and the CARLA Autopilot. There are four locations
on the roundabout creating abrupt steering changes. Our
optimized steering control manages to correct and stabilize it,
whereas the Autopilot creates oscillatory steering, impacting
not only the trajectory but also the comfort of the passengers.
A video is available here.

Fig. 7. Steering control comparison against CARLA Autopilot

C. AI-driven Roundabout Access Management
We implemented the roundabout access decision-making as

a flow chart described in Fig. 8. The Turtle approach refers to
the case when the automated vehicle must defer its access by
slowing down rather than stopping. The vehicle approaching
the roundabout first creates a list of incoming vehicles pro-
vided by the AI model and computes their respective Psafe.
If the nearest vehicle is far enough, the vehicle may access
the roundabout at the current speed. Otherwise, it decelerates
and either performs a Turtle approach and recomputes Psafe

in the next iteration or stops. Meanwhile, if the AI model-
driven exit probability of the closest coming vehicle shows a
probability higher than 70%, we remove the vehicle from the
list. Figure 9 depicts a screenshot of the CARLA roundabout
with our proposed control strategy. A video is available here.



Fig. 8. The flowchart for decision-making at the roundabout entrance.

Fig. 9. Illustration of the comfort-based AI-driven control mechanism for
Roundabout

V. CONCLUSION

In this paper, we proposed a control algorithm and conflict
avoidance strategy for automated vehicles to drive through
roundabouts safely, efficiently, and comfortably. In terms of
safety, our control strategy integrates a predictive AI-driven
maneuver to optimize yielding at roundabouts, and in terms
of efficiency, a turtle mechanism is implemented to mitigate
stopping. Regarding comfort, the jerk is particularly challeng-
ing as it requires specific control inputs at a low throttle
regime and stable steering. Our proposed mechanism respects
it for both throttle and steering control. We used MATLAB to
calculate the various parameters of our control mechanisms,
then implemented it in Python for CARLA, and released it
as open-source4. In future work, we will extend our control
mechanisms to support maneuver coordination and multi-

4https://gitlab.eurecom.fr/cats/carla/ai-driven-roundabout-control

lane roundabouts. We will also integrate an AI-as-a-Service
(AIaaS) framework to obtain optimal AI models.
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