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I. INTRODUCTION

Web scraping is the activity of continuously extracting data
and/or processed output contained in web pages [16]. This pro-
cess generates large amounts of traffic on the targeted websites,
which suffer large losses of money from this phenomenon
[3]. For this reason, they engage in a persistent fight against
scrapers, trying to detect and mitigate their requests [7].

Lately, scrapers have taken advantage of Residential IP
Proxies (RESIP) to perform their requests [5]. These parties
give access, for a fee, to a vast network of residential devices
that can be used as exit points for requests. Taking advantage
of these infrastructures enables scrapers to send requests from
IP addresses used by real users. This reduces the confidence
of scraped websites in blocking their requests to prevent
false positives. Recently, researchers started to study RESIPs,
revealing some of their features, how to detect if a device is
acting as a RESIP machine and their association with various
malicious activities [11], [18], [12], [9], [8], [6], [14], [13].

In our past work [4], we collected a new dataset of RESIP
connections. We have used it to validate a new server-side
detection method based on network measurements. It can
systematically and deterministically detect a RESIP connection
by only analyzing a single request, differently from a recently
proposed machine learning one [15]. Our approach considers
the differences at the transport layer between the connections
produced directly by a device and the ones proxied through it.
In the first case, the TCP and TLS sessions are built between
the same two parties: the device and the server of the target
website. In the second case, the TCP session is built between
the device and the server while the TLS session takes place
between the scraper exploiting the RESIP infrastructure and
the server. This difference in the setup can be identified on
the server side thanks to distinct Round Trip Time (RTT)
measurements.

In a direct connection, all the exchanged packets between
the device and the server cover the same distance. In a proxied
connection, the RTTT LS is influenced by the distance between
the scraper and the server but also by the path of the packets
inside the RESIP infrastructure. Moreover, the RTTTCP only
reflects the distance between the device and the server. We
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Fig. 1: Experimental Setup.

take advantage of this difference (δRT T ) in the RTTs to detect
when a connection passes through a RESIP service.

Besides the detection method, the collected dataset enabled
us to gather new insights about RESIP providers, showing
the similarities and differences of the associated ecosystems
(geographic distribution, types, management and amount of
used machines) [2].

In this new work, we share new insights about this dataset.
We analyze the mean average speed of packets in the collected
connection. We show the high variability of this parameter.
This attests that our setup is representative of the real world
and that we can apply our technique in any real-world scenario
(Section III). We present a study of the impact of the geo-
localization of real initiator, server and RESIP machines on our
technique. We show that the δRT T decreases, as expected, in
the case where all the machines involved in a connection are in
close proximity. However, the difference remains high enough
to enable a significant level of detection in such worst-case
scenario (Section IV). Moreover, we describe the next steps
in our research work (Section V). Thanks to the positive results
of our experiment, we managed to implement the technique in
front of domains suffering from scraping. The study of these
connections is ongoing. Furthermore, we are trying to exploit
the δRT T to geolocalize the position of the real initiator of a
connection behind a RESIP, performing triangularization from
the used GATEWAYs. We present our idea and how we plan to
continue working in this direction.978-3-903176-58-4 ©2023 IFIP



II. BACKGROUND

In this section, we briefly recap how the dataset was
collected. We refer to [4] for a complete description. We have
acquired 22 machines, running as client and server, distributed
worldwide and four RESIP services among the ones most used
for scrapers. As displayed in Fig. 1, each client connects to
each server through a RESIP provider (RESIP connection) and
directly (Direct connection), embedding in the URL informa-
tion about the involved parties. In the first case, the client sends
the requests to the RESIP entry point, the SUPERPROXY, which
chooses one of the residential GATEWAYs (GWi) to proxy the
request out. In this case, the server builds the TCP session with
GWi and the TLS session directly with the client. In a direct
connection, the two sessions are both built between client and
server. On the server, we take network measurements and we
calculate the δRT T = RTTT LS- RTTTCP. If this difference is
greater than 50ms we declare the connection as coming from
a RESIP. We have run our collection for 4 months, in which
we have gathered 92,712,461 connections. As showed in [4],
our technique had an accuracy of 99.01% in classifying when
a connection was direct or was passing through a RESIP.

III. MEASUREMENTS REPRESENTATIVENESS

Our detection technique is based on the RTT mirroring
the distance between the parties involved in a connection1.
However, the RTT is a measure of time. To transform it in
a distance, we need to consider the speed at which packets
move. If this speed had a common mean value, there would
be a proportional factor between each RTT value and the
corresponding traveled distance of a packet. This factor would
be common to all the connections and this would favor the
success of our detection technique. However, the real world
does not present perfect conditions. As acknowledged by
Weinberg et al. [17], an idealized common value for the
average speed does not exist in practice for connections across
different areas of the world.

This section highlights the great diversity of the hypothetical
average speed of packets. This tells us that the results previ-
ously obtained with our technique are valid for a wide range
of operational network conditions and are thus representative.
This enables us to say that our technique can deliver good
results in a real-world scenario.

In [1], we used our dataset to test an RTT-based geo-
localization algorithm between our GATEWAYs and servers.
To evaluate which type of geo-localization algorithm to use,
we performed a study of the average speed of packets between
the GATEWAYs of all studied providers and our servers. The
average speed is defined as the ratio between space and time.
The space is the distance between each GATEWAY and a server.
The location of each GATEWAY is acquired thanks to the
MaxMind GeoLite2 database [10]. We calculated the distance
between each GATEWAY and a server thanks to the Haversive
distance, which approximates the distance on Earth between

1We assume the processing time at the client to be negligible with respect to
the transmission time.

two points given their coordinates. We obtained the time to go
from a GATEWAY to a server by dividing by half the RTTTCP
recorded in the corresponding connection.

We propose here a study with the same methodology and
we perform a new analysis. We analyze individually the
connections of each RESIP provider (Ri). For each provider,
we consider all the RTTTCP between each server and each
GATEWAY that sent requests to it. Moreover, we perform the
same analysis for the direct connections between our clients
and servers. We exclude the combinations of client and server
in which the machines are in the same location. We cannot
calculate the distance between them since they share the
same coordinates. We use the Haversine formula to obtain
the distance between each client and each server. We collect
all the direct connections among each couple of machines and
we calculate the time as half of the RTTTCP of the connection.

Fig. 2 shows the histograms of the obtained results. On the
x-axis, we see the average speed of packets in km/ms. On the
y-axis, we find the number of connections showing that speed
in the dataset. The average speeds are shown in different colors
depending on the continent in which the sender is located. In
this Figure, we do not consider the cases where the value of
the speed is higher than 200km/ms, for better visualization,
or where the continent is not available in the database. These
two cases together correspond to 0.08% of all the considered
connections and thus we consider their contribution negligible.

We can see how the distribution of the speed for each
RESIP provider (Fig. 2(a)-2(d)) ranges from 0 to 150km/ms.
Moreover, we see that the distribution for the connections from
GATEWAYs of each continent follows a shape comparable to
the global one. These curves highlight the great variability of
the average speed of packets in our monitored connections.
Our dataset is clearly representative of the real conditions of
the Internet in which multiple factors affect the time it takes
for a packet to reach its destination.

Fig. 2(e) illustrates the results for the direct connections. We
can see that the mean speed value ranges between different
values as in the previous cases. However, the values in the
range are higher in this second study. Connections coming
from machines in North America only present values above
80km/ms. Connections from European locations have mostly
values between 75 and 150 km/ms. The mean speed values
have more variability for the connections coming from other
continents. This analysis tells us that the connections between
our client and servers have better connectivity levels than
the ones between GATEWAYs and servers. We expected these
results since the machines are located in well-connected data
centers, as opposed to GATEWAYs machines, which are in
unknown conditions. However, even in this case, the mean
speeds do not end up with a single value. This enables us to
say that our setup had no apriori bias that could compromise
our experiment and thus the analysis performed on it are
representative of a real-world scenario.
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(c) R3
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(d) R4
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(e) Direct Connections

Fig. 2: Distribution of the mean speed of packets for each RESIP provider and direct connections.

TABLE I: Connections where there is machine proximity.

Provider δRT T > 50ms Total Connections

R1 64.79% 22,582

R2 86.92% 12,887

R3 62.03% 79

R4 87.08% 14,314

Total 76.90% 49,862

IV. MACHINES PROXIMITY ANALYSIS

In our detection method, we assume that the RTTT LS is
higher than the RTTTCP in case of RESIP connection because
the TCP packets sent by the server stop at the GATEWAY while
the TLS ones, after reaching this machine, traverse the RESIP
infrastructure and are then forwarded to the client.

However, we can consider a scenario in which client, server,
GATEWAY and SUPERPROXY machines are in proximity to
each other. In this situation, the overhead given by the physical
distance of the machines taking part in the connection is small.
Naturally, we could think that this influences the values of
δRT T and thus our detection.

We have analyzed the distribution of the δRT T of such
connections. For each connection, we collect the GATEWAY
and the SUPERPROXY IP addresses. Thanks to the MaxMind
GeoLite2 database [10], we retrieve the latitude and longitude
of each of these IPs. We study those connections where client
and server are in the same location and in which GATEWAY and
SUPERPROXY are not further than 1000km (i.e. 10ms apart at
a speed of 100km/s) from it and from each other, considering
their Haversine distances.

Table. I shows the results of our analysis. We can see that
the total number of connections satisfying our requirements
is low, especially for R3. In total, they account for 49,862
connections, which is 0.07% of the total amount of proxied
connections. This information tells us that, even when clients
and servers are close to each other, it is not common that
the SUPERPROXY is close to that location and/or the assigned
GATEWAY is in near proximity to the other machines.

We can see that 76.90% of the considered connections have
a δRT T higher than our chosen threshold (50ms). This tells
us that, even in an unlikely event where all the machines are
in near proximity, our technique works relatively well. The

exchanges between two additional machines (GATEWAY and
SUPERPROXY) increase the δRT T enough to detect the presence
of a RESIP in more than 3 out 4 cases.

The number of false negatives increases with respect to the
global data (23.09% vs 1.93%). However, only 3.07% of these
values present a δRT T lower than 20ms. This is the value under
which we can find 97% of the δRT T of the direct connections.
Hence, this shows that there is still a significant difference
between direct and proxied connections.

V. FUTURE WORKS AND CONCLUSION

The results presented in this work, confirm that our detection
technique can work in any real-world environment and is
accurate enough even in the unlikely event where client,
SUPERPROXY, GATEWAY and server are all in close proximity.

Thanks to the positive results obtained with our technique,
we convinced one of the leading technology companies for
the travel industry to implement our technique in front of
their domains victims of scraping. Early results show that
the δRT T is a strong parameter that analysts can use in
detecting when a connection passes through a RESIP. In two
representative months, it was used as a parameter in 74,32% of
the investigations. We are studying these connections flagged
with these parameters to assess the impact of our detection.

Furthermore, RESIP are just instruments in the hands of
scrapers. These are the real actors that we wish to block. Our
intuition is to use the δRT T to obtain their geolocalization.
Indeed, the δRT T gives information about the “distance” be-
tween client and GATEWAY. If the same client uses multiple
GATEWAYs, we can find the intersection of the circles whose
centers are the GATEWAY locations and whose radii are half
of the δRT T multiplied by the packet. This intersection is the
location of the scraper initiating the connection. If scraping
campaigns starting from distinct clients take place at the same
time, there are multiple intersections and we divide the dataset
to geolocalize the machine behind each campaign.

However, there are challenges in achieving our goal. As
seen in Section III, the packet speed has no average value.
Furthermore, the current geolocalization algorithms are not
able to correctly put into practice our theoretical idea [1]. We
are thus working to implement a new algorithm that overcomes
previous limitations and enables us to localize the client behind
the RESIP.
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