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Abstract

Tong, Xu and Kailath have proposed a method for blindly identifying a linear channel from
the second-order statistics of the cyclostationary oversampled received signal. However, their
approach leads to a significant overparameterization of the channel. We propose to work with
the polyphase description of the received signal. This leads to a multichannel formulation and
a minimal parameterization of the channel for a given oversampling ratio. As a result of the
oversampling, the covariance matrix of the noise-free stationary multichannel received signal
for a FIR channel becomes singular when its dimension gets large enough. This implies that
the received signal becomes perfectly predictible, reminiscent of the case of a signal consisting
of a sum of sinusoids. As a result, the channel can be identified from the received signal
second-order statistics by linear prediction in the noise-free case, and by using the Pisarenko,
Music or other subspace fitting methods when there is additive noise. In the latter case, the
familiar signal and noise subspaces emerge. The channel identification is not affected by the
transmitted symbol sequence being correlated or not.

We show that for a FIR channel, there exist zero-forcing equalizers (ZFE) which are
FIR also. Indeed, one can interpret channel and ZFE as the analysis and synthesis bank
of a perfect-reconstruction filter bank. The prediction and equalization considerations lead
to a convenient parameterization of the noise subspace, which parallels the one of the signal
subspace. These dual parameterizations help to conveniently solve the deterministic Maximum
Likelihood problem, the iterative solution of which can be initialized with an estimate obtained
from a subspace fitting method based on data.

We elaborate in detail on the case of an oversampling factor equal to 2, and briefly discuss
the implications of higher or lower oversampling ratios.
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1. Previous Work

Consider linear digital modulation over a linear ISI channel with additive Gaussian noise so
that the received signal can be written as

y(t) = D arh(t —kT) + v(t) (1)

where the aj are the transmitted symbols, T" is the symbol interval, A(?) is the combined
impulse response of channel and transmitter and receiver filters, but is often called the channel
response for simplicity. Assuming the {az} and {v(f)} to be (wide-sense) stationary, the
process {y(t)} is (wide-sense) cyclostationary with period T' [1]. Gardner [1] has shown how
the channel can be identified from the second-order statistics of the cyclostationary {y(#)}.

In order to detect the transmitted symbols, one samples the received signal. If {y(¢)} is
sampled with period T, the sampled process is (wide-sense) stationary and its second-order
statistics contain no information about the phase of the channel. Tong, Xu and Kailath
[2],[3],[4] have proposed to oversample the received signal with a period A = T'/m, m > 1.
In what follows, we assume h(t) to have a finite duration. Tong et al. have shown that the
channel can be identified from the second-order statistics of the oversampled received signal.
They introduce an observation vector y(k) of received samples over a certain time window
and consider a matrix linear model of the form

y(k) = Ha(k) +v(k). (2)

The drawback of their approach is that they need the sampled channel matrix H to have
full column rank. This leads to an unnecessary overparameterization of the channel as will
become clear below (the matrix H could be parameterized in terms of the samples of the
channel response, but this parameterization is not exploited by Tong et al. ). Tong et al.
found that the condition for identifiability of the (oversampled) channel from the second-order
statistics of the received signal is that the ztransform of the oversampled channel should not
have m equispaced zeros on a circle centered in the origin. One should also remark that
the identification of the channel from the received signal second-order statistics can only be
done up to a multiplicative constant (with magnitude one in certain cases), a not unusual
phenomenon in blind equalization. This constant can be identified by other means. If the
channel contains a delay, then this delay can also not be identified blindly.

2. Fractionally-Spaced Channels and Equalizers, and Filter Banks

We consider here an oversampling factor m = 2. We assume the channel to be FIR with dura-
tion NT'. We consider the polyphase description of the received signal. With m = 2, let y;(k)
and y,(k) denote the even and odd samples of y(t) (y1(k) = y(to+kT), y2(k) = y(to+(k—3)T)),
and similarly for the noise samples and channel response. Then the oversampled received sig-
nal can be represented in vector form at the symbol rate as

y(k) = Z_I h(i)ar—i +v(k) = HyAn(k)+v(k), y(k) = HEQ ] v(k) = [Z;EQ ]

}H



where superscript 7 denotes Hermitian transpose. We formalize the finite duration NT
(approximately) assumption of the channel as follows

(AFIR): h(0) # 0, h(N—1) # 0, h(7) = 0 for « > N, and any delay in the channel should be

absorbed in a relabeling of the transmitted symbols.

The 2transform of the channel response at the sampling rate is H(z) = Hy(2?)+2""Hy(2?).
Similarly, consider a fractionally-spaced (%) equalizer of which the ztransform can also be
decomposed into its polyphase components: F'(z) = Fy(z?) 4+ 271 Fy(2?), see Figure 1. As will
become clear below, a unique ZF and properly scaled equalizer can be found (under certain
conditions on the channel) when Fy and F; are FIR filters of length N—1. However, in light
of the prediction and noise subspace parameterization considerations to be discussed further,
we take Iy, F to be FIR of length N: Fi(z) = Y0 fi(k)z=*, i = 1,2. The condition for the
equalizer to be zero-forcing is Fy(z)Hq(2) + Fa(2)Ha(z) = 279, ¢ € {0,1,...,2N—=2}. The
equalization could be up to some delay ¢, but we shall consider ¢ = 0 in what follows. If we
introduce f(k) = [f1(k) fa(k)], Fx = [f(0)--- f(N—1)], then the zero-forcing condition can be
written as

Fy v (Hy) = [1 0---0] (4)
where Ty (x) is a (block) Toeplitz matrix with M (block) rows and [X OpX(M_l)} as first (block)

row (p is the number of rows in x). (4) is a system of 2N —1 equations in 2N unknowns. The
equalizer has one degree of freedom more than necessary to be zero-forcing. Let us arbitrarily

constrain f»(0) = 0. Furthermore, consider equalization with removal of ISI, but up to a
constant only and take fi;(0) = 1. Then the remaining equalizer coefficients can be found
from

[£(1) -+ §(V—1)] Ty (Ha) = — (1) ha(N—1) 0---0] (5)

where Ty_; (Hy) is now a square matrix of size 2N—2. Ty_; (Hy) is a Sylvester matrix (up
to a permutation) which is known to be nonsingular if Hi(z) and Hy(z) have no zeros in
common. This condition coincides with the identifiability condition of Tong et al. on H(z).
Let us denote the resulting equalizer coefficients as sz\}. A set of equalizer coefficients that

satisfies (4) is Fy = F% /hy(0) (assuming hy(0) # 0). The ZF equalizer of length N—1 is
Fyo = [10---0] 75, (Hy) . (6)

Note that there exists a set of blocking equalizer coefficients F, for which no transmitted
symbol has an influence on the equalizer output:

Fy7x (Hy) = 0 (7)

(the nullspace of T (Hy) has dimension one).

3. Channel Identification from Second-order Statistics by Multi-
channel Linear Prediction

In this section, we consider the noiseless case: v(t) = 0. Similarly to F”', we can introduce
F? =[01 *---%] so that F*', F*? satisfy

[ v = [1 oo g
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Figure 1: Polyphase representation of the T /2 fractionally-spaced channel and equalizer.

H
Consider now the problem of predicting y (k) from Y y_1(k—1) = [yH(k— - yH(k—N+ 1)} .
The prediction and prediction error can be written as

y(k”YN_l(k—n = PN—1YN—1(k_1)7 (9)
T ) = Y = )y, gy = [l —Proa] (k).

Minimizing the prediction error variance leads to the following optimization problem

min [l —Py_|RY[L —Py]” (10)
N-1
where
RY = B Yn(k)YN(k) = Tv (Hy) Ry, T3 (Hy) , Ry = B An(k)AJ (k) . (11)

Hence P y_q satisfies

Iy N1

[, —Py_4]R) = [" 0---0] . (12)

Exploiting (11) in (12), and assuming that Hq(z) and Hy(z) have no common zeros, one can
show that Py_; satisfies

I, —PN_l]TN(HN)l?j]VV:;] ~ 0, (13)

where Q,n_5 are the least-squares predictor coefficients for

&(k)LA,ZN_Q(k—l) = Qun_p Aonv—a(k—1), (14)
[1 - QZN—2:| R’;N—l = [0-;[12’72]\7_2 0 Tt 0i| . (15)

The result (13) can also be obtained directly, by expressing that
YRy ygny =2 —Pnaa] Tn (Hy) Aoy (k)

be orthogonal to Yy_1(k — 1) = Tn_1 (Hn) Aan—2(k—1). This is equivalent to expressing
that Sf(k)|YN_1(k_1) be orthogonal to Ayn_a(k—1) since Tn_1 (Hy) is invertible, which leads
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immediately to (13). Since the orthogonal complement of the rightmost matrix in (13) has
dimension one, (13) leads to

[ —Pxa] Ty (Hy) = h(0) [I — Quy_) (16)
which, by postmultiplication with Asy_1(k), can be translated to

VY ooy = 0(0) @)oo - (17)

Using (17), one can show that the variance of S’(k>|YN_1(k—1) is

min [l —Pya]RY [ —Pyxa]” = o2, ,h(0O)h"(0) = 0% N (18)

N—-1

By comparing (8) and (16), we see that when the transmitted data are uncorrelated (R3y_, =
a2lhn_1, Qyn_y = 0), we have

)

EIREE (19)
N

If the transmitted symbols are correlated however, the prediction filter Py_; is affected. Not

completely however, since

FY

—haf0) haO{E: — Pyl = [4a(0) (o) B8 | 20)

which is proportional to F4 and only depends on Hy. Note that [—hy(0) h(0)] can be
determined up to a scalar multiple from the variance expression in (18) so that F?\, can be
determined from Px_; and the variance expression, and hence from the prediction problem.
Let us introduce a block-componentwise transposition operator *, viz.

Hy = [h(0)--h(N=1))" = [h'(0)---h"(N-1)
t

Fy = [f(0)---f(N-1)]" = [fT(O)...fT(N_l)} (21)

T

where ' is the usual transposition operator. Now the channel can be identified from the

blocking equalizer. Indeed, (7) leads to

2
F Ty (Hy) = 0 <= S FM(2)Hi(z) = 0 <= Hy Ty (FY) = 0. (22)
i=1
This last equation allows one to determine the channel coefficients Hy up to a constant, if
again Hy(z) and H(z) have no zeros in common (which is the same condition as F"(z) and
FJ(z) having no zeros in common since FP(2)/Fi(z) = —Hy(2)/Hi(z)). A set of unique
coefficients can be obtained by introducing one extra constraint. Traditionally, two types of
constraints have been considered for this purpose:

(i) quadratic constraint: HH}QH = 1. In this case, H\" is the INH Jeft singular vector of

Tn F?\f . This is a numerically very reliable way of determining HY;, but is computa-
tionally somewhat costly.



(ii) linear constraint: Hy ¢ = 1. In this case H}SVH is the last column vector of the ) matrix
in the unnormalized QR factorization (Gram-Schmidt orthogonalization of the column
vectors) of the matrix [TN (F?Vt) g}, divided by its length squared. In other words,

1
L STARL
N

N

where Pr is the projection matrix onto the column space of the matrix T and Pf# =
I — Pr. In conventional prediction theory, one takes ¢ = [1 0---0]". However, with
the channel not being necessarily minimum-phase, this may not be the most desirable
choice. In particular, this choice doesn’t work if h1(0) = 0. So one should choose ¢ as

orthogonal as possible to the column space of Ty (F?Vt) in order for this procedure to be
well-conditioned numerically.

If the symbol variance o2 is known, then from the prediction error variance expression in (18),

we can identify |h1(0)| (or |h2(0)| if ~1(0) = 0). So we have identified the channel from the
h1(0)

. . o . |h1(0ﬂ|' . .
To recapitulate, in the absence of additive noise, we have a singular prediction problem.

received signal second-order statistics, up to a factor

From the multichannel prediction error variance and the prediction coefficients, one can iden-
tify the null space of the covariance matrix, the blocking equalizer F?\, From F?V, one can
identify the channel up to multiplicative constant as indicated above. From (16), one can iden-
tify Qyn_o and via (15), this leads to the identification of the (Toeplitz) symbol covariance
matrix Rjy_; up to the multiplicative scalar o2 (which may be known). If the transmitted
symbols are uncorrelated, then the prediction problem immediately provides ZF equalizers,
see (19),(8). If the transmitted symbols are correlated, then a FIR ZF equalizer can still be
found directly from the FIR channel. The ZF equalizer with shortest length is given in (6).

4. Signal and Noise Subspaces
Suppose now that we have additive white noise v(¢) with zero mean and unknown variance o2
(in the complex case, real and imaginary parts are assumed to be uncorrelated). Then since

RY = T (Hy)Rin_ T (Hy) + 02 Ton (23)

o? can be identified as the smallest eigenvalue of R%, and the corresponding eigenvector is

F’,. This is the Pisarenko method [3, page 500]. By replacing R% by R% — 02l, all results
of the prediction approach in the noiseless case still hold.

If the additive noise is correlated with known correlation sequence up to an unknown

. < 9 5 U . . .
variance factor o2, Ry = 02 Ryy, then we can easily generalize this approach. We can work

2
with E;Q/QR%E;GH/Q which has a form similar to the one in (23), and of which the eigenvalues

are the same and the eigenvectors are a transformation by R, ;QH/Q away from the generalized
eigenvalues and eigenvectors of

RYV, = M RoVi. (24)

In particular, the smallest generalized eigenvalue in (24) is again o2. We shall assume R = T
in what follows.



Consider now a covariance matrix of size M > N. Given R%, we have been able to identify
all the desired quantities in the case M = N. So given covariance information, there cannot
be anything to be gained from considering M > N. However, this is not necessarily the case
when the covariance sequence is estimated from data. So consider the block Toeplitz matrix

Ta (Hy) of dimension 2M x (M+N—1). The following lemma is easy to show.

Lemma 1 With assumption (AFIR) and assuming that Hi(z) and Hy(z) are coprime,

rank (Tpy (Hy)) = M+ N—-1, M > N.

Hence, under the assumptions of the lemma, 7y (Hy) has full column rank. The orthogo-
nal complement of the space spanned by the columns of 7y (Hy) therefore has dimension
M—N+1. With the blocking equalizer F?\, satisfying F?\, Tn (Hy) =0, it is easy to see that

T-nn (Fy) Tu(Hy) = 0, M >N (25)

where Tyr_n11 (F?V) is a (M—N+1) x 2M block Toeplitz matrix in which the blocks are
1 x 2. Under the conditions of the lemma above, Ty _n1q (F?V) has full (row) rank. Hence, the

columns of T{]_5 4 (F?V) span the orthogonal complement of the column space of 7Ty (Hy).
Given the structure of

RY, = Tu (Hn) Ripyn 1 T (Hy) + 02D (26)

the column spaces of Tay (Hy) and T7_y ., (F?\,) are called the signal and noise subspaces
respectively.

5. Covariance Matrix Characterization

Consider the eigendecomposition of R%; of which the real nonnegative eigenvalues are ordered
in descending order:

M+N-1 2M
RY, = Y AVVF o4 AViVIT = VsAsVE + VipAu vl (27)

=1 i=M+N

where Ay = 02Iy—n41 (see (26)). Assuming Ty (Hy) and R}, n_; to have full rank, the
sets of eigenvectors Vs and V) are orthogonal: V&V =0, and \; > o2, 1 =1,...,M+N—1.

v
We then have the following equivalent descriptions of the signal and noise subspaces

Range {Vs} = Range {Ty (Hy)}
i b (28)
Range {Vyr} = Range {’TM_N_H (FN)} .
In particular,
VITy (Hy) =0, Ty (Fy) Vs =0. (29)



6. Channel Estimation from an Estimated Covariance Sequence
by Subspace Fitting

When the covariance matrix is estimated from data, it will no longer satisfy exactly the prop-
erties we have elaborated upon. A first (detection) problem then is to determine the dimension
of the signal subspace. A number of techniques for doing this have been elaborated in the
literature (typically based on an investigation of the eigenvalues) and we shall assume that
the correct dimension M+ N—1 (and hence the correct channel order N) has been detected.
We shall again order the eigenvalues and eigenvectors as in (27). The signal subspace will now
be defined as the space spanned by the eigenvectors corresponding to the M+ N—1 largest
eigenvalues, while the noise subspace corresponds to the M—N+1 remaining eigenvectors (as
in (27), except that Ay is no longer a multiple of the identity matrix).
Consider now the following subspace fitting problem

min |7 (Hy) — Vs T (30)

N7T

where the Frobenius norm of a matrix Z can be defined in terms of the trace operator:
HZH; = ftr {ZHZ}. Note that this subspace fitting problem differs from the one considered
in [6] (in a different context) by the fact that the roles of Tyy (Hy) and Vs are interchanged.
The problem considered in (30) is quadratic in both Hy and T. If Vs contains the signal
subspace eigenvectors of the actual covraiance matrix R%;, then the minimal value of the cost
function in (30) is zero. Indeed, if the column spaces of two matrices with full column rank
are identical (as in (28)), then one of the matrices can be transformed into the other one by
postmultiplication with a unique nonsingular square matrix. If R%; is estimated from a finite
amount of data however, then its eigenvectors (and eigenvalues) are perturbed w.r.t. their
theoretical values. Therefore, in general there will be no value for Hy for which the column
space of Ty (Hy) coincides with the signal subspace Range {Vs}. But it is clearly meaningful
to try to estimate Hy by taking that 75 (Hy) into which Vs can be transformed with minimal
cost. This leads to the subspace fitting problem in (30). The optimization problem in (30) is
separable. With Hy fixed, the optimal matrix 7' can be found to be (assuming V& Vs = I)

T = VI (Hy) . (31)
Modulo the result in (31), we get the following equivalences

min [|Tar (Hy) = Vs T
HN7

= min b {PE. T (Hy) T (Fy)} = min tr {Pv, Ty (Fy) T (Hy)}
N N
= min b {7 (Hy) Vi V¥ Tos (Hy) }
N
(32)

2

2 2M
HVﬁTM(HN)HF = min Y |

min
H, Hy i=M+N

= rIr_iin [ tr {TM (Hy) 7,7 (HN)} — tr {PVSTM (Hy) 7,7} (HN)H

v T ()

= B MmN~ V8T )



Due to the commutativity of the convolution operation, we can again write
VI Ty (Hy) = HyTy (V) (33)

where VH (like Fy) is considered a block vector with M blocks of size 1 x 2. Hence we can
write

N, T ~ i=M+N

oM
min | Ty (Hy) = Vs 7|z = min Hy ( > T (V)T (Vth)) Hy'
H (34)
. M+N-1
=y e (U8 e () ()
HE\T 2 =1
These optimization problems have to be augmented with a nontriviality constraint on H}SV

such as the quadratic or the linear constraints we have discussed in section 3.. In case we
choose the quadratic constraint HHHL =1, then the last term in (34) leads equivalently to

B (MJFZN:_IT () 7 (vﬂt))HtH
N M 7 M 7 N (35>

2

the solution of which is the eigenvector corresponding to the maximum eigenvalue of the matrix
appearing between the brackets. In the case of an oversampling factor equal to two, the noise
subspace always has a lower dimension than the signal subspace. Hence it is computationally
more interesting to estimate 7y (Hy) by optimizing its orthogonality to the noise subspace,
rather than by optimizing its fit to the signal subspace.

Alternatively, we may consider the following subspace fitting problem

ain [ (8%) - e ], o
F.1
which leads again to either a minimization problem optimizing the orthogonality to the signal
subspace, or a maximization problem optimizing the fit to the noise subspace. In this case,
the latter will be computationally more interesting. The channel Hy can then be identified
from FY as we discussed before.

When M = N, the subspace fitting problem in (30) leads to the Pisarenko method dis-
cussed before. When M > N, the Pisarenko method generalizes to the Music method [5,
pageb02] (corresponding to (34)). When the exact covariance matrix is given, any value of
M > N will lead to the same value for Hy, namely the true channel (up to a multiplicative
scalar). When the covariance matrix is estimated from data, the estimated covariance lags
can be considered as a noisy version of the true ones and hence a better estimate should be
obtained as more data are incorporated, as M increases. However, as M increases, the quality
of the covariance matrix estimate from a fixed finite amount of data goes down. So there
should be some optimal value for M, compromising for these two opposite effects.

7. Channel and Transmitted Symbols Estimation from Data using
Deterministic Maximum Likelihood
In the case of given data (samples of y(.)), the subspace fitting approach of the previous section

involves the data through the sample covariance matrix. Though this leads to computation-
ally tractable optimization problems, this may not lead to very efficient estimates from an



estimation theoretic point of view. Therefore we consider here a deterministic or conditional
maximum likelihood (DMIL) method. The likelihood is conditional on the transmitted symbols
and the channel parameters, which are hence treated as deterministic unknowns. The stochas-
tic part only comes from the additive noise, which we shall assume Gaussian and white with
zero mean and unknown variance o2 (Ry,, = I, though the generalization to any known
R,,; is straightforward). We assume the data Yy (k) to be available. The maximization of
the likelihood function boils down to the following least-squares problem

min  [[Yar(k) = T (Hy) Anran—1 (R[5 - (37)

HNvAM-l-N—l(k)

This criterion consists of a sum of 2M terms and involves 2N unknowns in Hy and M+N—1
unknowns in Aypn—1(k). Hence we need M > 3N—1 for the criterion to make sense. The
optimization problem in (37) is again separable. For fixed Hy, the optimal transmitted symbol
estimates are

1
Anpn-a(k) = (T (Hy) T (Hy)) - T (Hy) You(k) - (38)
Eliminating Aypn—-1(k) in terms of Hy via (38) from (37), we get
2
min
N

(39)

Py Yau(k)

2
Now we can use the equivalent parameterization through F% of the orthogonal complement
of Range {7y (Hy)} to obtain

2
2

min Pr iy Yu(b)| = IEI; Pfﬁ_NH(F?V ) Y (k) 2
= f}jlglbﬂ YT g (FY) [Tvi (FY) Ty (F?v)}_l Tornsr (FR) Yar(k) .
N

(40)

Because of the commutativity of convolution, we can again rewrite
Tornar (FX) Yur(k) = Huovgr (Yi(k) FY (41)

where Hy, (x) is a block Hankel matrix with I block rows, obtained by taking the block entries
from the block vector x and filling up a Hankel matrix starting from the top left corner. (41)
allows us to rewrite the criterion (40) as

it T v (Y 08) (T (7%) T (F2)) s (¥i000) %7 (02

where F5 = F3'7. Again, this criterion has to be augmented with a nontriviality constraint.
The optimization problem in (42) is nonlinear. It can easily be solved iteratively in such a
way that in each iteration, a quadratic problem appears [7]. Namely, at a given iteration, plug
in the F}, estimate from the previous iteration (or initialization) in the matrix being inverted
in the middle of (42), and minimize the criterion w.r.t. the two outer factors F’ appearing in
(42) to obtain the next estimate. With a non-convex cost function, it is important to provide
the iterative solution with a good initial guess. Such an initial estimate may be obtained from
the subspace fitting approach discussed above. Given the fact that this initial estimate is
consistent, it can be shown (along the lines of [8]) that one iteration of the iterative solution
process outlined above suffices to obtain an asymptotically best consistent (ABC) estimate!

9



8. Channel and Transmitted Symbols Estimation from Data using
Discrete Stochastic Maximum Likelihood

The channel estimate obtained (via F?V) with DML may be of acceptable quality. However,
the transmitted symbol estimates (ultimately the quantities of interest) obtained from DML
via (38) and proceesed further by passing them trough a detector, may not yet be sufficiently
accurate. The ABC estimate mentioned above is the asymptotically best estimate if all we
known about the transmission problem is captured in the DML problem formulation. However,
we often know more about the problem. In the discrete stochastic ML (DSML) approach, the
transmitted symbols are no longer considered to be deterministic unknowns, but a stochastic
process. Hence we need a description for the probability distribution of the stochastic process.
The description that the DSMIL method uses is very incomplete however: it only uses the
fact that the symbols come from a known finite alphabet. In other words, the marginal
distributions of the symbols are modeled as discrete distributions in which the discrete values
are known. However, nothing is said about the respective probabilities of those discrete values
in the marginal distributions, nor about how the marginal distributions interact to form the
joint distribution.

The problem formulation of the DSML method leads again to (37) with now the additional
constraint that the symbols a; belong to a given alphabet. It can again be solved in an iterative
fashion [9]. We will again need to exploit the commutativity of convolution, viz.

Tor (Hy) Aprinoa(k) = Aovran(k)HY
T T
Aanran(k) = [HM <[AM-|—N—1(k) 0(M-|—N—1)><1} ) Hr <[0(M-|—N—1)><1 AM+N—1(7€)} )

(43)

Each iteration now comprises the following two steps

(i) Given an estimate of the channel Hy, estimate the symbols using ML sequence estima-
tion (Viterbi algorithm).

(ii) Given an estimate of the symbols Axyrpn—1(k), find the channel estimate from (37) as
1
HY = (Al on(k) Asaran(k)) Afhyon(B)Y (k) . (44)

Again it is important to provide the iterative scheme with a good initial guess of the channel
Hy, which may be obtained with the DML method. The quality of this initialization should
be such that only very few iterations (in the limit only the first half of the first iteration)
should be needed. All this leads to a blind equalization procedure in three steps:

(a) identify the channel using subspace fitting,

(b) improve upon this estimate by running a few (possibly only one) iterations of the DML
algorithm,

(c) use the resulting channel estimate in a Viterbi algorithm to decode the symbols (half an
iteration of the DSMI algorithm).

10



9. Oversampling Factor OF = m > 2

We shall briefly discuss the case of an oversampling factor higher than two. A lot of the
previous discussion goes through immediately by simply replacing 2 by m. In particular, the
identifiability condition remains unchanged. With an estimated covariance matrix, the channel
can still be estimated by expressing an optimal fit to the signal subspace or orthogonality to the
noise subspace. One implication for ZF FIR equalizers is that their minimal order decreases
as m increases. In the limit, if m = N, then a simple constant (filter length equal to 1) can
be taken in each phase of the polyphase description. This leads to an equalizer with a total
of only N coefficients.

The most interesting part is perhaps the parameterization of the orthogonal complement
of Range {7y (Hx)} (needed for DML), which is a bit more complicated now, but again the
noise-free prediction problem provides a solution. When 73 (Hy) has reached full column
rank, then as M increases to M+1, m rows get added, but only one column gets added,
which makes the rank increase by one. As a result, the m x m prediction error variance
0'%, P a2h(0)h"(0) is of rank one. We can take for the blocking equalizer

FYy = B[l, —Px_] (45)

where B is any full rank (m—1) x m matrix such that Bh(0) = 0 (B oz = 0). The pa-

Y.N-1
rameterization of the orthogonal complement of Range {7y (Hy )} follows again from 7 (F?V)
except that the first block row gets modified to include in general only a subspace of the rows
of F?\, Indeed, at the smallest value of M for which the noise-free R%; hits singularity, the

singularity of R%; and of the corresponding 0'%, can be anywhere from 1 to m—1.

10. Oversampling Factor OF = ™ € (1,2)

If on the other hand we want to oversample by less than a factor of 2, then we need to
oversample by a rational number  (a rational number is needed in order to have a polyphase
description and hence stationarity of the multichannel problem). The case ™ = % is depicted
in Figure 2. On the one hand we have the expected filter bank aspect, in which an analysis
filter bank splits the signal in m = 3 components and a synthesis filter bank recombines the
m components into one signal. On the other hand we also have a transmultiplexing aspect in
which a synthesis filter bank combines n = 2 signals into one, which is then unraveled into n
components by an analysis filter bank.

For the equalizer in Figure 2 to be ZF, we need (with sampling period 27)

(
Fu(z) Fau(z) Fu(z) ]| n(2) Hul)
l Fuolz) Fals) Pulz) | | B Malz) g = (46)
Hzi(z) Hs(z)

For the general case of OF = ™ (in which m and n are of course taken to be coprime), and
assuming that all mn FIR equalizer filters F;;(z) have L coefficients, we have m P parameters
to satisfy n (L—I—%—l) 7ZF constraints. Hence we need I > Z ~. In particular, we find L > 1
for the case OF = N as mentioned before. But we also find I > 1 for the case OF = 1—|—N_1
The disadvantage of a rational oversampling factor is that the sampled received signal
becomes cyclostationary with period nT" in some sense. Indeed, for the vector of measurement
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Figure 2: Polyphase representation of the 2T /3 fractionally-spaced channel and equalizer.

signals y(.), we get measurments with period nT. Hence, if we have a finite amount of
data available, there is less room for time avaraging as n increases, leading to more noisy
estimates. Time averaging is explicitly used in e.g. the subspace fitting method based on a
sample covariance matrix, but these considerations also have repercussions for the accuracy

of the ML methods.

11. Identifiability Issues

When OF=m, and the channel is no longer considered of finite length, then the identifiability
condition (of the sampled channel) (from second-order statistics) still remains that the different
channel filters (which are causal) in the different phases of the polyphase representation should
not contain common causal factors. On the other hand, there is a result from [10] which states
that the continuous-time impulse response of a band-limited channel cannot be identified from
the output covariance function. Hence, if the oversampling factor is such that the Nyquist
criterion is satisfied for the channel impulse response, then the sampled impulse response
cannot be identified (in that case, identifying sampled or continuous-time channel amounts to
the same thing).

Oversampling (by a large factor) is useful if the channel has a large bandwidth, since then a
lot more information is obtained by oversampling. However, given a fixed channel bandwidth,
even if the channel identifiability conditions do not get violated strictly speaking, as the
oversampling factor increases, the channel estimation problem becomes ill-conditioned (e.g. the
Sylvester matrix becomes ill-conditioned). This motivates the use of fractional oversampling
factors when only a little extra bandwitdh (over %) is available. However, as the oversampling
factor approaches 1, the estimation problem may be well conditioned, but the estimation
accuracy degrades since less time averaging can be done. This may pose a problem if only
a relatively small amount of data is available or if the channel varies rapidly. So there is a
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compromise to be made.

12. Concluding Remarks

The case of a rational oversampling factor OF = = admits some generalizing interpretations.
The factor m could be interpreted as the diversity factor. We obtain diversity of a factor
m by oversampling with a factor m. However, diversity can be obtained in other ways. For
instance, we obtain a diversity factor m in mobile radio communications if we receive the
signal via m antennas [11]. However, in that case, it is for identifiability reasons not necessary
to oversample the received signals (leading to combined spatial and temporal diversity), as is
advocated in [11] (this is related to the requirement by Tong et al. for H to be full column
rank as we discussed in our introduction).

The factor n on the other hand could be called the multi-user factor. It arises when
the received signal from a single user gets subsampled. However, the subsampled phases ay,
and asr_1 in Figure 2 could equivalently be interpreted as arriving from two users that are
transmitting symbols at the rate % In fact, though we have obtained Figure 2 for the case of
oversampling by a factor % the signal received from a single user by a single antenna, Figure 2
could equivalently represent the case of no oversampling with two users and three receiver
antennas.
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