
XAI-Enabled Fine Granular Vertical Resources
Autoscaler

Mohamed Mekki
Student, IEEE,

Department of Communication
Systems

EURECOM
Sophia Antipolis, France

mohamed.mekki@eurecom.fr

Bouziane Brik
Senior Member, IEEE,

University of Burgundy
Dijon, France

bouziane.brik@u-bourgogne.fr

Adlen Ksentini
Senior Member, IEEE,

Department of Communication
Systems

EURECOM
Sophia Antipolis, France
adlen.ksentini@eurecom.fr

Christos Verikoukis
Senior Member, IEEE,

University of Patras and Iqua-
drat Informatica, ISI/ATHENA

Patras, Greece
cveri@upatras.gr

Abstract—Fine-granular management of cloud-native com-
puting resources is one of the key features sought by cloud
and edge operators. It consists in giving the exact amount
of computing resources needed by a microservice to avoid
resource over-provisioning, which is, by default, the adopted
solution to prevent service degradation. Fine-granular resource
management guarantees better computing resource usage, which
is critical to reducing energy consumption and resource wastage
(vital in edge computing). In this paper, we propose a novel
Zero-touch management (ZSM) framework featuring a fine-
granular computing resource scaler in a cloud-native environ-
ment. The proposed scaler algorithm uses Artificial Intelligence
(AI)/Machine Learning (ML) models to predict microservice
performances; if a service degradation is detected, then a root-
cause analysis is conducted using eXplainable AI (XAI). Based
on the XAI output, the proposed framework scales only the
needed (exact amount) resources (i.e., CPU or memory) to
overcome the service degradation. The proposed framework and
resource scheduler have been implemented on top of a cloud-
native platform based on the well-known Kubernetes tool. The
obtained results clearly indicate that the proposed scheduler with
lesser resources achieves the same service quality as the default
scheduler of Kubernetes.

Index Terms—Zero-touch Service Management (ZSM), Cloud-
native, Containerized Microservices; Machine Learning; Explain-
able Artificial Intelligence.

I. INTRODUCTION

The cloud-native concept was born with the advent and the
success of cloud resource virtualization (computing, storage,
and networking) relying on container technology [1]. In a
cloud-native architecture, cloud applications and services are
no longer deployed as monolithic blocks but rather as loosely
coupled microservices. Each microservice is deployed as a
container and managed using container orchestration engines
and platforms like Kubernetes. In contrast to the traditional
monolithic model, running applications as containerized mi-
croservices permits more agility and flexibility by facilitat-
ing development, upgrades, maintenance, and hence DevOps
operations. However, running microservices in a cloud-native
architecture opens the door for new challenges when managing
both the application life-cycle and cloud resources [2] [3]. One
of the critical challenges is scaling the microservices resources
under dynamic workload variations and resource demands.

Indeed, before deploying users’ applications or services, cloud
operators identify the number of virtual instances needed
during the execution of the workload as well as the required
resources for each application instance, such as the type and
number of virtual machines or the number of pod replicas
and resources needed for each pod in the Kubernetes cluster.
It is well-accepted that estimating the needed resources of
an application, i.e., the adequate combination of memory,
CPU, and the number of concurrent instances, to avoid service
degradation is a challenging task. The number of replicas and
the needed computing resources to optimally handle a given
application may vary over time due, for instance, to the time
period or the application’s popularity (i.e., an increase in pop-
ularity). Accordingly, it is important to design an intelligent
and efficient management system that, throughout the life-
cycle of a microservice, computes the needed resources of
microservices to run optimally and avoid service degradation.

One of the key functions of the cloud-native management
system is the scaler algorithm. The latter’s role is to com-
pute: (1) the needed application instances or virtual instances,
known as “horizontal scaling”; or (2) the amount of computing
resources per instance, known as “vertical scaling”. Several
solutions have been proposed to devise intelligent and au-
tonomous scaler solutions, which largely leverage machine
learning (ML) algorithms and, in particular, Reinforcement
Learning (RL) [4] [5]. These solutions mainly learn microser-
vices’ load patterns as well as traffic changes and generate
the learning models able to predict each microservice needs
and scale the vertical resources. However, the scaling approach
triggered after the ML algorithm prediction consists of simply
doubling or multiplying by a factor the dedicated CPU and
memory assigned to the microservice [6]. Scaling the CPU
and memory is not optimal, as not all applications are simul-
taneously sensitive to CPU and memory. Some microservices
are sensitive to CPU or memory, while only a few are sensitive
to both [7]. Therefore, scaling both computing resources may
negatively impact resource usage (waste of resources) and
hence on other critical metrics, particularly energy consump-
tion.

In this paper, we propose a Zero-touch Service Management



(ZSM) framework featuring a fine-granular resource scaler
algorithm to run microservices in a cloud-native environment
optimally. The proposed scaler algorithm relies on ML models
to predict the performances of the run microservice. When a
service degradation is detected, eXplainable Artificial Intelli-
gence (XAI) algorithms are used to interpret the ML prediction
and deduce which features led to that bad performance. More
specifically, our framework relies first on an ML algorithm
based on eXtreme Gradient Boosting (XGBoost) [8] to predict
any violations related to the performance of running appli-
cations. Here, we use the application response time metric
to characterize the application performance. The trained ML
model considers many features related to CPU and memory,
namely CPU usage, CPU limit, memory usage, and memory
limit. Parallelly, an XAI algorithm is run, namely SHapley
Additive exPlanations (SHAP) [9], to deduce the most im-
portant features that yield such violation using ML outputs.
By knowing the root cause of the performance violation,
the autoscaler algorithm scales the CPU, memory, or both.
Regarding the scale-down process, we consider a threshold-
based approach for CPU and memory, in which a scale-down
is possible. But, in order to avoid a ping-pong effect (repetitive
scale down and scale up), we also consider a stabilization
period after a scale-up where a scale-down process is not
allowed. The proposed vertical autoscaling framework can
be combined with existing horizontal scaling mechanisms
in order to achieve both vertical and horizontal resources
autoscaling.

The rest of this paper is structured as follows. Section II
provides a discussion of the related work. Section III details
the design and components of the XAI-based framework,
focusing on the proposed autoscaler algorithm. Section IV
presents the performance evaluation of our framework. Finally,
section V concludes the paper.

II. RELATED WORK

In this section, we briefly overview some of the most
significant works on ML-based resource autoscaling in cloud-
native systems.

In [10], the authors designed Autopilot as horizontal and
vertical autoscaling of resources at Google. It mainly aims to
minimize slack, i.e., the difference between capacity and real-
time resource usage, while ensuring the stable performance
of running tasks. Autopilot leveraged machine learning algo-
rithms on top of historical data related to tasks/jobs executions.
In particular, Autopilot relies on two main algorithms. The
first one enables an exponentially-smoothed sliding window,
while the second one is based on reinforcement learning (RL)
to select the suitable sliding window algorithm, which gives
better performance for each task/job. Practical results show
that Autopilot succeeds in reducing, on one hand, the slack
to 23%, against 46% for manually-scaled tasks; on the other
hand, the number of tasks impacted by out-of-memory by a
factor of 10. The authors in [2] proposed a model-based RL
scheme to enable both horizontal and vertical auto-scaling
mechanisms of container-based applications. The designed

model considers several criteria in its auto-scaling, including
application performance, resource cost, and adaptation cost.
Furthermore, the proposed scheme is integrated into Docker
Swarm to realize an Elastic Docker Swarm (EDS). Obtained
results show the efficiency and flexibility of EDS in leveraging
RL with respect to other existing elasticity policies. The
challenge of ensuring end-to-end Service Level Agreement
(SLA) while improving resource allocation to microservices
is addressed in [3]. The authors proposed a novel SLA-
Aware scheme based on Bayesian Optimization to assign
necessary resources to meet applications’ performance. This
scheme is evaluated on top of a real microservice work-
load, where the results clearly demonstrate the ability to
meet the requirements of each microservice and find Pareto-
optimal solutions. In the same context, a smart autoscaling
system for cloud microservices-based applications considering
applications’ constraints has been introduced in [11]. The
proposed autoscaler comprises two main modules: (i) the
first one monitors the microservices requirements regarding
resources through a generic autoscaling scheme integrated
into the Google Kubernetes Engine. This module auto-scales
Kubernetes with respect to the running application needs; (ii)
based on the resource requirements and applications QoS, the
second one leverages RL and deploys a set of agents to learn
and determine the autoscaling thresholds concerning resource
utilization and the maximum number of pods.

The above works mainly leverage deep learning (DL) al-
gorithms, in particular reinforcement learning, to optimize the
horizontal/vertical autoscaling of cloud applications. However,
the main drawback of such works is the black-box deployment
of DL/RL-based models. Specifically, DL/RL models are
becoming more and more complex, i.e., it is hard to under-
stand their inner workings, especially by non-expert users.
Moreover, the DL/RL models give predictions/decisions about
scaling up/down without any interpretations or explanations on
how and why such outputs are made. Hence, the corresponding
users (or container orchestration tools) can neither trust and
understand DL/RL models’ outputs nor optimize their deci-
sions with respect to DL/RL model outputs. To overcome these
limits, we leverage the emerging explainable AI paradigm to
design a novel vertical autoscaling framework. XAI enables
not only interpreting and explaining predictions made by ML
models but also helps in making suitable decisions, e.g.,
scaling up or down CPU, memory, or both, based on the
provided explanations. To the best of our knowledge, this is
the first work that combines ML and XAI models to design a
vertical and explainable autoscaling framework.

III. DESIGN AND SPECIFICATION OF THE PROPOSED
AUTOSCALER FRAMEWORK

A. The envisioned ZSM architecture

To achieve the concept of a fine-granular vertical auto-
scaler in a cloud-native environment, we propose a novel ZSM
framework that combines both ML and XAI. The proposed
ZSM framework encloses a closed-control loop that monitors,
analyses, and derives appropriate life-cycle decisions regarding



Fig. 1. Zero touch network framework architecture

a microservice, mainly the vertical scaling of computing re-
sources. The component in charge of the vertical scaling (noted
vertical scaler) is part of the decision-making function of
the closed-control loop. The latter runs autonomously without
external intervention and follows the same design of the
closed-control loop introduced in [12]; i.e., composed of three
key components: (1) Monitoring System (MS) that collects
Key Performance Indicator (KPI) regarding the performance
of running microservices, such as CPU and memory con-
sumption. (2) Analytical Engine (AE) that uses the collected
KPI by MS to analyze the microservice performance behavior
and detect Quality of Service (QoS) degradation. To run the
analysis, AE may rely on an ML algorithm, which is, in our
case, based on XGBoost, to predict the latency performance of
a microservice. In contrast to [12], our AE runs, in parallel, the
XAI algorithm to interpret the ML output. (3) Decision Engine
(DE) runs the life-cycle decision-making process to overcome
service degradation. It relies on AE analysis and takes the ML
prediction (QoS performance) and its explanation as input. In
our solution, DE contains the vertical autoscaler algorithm that
scales up resources when a service degradation is detected.
The closed-control loop system enables the automatic scaling
of vertical microservice resources.

Fig. 1 illustrates a generic architecture of the proposed ZSM
framework. We assume that all microservices run in a cloud-
native environment. The figure separates between the closed-
control loop components described in the preceding paragraph
and the virtualized infrastructure and its manager. The latter is
known as the assisted system based on ETSI Experiential Net-
worked Intelligence (ENI) group’s notation [13]. According to
ETSI cloud-native report [14], the cloud-native equivalent of
a hypervisor is Container Infrastructure Service (CIS), which
provides all the runtime infrastructural dependencies for one
or more container virtualization technologies. In contrast, Con-
tainer Infrastructure Service Management (CISM) is a cloud-

native equivalent of Virtualized Infrastructure Manager (VIM).
Technologically speaking, CSIM may correspond to Kuber-
netes. Regarding the closed-control loop, MS monitors the
KPI from CIS regarding the container’s resource usage, such
as CPU and memory consumption. In our case, we extracted
information regarding computing resource consumption (CPU,
memory) that AE will use to predict the performance of the
microservice at the service level. Here, we are interested in
predicting QoS as perceived by the end-users. In the context
of a web server, the metric reflecting the QoS can be the
response time, i.e., the time a web server takes to answer a
client request. Usually, high service time means the server is
overloaded and cannot handle the requests in a bounded time,
hence degrading the user’s quality of experience. AE runs the
trained ML model along with the XAI algorithm to predict
whether the response time corresponds to service degradation.
The XAI module uses both the collected KPI as well as the
ML prediction to provide an explanation. Both the explanation
and the prediction are transmitted to DE and, more precisely,
to the Diagnostic Engine module (Fig. 1). The latter uses
the output of the AI model responsible for detecting whether
the application response time is appropriate or not. It also
receives explanations from the XAI module about inference.
The explanation gives the contribution of the features to the
model output, which means that if the model detects a high
response time occurrence (i.e., QoS degradation), the XAI
output indicates the contribution of the application’s resource
features in this result. These characteristics are related to
either CPU usage or memory usage. The diagnostic engine
then detects the element that caused the high response time.
This information is then passed to the vertical autoscaler
algorithm, which makes a decision on which resource to scale,
hence performing a fine-granular scaling rather than blindly
scaling both CPU and memory. It is worth noting that the
autoscaler decision is enforced using the northbound API



exposed by CISM that allows updating the resources dedicated
to the container running the application by modifying the
application’s controller object of Kubernetes. Afterward, the
Kubernetes controller will rollout a new instance with the new
resources definition and delete the old instance.

Regarding the scaling down process, we use a stabilization
period after a scale-up in which scaling down will not be
performed in order to avoid resource scaling oscillations, i.e.,
the autoscaler performs one action and, after a short period,
performs the opposite action. If no performance drop has been
detected during the last few seconds of the stabilization period,
a scaling down is possible. To perform this operation, we rely
on historical data on resource usage. For memory, if during
the last stabilization period, the maximum memory usage was
under a chosen percentage, then a scaling down of memory
resources is possible. For CPU, if the mean CPU usage during
the last stabilization period was less than a certain percentage,
then a scale down of CPU resources can be performed. It
is worth noting that the scaling down process has no impact
on the granularity of the resource allocation. Indeed, when
scaling down an application, the resources are released and
can be used by another running application instance.

B. Analytical Engine (AE)

The analytical engine is responsible for analyzing the mi-
croservices’ performance and detecting QoS degradation. It is
composed of two main components: (1) the AI model, which
is based on XGBoost, to predict the latency performance of a
microservice. (2) The XAI model interprets the output of the
AI model using SHAP. Before describing the functioning of
these components, we describe the data generation process
where we perform a benchmarking of different types of
applications.

Fig. 2. Web Server’s latency in relation to the allocated CPU

1) Data generation: In order to understand the behaviour
of microservices in cloud-native environments, we built a
dataset containing information about different applications’
resource usage and performance, including web servers, data
brokers, and 5G Core Network functions. The performance
of the applications is measured using the response time to the
client requests. Each tuple of the dataset contains the following
information: the memory and CPU allocated to the workload,
the memory, and CPU used by the application, the application

Fig. 3. Web Server’s latency statistical distribution

response time, and the load on the application. The latter is
measured by the number of concurrent requests received by
the application during an interval of time. Fig. 2 shows the re-
sponse time of the webserver in relation to the CPU allocated,
we can notice that under different loads, represented by the
number of concurrent clients sending requests to the server,
the more CPU the application has, the lower the response
latency is. Moreover, in Fig. 3 we show the distribution of the
response time of the webserver. We consider the relative CPU
and memory, which represent the percentage of resources used
from the provided limit. We notice that the higher the relative
CPU is, by comparing the distribution while the relative CPU
is between 0 and 0.2 and between 0.8 and 1, the greater the
percentage of high response times is. In contrast, the memory
percentage does not change the distribution of latency values.
More information about the dataset collection and analysis is
available in [7], while the complete dataset is available in [15].

2) ML training: Considering the collected dataset, we can
observe that the resources allocated to the application and the
relative usage of resources are related to the performance of
the application. First, the allocated resources show the limit
of performance; the application with fewer available resources
will perform worse. Second, the relative resource utilization
indicates the possibility of the occurrence of high response
times, which means that the degradation of the application per-
formance is more likely to occur when the resource utilization
approaches the limit allocated to the application. Therefore, we
implement an ML model using the XGBoost classifier to detect
performance deteriorations of the application. The model uses
resource usage and limits information which can be collected
on the running applications via the MS.

XGBoost is a scalable ML system for tree boosting. It
implements the gradient-boosted trees algorithm, a supervised
learning algorithm that can be used for regression or clas-
sification tasks. We train the XGBoost classifier to detect
the application’s performance drop based on resource usage
patterns.



To train the XGBoost classifier on the web server’s dataset,
we label the dataset’s lines as QoS respected or QoS not
respected when the response time is lower or higher than a
threshold, respectively. Finally, the model gets the following
information as input: memory limit, memory usage, CPU
limit, CPU usage, relative CPU, and relative memory. Those
metrics can be collected for all the running workloads via MS
during runtime. Based on the label and the resource usage, the
model classifies the performance of the application, using the
resource consumption of the workload, into respecting QoS or
not based on the resource usage and limit.

During training, we compared several classification algo-
rithms: K-Nearest Neighbors classifier, Artificial neural net-
work classifier, logistic regression, Random forests, and XG-
Boost classifier. The XGBoost model was selected based on
the classification report by comparing the precision and recall
for class 0, which represents the performance degradation of
the service. The model’s accuracy was 0.95, and the precision
and recall for both classes (0 for Qos not respected and 1 for
QoS respected) were respectively 0.86, 0.74 for class 0, and
0.97, 0.99 for class 1.

3) XAI: The second element of the analytical engine is the
XAI module, which is responsible for interpreting the output
of the AI model. Several XAI techniques exist and can be
classified into global or local explanation techniques. Global
explanation techniques, such as SHAP, are applied to obtain
the general behavior of a model by attempting to explain the
whole logic of a model by inspecting its structure. On the other
hand, local explanation techniques, such as SHAP and LIME
[16], tackle explainability by segmenting the solution space
and giving explanations to less complex solution subspaces
that are relevant to the whole model. These explanations can
be formed through techniques with the differentiating property
that only explain part of the whole system’s functioning.

The XAI module of the AE relies on the local explanation
method based on SHAP to compute the scores of the features
contributing to the model’s output. The module’s output is the
contribution score values of the features to the output. Fig. 4
represents a visualization of an output of the SHAP method
for an ML prediction. The negative values indicate that the
feature pushes the model’s output towards the output 0. while
the positive values signify that the feature pushes the output
of the model towards the positive output 1.

For this inference, the XAI module reports the following
Shapley values or scores of the features, ordered by decreas-
ing contribution to the model output: CPU percentage -2.56,
meaning that the CPU percentage value pushed the model
towards the output 0 (SLA not respected) with a score of 2.56,
the second affecting feature is RAM limit with a score of -
1.81, the next contributing feature is RAM usage with a score
of +0.99 meaning that this feature pushed the model towards
the output 1 (SLA respected) with a score of 0.99; for the
less impacting features, the XAI module indicates CPU usage
+0.71, RAM percentage -0.38, and CPU limit -0.13.

Afterward, the selection of the resources to scale up is made
at the DE level. This is done by comparing the weighted sum

of the contribution of the features related to CPU resources
with the weighted sum of the contribution of resources related
to memory resources. We can deduce from the previous scores
that the combined score of CPU-related features is -1.98 and
memory -1.2, meaning that CPU-related features have more
influence on the model decision. Therefore, the DE decides
that the cause of the performance drop is insufficient CPU
allocation. This information allows the vertical autoscaler to
decide to allocate more CPU resources to the workload.

Fig. 4. Shapley values provided by the SHAP method

IV. PERFORMANCE EVALUATION

In this section, we present the results of validating the
ZSM components (i.e., MS, AE, and DE) and testing the
XAI-based vertical auto scaling framework. For the sake of
comparison, we implemented two versions of the vertical
scaler. The first one includes the XAI module, whereas the
second implementation does not. Next, we provide metrics
on the efficiency of autoscaling, i.e., the amount of resources
allocated to the workload regarding the performance achieved
by the workload. We demonstrate the benefits of introducing
XAI into resource management both at the application level
by achieving better performance and at the infrastructure level
by reducing resource usage, achieving the goals of both the
service owner and the network provider.

A. Testing Environment

The test facility includes a Kubernetes cluster, which is
deployed on top of an Intel server PowerEdge T440 with
128GB of RAM and 64 Core (Intel(R) Xeon(R) Silver 4216
CPU @ 2.10GHz) with hyper-threading enabled. The cluster
was bootstrapped using Kubeadm v1.21.1, and the host operat-
ing system is Ubuntu 18.04.5. All the framework components
and the tested application run as containers in the cluster.
The cluster has a Prometheus deployment for pods and node
metrics collection used by MS to collect KPI regarding the
infrastructure (i.e., CPU and memory usage of applications).

During the performance evaluation, we run a web server as
the target application to be scaled. The application instances
are deployed on the Kubernetes cluster as pods with an initial
resource configuration of 64MB of memory and 0.25 CPU
core.



B. Performance results

For the tests, we use two versions of the vertical autoscaler,
an XAI-based autoscaler to vertically scale the web server
instances resources and one without using the XAI output. The
running application is exposed to requests load produced by a
test component that uses ApacheBench1 to make a number of
concurrent HTTP requests. We refer to a test round as a set
of N requests made by C concurrent clients.

It is worth recalling that AE runs the ML model to predict
QoS degradation. The latter was trained on the dataset related
to the performance of web servers under changing configu-
rations. If the model detects degradation, the XAI module is
called. The XAI takes as input both the ML output as well
as the data set to return the Shapley (or score) values of the
features as a numerical score. Then the diagnostic engine of
DE compares the weighted sum of the memory-related features
scores with the weighted sum of the CPU-related features
scores. This output will allow the autoscaler to decide what
type of resources need to be scaled.

In case the XAI module is not involved, the autoscaler
obtains information about the service’s state using only the ML
module’s output (XGBoost); it has no information about the
contribution of the features to the model output. If degradation
is detected, both CPU and memory resources are scaled.

1) Application’s performance evolution: In this test, we run
a web application with an initial configuration of 0.25 CPU
core and 64 MB of memory. We perform 35 rounds of requests
to the application with a load that uses a concurrency level of
50 clients making 250 total requests, followed by 15 rounds
of requests with a concurrency level of 10 clients making 200
requests in total. Parallelly, we note the vertical autoscaling
decisions (i.e., scale down or up) and measure the application’s
response time and resource utilization during each round of
requests.

Figs. 5 and 6 show the results of the two key metrics
regarding resource usage, CPU and RAM, obtained when the
autoscaler decision is taken with and without the help of
XAI, respectively. Both figures represent the evolution of the
PoD’s CPU limit, CPU usage, RAM limit, and RAM usage
according to the request round number. The vertical dashed
line after round 35 indicates a reduced load on the application.
Regarding the case of the autoscaler using XAI (Fig. 5) and
based on the response time, we observe both changes in the
resources allocated to the application and their effect on its
performance shown in Fig. 7. The application initially receives
the first twelve rounds of requests, after which, based on
the metrics on pod resource usage that are collected by the
monitoring system, the ML module detects that the application
performances degrade (i.e., an increase in the response time).
For this ML prediction (i.e., inference), the XAI module
reports the Shapley values or scores of the features shown in
Fig. 4. As described in section III-B3, the DE concludes that
insufficient CPU allocation is the cause of the performance
drop. Consequently, the vertical autoscaler decides to allocate

1https://httpd.apache.org/

5 10 15 20 25 30 35 40 45 50

0.25

0.5

0.75

Requests round number

C
PU

C
or

es

(a) CPU limit and CPU used by
the pod in relation to the round number

Pod CPU Limit
Pod CPU Usage

5 10 15 20 25 30 35 40 45 50

20

64

128

Requests round number

R
A

M
(M

B
)

(b) Memory limit and memory used by
the pod in relation to the round number

Pod RAM Limit
Pod RAM Usage

Fig. 5. Evolution of CPU and allocated RAM using the XAI-assisted
autoscaler

more CPU resources to the workload. This operation increases
the CPU limit for the application; it can be observed in the
metrics of round 13 as we notice in Fig. 5.a that the amount
of CPU allocated to the application is 0.5 Core instead of
the previous 0.25 Core. Similarly, we notice changes in the
resources allocated to the pod at round 15, as the CPU has
increased from 0.5 Core to 0.75 Core, and at round 22 from
Fig. 6.b, the memory allocated to the application has increased
from 64MB to 128MB. At these same points, we notice the
effect of the autoscaler decisions on the application response
time. It drops from 20 seconds to about 4 seconds after round
16.

After round 35, the load on the application is reduced to a
concurrency level of 10 clients. We observe that the vertical
autoscaler took decisions to scale down both CPU and memory



5 10 15 20 25 30 35 40 45 50

0.25

0.5

0.75

Requests round number

C
PU

C
or

es

(a) CPU limit and CPU used by
the pod in relation to the round number

Pod CPU Limit
Pod CPU Usage

5 10 15 20 25 30 35 40 45 50

20

64

128

192

Requests round number

R
A

M
(M

B
)

(b) Memory limit and memory used by
the pod in relation to the round number

Pod RAM Limit
Pod RAM Usage

Fig. 6. Evolution of CPU and allocated RAM using the autoscaler without
XAI module’s assistance

at (1) round 34, the CPU allocated to the container is reduced
to 0.5 Core, and the memory is reduced to 64 MB; (2) round
37, the CPU allocated to the container is decreased to 0.25
Core. We can also remark, from Fig. 7, that the application’s
response time remains constant after round 35.

When the diagnostic engine has no access to the XAI
module output (i.e., no information about the contribution of
the features to the model output) (Fig. 6), the cause detection at
this level is less granular, which leads the autoscaler’s decision
to be less specific to the type of resource (CPU or memory);
hence both resources are increased.

In this scenario, and by comparing the response time of the
application in both cases, shown in Fig. 7, we can conclude
that the introduction of the XAI module allowed the vertical
autoscaler to provide lesser resources to the application (less

5 10 15 20 25 30 35 40 45 50

5

10

15

20

Requests round number

R
es

po
ns

e
tim

e
fo

r
be

st
95

%
(s

)

Using the XAI module
Without using XAI module

Fig. 7. Evolution of the application performance (response time) using the
autoscaler with and without XAI module’s assistance

memory) to achieve the same level of performance (a response
time of around 4 seconds).

2) Testing multiple instances while varying the load on the
auto-scaled applications: This time we perform an extensive
test regarding the performances of the two vertical autoscalers.
Hence, we deploy 30 applications and we vary the load to
which each application is exposed. The application is first
deployed with an initial resource configuration of 0.5 Core
of CPU and 128MB of memory. The number of concurrent
clients sending requests to each application varies from 10
to 100, while the number of requests varies from 90 when
using 10 concurrent clients to 450 when a concurrency level
of 100 is used. Finally, we perform 100 rounds for each
concurrency level. For each application, the pod configuration
is reinitialized afterward. Resulting in a total of 300 application
instances to be scaled by each autoscaler (30 services exposed
to a load varying from 10 to 100).

Fig. 8 shows the highest amount of CPU allocated to the
pod running the application for each load (Fig.8.a) and the
highest amount of memory allocated to the pod (Fig.8.b) for
both vertical autoscalers. Whereas, Fig. 9 illustrates the mean
response time of the 30 applications for the 100 rounds of
requests that each scaled application receives.

During the experimentation, the 300 instances that have
been scaled using the XAI-based autoscaler employed a total
of 184.25 cores of CPU and 29.312 GB of memory, while the
300 instances that have been scaled using the non-XAI-based
autoscaler used a total of 188.0 core of CPU and 48.128 GB
of memory. Thus, the percentage of memory gained is 39%,
while the percentage of CPU resources gained is 1%.

By comparing the decisions of the two vertical autoscalers
we observe that the XAI-based one allocates less memory
to the application for all amounts of load. In contrast, it
allocates the same or more CPU than the non-XAI-based
autoscaler. These results clearly show the fine granularity of
the resource allocation achieved by the XAI-based autoscaler,
thanks to the ability of the latter to determine the factors that
led to performance degradation. Moreover, from the response
time plot, we observe that the mean response time of the
applications while being managed by both vertical autoscalers
is approximately equal, meaning that the allocation of lower
resources by the XAI-based autoscaler did not affect the



10 20 30 40 50 60 70 80 90 100
0.3

0.5

0.7

0.9

1.1

1.3

1.5

Number of concurrent clients

C
PU

C
or

es
(a) CPU allocated to the workload

in relation to the load on the service

CPU Limit using the XAI module
CPU Limit without using the XAI module

10 20 30 40 50 60 70 80 90 100

64

128

192

256

320

384

Number of concurrent clients

R
A

M
(M

B
)

(b) Memory allocated to the workload
in relation to the load on the service

RAM Limit using the XAI module
RAM Limit without using the XAI module

Fig. 8. Highest values of CPU and RAM allocated to an instance of the
applications in relation to the number of concurrent clients

10 20 30 40 50 60 70 80 90 100

1

2

3

4

5

6

7

8

Number of concurrent clients

R
es

po
ns

e
tim

e
fo

r
be

st
95

%
(s

)

Using the XAI module
Without using the XAI module

Fig. 9. Mean response time in relation to the number of concurrent clients

applications’ performances.

V. CONCLUSION

In this paper, we introduced a ZSM framework featuring ML
and XAI to achieve fine-granular resource management in a
cloud-native environment. The proposed framework relies on a
novel closed-control loop to ensure vertical scaling of applica-
tion resources (i.e., computing). Unlike the existing solutions,
the proposed closed-control loop combines ML and XAI to
detect service degradation and select the appropriate resource
to scale up instead of scaling all types of computing resources.
All the proposed framework components (including the closed-
control loop) have been implemented on top of Kubernetes,
where the focus was to evaluate the vertical scaler that relies
on XAI using, as an example, a web server. The obtained
results showed the benefit of introducing XAI in resource auto-
scaling, allowing the latter to achieve fine-granular resource
allocation. Indeed, for the same performance (same response
time), XAI-based autoscaler allows using lesser computing
resources (CPU, memory). Therefore, knowing the root cause
of application degradation via XAI enable more efficient use
of the resources available in the infrastructure.

ACKNOWLEDGMENT

This work was partially supported by the European Union’s
Horizon 2020 Research and Innovation Program under the
AC3 project (Grant No. 101093129).

REFERENCES

[1] P. A. Frangoudis, L. Yala, A. Ksentini, and T. Taleb, “An architecture
for on-demand service deployment over a telco CDN,” in 2016 IEEE
International Conference on Communications, ICC 2016, Kuala Lumpur,
Malaysia, May 22-27, 2016. IEEE, 2016, pp. 1–6.

[2] F. Rossi, M. Nardelli, and V. Cardellini, “Horizontal and vertical scaling
of container-based applications using reinforcement learning,” in 2019
IEEE 12th International Conference on Cloud Computing (CLOUD),
2019, pp. 329–338.

[3] Q. Li, B. Li, P. Mercati, R. Illikkal, C. Tai, M. Kishinevsky, and
C. Kozyrakis, “Rambo: Resource allocation for microservices using
bayesian optimization,” IEEE Computer Architecture Letters, vol. 20,
no. 1, pp. 46–49, 2021.

[4] S. Venkateswaran and S. Sarkar, “Fitness-aware containerization service
leveraging machine learning,” IEEE Transactions on Services Comput-
ing, vol. 14, no. 6, pp. 1751–1764, 2021.

[5] M. Hamilton, N. Gonsalves, C. Lee, A. Raman, B. Walsh, S. Prasad,
D. Banda, L. Zhang, L. Zhang, and W. T. Freeman, “Large-scale
intelligent microservices,” in 2020 IEEE International Conference on
Big Data (Big Data), 2020, pp. 298–309.

[6] I. Alawe, A. Ksentini, Y. H. Aoul, and P. Bertin, “Improving traffic fore-
casting for 5g core network scalability: A machine learning approach,”
IEEE Netw., vol. 32, no. 6, pp. 42–49, 2018.

[7] T. N. Mekki, Mohamed and A. Ksentini, “Microservices configurations
and the impact on the performance in cloud native environments,” in
Accepted in IEEE Local Networks Conference, ser. LCN ’22, 2022.
[Online]. Available: https://www.eurecom.fr/index.php/fr/publication/
6971

[8] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’16. New York, NY,
USA: ACM, 2016, pp. 785–794.

[9] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” Advances in neural information processing systems, vol. 30,
2017.



[10] K. Rzadca, P. Findeisen, J. Swiderski, P. Zych, P. Broniek, J. Kusmierek,
P. Nowak, B. Strack, P. Witusowski, S. Hand, and J. Wilkes, “Autopilot:
Workload autoscaling at google,” in Proceedings of the Fifteenth Euro-
pean Conference on Computer Systems, ser. EuroSys ’20. New York,
NY, USA: Association for Computing Machinery, 2020.

[11] A. A. Khaleq and I. Ra, “Intelligent autoscaling of microservices in
the cloud for real-time applications,” IEEE Access, vol. 9, pp. 35 464–
35 476, 2021.

[12] H. Chergui, A. Ksentini, L. Blanco, and C. V. Verikoukis, “Toward zero-
touch management and orchestration of massive deployment of network
slices in 6g,” IEEE Wirel. Commun., vol. 29, no. 1, pp. 86–93, 2022.

[13] ENI Vision: Improved Network Experience using Experiential Networked
Intelligence, ETSI ENI White paper.

[14] Network Functions Virtualisation (NFV) Release 3; Architecture; “Re-
port on the Enhancements of the NFV architecture towards Cloud-native
and PaaS”, ETSI GR NFV-IFA 029 V3.3.1, Nov. 2019.

[15] dataset: Benchmarking on Microservices Configurations and the Impact
on the Performance in Cloud Native Environments. [Online]. Available:
https://zenodo.org/record/6907619#.YvDXKOxBxaR

[16] M. T. Ribeiro, S. Singh, and C. Guestrin, “” why should i trust you?”
explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining, 2016, pp. 1135–1144.


