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Abstract

State-of-the-art approaches to speaker anonymization typically
employ some form of perturbation function to conceal speaker
information contained within an x-vector embedding, then
resynthesize utterances in the voice of a new pseudo-speaker us-
ing a vocoder. Strategies to improve the x-vector anonymization
function have attracted considerable research effort, whereas
vocoder impacts are generally neglected. In this paper, we show
that the impact of the vocoder is substantial and sometimes
dominant. The vocoder drift, namely the difference between the
x-vector vocoder input and that which can be extracted subse-
quently from the output, is learnable and can hence be reversed
by an attacker; anonymization can be undone and the level
of privacy protection provided by such approaches might be
weaker than previously thought. The findings call into question
the focus upon x-vector anonymization, prompting the need for
greater attention to vocoder impacts and stronger attack models
alike.
Index Terms: speaker anonymization, automatic speaker veri-
fication, privacy

1. Introduction
The task of speaker anonymization broadly refers to the pro-
cessing of speech recordings to conceal the speaker identity
while preserving the linguistic and paralinguistic content. The
topic has attracted increasing research interest in recent years,
in particular through the VoicePrivacy Challenge [1, 2], which
was founded in 2020 to define the problem, provide strong base-
lines, foster progress and identify research priorities. No matter
what the application, anonymization should protect an appro-
priate trade-off between privacy and utility. Privacy can be esti-
mated using automatic speaker verification (ASV) and an equal
error rate (EER) metric to gauge the ability of an attacker to in-
fer the true speaker identity. Utility is estimated using automatic
speech recognition (ASR) and a word error rate (WER) metric
which reflects the degree to which linguistic and paralinguistic
content is preserved.

Most anonymization solutions are based upon original
work [3] and upon the extraction and processing of three dif-
ferent representations [4]:
• a set of linguistic features produced by an ASR model;
• a representation of intonation and prosody, usually in the

form of a fundamental frequency (F0) curve;
• an x-vector, namely a neural embedding which encodes the

speaker identity [5].
To conceal the speaker identity, the x-vector is typically per-
turbed by means of an anonymization function, thereby obtain-
ing a new pseudo-speaker embedding. The three components

are then fed to a waveform synthesis model (a vocoder) to pro-
duce an utterance in the voice of the pseudo-speaker.

The anonymization function used by two of the three
VoicePrivacy baselines utilizes a pool of external x-vectors. The
pseudo-speaker x-vector is derived from a subset of the furthest
vectors in the pool from the input x-vector. Most VoicePri-
vacy participants focused predominantly upon improving the
anonymization function to enhance privacy [6, 7, 8]. This fo-
cus can imply an assumption that no other processing stages
contribute substantially to anonymzation. We have found this
not to be the case.

We report in this paper our work to observe and compare
the relative impacts of a conventional x-vector anonmyization
function and a vocoder, two components of a state-of-the-art
anonymization system [9]. We show that both components
contribute to anonymization and that the contribution of the
vocoder, which we refer to as the vocoder drift, is in some
cases even greater than that of the anonymization function. We
demonstrate that this phenomenon is also common to other pop-
ular vocoders. Collectively, they fail to provide the level of
fine-grained control over the input/output x-vector space that
would otherwise justify the focus within the community upon
the anonymization function. Finally, we show that the vocoder
drift can be learned by an attacker, knowledge which can be
exploited in order to reverse the anonymization. Our findings
corroborate other evidence [10] that the protection provided by
such approaches to anonymization might be overestimated.

2. Relation to prior work
In this section we describe the typical, high-level structure of an
x-vector–based speaker anonymization system (see Figure 1),
along with relevant prior work. We then introduce our own
setup which we used for all experiments reported in Section 3
and Section 4.

2.1. X-vector–based speaker anonymization

Let s ∈ RL be an input speech utterance of L samples. The
input is first frame-blocked into a sequence of N frames and
then decomposed into three separate representations compris-
ing: an F0 curve f ∈ RN which is intended to encode into-
nation and prosody; a set of c-dimensional linguistic features
G ∈ Rc×N which encode the spoken content (the text); an
x-vector xo ∈ Rm which encodes the speaker identity, where
subscript o denotes extraction from an original input utterance.

A vocoder model V (f ,G,xo) is trained to reconstruct in-
put waveforms from the decomposition. Anonymization is
achieved by replacing xo with a substitute so as to conceal the
speaker identity, but by using the other components unchanged
in order to preserve remaining speech attributes. The substitu-



Figure 1: Overview of a conventional speaker anonymization
system and the different x-vector domains. The block in red rep-
resents the vocoder drift reversal attack reported in Section 4.

tion is performed using an anonymization function a (xo) =
xp ∈ Rm to perturb the original x-vector. An anonymized ut-
terance s̃ in the voice of a fictitious, pseudo-speaker determined
by the anonymized x-vector xp is then synthesized according to
s̃ = V (f ,G,xp). The anonymized utterance should maintain
the same linguistic and paralinguistic content as the original in-
put signal. As discussed later, an additional x-vector xa can be
extracted from s̃ in order to measure privacy.

By convention, a (·) acts to create a new pseudo-speaker
using speaker embeddings drawn from an external pool of x-
vectors [1, 2, 3, 4, 9, 10]. Given an input xo, the K vectors
within the pool that are furthest from xo according to some dis-
tance metric are selected and then, from among them, K∗ vec-
tors are chosen randomly and averaged to obtain xp. The design
of this function has received considerable attention, with numer-
ous works having investigated how its configuration, the choice
of distance metric [11] and the strategy by which x-vectors are
selected from the pool [11, 12] influence performance. The
participants of the two VoicePrivacy Challenges held in 2020
and 2022 proposed different enhancements to a (·). They in-
clude the generation of pseudo-speaker embeddings using a
generative adversarial network [6, 13] and adversarial noise [7],
among others [8, 14]. None of the participants reported the in-
fluence of the vocoder. In this paper, we show that it too con-
tributes to anonymization and that it can be responsible for a
great deal of the privacy protection.

2.2. Our approach

Our approach is based on the pipeline described in [9].1 The
F0 curve is estimated using YAAPT [15]. The linguistic fea-
ture extractor is a HuBERT-based soft content encoder [16] and
x-vectors are extracted using ECAPA-TDNN [17]. We exper-
imented with three vocoders: the HiFi-GAN [18], originally
used in [9]; the neural source filter (NSF) model [19] as used
by baseline B1a of the VoicePrivacy Challenge held in 2022; a
variation of the HiFi-GAN which uses a NSF model as genera-
tor, as used by baseline B1b of the same VoicePrivacy Challenge
edition [2]. We use the conventional pool-based anonymization
function a (·) described above with K = 200, K∗ = 100, and
a cosine distance metric.

Like most related work, we use the VoicePrivacy database
and standard protocols [2]. The LibriTTS-train-clean-100
dataset is used for vocoder training. The LibriSpeech-test-clean
and VCTK datasets (decomposed into male and female subsets)
are used for evaluation. The external pool of x-vectors is de-
rived using the LibriTTS-train-other-500 [20] dataset. Privacy
is evaluated using ASV experiments comprising a set of enroll-
ment utterances that an attacker attempts to match to a set of

1Code available at github.com/eurecom-asp/
vocoder-drift.

target
drift

HiFi-GAN NSF HiFi-NSF
LibriSpeech (F) 1.3 0.62 0.91 0.97
LibriSpeech (M) 1.2 0.56 0.80 0.94
VCTK (F) 1.3 0.67 0.92 0.94
VCTK(M) 1.3 0.59 0.90 0.90

Table 1: Average target distance and drift for each vocoder and
each test set of LibriSpeech and VCTK, separated by speaker
sex. All cosine distances have a standard deviation between
0.05 and 0.10.

protected (anonymized) trial utterances. ASV is performed by
scoring x-vectors with the cosine distance and without any ad-
ditional backend processing [9, 17].

3. Vocoder drift
In this section, we introduce the notion of vocoder drift and
report an investigation of its impact upon x-vector pertubation
and privacy.

3.1. Definition

Figure 1 shows the three x-vectors used in this work. The first
xo is extracted from the original utterance s (left in Figure 1).
A second x-vector xa can be extracted from the anonymized
utterance s̃ (right). The third x-vector xp is the output of the
anonymization function (middle). We denote the separate do-
mains of xo, xa and xp as Ô (original), Â (anonymized) and P̂
(pre-vocoder), respectively.

As described in Section 2, the majority of research has fo-
cused on improving the anonymization function a (·), the gen-
eral hypothesis being that this component is primarily responsi-
ble for ensuring privacy. Intuitively, privacy is improved by in-
creasing the difference between xo and xp, e.g. according to the
cosine distance. With the focus being upon the anonymization
function, there is an inherent, perhaps unrealistic assumption
that the vocoder preserves this distance such that the difference,
which we term as the drift, between the x-vectors at the input
(xp) and that which can be extracted from the output (xa) is
only modest. In this work, we seek to test this assumption.

We model the relationship between the P̂ and Â domains
with a function v (xp) = xa. It allows us to define the trajectory
of an x-vector through the whole anonymization system as v◦a :
xo 7→ xa, where ◦ denotes function composition.

3.2. X-vector perturbation

In seeking to quantify the impact of v (·) on the x-vector trajec-
tory, we define two metrics. Let d be some distance measure
over Rm. We then define:
• d(xo,xp) as the target distance, a measure of how far xo is

perturbed away from its original position according to a (·);
• d(xp,xa) as the vocoder drift, a measure of the shift between

the input x-vector xp and that which can be extracted from
the vocoder output xa, introduced by means of v (·).

Intuitively, it is desirable that drift ≪ target, which means the
anonymization system provides fine-grained control over the fi-
nal position of xa: it is close to the targeted pseudo-speaker em-
bedding xp. If this is not the case, then the x-vector trajectory is
determined in considerable part by v (·); the x-vector extracted
from the output xa is far from the target and the system does
not provide fine-grained control over the x-vector space in Â.



Ô dom. P̂ dom.
Â dom.

HiFi-GAN NSF HiFi-NSF
LibriSpeech (F) 0.54 2.51 15.0 17.9 16.2
LibriSpeech (M) 0.88 2.99 14.5 20.3 19.0
VCTK (F) 1.13 5.59 25.3 31.0 28.1
VCTK(M) 0.17 3.04 18.5 16.7 19.1

Table 2: Privacy protection of the x-vector domains at different
stages of the anonymization pipeline (EER, %) on test sets of
LibriSpeech and VCTK, separated by speaker sex.

We compute the average drift and target for each database
subset and each vocoder: results are shown in Table 1. The
target is in the order of 1.3 for all four subsets. The value of
these distances lies in their comparison to estimates of the drift
shown in the last three columns. For the HiFi-GAN vocoder,
the drift is almost half the target distance. Lying between 0.8
and 0.97, the drift for the NSF and HiFi-NSF vocoders is sub-
stantially greater still, with drift distances almost as large as
target distances. These results show that the control over the
x-vector domain Â is potentially low and suggest that the x-
vector anonymization and vocoder functions have an almost-
comparable contribution to x-vector perturbation. It is still nec-
essary, however, to explore their resulting impact upon privacy.

3.3. Impacts upon privacy

We follow the VoicePrivacy-defined approach to measure pri-
vacy impacts. We report a set of ASV experiments using differ-
ent combinations of x-vectors. In all cases, privacy is measured
using estimates of the EER. Enrollment and trial utterances
are as defined by the VoicePrivacy protocol (see Section 2.2).
There are several enrollment utterances per speaker. Individ-
ual x-vectors are extracted from each, averaged, and compared
to a number of trial utterances. For each utterance, we extract
the set of xo, xp and xa x-vectors. Each set of experiments
is conducted three times, with each iteration using one of the
three different x-vectors. Results using the set containing xo

x-vectors (Ô domain) provide a baseline. Those derived from
the set of xp x-vectors (P̂ domain) provide an indication of the
contribution to privacy of the anonymization function a (·). Re-
sults using final set containing xa x-vectors (Â domain) provide
an indication of the contribution of the vocoder function v (·).
Once again, we report results for the same experiment using all
three vocoders.

Results are shown in Table 2, for the same database subsets
as in Table 1. Baseline results for the Ô domain show EERs of
approximately 1%. In the P̂ domain, increases in the EER to be-
tween 2.5% and 5.6% indicate that the anonymization function
delivers only a low level of privacy. In the Â domain, however,
EERs are substantially higher for all three vocoders, if still far
from providing perfect privacy (EERs of 50%). The compari-
son of results for P̂ and Â domains show that the vocoder plays
a dominant role; most of the anonymization can be attributed
to vocoder drift. We explored this phenomenon with t-SNE vi-
sualizations [21] of pooled x-vectors. Results are illustrated in
Figure 2, which depicts a distribution of x-vectors for the male
partition of the LibriSpeech dataset. In the P̂ domain, speaker
clusters are still clearly distinguishable, while the bulk of the
anonymization can be attributed to vocoder drift.

One could claim that these findings are neither surprising,
nor cause for concern. There is no guarantee that the vocoder
function v (·) is invertible in any way which would allow the

recovery of x-vector inputs xp in the P̂ domain. Since the at-
tacker does not have access to the P̂ domain, but only to the Â
domain, whether anonymization is attributed to the anonymiza-
tion function or the vocoder function is of little consequence.
In the next section, we disprove these arguments and show that
an attacker can learn this function or, more specifically, how to
undo it. Armed with the inverse function v−1 (·), an attacker
can estimate an x-vector in the P̂ domain that corresponds to an
x-vector in the Â domain and hence reverse the anonymization.

4. Drift-reversal attacks
In this section, we introduce drift reversal, a novel attack against
anonymization systems.

4.1. Attacks on anonymization systems

Since speaker anonymization is a relatively new research topic,
it is hardly surprising that little attention has been dedicated
to attacks against it. Even so, the VoicePrivacy Challenge has
explored the robustness of anonymization systems under a so-
called semi-informed attack model [2]. Under this scenario, an
attacker is aware of anonymization having been performed, and
seeks to overcome it (break the anonymization) by using a sim-
ilar system to generate anonymized data with which to train an
ASV system. Evaluations using ASV systems trained using in-
domain (similarly anonymized) data show the potential for at-
tacks to circumvent anonymization. A more explicit approach is
reported in [10] and can be used by an attacker to invert a com-
plete anonymization system by means of a rotation matrix and
to estimate speaker embeddings xo in the unprotected domain
Ô from protected x-vectors xa in Â. Our approach is different
since we aim to explore the anonymization robustness when we
revert only the vocoder drift to recover an estimate of xp in P̂ .

4.2. Definition and implementation

In the case that the bulk of the anonymization performance
can be attributed to the vocoder function v (·) instead of the
anonymization function a (·), a drift reversal attack can be
mounted to undo most of the protection Let s(e) be an original
(i.e. unprotected) enrollment utterance. An attacker can derive
a representation of this signal in the P̂ domain by extracting
an x-vector x(e)

o and then by computing a(x
(e)
o ) = x

(e)
p . Now

let s̃(t) be an anonymized trial utterance with corresponding x-
vector x(t)

a in the Â domain. The attacker can estimate a rep-
resentation in the P̂ domain x

(t)
p by reversing the vocoder drift,

i.e. by computing v−1(x
(t)
a ).

While the inverse function is not analytically tractable, the
attacker can attempt to learn a function gθ(·) ≈ v−1(·) using
a database of training pairs xpi and anonymized utterances s̃i.
Function gθ can be learned using a neural network to map an
anonymized utterance s̃ to an approximation of the correspond-
ing x-vector xp in P̂ . This can be achieved by optimizing the
objective function

min
θ

d (xp, gθ (s̃)) (1)

where d is the cosine distance. Training pairs {(xpi , s̃i)}i
can be obtained by applying anonymization to any appropriate
(even unlabeled) speech dataset.

Because function gθ is effectively an x-vector extraction
operation, we fine-tune a pretrained ECAPA-TDNN model to
learn it. In line with the VoicePrivacy protocol, the model



Vocoder Dataset Unprotected Lazy
informed

Semi
informed

Drift
reversal

HiFi-GAN

LibriSpeech (F) 0.54 11.3 3.21 3.10
LibriSpeech (M) 0.88 10.9 1.78 4.45

VCTK (F) 1.13 19.2 13.3 7.53
VCTK (M) 0.17 11.0 8.14 3.79

NSF

LibriSpeech (F) 0.54 15.3 1.92 5.05
LibriSpeech (M) 0.88 13.8 1.94 6.04

VCTK (F) 1.13 24.7 15.7 16.5
VCTK (M) 0.17 9.81 12.3 10.7

HiFi-NSF

LibriSpeech (F) 0.54 12.6 4.01 4.23
LibriSpeech (M) 0.88 14.7 2.23 4.90

VCTK (F) 1.13 22.8 18.4 14.1
VCTK (M) 0.17 13.5 11.7 11.1

Table 3: Performance of the proposed drift-reversal attack compared to a
lazy-informed attack and a supervised semi-informed attack (EER, %) on the
LibriSpeech and VCTK test sets.

Figure 2: t-SNE visualization of the x-vector tra-
jectory for LibriSpeech trial utterances (M) across
the three x-vector domains (left). Focus on the tra-
jectory of a single speaker (right). Best viewed in
color.

is trained using the LibriSpeech-train-clean-360 dataset, al-
though approximately 3% of the data is set aside for valida-
tion purposes. Still in line with the VoicePrivacy protocol,
anonymization is performed at the speaker level2 in deriving xa

for each enrollment and trial utterance, instead of at the utter-
ance level. The network is fine-tuned for 3 epochs using Adam
optimizer [22] with a learning rate of 5 · 10−5 and a batch size
of 8. Validation is performed every 200 iterations. Attacks are
performed using the network for which the validation loss is
lowest.

4.3. Evaluation

We compare the drift reversal attack to related VoicePrivacy
lazy-informed and semi-informed attacks. For the former, the
attacker compares enrollment and trial utterances which are
both in the Â domain, but with an ASV model trained using
data in the Ô domain; other than by anonymizing the enroll-
ment utterance, there is no compensation for operating upon
anonymized data. The semi-informed attacker makes greater
effort and uses an ASV system that is trained using an inde-
pendent set of similarly-anonymized data. The latter is the de-
fault VoicePrivacy attack model.3 The lazy-informed attack is
implemented using the original, pretrained ECAPA-TDNN for
x-vector extraction. The semi-informed attack is performed us-
ing an ECAPA-TDNN model which is fine-tuned using AAM-
softmax loss [23] and the same training settings as the drift re-
versal attack model.

Privacy evaluation results in terms of EER estimates are
presented in Table 3 for each vocoder and each dataset. EER
results for unprotected data (no anonymization) are shown in
column 3 and provide a reference against which EERs for pro-
tected data can be compared. Results for the lazy-informed at-
tack are shown in column 4 and show substantial privacy gains
(higher EERs). This setting, however, gives a false sense of pro-
tection. Results for the semi-informed attack shown in column 5
show considerably lower privacy gains; by retraining the ASV

2xpi is estimated once for each speaker i and the same xpi is used
for each utterance corresponding to the same speaker – see [2] for de-
tails.

3It could be argued that drift reversal is also a semi-informed attack,
since it involves re-training a model on anonymized data (albeit unla-
beled). However, for clarity, we use the term semi-informed to refer to
the attack method used in the VoicePrivacy Challenge 2022.

system using similarly anonymized data, the attacker can undo
the anonymization to some degree. Results for the drift reversal
attack also show universally lower privacy gains compared to
the lazy-informed attack. These results add to the evidence that
the role played by vocoder drift in anonymization is substan-
tial and is also a potential weakness that can be exploited by an
adversary. The most powerful of the 3 attacks for each vocoder
and dataset is highlighted in bold face and, for 5 of the 12 cases,
the most powerful attack is drift reversal.

5. Conclusions
The work presented in this paper shows that, for the analyzed
systems, the bulk of anonymization can be attributed not to
the anonymization function of a conventional x-vector-based
approach but, instead, to the vocoder function. The cause is
vocoder drift, namely the substantial difference between an in-
put x-vector and the x-vector which can be extracted from the
vocoder output. This finding, while not necessarily surprising,
calls into the question the research effort upon improving the
anonymization function. One might wonder whether the de-
sign of different anonymization functions has any relevance at
all, given that the position of the final x-vector is dominated
by the vocoder drift, essentially nullifying the effort devoted
to pseudo-speaker optimization. This finding should not dis-
courage further work in the design of x-vector anonymization
functions, however. Instead, it should encourage design toward
more grounded criteria.

Drift-reversal attacks rely on the fact that the x-vectors fed
to the vocoder, though allegedly anonymized, still have a low
level of protection. This is the result of an over-deterministic
anonymization function; similar x-vector inputs will produce
similar x-vector outputs, thus producing trial and enrollment
speaker embeddings which are close in the output domain, and
thus easy to match as the same speaker, even when anonymized.
That is the case for the pool-based anonymization function.
Future work should investigate less deterministic anonymiza-
tion functions to improve privacy directly in their output do-
main. Improvements to privacy in this domain will not only
undoubtedly mitigate the risk of vocoder-drift-reversal attacks,
but likely also that of semi-informed attacks, which might inad-
vertently learn to exploit the same kind of vulnerability during
training.
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