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Abstract

Spoof localization, also called segment-level detection, is a cru-
cial task that aims to locate spoofs in partially spoofed audio.
The equal error rate (EER) is widely used to measure perfor-
mance for such biometric scenarios. Although EER is the only
threshold-free metric, it is usually calculated in a point-based
way that uses scores and references with a pre-defined tempo-
ral resolution and counts the number of misclassified segments.
Such point-based measurement overly relies on this resolution
and may not accurately measure misclassified ranges. To prop-
erly measure misclassified ranges and better evaluate spoof lo-
calization performance, we upgrade point-based EER to range-
based EER. Then, we adapt the binary search algorithm for
calculating range-based EER and compare it with the classical
point-based EER. Our analyses suggest utilizing either range-
based EER, or point-based EER with a proper temporal resolu-
tion can fairly and properly evaluate the performance of spoof
localization.

Index Terms: partial spoof, metric, spoof localization, equal
error rate, range-based

1. Introduction

Automatic speaker verification (ASV) is vulnerable to spoofing
attacks (also known as presentation attacks or PA) [1]. Some
challenges were thus held to encourage the development of
countermeasures (CMs) to protect ASV from spoofing, such
as ASVspoof [2-7] and ADD [8]. CMs for those challenges
operate at the utterance level to detect whether an utterance is
spoofed. The equal error rate (EER) and tandem detection cost
function (t-DCF) [9] are then commonly used to evaluate the
performance of CMs and consistently measure the progress in
this field over time.

Partial Spoof (PS) [10] is a recently proposed spoofing sce-
nario in which only a fraction of speech utterances are spoofed.
It is one of the most important and challenging scenarios for the
anti-spoofing community as detecting a fraction of speech seg-
ments is much more difficult than detecting a whole spoofed ut-
terance. Accordingly, besides conventional utterance-level de-
tection, spoof localization, also known as segment-level detec-
tion [11-13], was designed for the PS scenario. Spoof local-
ization aims to locate spoofed regions within partially spoofed
audio, that is, to answer “when do spoofs happen?”. Spoof lo-
calization is an important task for the PS scenario that can be
used as a pre-processing step and provides cues to further ana-
lyze attackers’ intentions.

It is also crucial to evaluate different models for spoof local-
ization to make progress. However, as a newly introduced task
in the anti-spoofing community, there is currently no established
way of properly measuring the performance of spoof localiza-

tion. Most metrics usually face dilemmas [14] and depend on
a pre-defined threshold. Furthermore, the use of different mea-
surements, such as counting the number of misclassified seg-
ments with fixed temporal resolutions (10 ms [15], 20 ms [10])
or measuring the duration of misclassified regions [13], hinders
the comparison of different spoof localization methods across
the literature. Following [16], we named the former approach
of counting the number of misclassified segments “point-based”
measurement and the latter approach of measuring the duration
of misclassified regions “range-based” measurement.

For example, Yi et al. [13] used range-based precision, re-
call, and F1 to measure performance in accurately detecting
spoofed regions. However, these require a pre-defined thresh-
old and have a high bias on imbalanced data [17]. Further-
more, Zhang et al. [15] utilized point-based IoU (intersection
over union, also known as the Jaccard index) by counting the
number of accurately predicted frames to describe the similar-
ity between reference and prediction. All of the above metrics
depend on a pre-defined threshold. In contrast, we [12] adapted
a threshold-free EER from the utterance level to the segment
level. However, it is still a point-based EER that requires a
pre-defined temporal resolution for reference and it is easy to
ignore some misclassified regions that can only be measured at
high precision. Range-based EER is a possible solution to mea-
suring such misclassified regions properly.

To estimate range-based EER for measuring the perfor-
mance of spoof localization in the PS scenario, we adapted the
binary search algorithm (also known as the half-interval search
method [18]). Then, we compared range-based EER with point-
based EER for better understanding.

Our results show that when the temporal resolution of a
point-based reference is coarser than the temporal resolution of
the training data, point-based evaluation becomes too coarse.
For fair and proper evaluation of spoof localization models, we
recommend using range-based EER, or point-based EER that
uses references with a finer temporal resolution than that used
to train spoof localization models.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces the basic properties of point-based measure-
ment and its relationship with range-based measurement. Sec-
tion 3 describes range-based EER and proposes the adapted bi-
nary search algorithm to estimate range-based EER for spoof lo-
calization. Section 4 introduces the experiments and discusses
the relationship between point-based and range-based EER. Fi-
nally, Section 5 gives the conclusion.

2. Point-Based Measurement

In this section, we first introduce the widely used point-based
measurement. Then, we extend point-based measurement to
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Table 1: Confusion matrix for spoof localization.

Hypothesis
Positive (spoof) Negative (bona fide)
«  Positive (P) TP FN
% Negative () FP TN

range-based measurement, providing a foundation for under-
standing the basic properties of range-based EER, which we
will discuss in the next section.

2.1. Two types of errors: false positive and false negative

Following the ISO/IEC standard [1], we treat spoof as positive
and bona fide as negative. Then, CMs are subject to two types
of errors: false positive and false negative':

* FP (False Positive): the number or duration of bona fide mis-
classified as spoof.

* FN (False Negative): the number or duration of spoof mis-
classified as bona fide.

The normalized (proportional) versions of FP and FN are
called the false positive rate (FPR) and false negative rate
(FNR). The corresponding confusion matrix is shown in Table
1, where TP (true positive) and TN (true negative) refer to cor-
rectly predicted spoof and bona fide, respectively. They can be
calculated by either counting the number of segments or mea-
suring the duration of eligible regions.

2.2. Classical point-based EER

Point-based EER is widely utilized for the binary classification
task. It is a threshold-free metric and is the error rate with a
specific threshold where the FPR is closest to the FNR. Follow-
ing the predicted scores and confusion matrix defined in Table
1, we express the definition of FPR and FNR as follows:

1
PFP(T) |/1 ‘ Z ]l(sm < 7’)7 )
meAR,
1
Pen(1) = |A | %P 1(sm >7), @)
meap

where both Prp(7) and Pen(7) are functions of a pre-defined
threshold 7. AR, and A%, index bona fide and spoof segments,
respectively. Then |AR/| and |A%| denote the total number of
bona fide and spoof segments separately. s,, is the segment
score for the m-th segment as shown in Fig. 1(a). 1(-) denotes
the indicator function that outputs 1 when the condition is true
and O otherwise.

EER is decided by 7 where the value of Pep(7) is infinites-
imally close to Pen(7). Then, EER can be computed by:

EER = 3)

where

Pen(T)]. 4)

7 = argmin | Pep(7) —

Note that FA and MD in [2], and FR and FA in [19] are equivalent
to FP and FN in this paper, respectively. Their names are different, but
they share the same definition for the spoof scenario.
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Figure 1: Comparison of point-based and range-based mea-
surement. (In the Reference row of this example, there are 7
uniform points in (a) and 3 varied ranges in (b))

2.3. From point-based to range-based measurement

Although the common evaluation method is to utilize point-
based measurement, it can be implemented by range-based
measurement for time series problems. Depending on the
method of measuring the predicted results, all properties of the
previously defined confusion matrix can be calculated using
either the point-based or range-based’ measurements as illus-
trated in Fig. 1.

As for the point-based measurement shown in Fig. 1 (a),
we need to split the audio into uniform segments with a fixed
resolution and assign corresponding reference labels. Then,
we measure the performance on the basis of a comparison be-
tween those pre-segmented labels and discrete predicted seg-
ment scores. However, this point-based measurement can be
easily influenced by the resolution of the references. This is
because each uniform segment corresponds to only one label,
and the segment is more likely to contain different classes with
coarser resolution. This could result in imprecise evaluation re-
sults. Besides, a finer resolution can ensure that the segment is
more likely to have only one class, thereby improving the pre-
cision of the evaluation.

In contrast, we do not need to do pre-segmentation for the
range-based measurement as shown in Fig. 1 (b). Instead, we
need to measure the duration of misclassified regions between
references and hypotheses of each trial with higher precision.
Thus, range-based measurement needs to record the boundaries
for bona fide or spoof regions in the references and hypotheses.
But it does not require a definition of resolution.

3. Range-Based Measurement
3.1. Range-based FPR, FNR, and EER

Although the implementation of measurements in existing liter-
ature may be different’, all existing metrics are defined on the
basis of the confusion matrix in Table 1 and can be calculated by
using point-based or range-based measurement. Suppose a hy-
pothesis is given by a segment-level detection model and each
segment in the hypothesis has a score as shown in Fig. 1(b).
Then, the range-based version of Egs. (1) and (2) can be formu-

2Those two levels are called “classical” and “durative” in [20], and
“frame-based” as well as “boundary-based” in [21].

3Different measurements are utilized in the PS scenario. Point-based
measurement: EER in [12] and IoU in [15]. Range-based measurement:
precision, recall, and F1 in [13].



lated as follows:

Bo(r) = 5o 30 M1 <IT0um), )

i€AR, J

1
Pen(T) = Dy >0 > sy = )T, ry), 6)
€Ay, j

where 7 and j index the time range in the reference and hypothe-
sis, separately. A\ and A’5 index bona fide and spoof ranges in
references. s; is the predicted score derived from the CM for the
j-th range*. Das and Dp respectively denote the total duration
of bona fide and spoof ranges, where Dy =3, A T(rs,73i)
and Dp = ZieA% T(r;,7:). T(r;,r;) denote the overlapped
duration between two ranges r; and ;. 7; is the range with the

start time ¢; and end time ¢;41. Then, T(r;, ;) can be formu-
lated as:

T('I‘i, 1"]') = max((), min(tﬂ.l, tj+1) — max(ti, tj)). (7)

However, calculating EER usually requires comparing
Prp(7) and Pen(7) on the basis of all possible 7. Thus, we
adapted the binary search algorithm to find 7 and estimate
range-based EER.

3.2. Binary search algorithm for range-based EER

The binary search algorithm is a method that efficiently searches
for a value in a sorted list of elements. The algorithm works by
dividing the list in half at each iteration and determining which
half of the list the target value is in. We adapted the binary
search algorithm to estimate range-based EER as shown in Al-
gorithm 1°. The notations used are shown in Table 2. Sub-
scripts [, m, and r represent the left, middle, and right values
respectively in the region of each iteration during binary search.
To better adapt the binary search algorithm and estimate range-
based EER, we made two modifications:

1. We divided the list in half on the basis of the quantile but not
the value as shown in line 13 of Algorithm 1. Given that the
EER is calculated by score distribution, we searched 7 on the
basis of the quantile ( %) but not the value (%) as in
the original binary search algorithm.

2. We introduced an additional condition (Pep(7;) — Pen(71)) X
(Pep(Tm) — Pen(7m)) < 0 to assign the value for the middle
threshold as shown in line 8. When we have a predicted score
that refers to how likely it would be bona fide, Prp(7) is an
increasing function while Pan(7) is a decreasing function of
the threshold 7. Here is an important theorem, that is, when
T < 7, Prp(T) < Ppn(7) and vice versa [22]. Thus, in addi-
tion to the common condition in the binary search algorithm,
we utilized (PFP(TL) — PFN(TZ)) X (PFP(Tm) — PFN(Tm)) <0
to assign the value for the middle threshold 7,,.

4. Experiments

To further explore the relationship between point-based and
range-based measurement, we measured EER on a recent pow-
erful model [10] for spoof localization. This section introduces
the database and experimental configuration.

4The duration of the j-th range in the hypothesis can either be uni-
form with a resolution of d = t;41 — t; or a variable length of
tjy1 — t;. Experiments in Section 4 of this paper belong to the for-
mer case.

Shttps://github.com/nii-yamagishilab/PartialSpoof

Table 2: Notations used in the binary search algorithm.

s List of sorted predicted scores,
y  List of ground-truth labels,
7,Q- Threshold and its quantile, Q. € [0, 100],
71,Q;  Lower threshold and its quantile,
7r,Qr  Upper threshold and its quantile,
Tm, @m  Middle threshold and its quantile,
prec  Precision we want to get.

Algorithm 1 Binary search algorithm for range-based EER.

Input : s,y,prec
Output: Estimated range-based EER

[

Function Cal FPR FNR (s, y, 7) ¢
//Utilize Egs. (5) and (6) to
calculate range-based FPR and FNR on
the basis of the threshold 7.

N}

return PFP(T), PFN(T)
Function Percentile (s, Q):

‘ //Get percentile value of @ in s.
return percentile value
while 7, < 7. AND abs(Prp(Tm) — Pen(Tm)) > prec) do
if (PFP(TZ) — PFN(TZ)) X (Ppp(Tm) — PFN(Tm)) § 0 then
//when 71 <7< Tm

Tr 4 Tm, Qr < Qm

Pep(7r) < Pep(Tm), Pen(1r) <= Pen(Tm)

e ® N S u AW

10 else

11 //when Tp, < T < 7Tr

TL 4= Tm, Q1 Qm,

PFP(TI) < ]31:1>(7'm)7 PFN(TZ) — PFN(Tm)

12 end

13 Qm L%J

Tm < Percentile(Qm)

Pep(Tm), Pen(Tm) = Cal_FPR_ENR(S, Y, Tm)

14 end
i5s EER = PFP("‘m)‘;PFN(Tm)
return EER

4.1. Database

We used the publicly available PartialSpoof® database to cal-
culate EER. The PartialSpoof database [23] was generated by
randomly substituting spoof (or bona fide) speech segments as
bona fide (or spoof) from the same speaker. Bona fide and spoof
segments were concatenated using the overlap-add method.

4.2. Configuration

We measured the EER on the most powerful CM [10] on the
PartialSpoof database when we wrote this paper. It utilized the
self-supervised learning (SSL) model w2v2-large [24] as the
front-end, gMLP [25] as the back-end, P2SGrad-based mean
squared error [26] as the loss function, and Adam as the opti-
mizer. It supports training using multiple resolutions or a single
resolution. The finest resolution is at a frame level of 20 ms
based on the configuration of the SSL model, and the coarsest
segment-level resolution is 640 ms. We compared outputs ex-
tracted from branches of different resolutions trained at multiple
resolutions and then discussed the relationship between them.
We set prec = le — 5 to estimate the range-based EER.

Shttps://zenodo.org/record/5766198
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Table 3: Range-based and point-based EER (%) of multi-reso. CM in PartialSpoof.

Development set

Evaluation set

Reso. of Range- Point-based EER Range- Point-based EER
Training  based EER 10 20 40 80 160 320 640 based EER 10 20 40 80 160 320 640
20 24.39 23.48 0.86 0.84 0.83 0.82 0.82 0.77 30.40 29.78 12.84 11.94 10.52 8.42 596  4.06
40 24.48 23.61 23.62 0.83 0.81 0.80 0.79 0.74 30.11 29.93 29.94 11.94 10.51 8.43 598 410
80 24.60 2356  23.56  23.56 0.81 0.79 0.78 0.71 30.65 30.12 30.12 30.15 10.92 8.70 6.14  4.15
160 25.55 24.37 24.37 2436 2439 0.79 0.77 0.72 31.36 3049  30.50  30.52 30.56 9.24 640 4.11
320 30.03 2899 2899 2899 29.02  29.09 0.75  0.69 3391 3339 3338 33.41 33.45 33.48 6.34 397
640 34.96 34.84 34.84 34.85 34.87 34.87 34.59 2.15 37.38 37.53 37.53 37.54 37.56  37.56 3754  5.19
Wavetorn m . -
Reference |1110oooo11111111|d/2 [1]o]ofoz]z]a]1] [oJo]s]1],
Measuring Sl - S B R O B I I = + + o=
Hypothesis [l | Quplicate [5 15,[8:[8a[5[Se[S 5] ZHUMUM 5T 85 | 55 | 5w |
Searchingf' Sy < 83 < T <8, <8 <85 < S Sy < 83 < 8, < T <8 <85 < S Sy < 83 < 8, < T <8 <85 < Sg
FPR and FNR PFP(%):1/5,PFN(7A'):2/11 PFP(%):O/3,PFN(7A'):O/5 Ppp(%)ZO/Z,PFN(%):O/Q

EER EER ~ 20%

(a) Fine-grained resolution (d/2)

(b) Source resolution (d)

EER = 0% EER = 0%

(c) Coarser-grained resolution (2d)

Figure 2: An example for changing of score and error rate when up-sampling predicted score to fine-grained level (left) and down-
sampling to coarser-grained level (right). [Given a threshold T, the symbols “+” and “-” represent the predicted class as positive
(spoof) and negative (bona fide) respectively. The color green indicates a correct prediction, while red represents a false prediction. |

4.3. Up-sampling and down-sampling predicted scores

Models trained at fixed resolutions can usually only produce
scores for uniform segments of the same resolution used dur-
ing training. Then, we usually evaluate the performance using
pre-segmented labels with the same resolution. If we want to
measure the performance at different resolutions, we need to
perform additional post-processing, like up-sampling or down-
sampling, to convert predicted scores to the target measurement
resolution. In this paper, as shown in the Hypothesis row of
Fig. 2, (1) when up-sampling predicted scores to a fine-grained
resolution, we duplicated each segment score following the re-
lationship between the source resolution and fine-grained reso-
lution, and (2) when down-sampling scores to a coarser-grained
resolution, we aggregated adjacent segments by selecting their
minimum’ value.

4.4. Results and discussion

Table 3 shows the results for models evaluated on the devel-
opment and evaluation set of PartialSpoof separately. Each
row has the same original predicted scores, and each column
presents the measurement resolution. Thus, the point-based
EER on the diagonal presents the training and measuring at the
same resolution. The upper triangle of tables, from left to right,
shows down-sampling predicted scores to coarser-grained reso-
lution, and the lower triangle of those tables, from right to left,
shows up-sampling predicted scores to fine-grained resolution.

From the point-based EER in Table 3, we can notice that
although each row has the same predicted score, different mea-
surement resolutions can lead to significantly different perfor-
mances. This is because the point-based references were de-
fined from the pre-defined resolution. In the upper triangle
(i.e., where the temporal resolution of the point-based refer-
ence is coarser than the temporal resolution of the training data),
point-based EER may be an “underestimation” in terms of the
spoof localization performance, since the reference becomes
too coarse and does not reflect accurate boundary information
as shown in Fig. 2. In such cases, although the error value be-

7A segment with a lower score is more likely to be spoofed.

comes smaller, it just indicates that the task is easier and does
not mean that spoof localization is more accurate. In general,
errors must be interpreted with caution and in consideration of
the temporal resolution used for the point-based EER. On the
other hand, when the temporal resolution of the point-based ref-
erence is finer than the temporal resolution of the training data
(lower triangle of Table 3), or a range-based reference is used
(column “Range-based EER” of Table 3), the error value will
be naturally larger since the reference is more accurate and we
can therefore account for errors at a finer level. Note that for the
same row, even if the error is higher, it does not mean that the
model is inaccurate — they shared the same original predicted
scores but were evaluated on references with different temporal
resolutions.

Thus, for fair and proper evaluation of spoof localization
models, we recommend using range-based EER, or point-based
EER that uses references with a finer temporal resolution than
that used during model training. In addition, when the training
temporal resolution is unknown, the range-based EER would be
a more appropriate choice.

5. Conclusion

In this paper, we first defined range-based EER for spoof lo-
calization and then adapted the binary search algorithm to es-
timate it. We finally utilized range-based EER and classical
point-based EER to analyze the performance of spoof localiza-
tion deeply and discussed the relationship between them. For
the measurement, we recommend using range-based EER, or
point-based EER with unseen and finer temporal resolutions
compared with the training resolution to more fairly and prop-
erly evaluate the performance of spoof localization.
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