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Abstract. Multilayer perceptrons generate a posteriori probabilities related
to emission probabilities of Hidden Markov Models through Bayes rule. This
property is used to improve the discrimination of H M M. Moreover, it gives
rise to many statistical interpretations which can be cast in neural architec-
tures for nonlinear prediction and triphone probability estimation.
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nition, Discrimination.

1 Introduction

Mathematical formalization is definitely the intellectually most satisfactory
approach to solve technical issues. It offers a continuous and clear insight
into the problem since any intermediate step in the computing process can
be observed and has a mastered physical meaning. Unfortunately, some prob-
lems get so intricate that the number of equations or their nature prevent
any reasonable mathematical treatment e.g. the model of sophisticated robot
arm with multiple degrees of freedom and nonlinearities which should be real
time operated. Other problems involve unexplained behavior of industrial
plants or human beings e.g. the auditory or visual human apparatus. In
both cases, the unability to formalize forces to alternative methodologies. In
microphysics, the huge number of particles prevents any traditional use of
the laws of mechanics and a combined use of statistics and mechanics gave
rise to one of the most impressive discipline. In that case, hypotheses on the
hidden phenomena help the scientist formalize the statistical behavior. If no
reasonable hypotheses can be made, the sole approach relies on observations
which are used for model training.

This is the case in speech recognition where the phonatory process is quite
versatile depending on speaker’s identity, stress status, cultural history and
even inconsistency. Best results in speech recognition have been obtained by
using statistical models the parameters of which are estimated in a training
phase on speech databases. Hypotheses were made on statistics which restrict
to some extent the power of this approach. Weaker and weaker hypotheses
are accepted leading to improved models. However, the number of parame-
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ters grows up with the generality of the models and any significant training
requires huger and huger data bases. Neural networks provide an elegant
method to estimate statistics with few hypotheses and few parameters. The
joint use of neural networks and statistical models lead to speech recognizers
the performances of which compare favorably with the best known techniques
and require less a priori knowledge on the speech production process. Also
less parameters are necessary to describe the underlaying statistics and as a
consequence, less training material. However, the training process of neural
networks is known to be so CPU time greedy that research work is impaired
by the unacceptable delays between research tests and the expected results!
Dedicated machines have been built which partly circumvent the problem.
While training is part of the design phase and consumes such expensive com-
puting resources, recognition can be achieved very fast using custom devices.

For all the reasons above, speech recognition has been identified as a par-
ticularly representative research field for neural networks and statistics.

Speech recognition relies on comparisons between an utterance and a cas-
cade of speech unit models. Since the pertinent information for recognition
is hidden and mixed with other features (like phase lags and prosody) in the
waveform, a preprocessing is required. Section 2 gives a quick summary of
this representation problem.

In the early years of automatic speech recognition (ASK), word models
were plain utterances of words. Speaker’s variability was not easily taken into
account: the only manner was to use several models per word at the price
of a prohibitive computation time in the recognition phase and of storage
needs. Recognition was based on the time alignment between reference and
test signals: this alignment results in a distorted path in the matrix of local
distances between acoustic vectors of speech frame pairs from the reference
and the test signal. This distortion is known as time warping [17]. The
resulting distorsion score is used as a classification criterion.

Statistical models ( Hidden Markov Models (H M M)) have been introduced
by Jelinek [1] and proved to be very efficient to create robust and even speaker
independent models. From that time, the idea of learning was included as
a major issue in ASR. Very soon, embedded training was proposed: the
speech data base consisting in sentences of connected words is ”matched”
by Viterbi training on a global model formed by concatenating word models
in the same order as they appear in the sentence. The most commonly
used training criterion is the likelihood that an utterance be associated with
a given model but it does not yield the best recognition rates due fo an
inherent lack of discrimination. Indeed, a word model is tuned to be highly
probable for the corresponding word but no care is brought to make it as
less probable as possible for the other words. Section 3 will describe in more
detail this statistical approach which will be combined later with a neural
network approach in a hybrid recognizer.

Neural networks are known for their learning capabilities. Interesting re-
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sults in speech recognition were obtained with Time-Delay-Neural Networks
(TDN N) i.e. multilayer perceptrons endowed with memory at each layer [2].
Memory adds on contextual representation to the static signal but TDNN'’s
hardly take time warping into account. Most interesting results were obtained
for phoneme and isolated word recognition without any use of HMM.

Section 4 will be devoted to the use of Multilayer Perceptrons (M LP) in
ASR. It will be showed that outputs of M LP’s used for classification can be
interpreted as a posteriori probabilities [3-5] of observing a given class when a
signal is observed. These probabilities are related by Bayes rule to the emis-
sion (local) probabilities of HM M’s. These M LP-derived probabilities are
more robust than Gaussian parametric densities traditionally used in HM M
because they are obtained from discriminant training with neither assump-
tion on the shape of probability density functions (pdf’s) nor (uantization
errors as observed in a quantized representation space. M LP architecture
eases incorporation of contextual information by extension of the input field
to right and left informations [4]. Nonlinearities of neural nets extend the
capabilities of class partitioning [6].

Hybrid models using M L P-derived probabilities in conjunction with HM M’s
combine the advantages of both techniques: time warping is taken into ac-
count and discrimination is significantly improved by M LP classifier train-
ing. Recent results show that scores obtained with hybrid HMM/MLP’s
compare favorably with those obtained with carefully designed traditional
triphone HM M’s [T].

Thanks to the statistical meaning of M LP classifier outputs, most of stan-
dard laws of statistics can be cast into connectionist architectures. For in-
stance, the difficult problem of triphone (phoneme in left and right contexts)
model training can be simplified [8-9].

The emission probabilities in HM M can be extended to the probability
of observing an acoustic vector on a state given the previous vector: the
prediction error can then be used as a local distance between a state and an
acoustic vector [10]. To alleviate the restriction of linear prediction, neural
architectures have been proposed [11] to train nonlinear predictors.

2 Speech representation

2.1 Waveform preprocessing

Since speech waveforms contain information under different. forms not all es-
sential for the recognition, a preprocessing is required to provide an efficient
representation in term of what is called acoustic vectors. Speech is by na-
ture a nonstationary process. However due to the mechanical inertia of the
phonatory apparatus, it may be considered stationary on short time intervals
of a centisecond duration called time frames. Spectral analysis can be per-
formed on overlapping intervals defined by a window spanning two or more
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centisecond time frames. The results of this analysis are stored in a vector
called acoustic vector. Its content could be either some linearly or nonlinearly
(M EL Scale) frequency spaced values of the smoothed spectrum or LPC (lin-
ear prediction coefficients) or cepstral coefficients or any other description of
the speech signal over the window (PLP or Rasta-PLP coefficients)[20-21].
Analysis windows are shifted by one centisecond so that there is one acoustic
vector (€ R%) associated with each time frame. Some representation param-
eters suit better for some applications (speaker dependent or not, recognition
over the phone, robust to noise recognizers). A multiresolution analysis could
probably improve recognition rates.

Spectral analysis based on an FFT roughly applied to the waveform sam-
ples in an analysis window, results in a spectrum exhibiting formant peaks
but also, in case of voiced speech, a fine structure due to the fundmental
frequency of the glottal excitation (pitch is in the range of 100 to 200 Hz
according to speaker’s sex). Since pitch information is commonly admitted
not to be pertinent for speech recognition (mainly because it is related to
high level analysis like semantics and hard to deal with at the front end anal-
ysis layer!), only spectral envelope will be kept by smoothing and decimation
(data compression).

Another way to get rid of pitch information is to apply homomorphic fil-
tering [18-19]. Since the speech spectrum is the product of the vocal tract
transfer function modulus and the Fourier transform of the pitch, application
of a log operator transforms it into a sum. Taking the FFT of that sum gen-
erates the cepstrum which is a function of a new variable denoted quefrency
that has dimension of time. By removing the high quefrency components of
the cepstrum (quefrency has the dimension of time and forms with frequency
the Fourier variable pair in the log domain), pitch information is liftered (i.e.
filtering in the quefrency domain) out. This operation amounts to spectral
smoothing. Moreover cepstral coefficients are independent of the acquisition
channel gain except ¢y which is thus frequently discarded. Both spectral and
cepstral approaches obviously overlook phase information since only moduli
are considered.

Linear prediction is a parametric representation since it assumes an under-
laying speech production model (i.e. source coding). Only information on
the vocal tract model is retained i.e. the LP coefficients or any other equiv-
alent representation set such as Parcor’s or log-area ratios [17-19]. Cepstral
coefficients can also be derived from the prediction coefficients but they dif-
fer from those obtained through homomorphic analysis since contrary to the
latter ones, they assume an underlaying source model.

Speech representation is denoted continuous in opposition with the discrete
one obtained when acoustic vectors are replaced the nearest vector taken out
of a codebook. Codebook clusters are computed with vector quantization
algorithms such as K-Means or LBG [22] applied on a large amount of the
acoustic vectors of the preprocessed speech data base.
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2.2 Lexicon representation

Speech recognition relies on comparisons between a preprocessed utterance
and a cascade of speech unit models. If the number of words in the lexicon 1s
small (less than 50), word models are used. For larger lexicons, sub-units like
phonemes or triphones (phonemes in right an left contexts) are mandatory:
indeed any lexicon regardless to its size can be represented in terms of a
limited number of sub-units (about 40 phonemes or 2500 triphones). The
addition of a new word in a lexicon amounts then to give its transcription
in terms of sub-units. A transcription may be read in a dictionary but also
could be automatically generated by a grapheme to phoneme algorithm as
used in the front end of a text-to-speech system. Mostly, word models are
merged into a lexical tree resulting in a saving of computation and storage.

Grammars used to constraint word sequences and so to reduce the search
space may be either a priori described or stochastically trained. Discussions
of these aspects fall beyond the scope of this paper.

3 Hidden Markov Models

Speech variability causes most of the difficulties in recognition: indeed, pro-
nunciation of words depends of course on the speaker but even the same
speaker articulates words unconsistently. To take the variability of speech
into account, it is useful to create a statistical model for each speech unit:
Hidden Markov Models [1] are perfectly suited. An utterance of a speech
unit ( a time sequence of acoustic vectors) is viewed as being generated by
a state machine. Each time a state is visited, an acoustic vector is emitted
according to a probability density function (pdf) associated with the current
state. Usnally due to the time progressive nature of speech, only left to right
models are considered i.e. states are ordered and transitions are allowed from
left. to right only. No other loops but self-loops on states are accepted (fig.
1).Self loops and jumps over states allow duration control of the utterance.
Two kinds of probabilities appear in an H M M: emission pdf’s and transition
probabilities. Emission probabilities are either computed from a parametric
pdf’s (Gaussian, Gaussian mixture or Laplace densities) or read from a look-
up table if the representation space is vector quantized. In the latter case,
no assumption on the pdf is made but a distance definition between acoustic
vectors and clusters is assumed. Transition probabilities are estimated by
plain frequencies.
The parameters of the models are determined by training.

3.1 Training

Two main criteria are used for training. The first one is the maximum like-
lihood criterion where the probability that several utterances of the word
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Figure 1: A left-to-right Hidden Markov Model

corresponding to the model is maximized by iterative reestimation of the pa-
rameters (Estimate-Maximize algorithm). This probability is the sum of the
probabilities associated with all possible paths through the model from the
input state to the output one. Probabilities of all paths are considered in the
forward backward algorithm proposed by Baum and Welch [19].

In the sequel, we will focus on a second criterion known as Viterbi’s cri-
terion, which is a simplified version of the maximum likelihood where only
the best path is considered. So, HM M training amounts in aligning a large
amount (N) of utterances of the corresponding sub-unit W on the model.
The best match is measured by the accumulated probability of the optimal
(most probable) path computed with the Viterbi algorithm (Bellman’s dy-
namic programming) in the matrix of the local emission probabilities:

N

max [ [ P(X;|W) (1)

i=1

where X; = {«j1,%j2,...,%jm,} stands for an utterance of word W consist-
ing in a sequence of m; acoustic vectors (€ RY).

Bellman’s principle consists in solving a sequence of subproblems. In our
case, the best scores computed from the first acoustic vector of the test
utterance to any subsequent one. They represents the probability that this
part of the utterance can be matched with the model. Frame by frame,
it is then possible to recurrently compute the score up to the last frame.
During this forward process, one keeps track of the optimal local decisions and
eventually the optimal path is obtained by backtracking. It should be pointed
out that the path is globally optimal: no hypotheses have been discarded
during the forward process.

In practice, probabilities are commonly replaced by the opposite of their
logarithms and can be viewed as local distances. Pdf’s parameters are esti-
mated by collecting all vectors emitted on a given state and transition prob-
abilities by plain counting during the backtracking process. For instance, for
Gaussian pdf’s associated with a given state, the mean vector y is estimated
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where n denotes the number of vectors r; emitted on that state along the
optimal path.

In case of discrete models, pdf’s are the observation probabilities of cluster
prototypes on the current state (look-up table). The probability of emitting
cluster £ on a given state ¢ is estimated by:

el = = (3)

where ng and n are respectively the number of emissions of cluster £ and the
number of vectors emitted on state g.

Isolated utterances of speech units (as words for instance) are not manda-
tory for training. Embedded training makes nse of word labeled but unseg-
mented (detection of boundaries between words) sentences. Optimal align-
ment results in a path in the matrix of local emission probabilities. This
path generates the segmentation of the training material as a by-product. It
is interesting to notice that this process can be extended to the training of
subunits such as phonemes if the training sentence can be labeled in subunits:
the tedious and unaccurate segmentation process by experts is avoided.

Using short subunits such as phonemes leads to less accurate results but
requires less models and less training material. An additional advantage is
the possibility to add a new word to the lexicon by just giving its phonetic
spelling. A word model is then built by concatenating phoneme models. The
recognition degradation comes from the coarticulation effects: the utterance
of a phoneme is indeed strongly affected by its left (due to the continuity of the
motion of the articulatory apparatus ) and right (due to anticipation in the
speech production process) neighbors. Occurrences of a speech-unit in various
contexts are merged into a single signal model and reduces coarticulation to
some extent but a definite improvement is obtained by replacing phonemes
by triphones i.e. phonemes in right and left contexts. Triphone training sefs
up new problems: a larger training data base should be available and the
frequencies of triphones span over a wide range. Significance of the estimators
is questionable if no special interpolation techniques are used. However, using
short subunits is the only way to tackle the large vocabulary recognition task.

An important improvement was observed when taking spectral (or cepstral)
contextual effects into account. The easiest way was to increase the size of
the representation space by concatenating two neighboring acoustic vectors
or one vector and the difference with its neighbor [12]. Even second order dif-
ferences are commonly used. The increased space dimension slows down the
recognition process since the local probability computation consumes more
CPU time. Another technique is to define local probability given a previ-
ous vector: it has been shown that the logarithm of this local probability is
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closely related to a linear prediction of acoustic vectors [10]. Both technicues
require larger training data bases.

Equation (1) shows the criterion used for training word W model. So, no
correlation between word models is taken into account during the training
process which does not enforce discrimination; indeed, the objective is to
maximize the global probability produced by an HM M when it matches a
corresponding utterance but a very close probability might be observed when
it is matched a wrong word. Several attempts to modify the criterion have
been proposed such as Minimum Mutual Information Estimator (M M IE) or
corrective training. Unfortunately, no convergence proofs can be given if such
approaches are used: these techniques should be considered as heuristics.

Training capability is not restricted to HMM. In particular, studies in
discriminant classification put into evidence the role of the perceptrons [13].
Unfortunately, perceptrons can be trained only on linearly separable data sets
for two reasons: first, the criterion used is looking for an exact solution and
does not use an LMS approach and second, the monolayer structure is not
rich enough to describe non convex or non connected partitions. Multilayer
perceptrons trained along a LMS criterion remove these severe restrictions[6].
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Figure 2: Viterbi alignment.

3.2 Recognition

Isolated word recognition is based on the comparison of the test utterance with
all word models. The highest score identifies the recognized word. Scores are
nothing but the probabilities computed using either a Baum Welch algo-
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rithm or a Viterbi alignment. So recognition uses the same algorithm as for
training except backtracking. This is no longer the case for connected word
recognition.

Concatenated word recognition amounts to find an optimal path aligning
the test utterance with a sequence of word models. The best alignment is
obtained by a generalization of Viterbi’s algorithm which allows discontinu-
ities (cfr figure 3) of the optimal path; they correspond to jumps between the
end of a word and the beginning of the next one. Possible starting points
are the grey-colored entries while ending points are in black-colored entries.
Here the absolute value of the score does not matter but the optimal path
is crucial since it yields the word sequence and boundaries simultaneously.
Since determination of the best path is crucial to segment and label the test
sentence, Viterbi algorithm is traditionally used [23-24].

The process can also be applied to phonemie segmentation but results in
low recognition scores due to the intrinsic fragility of phonemic models. Word
models can be built as phoneme concatenations: this word description can
be viewed as a syntactical constraint on the phonemes and allows description
of a full lexicon from the small phonemic set: it is the mostly used lexicon
description.

Figure 3: One-level method for connected word recognition.
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4 Multilayer Perceptrons

The perceptron has been extensively studied as a classification device having
an abrupt decision law [13]. A major advantage of such a decision rule is in
its squashing property: how much a data is distant from the linear separation
surface does not care. If data are linearly separable, a convergent training
algorithm assigning the perceptron parameters exists. However, by trivial
non linearly separable counterexamples such as the XOR, algorithm failure
is easily demonstrated. Hidden layers should be inserted between the output
(decision) field and the input one. No convergent training algorithm has
been proposed for such structures but if the abrupt nonlinearities of nodes are
smoothed out to form sigmoids, a gradient algorithm can be used (Error Back
Propagation EBP) [14] to compute the optimal values of the connections.
EBP is nothing else but a clever use of Newton’s formula for derivating
functions of functions to get gradient corrections.

Supervised training offers a powerful manner to learn mappings between
input/output pairs of data. Unfortunately EBP is extremely time consum-
ing. When used in the classification mode i.e. with all outputs equal to zero
but one which corresponds to the class the input data belong, they produce a
posteriori probabilities p(C;|z) after training. Here C; denotes classes and
is an input vector. Application of this result to speech recognition has been
proposed in [4] with vector quantized inputs. While justification for contin-
uous inputs has been published by Lippmann [5], we focus in this paper on
the discrete approach for the sake of simplicity [25].

Let us thus assume the acoustic vectors of the training database have been
replaced by their nearest clusters and [ denotes the number of different
clusters. The sequence of vectors becomes a sequence of indices i, where
n € [1,N] and i, € [1,I]. Each acoustic vector is also known to belong to
a given class Cp where k € [1,K]. An MLP with I inputs and K output
is trained to map a sequence of N input index vectors y, (all entries equal
to zero but the one corresponding to the input cluster index) to a sequence
of output index vectors (all entries equal to zero but the one corresponding
the current class). The same cluster vector can show up in different classes
depending on its time of ocenrrence in the sequence (class overlapping). The
objective LMS function is thus:

N K

E = Y [alin) = dilin)]®

n=1 k=1

where gi(in) stands for the output value of the k-th output given the in-th
input is turned on and d(i,) is a target equal to one or zero according to
the current input is associated with class Ci. If we partition the terms of ()
to form groups corresponding to the same input cluster, sum over n is split
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into a double sum over the clusters and over the classes:

where n;;. denotes the number of occurrences of cluster i in class C. Thus,
whatever the MLP topology may be i.e. number of layers and number of
units per layer, the optimal output values gfpt(i) are obtained by canceling
the partial derivatives of E with respect to the g¢(?):

K

= QZraik[{ff(i)—ffﬂ(i)] =0

k=1

JF
ye(7)

So, the optimal values are:

K .

opt ey __ Zi;:lnikdl(!)

g () = ==F—
2k=1 Tk

or by using the definition of d;(z):

T

opt ¢\ il

i) = =—
k=1 Tk

This expression can be interpreted as the a posterior: probability:
opt ¢+ ]
g7 (1) = P(Celmi).

This is the key result leading to hybrid HM M’s: indeed, M LP’s generate
at their outputs a posteriori probabilities which are related to the emission
probabilities of HM M by Bayes rule. The emission probabilities obtained
froma M L P’s generated a posteriori probabilities are more discriminant since
discrimination between classes was taken into account by forcing outputs to
be index vectors during the training phase.

4.1 Hybrid HMM/MLP’s

By assuming for the sake of simplification that a state in a H M M corresponds
to a class, we observe the local emission probabilities defined in the previous
section P(x|q) do not correspond to the a posteriori probabilities P(g|z) but
are related to them through Bayes rule:

P(q|z)P()
P(q)
Since in the alignment process, P(x) is constant in each time frame, this

factor can be discarded and P(z|q) can be replaced by P(q|z)/P(q). In place
of using parametric pdf’s or non discriminant probability look-up tables,

P(zlq) = (4)
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MLP outputs divided by the a priori probability of state visits can be used in
HMM : this approach is usually known as hybrid HMM/MLP. A major
advantage lays in the discriminant training of P(qg|z) as explained above: this
probability will be high or low according to the fact = belongs to state ¢ or
not.

Taking account of spectral or cepstral contexts is quite easy with hybrid
HMM/MLP’s. MLP’s input is split into several fields: the central one
contains the current vector while left anf right fields contain neighboring
vectors (fig. 2). Inputs are fully connected to all hidden units, regardless to
the field they belong.

Output layer=classes

Hidden units

. Current frame
Left context Right context

. Frame delay

Figure 4: Context-dependent multilayer perceptron classifier.

An obvious objection conld be: “How do you segment your data in state
intervals as it is required in a supervised training?”. Actunally, embedded
training also applies for hybrid HMM/MLP [15]: an initial guess segmen-
tation is defined and EBP training is applied. Then a Viterbi alignment is
performed using the probabilities generated by the trained M LP resulting in
a new segmentation in state intervals. The process is iterated. Since EBP
is also an iterative process, the training program contains a double iteration
loop: but using crossvalidation data subset to control both loops, the training
process duration can be kept within reasonable limits. However for ambitious
ASR tasks like speaker independent 1000 word vocabulary continuous speech
recognition (or more), dedicated boards are required [16]. The restriction of
having one state per phoneme is removed since no segmentation is required.
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Segmentation even in states if necessary may result from embedded training.

4.2 Triphone emission probabilities

In the previous section, triphones have been shown an efficient but expensive
way to cope with coarticulation effects. The local probability of a state taking
left and right contexts into account can be written P(z|q,cf,¢") where ¢f and
¢" respectively denote left and right phonemes. where ¢! and ¢" respectively
denote left and right phonemes.It factorizes according standard probability
rules:

P(q,ct, c¢"|z).P(x)

Plg, et ic™)

P(mIQIClICr) =

Let us denote by L the number of possible contexts (regardless they appear
on the right or on the left).

Using standard probability factorization properties, numerator of (4) can
be written:

P(q|z).P(c"|q, x).P(ct|q, z, 7). (5)

where the factor P(x) has been overlooked since it plays no role in the align-
ment process as already pointed out in section 4.1. This expression suggests
an original method to compute triphone probabilities [8-9]. The first factor
is the standard a posteriori emission probability and may be computed as
described in section 4.1.

The middle factor can be viewed as the ontput of an M LP with two input
fields containing respectively the acoustic vector and an index vector showing
the current state. This M LP has one output per possible right context (L).
The last factor has also L outputs but three input fields: one contains the
acoustic vector, the second the current state and the third is an index vector
showing the right context.

Thus three M LP’s can be used to compute the factors leading to the nu-
merator of the triphone emission probability. The last two ones are shown in
figure 5.

Some restrictions on the M LP architecture simplifies the amount of com-
putations f.i. of P(cflq, x,c") [8-9]. Slight assumptions allow to merge these
three M LP’s resulting in a substantial weight saving when compared with
the single M LP which could produce the triphone probability without going
to the factorization formula. Weight saving implies training data saving.

The denominator is also factorized in a similar way:

P(q).P(c"|q)-P(c'|q,¢). (6)

These factors depend on the lexicon only, are easily estimated by counting
once for ever and stored in a look-up table.
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Hidden Layer Hidden Layer
q ¢ X q X

Figure 5: Triphone emission probabilities estimation by M LP’s.

4.3 Nonlinear predictors

In [10], Wellekens showed that taking context into account in a Gaussian
emission probability amounts to use the error of a acoustic vector predic-
tion based on this context as a representation of the signal. This vectorial
prediction error is then equivalent to a distance in log-presentation ( —logP
equivalent to a distance) of the algorithm. Levin [11] got rid of the Gaussian
assumption and the linear predictor and suggested to extend the concept
to nonlinear prediction by using an M LP to generate the predictor of any
acoustic vector. The principle is illustrated in figure 6. Theoretically, ther
should be one such predictor per state, but in practice an additional input
field (not shown on the figure) controls the state dependency. The prediction
error x(t) — x(t) is then used as a local distance. The corresponding emission
probability is then:

At—1 s
P(Jfg|f],)\t_;,) ({)
where Xf:l,} stands for {ri_y, @t—2,...,#—p}. Training is easy since the

target is to minimize the LMS prediction error on a large database. In that
case, the predicted value is generated as an output. No interpretation in
terms of probability is possible. Prediction error is directly used as a local
distance. Unfortunately, results with nonlinear predictors have never reached
the recognition scores obtained with the M LP used as classifiers. This is
probably because the discriminant properties are no longer enforced in the
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tralning process.
It is interesting to observe that application of Bayes rule leads another
method to compute context dependent probabilities [8-9]. Indeed,

P(xi|X;2,). Pgl X{_,)
P(q|X!Zh

P(z4lg, X{Z,) =

The first factor in the denominator is irrelevant for time alignment since it
depends only on the the signal itself and not on the states and the context
dependent probability is estimated as the ratio of two M L P classifier outputs.
In this case, discriminative constraints can be enforced on the M LP’s which
are both used as classifiers. No comparative results have been reported by
the authors [8-9].
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xt-1) e xe2 — X(t3) -~ @ ® o

Figure 6: Nonlinear prediction using M LP’s.

5 Conclusions

In the long history of ASR, a major step was the introduction of statistical
techniques. But since the underlaying statistical rules completely escape to
our knowledge and also for the sake of simplification, standard parametric
pdf’s have been hypothesized for the description of the speech production
process. Even when discrete pdf’s were considered, the clustering process
was constraining the generality of the statistical behavior through distance
definition.

The relationship between Least Mean Square minimization and statistics
has been known for several decades. The idea to interpret outputs of M LP
classifiers as probabilities is thus not new. However, relationship through
the Bayes rule with the emission probabilities and discriminant properties
inherited from the training process lead very soon to significant scores com-
paring favorably with very sophisticated recognizers affected by the above




constraints. The price to pay was a CPU time greedy training algorithm
but the regular structure of the MLP architectures allows design of modular
dedicated boards and integrated chips for fast training.

Statistical interpretation of M LP outputs shows the way to cast standard
results of statistics into new architectures. Building on statistics and neu-
ral networks, researchers may still expect significant progresses in ASR and
more generally in most of applications where complexity forbids any explicit
formulation and forces to accept training on examples as the only reasonable
approach.
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