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Abstract

Voice biometric systems are being used more and more in various applications,
including banking, call-centres, airports, access control and forensics. These
systems use automatic speaker verification technology for secure user authentica-
tion but are susceptible to spoofing attacks, also known as presentation attacks.
Spoofing is now a growing concern in academia and industry. It is essential to
mitigate the threat, especially in high security scenarios. Recent advances in
artificial intelligence have greatly improved the capability of generating synthetic
voices, making it even more challenging to distinguish between genuine and fake
audio. There is hence a need for more robust, and efficient detection techniques.
This thesis proposes novel detection algorithms which are designed to perform
reliably in the face of the highest quality attacks.

The first contribution is a non-linear ensemble of sub-band classifiers each of
which uses a classical Gaussian mixture model (GMM). Competitive results with
such a traditional approach show that models which learn sub-band specific dis-
criminative information can substantially outperform models trained on full-band
signals. Given that deep neural networks are more powerful than GMMs and can
perform both feature extraction and classification, the second contribution of this
thesis is a RawNet2 model. It is an end-to-end approach to anti-spoofing and
deepfake detection which automatically learns discriminative features directly
from raw waveform inputs. Results show that RawNet2 performs reliably even in
the face of previously unseen spoofing attacks. End-to-end modelling can be seen
as a joint feature extraction and classification framework which streamlines the
processes of training and evaluation.

The third contribution of this thesis includes the first use of graph neural networks
(GNNs) with an attention mechanism to model the complex relationship between
discriminative information present in spectral and temporal domains. We propose
an end-to-end spectro-temporal graph attention network called RawGAT-ST.
Like the RawNet2 model, it also operates directly upon raw waveform inputs. An
attentive graph pooling layer is incorporated to identify and retain informative
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Abstract

nodes and to discard irrelevant ones, thereby reducing computation and also
improving discrimination power. The RawGAT-ST model is further extended to
an integrated spectro-temporal graph attention network, named AASIST which
exploits the relationship between heterogeneous spectral and temporal graphs.
The use of a heterogeneous graph attention network allows for the integration
of different types of nodes/edges which contain different feature characteristics.
GNN-based countermeasures leverage the inherent information in both domains
concurrently, improving the detection of more sophisticated spoofing attacks,
while also improving upon generalisation.

The final contributions relate to the development of a novel data augmentation
technique and a self-supervised front-end which improves generalisation and
domain-robustness under more practical conditions. Acquiring training data that
is representative of spoofing attacks with near-boundless variability is impractical
or even impossible. Nonetheless, the performance of spoofing countermeasures
relies on the use of sufficiently representative training data. To address this issue,
we propose a raw data augmentation technique called RawBoost. RawBoost
improves spoofing detection reliability in the face of nuisance variation stemming
from unknown encoding, and transmission conditions and from different micro-
phones and amplifiers, and both linear and non-linear device-generated distortion,
all of which characterise a logical access or telephony scenario. An alternative
approach is to use a front-end in the form of readily available self-supervised,
pre-trained speech models trained on large databases. The combination of a
self-supervised front-end with RawBoost brings substantial improvements in
performance for the ASVspoof 2021 logical access and deepfake databases.

The work reported in this thesis has redefined the state-of-the-art in anti-spoofing,
with results for RawGAT-ST, AASIST and SSL-based countermeasure solutions
all being the best reported at the time of publication, and with those for the
self-supervised based countermeasure remaining the best reported to date.
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Chapter 1

Introduction

The focus of the work presented in this thesis is the design of generalisable counter-
measures to secure voice biometric systems from spoofing attacks. These counter-
measures are designed to be domain-robust and efficient, and to function reliably
in real-world environments.

1.1 Biometric system vulnerabilities
Voice-based human-machine interfaces [1] are today widely used for commercial
services, such as online banking and e-commerce. These systems use automatic
speaker verification (ASV) technology [1–4] to verify the identity of a user before
allowing them to interact with the service and to access sensitive information
or resources. While ASV serves as a convenient and efficient approach for
user authentication, like any biometric system, it can be vulnerable to spoofing
attacks [5]. According to the ISO/IEC 30107-1 standards [5,6], a generic biometric
system recognition (i.e., ASV) can be manipulated or attacked at various points,
as shown in Figure 1.1. Spoofing, the focus in this thesis, is applied by an
adversary at the points marked 1 and 2 in Figure 1.1. Since neither sensor
level 1 nor post-sensor level 2 attacks need system-level access, they are more
easily implemented than other forms of attack at different system levels 3 - 9

and are generally considered to pose the greatest threat [7]. In an ASV scenario
sensor-level (microphone) attacks are assumed to be launched in a physical access
(PA) scenario whereas post-sensor-level (post-microphone) attacks correspond to
a logical access (LA) scenario [8]. In the former, the microphone is a part of the
biometric system and within the control of the system designer. In LA scenarios,
e.g. telephony, the microphone is not part of the biometric system and is, instead,
under the control of the user. With telephony being a dominant ASV use case,
the work in this thesis is concerned predominantly with post-sensor attacks and
the LA scenario.
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Figure 1.1: Possible presentation attacks point to speaker recognition system. 1:
microphone point, 2: transmission point, 3: override feature extractor, 4: modify
features, 5: override classifier, 6: modify speaker database, 7: modify biometric
reference, 8: modify score and 9: override decision. Reproduced from [8].

1.2 Spoofing
ASV spoofing attacks [5], involve the manipulation of biometric recognition
through various methods, such as voice conversion (VC) [9, 10], text-to-speech
synthesis (TTS) [11], and replay attacks [12, 13], all of which can degrade
performance. A growing number of studies have gauged the vulnerability of ASV
systems to various forms of attack [14, 15]. For applications requiring medium to
high-level security, the susceptibility to spoofing is a critical concern that cannot
be ignored. Advanced attack algorithms can increasingly generate convincing fake
utterances which can fool ASV systems. They can be extremely difficult to detect
or distinguish from bona fide speech. A typical spoofing generation framework
is illustrated to the left in Figure 1.2. The spoofing generation process utilises
advanced TTS and VC techniques to create spoofed speech. They introduce
processing artefacts that may be used by a countermeasure (CM) for spoofing
detection.

TTS systems generate entirely artificial speech signals from text inputs, while VC
systems operate on natural (human) speech. TTS-based attacks are highly effec-
tive, and many synthetic speech detectors have been designed to protect against
TTS-based spoofing attacks [16]. Synthetic speech can be generated with para-
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Figure 1.2: A traditional spoofing generation and detection framework.

metric synthesis frameworks [17], using the WORLD vocoder [18], WaveNet [19],
and waveform concatenation methods [20] among others. Phase-based synthetic
detectors were the state-of-the-art for synthetic speech detection [21, 22] at the
time when the work presented in this thesis began. Today’s more advanced
end-to-end neural TTS system, e.g. Tacotron 2 [23] can generate synthetic speech
with high naturalness and greater perceptual similarity to target speakers and
is generally more challenging to detect. VC-based attacks convert the voice in
a given utterance towards a target voice in order to deceive ASV systems and
can be generated using VAE-based frameworks [24] with the WORLD vocoder,
Wavenet vocoder [25], and with waveform and spectral filtering through classical
overlap-add (OLA) techniques, among others. A more detailed treatment of TTS
and VC spoofing attacks and CMs for automatic speaker verification, at the time
when this work began, can be found in [8, 26–29].

The recent advancement in techniques to generate realistic audio content has
left it difficult to distinguish between real and fake content. While they have
useful applications in real life, they can also lead to serious threats related to
security through so-called Deepfakes. In recent years, these threats have gained
increasing attention [28, 30, 31], as demonstrated by the dangers of fake audio
recordings in spreading misinformation, fraud, phishing and identity theft [32].
Adversaries are already using speech deepfakes to commit fraud [33]. Advances
in synthesis and deepfake technology have made it easier to generate credible
synthetic voice signals that can manipulate recognition systems [34]. Audio
deepfakes are easily accessible by anyone using a computer device or a simple
smartphone [35]. Spoofing attacks and deepfakes are now a growing concern. The
protection of ASV systems from such threats has become essential, and has led
to the development of spoofing CMs, also known as presentation attack detection
(PAD) solutions in the ISO/IEC 30107 standard [5]. PAD solutions are usually
considered as either artefact detection or liveness detection [36, 37]. Liveness
detection normally requires additional sensors (e.g., airflow and throat sensors to
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detect airflow and throat vibrations) which might not be available in the case
of telephony scenarios. Most speaker recognition PAD solutions are based on
artefact detection, which is the focus in this thesis.

The Automatic Speaker Verification Spoofing and Countermeasures (ASVspoof)
initiative was established to promote the development of CMs/PADs to protect
ASV systems from being spoofed. The role of a CM is to determine whether a
speech utterance is bona fide speech or is, instead, spoofed. A traditional spoofing
CM framework is illustrated to the right in Figure 1.2. It comprises a front-end
(feature extraction), a back-end, and decision logic (classifier), where the final
classification decision is made based upon the comparison of a classification score
to a pre-defined detection threshold. Speech spoken by a human speaker is referred
to as bona fide or genuine speech, whereas that generated either by machines or
by replaying a recorded utterance is referred to as spoofed. A detailed summary
of spoofing CM systems can be found in widely cited review articles [8, 29,38,39].
Voice spoof detection has now become a well-established research topic, bringing
together researchers from various fields such as biometrics, machine learning, and
speech processing.

The first special event on automatic speaker verification spoofing and countermea-
sures was held at INTERSPEECH in 2013 [14]. The ASVspoof community has
since organised four biennial challenges to promote the development of spoofing
CMs to protect ASV systems. These challenges have provided common datasets
of bona fide and spoofed speech signals, baseline systems, and platforms for the
evaluation of different CM solutions. Initially, the ASVspoof initiative established
research in the same two scenarios introduced in Section 1.1, an LA scenario
involving spoofing attacks generated by TTS and VC technologies, and a PA
scenario, involving attacks produced by recording and replay devices in controlled,
simulated and real scenarios. More recently, a new deepfake (DF) detection task
was introduced and involves attacks generated from different sources and audio
data which is compressed using algorithms typical of online and social media
scenarios.

The first edition of the ASVspoof challenge series, held in 2015 [15], focused
on developing CMs for the detection of LA attacks generated using TTS and
VC technologies. The second edition of the challenge, held in 2017, shifted the
focus to PA attacks, specifically replay spoofing attacks [40]. The third edition,
ASVspoof 2019, was the first to combine both LA and PA scenarios, including
TTS, VC, and replay spoofing attacks, in a single evaluation. The goal of the LA
evaluation was to determine the extent to which more advanced speech synthesis
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and voice conversion technology pose a threat to the reliability of ASV systems.
The performance of a spoofing CM has a direct impact on the effectiveness of the
ASV system. While CMs can improve security by rejecting spoofed trials, they
can also lead to degraded usability by rejecting bona fide trials. As a result, it will
impact on both reliability and usability. Accordingly, there is no assurance that
a better-performing CM with lower a equal error rate (EER) will deliver more
reliable ASV performance. Hence, an integrated approach to assessment is desir-
able and should measure the effect of spoofing and CMs upon the ASV system.
To address this, the ASVspoof 2019 challenge introduced a new tandem evalua-
tion method, using the minimum tandem Detection Cost Function (min t-DCF)
as the default evaluation metric [40]. It replaced the EER used in previous editions.

Despite significant progress in spoofing detection reliability, generalisation and
reliability remain a challenge in real-world conditions. This issue was addressed
in the fourth edition, ASVspoof 2021 [41]. In the first three editions of the
ASVspoof challenge series, bona fide and spoofed data were of high quality (clean
audio) without the variation which could be expected in real-world conditions,
e.g. variation stemming from transmission through telephony networks, encoding,
and compression effects. CMs trained on such clean data may not generalise well
to more practical scenarios, such as the telephony [42, 43]. The fourth edition of
the challenge series, ASVspoof 2021, aimed to address this issue by promoting
the development of CMs which improve generalisation and domain robustness
in more realistic scenarios involving speech data transmission. The new DF
detection task introduced for the ASVspoof 2021 challenge, aimed to improve
CM robustness in the face of compressed speech across diverse domains. The DF
database was generated from multiple source corpora, including the Voice Cloning
toolkit (VCTK) database [44], the 2018 [45] and 2020 [46] Voice Conversion
Challenge (VCC) databases. It contains spoofed utterances generated with over
100 diverse spoofing attack algorithms. This thesis focuses primarily on the LA
and DF scenarios.

1.3 Thesis scope
Over the past few decades, research has led to the development of robust spoof-
ing detection solutions and significant improvements in performance. The best
performing CMs are often an ensemble of multiple systems. This trend was par-
ticularly evident in the ASVspoof 2019 challenge, for which a selection of detection
error trade-off (DET) results are presented in Figure 1.3. The best ensemble sys-
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T45 best single 

Baseline B02 

T05 best ensemble 

Figure 1.3: Countermeasures DET profiles for the ASVspoof 2019 LA challenge
submissions. All grey profiles for ensemble systems and the best single system and
baseline are highlighted in blue and red profile, respectively.

tem, T051, combined the outputs of seven complex deep neural network-based
sub-models, as described in [47]. Due to the lack of a detailed system description
and open source implementation, this level of performance has never been repro-
duced by others. From ASVspoof results, it is evident that min t-DCF results are
dominated by performance for some worst-case attack algorithms. An adversary
could exploit knowledge of such worst-case conditions to use only the most effec-
tive attack to better manipulate an ASV system. Therefore, it is important to
improve not just pooled (across different spoofing attacks) performance, but also
performance in these worst-case scenarios (most difficult-to-detect attacks). Gen-
eralisation to a wide range of attacks remains an open challenge. To improve model
generalisation and push the limits of spoofing CM performance, the work reported
in this thesis had the aim of designing more reliable, more generalisable and more
efficient spoofing CMs. Ensemble-based solutions (e.g. T05) can be computation-
ally expensive, making it difficult to deploy these models in real-world applications.
There is a need for more computationally efficient CMs that can achieve better,

1Anonymous identifiers were used in order to protect team identities.
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or similar levels of performance as existing complex ensemble-based solutions.

1.4 Thesis structure
The work presented in this thesis endeavors to develop reliable spoofing CMs
for secure voice biometrics which generalise well across different realistic envi-
ronments. We introduce new end-to-end deep neural network and graph neural
network-based CMs, namely, RawNet2, RawGAT-ST and AASIST as well as a
self-supervised learning-based solution, in addition to a novel data augmentation
technique named RawBoost. We present an evaluation of the proposed methods
and techniques performed using three widely used standard benchmarks, namely
ASVspoof 2019 LA, and ASVspoof 2021 LA and DF. These are described in
Chapter 2, which also presents a literature review of ASV vulnerabilities to
spoofing as well as CMs, and the progress made in improving spoofing detection
reliability through biennial ASVspoof challenges. Conclusions and future research
directions are presented in Chapter 10. The following provides an overview of the
structure and contributions in chapters 3-9.

Chapter 3

The work presented in Chapter 3 investigates the impact of sub-band mod-
eling for ASV spoofing detection. We present an explainability study of
constant-Q Cepstral Coefficients (CQCCs), one of the most popular spoofing CM
front-ends when this work began. The goal of this work is to better understand
and explain why the CQCC front-end is so effective at detecting some forms
of spoofing attack but performs poorly in detecting others. Our findings from
sub-band modeling confirm that different spoofing attacks exhibit artefacts at
different frequencies, which can be better captured by specific front-ends. A
proper understanding of these artefacts and where they are localised in the signal
helps to design more reliable spoofing CMs, as shown later in the thesis.

The work presented in this chapter was published in:
• Hemlata Tak, Jose Patino, Andreas Nautsch, Nicholas Evans and Massi-

miliano Todisco, “An explainability study of the constant Q cepstral
coefficient spoofing countermeasure for automatic speaker verifi-
cation,” in Proc. The Speaker and Language Recognition Workshop, Tokyo,
Japan, Nov., 2020.

Chapter 4
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Based on findings from Chapter 3, in Chapter 4 we first investigate whether
spoofing attacks leave sub-band artefacts or cues that require specific spoofing
CMs to detect. Second, we investigate whether non-linear fusion approaches offer
the potential to combine the scores produced by an ensemble of different sub-band
classifiers. Our results show that a simple sub-band modeling-based approach can
achieve superior performance compared to more sophisticated ensemble solutions
which rely on more complex and deeper neural network architectures.

The work presented in this chapter was published in:

• Hemlata Tak, Jose Patino, Andreas Nautsch, Nicholas Evans and Mas-
similiano Todisco, “Spoofing Attack Detection using the Non-linear
Fusion of Sub-band Classifiers,” in Proc. INTERSPEECH, Shanghai,
China, October 2020.

This work shows that a non-linear ensemble of sub-band CMs, which learn sub-
band specific discriminative information can substantially outperform models
trained on full-band signals.

Chapter 5

Following the emphasis on hand-crafted features in Chapters 3 and 4, in
Chapter 5 the focus shifts to the use of end-to-end modeling, where the front-end
and back-end classifier are jointly optimised. The aim is to design an end-to-end
deep neural network that can learn more generalisable and task-specific features
directly from the raw waveform. Our hypothesis is that hand-crafted features
do not offer the best potential for detecting unforeseen attacks because they
rely too heavily on the characterisation of artefacts or cues corresponding to
known attacks. These attack-specific artefacts may be insufficient for detecting
previously unseen attacks, so a higher-level, more generalisable representation
is needed to ensure robust performance. Introduced in Chapter 5 is the first
successful application of RawNet2, an end-to-end deep neural network for spoofing
and deepfake detection. It is used to learn representative features directly from
raw waveform inputs in fully end-to-end fashion. Inspired by the importance
of the spectro-temporal resolution in Chapter 3, we also investigate the use
of different spectral and temporal resolutions in the front-end initialisation to
capture artefacts more effectively. The proposed end-to-end approach achieves
impressive results for a range of different spoofing attacks, and outperforms all
prior approaches for the worst-case scenario (the most difficult-to-detect A17
attack) at the time of publication.

The work presented in this chapter was published in:
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• Hemlata Tak, Jose Patino, Massimiliano Todisco, Andreas Nautsch,
Nicholas Evans and Anthony Larcher, “End-to-end anti-spoofing using
RawNet2,” in Proc. IEEE ICASSP, Toronto, Ontario, Canada, June,
2021.

This work introduces a new end-to-end architecture, RawNet2 which operates
directly upon raw waveform inputs to effectively detect a wide range of previously
unseen attacks. The RawNet2 model shows the benefit of end-to-end automatic
feature learning, particularly for the worst-case A17 attack, with a significant
improvement in min t-DCF performance over the baseline.

Chapter 6

In Chapter 6, we present the first application of graph attention networks
(GATs) to spoofing and deepfake detection. The work reported in earlier chapters
shows that spoofed and bona fide utterances can be distinguished by artefacts
in different spectral or temporal domains, which can be detected using models
with spectral or temporal attention. However, these approaches often require
computationally intensive ensemble systems to detect different forms of attack.
The goal of the work presented in Chapter 6 is to design a single, efficient
system that can learn the relationship between spoofing cues or artefacts across
different spectral and temporal intervals which is capable of detecting a wide
range of unseen spoofing attacks without using score-level ensembles. To achieve
this, we propose a novel end-to-end spectro-temporal graph attention network,
called RawGAT-ST, which uses a GAT to learn the relationships between cues in
different sub-bands and temporal intervals. Every node in the graph represents
a feature, and each edge indicates the relationship between different node pairs.
The proposed method achieved the best reported performance at the time of
publication by combining spectral and temporal graphs through addition and
multiplication operations.

The work presented in this chapter was published in:

• Hemlata Tak, Jee-weon jung, Jose Patino,Massimiliano Todisco, and
Nicholas Evans, “Graph Attention Network for Anti-Spoofing,” in
Proc. INTERSPEECH, Brno, Czech Republic, September 2021.

• Hemlata Tak, Jee-weon jung, Jose Patino, Madhu Kamble, Massimiliano
Todisco, and Nicholas Evans, “End-to-End Spectro-Temporal Graph
Attention Networks for Speaker Verification Anti-Spoofing and
Speech Deepfake Detection,” in Proc. the ASVspoof 2021 Challenge
(INTERSPEECH Satellite Workshop), September 2021.
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This work introduces the first successful application of graph neural networks and
self-attention mechanism to spoofing and deepfake detection.

Chapter 7

Motivated by the impressive performance of the RawGAT-ST model, we
explored an extension in the form of a heterogeneous graph attention layer [48].
This leads to a new, integrated spectro-temporal graph attention network named
AASIST. The spectral and temporal graphs are heterogeneous, composed of dif-
ferent types of nodes/edges which represent different feature characteristics. The
integration of spectral and temporal graph representations using a heterogeneous
graph attention layer is shown to be more effective than the approach in the
original RawGAT-ST model. At the time of writing, AASIST was the best single
CM system reported in the literature.

The work presented in this chapter was published in:

• Jee-weon Jung, Hee-Soo Heo, Hemlata Tak, Hye-jin Shim,Joon Son
Chung, Bong-Jin Lee, Ha-Jin Yu, Nicholas Evans, “AASIST: Audio
Anti-Spoofing using Integrated Spectro-Temporal Graph Atten-
tion Networks,” in IEEE ICASSP, Singapore, May 2022.

This article is the result of joint work with Dr. Jee-Weon Jung (first author).
It introduces a more efficient, robust, and integrated spectro-temporal attention
network by utilising a novel heterogeneous graph attention layer.

Chapter 8

In Chapter 8, we introduce a novel data augmentation technique, named
RawBoost, which operates directly upon raw waveform inputs and which is
compatible with the end-to-end models reported in earlier chapters. It helps to
reduce model over-fitting and to improve generalisation to more realistic and
challenging conditions, such as those in telephony applications.

The work presented in this chapter was published in:

• Hemlata Tak, Madhu Kamble, Jose Patino, Massimiliano Todisco, and
Nicholas Evans, “RawBoost: A Raw Data Boosting and Augmen-
tation Method applied to Automatic Speaker Verification Anti-
Spoofing,” in Proc. IEEE ICASSP, Singapore, May 2022.

This work introduces a raw data augmentation technique which uses simple
signal processing algorithms to improve generalisation and domain-robustness
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in challenging and realistic environments, especially for telephony applications
(PSTN+VoIP).

Chapter 9

The final contribution, presented in Chapter 9, relates to our use of self-
supervised learning (SSL) through a fine-tuned wav2vec 2.0 pre-trained model
to improve model generalisation and domain robustness. We use wav2vec 2.0
as a front-end to extract more generalised and representative features. Despite
the SSL front-end being trained initially on a massive amount of only bona fide
data, it can substantially improve generalisation to previously unseen spoofing
attacks by fine-tuning using in-domain bona fide and spoofed utterances. Results
show that the use of an SSL-based front-end in conjunction with RawBoost data
augmentation leads to relative improvements of 90% and 88% over the baseline
for the LA and DF tasks, respectively, achieving the lowest EERs at the time of
writing.

The work presented in this chapter was published in:

• Hemlata Tak, Massimiliano Todisco, Xin Wang, Jee-weon Jung, Junichi
Yamagishi, and Nicholas Evans, “Automatic speaker verification spoof-
ing and deepfake detection using wav2vec 2.0 and data augmenta-
tion,” in Proc. The Speaker and Language Recognition Workshop, Beijing,
China, June 2022.

This work introduce a new state-of-the-art CM solution for spoofing and deepfake
detection. The proposed approach leverages self-supervised feature representations
with a more sophisticated graph neural network-based classifier, and the RawBoost
data augmentation technique.
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Chapter 2

Literature review

Spoofing attacks pose a significant threat as they allow fraudsters to gain
unauthorised access to resources, services or devices. No matter what the
security level, for the most part, these threats can be unacceptable. To ad-
dress this problem, the ASVspoof initiative has led efforts to design spoofing
countermeasures (CMs), which aim to automatically detect and deflect spoofing
attacks against ASV system. This effort was initiated following the first special
session on anti-spoofing [14] held at INTERSPEECH in 2013.1 The ASVspoof
initiative has since, collected and distributed large scale databases comprising
both genuine and spoofed utterances generated using a range of advanced
algorithms. These databases have been used in biennial challenges [15, 40, 41, 49],
which have yielded significant improvements in the reliability of spoofing detection.

This chapter provides a description of the ASVspoof corpus and evaluation metrics,
as well as a brief overview of the background literature relevant to the research
work presented in this thesis. It includes a detailed review of CMs used for spoofing
detection for the logical access (LA) and deepfake (DF) detection tasks. For a more
detailed summary on automatic speaker verification spoofing detection, readers can
refer to widely cited survey papers [8, 29, 38, 39].

2.1 Spoofing databases
Presented in this section are the databases used for the design and evaluation of
CMs against spoofing attacks. The first ASVspoof challenge in 2015 [15] studied a
LA scenario. For the 2017 challenge [40], the goal was to detect replayed speech in
a physical access (PA) scenario. In 2019 [49, 50], more advanced, state-of-the-art
text-to-speech synthesis (TTS) and voice conversion (VC) algorithms were used for
a LA spoofing detection task. The most recent 2021 edition [41, 51], involved the

1https://www.asvspoof.org/
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2.1. SPOOFING DATABASES

most challenging scenario to date, involving variable transmission and encoding
conditions as well as a new DF detection task in which there is no ASV. This
thesis reports experiments with three of these databases, namely the ASVspoof
2015, 2019 and 2021 LA and DF databases. They were all generated from the
same VCTK source database.2

2.1.1 ASVspoof 2015 logical access database
The ASVspoof 2015 database3 was the first challenge database, released in 2015,
for automatic speaker verification spoofing detection. It contains three disjoint
partitions: training, development and evaluation. Each partition comprises a set
of genuine (bona fide) and spoofed utterances, with the latter generated with TTS
and VC algorithms [52] which were popular at that time. There are a total of 10
spoofing attacks. The first 5 attacks (S1–S5) are used in generating the training
and development partition and are collectively referred to as known attacks. The
remaining attacks (S6–S10) are used in generating the evaluation partition and
are referred to as unknown attacks. Table 2.1 summarises the statistics of each
subset. Full details of the database and protocols are available in [52].

Table 2.1: Statistics of the database used in ASVspoof 2015 challenge.

Subsets # Speakers # Utterances
Male Female Bona fide Spoof

train 10 15 3750 12625
development 15 20 3497 49875
evaluation 20 26 9404 184000

2.1.2 ASVspoof 2019 logical access database
Other experiments in this thesis were conducted using the ASVspoof 2019 challenge
database4 which consist of three disjoint partitions: training, development and
evaluation. Spoofed utterances in each partition are generated using a set of more
advanced VC, TTS, and hybrid (VC-TTS) algorithms [53]. There are a total of
19 different spoofing attacks. Attacks in the training and development partition
were created with a set of 6 different algorithms (A01-A06), whereas attacks in
the evaluation partition were created with a set of 13 algorithms (A07-A19). Four
TTS algorithms (A01-A04) and two VC algorithms (A05 and A06) were used to
generate spoofing attacks in the training and development partitions. Two TTS

2http://dx.doi.org/10.7488/ds/1994
3https://datashare.ed.ac.uk/handle/10283/782
4https://doi.org/10.7488/ds/2555
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2.1. SPOOFING DATABASES

Table 2.2: A summary of the spoofing attack algorithms (VC and TTS based)
from the ASVspoof 2019 logical access database. * indicates neural networks.

Attack type Conversion Waveform generation

Attacks in
train

and Dev.

A01 TTS AR RNN* WaveNet *
A02 TTS AR RNN* WORLD
A03 TTS FF* WORLD
A04 TTS CART Waveform concat.
A05 VC VAE* WORLD
A06 VC GMM-UBM Spectral filtering + OLA

A
tt
ac
ks

in
Ev

al

Known
attacks

A16 TTS CART Waveform concat.
A19 VC GMM-UBM Spectral filtering + OLA

Partially
known
attacks

A07 TTS RNN* WORLD
A08 TTS AR RNN* Neural source-filter*
A09 TTS RNN Vocaine
A17 VC VAE* Waveform filtering

Unknown
attacks

A10 TTS AR RNN+ CNN WaveRNN*
A11 TTS AR RNN+ CNN Griffin-Lim
A12 TTS RNN WaveNet *
A13 VC-TTS Momentum match* Waveform filtering
A14 VC-TTS RNN* STRAIGHT
A15 VC-TTS RNN* WaveNet *
A18 VC Linear MFCC vocoder

algorithms (A07 and A16), four VC algorithms (A13, A14, A17, and A19), and two
hybrid algorithms (VC with TTS-generated inputs, A13 and A14) were used to
generate the evaluation partition. Table 2.2 summarises the waveform conversion
and generation techniques used for each spoofing attack. More detailed information
on each attack algorithm can be found in [53]. It is important to note that in the
2019 LA evaluation set, the spoofing attacks A16 and A19 can be considered
as known attacks because the same algorithms were used to generate spoofed
trials for the training and development partitions (A04 and A06), despite the data
corresponding to disjoint utterances and speakers. The remaining spoofing attacks
in the test set are either completely unknown or only partially similar to those used
in the training set. The statistics of the ASVspoof 2019 database are summarised
in Table 2.3.

2.1.3 ASVspoof 2021 logical access database
As per the evaluation plan [41, 51], ASVspoof 2019 LA training and develop-
ment data were utilised for the training and optimisation of CM solutions for
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Table 2.3: Statistics of the database used in ASVspoof 2019 and ASVspoof 2021
challenge. ASVspoof 2019 LA training and development partitions were used in
ASVspoof 2021 LA and DF challenge.

Subset Speaker ASVspoof 2019 LA ASVspoof 2021 LA ASVspoof 2021 DF
Male Female Bona fide Spoof Bona fide Spoof Bona fide Spoof

Train 8 12 2580 22800 - - - -
Dev 4 6 2548 22296 - - - -
Eval 21 27 7355 63882 14816 133360 14869 519059

the ASVspoof 2021 challenge. The use of any other external speech data was
forbidden. The ASVspoof 2021 LA evaluation database5 was sourced from the
ASVspoof 2019 evaluation partition. While both ASVspoof 2019, and hence also
the 2021 LA databases are generated from the same VCTK source database [44],
some utterances in the 2021 evaluation database were transmitted across a tele-
phony network such as a PSTN or VoIP, using various codecs including A-law,
G.722, and others [41]. This resulted in the seven LA evaluation conditions illus-
trated in Table 2.4. The codecs operating at 8 kHz includes C2:a-law, C4: µ-law,
and C5: GSM. Conditions C1:none, C4: G.722 and C7:OPUS correspond to a
16 kHz sampling rate. The bit rates of each codec are listed in the last column
of Table 2.4. ASVspoof 2021 LA data is divided into two subsets: progress and
evaluation. The progress subset contains a small number of trials from known
codec conditions (C1-C4) and was used for intermediate assessment before the
final evaluation submission. The evaluation subset contains the remaining trials
from C1-C4 conditions in addition to all trials from unknown conditions (C5-C7).
The statistics of ASVspoof 2021 LA and DF database are summarised in Table 2.3.

Table 2.4: Summary of LA evaluation conditions. Codecs in Italics are unknown
only used in the evaluation phase.

Cond. Codec Sampling rate Bitrate
LA-C1 no codec 16 kHz 250 kbps
LA-C2 a-law 8 kHz 64 kbps
LA-C3 µ-law 8 kHz 64 kbps
LA-C4 G.722 16 kHz 64 kbps
LA-C5 µ-law 8 kHz 64 kbps
LA-C6 GSM 8 kHz 13 kbps
LA-C7 OPUS 16 kHz VBR 16 kbps

5https://doi.org/10.5281/zenodo.4837263

20

https://doi.org/10.5281/zenodo.4837263


2.1. SPOOFING DATABASES

Table 2.5: Summary of DF evaluation conditions. Italics only codecs used in the
evaluation phase.

Cond. Compression Bitrate
DF-C1 - 256 kbps
DF-C2 low mp3 ∼80-120 kbps
DF-C3 high mp3 ∼220-260 kbps
DF-C4 low m4a ∼20-32 kbps
DF-C5 high m4a ∼96-112 kbps
DF-C6 low ogg ∼80-96 kbps
DF-C7 high ogg ∼256-320 kbps
DF-C8 mp3→ m4a ∼80-120 kbps, ∼96-112 kbps
DF-C9 ogg→ m4a ∼80-96 kbps, ∼96-112 kbps

2.1.4 ASVspoof 2021 deepfake database
The ASVspoof 2021 DF database6 [41] is based upon multiple diverse corpora,
including the VCTK database [44], the 2018 [45] and 2020 [46] voice conversion
challenge (VCC) databases, and includes spoofed utterances generated with over
100 diverse spoofing attack algorithms. The aim of the DF task is to address CM
generalisation across different compression algorithms as well as different domains
(different databases) and unknown spoofing attacks. Audio utterances were pro-
cessed with the set of different media codecs, giving the DF evaluation conditions
listed in Table 2.5: DF-C1: no codecs, DF-C2 and C3: mp3 codec, DF-C4, and
C5: m4a codec, DF-C6 and C7: ogg vorbis codec with different, variable bit rates,
and DF-C8: mp3→m4a, DF-C9: ogg→m4a. The last two dual codec conditions
were included to determine whether spoofing artefacts can still be detected after
transcoding. Each of these codec conditions include different vocoder conditions
(from the 2018 [45] and 2020 [46] VCC databases) such as traditional, neural au-
toregressive, neural non-autoregressive, and waveform concatenation [54]. The DF
database is more challenging in terms of generalisation as audio utterances are
from unknown domains and are generated with far more diverse spoofing attacks.
The ASVspoof 2019 training partition contains neither encoding, transmission nor
media compression effects. There is hence an interest in data augmentation tech-
niques to compensate for the lack of in-domain training and development data [41].
Full details of both LA and DF database and experimental protocols are available
in [41, 54].

6https://doi.org/10.5281/zenodo.4835108
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2.2 Performance metrics
Spoofing detection is usually approached as a binary classification task in which
the classifier evaluates the input trial and assigns a score to each trial. If the
score is greater than some pre-defined threshold τcm, then the trial is classified
as bona fide, otherwise spoofed. The most common metric used for evaluation
is the Equal Error Rate (EER). The EER is defined by an operating point at
which both the false acceptance rate (P cm

fa , spoofed trials classified as bona fide)
and the false rejection rate (P cm

miss, bona fide trials classified as spoofed) are equal.
For all experiments reported in this thesis, the EER is computed using a convex
hull approach with the Bosaris toolkit [55]. The P cm

fa and the P cm
miss are defined as

follows:
Pcm

fa (τcm) = #spoofed trials with CM scores > τcm

#total spoofed trials (2.1)

Pcm
miss(τcm) = #bona fide trials with CM scores ≤ τcm

#total bona fide trials (2.2)

False accepts (FAs) occur when a spoofed trial is assigned a score greater than τcm
and is hence accepted, whereas false rejects (FRs) occur when a bona fide trial
is assigned a score less than or equal to τcm and is rejected. Lower EER values
are an indication of better discrimination performance. Although the EER has
been deprecated in recent ISO/IEC standards [5,6], it is still used as a convenient
evaluation metric within the speaker recognition community.

The EER metric is used to assess standalone CM performance and, being a
parameter-free (no priors or detection costs), it is be unrepresentative of perfor-
mance in practical applications. To gauge the impact of spoofing and CMs upon
the reliability of an ASV system, a new metric was introduced in 2018. The min-
imum tandem detection cost function (min t-DCF) [56,57] is an ASV-constrained
evaluation metric for the assessment of ASV and CMs operating in tandem and
was used as the primary evaluation metric in both the 2019 and 2021 ASVspoof
challenges. The t-DCF metric is an extension of the detection cost function (DCF)
that is widely used for the evaluation of ASV performance [58]. Both the ASV
system and the detection threshold τasv are fixed by the ASVspoof organisers,
while the CM threshold is variable according to the CM system developed by
participants. The min t-DCF is defined as:

min t-DCF = min
τ

C0 + C1P
cm
miss(τcm) + C2P

cm
fa (τcm)

C0 + min({C1, C2})
(2.3)

where coefficients C0, C1, and C2 are hyper-parameters computed from ASV scores,
the prior probabilities of target, non-target, and spoofed trials, and ASV and CM
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detection costs. The coefficients are defined as follows:

C0 = πtarC
asv
missP

asv
miss + πnonCasv

fa P asv
fa

C1 = πtarC
cm
miss − (πtarCmissP

asv
miss + πnonCasv

fa P asv
fa )

C2 = πspoofC
cm
fa,spoofP asv

fa,spoof

(2.4)

where: Casv
miss is the cost of the ASV system rejecting a target trial; Casv

fa is the
cost of the ASV system accepting a nontarget trial; Ccm

miss is the cost of the CM
rejecting a bona fide trial; Ccm

fa is the cost of the CM accepting a spoofed trial. πtar,
πnon and πspoof are prior probabilities of target, non-target and spoofed trials. The
denominator in Eq. 2.3 normalises the min t-DCF so that its value ranges between
0 and 1. A t-DCF value of 0 implies perfect (error-free) ASV and CM systems,
whereas a value of 1 or higher indicates that the CM system offers imperfect or
no protection against spoofing attacks. The lower bound is referred to as the ASV
floor ( C0

C0+min(C1,C2)) and is the value of the t-DCF for an imperfect ASV system
(provided by the challenge organisers) but a perfect CM. Similar to the EER, lower
t-DCF values indicate better performance. The reader is referred to [56, 57] for
further details.

2.3 Spoofing detection
The goal of spoofing detection is to distinguish between genuine (bona fide) and
spoofed speech. It traditionally comprises two stages: a front-end feature extrac-
tor and a back-end classifier. Continuous advances in deep learning and machine
learning have enabled the development of new and advanced algorithms for gener-
ating synthetic speech, making it difficult to detect spoofed speech. To overcome
these difficulties, a variety of detection systems have been proposed in literature to
prevent ASV systems from being manipulated. This section presents an overview
of the vulnerabilities of ASV to spoofing attacks and the CMs that have been
explored in the past three editions of the ASVspoof LA challenge (i.e., ASVspoof
2015, 2019 and 2021) as well as in post challenge studies. More comprehensive
reviews of recent advances in LA spoofing detection using the same benchmark
datasets can be found in [59, 60].

2.3.1 ASVspoof 2015 logical access task
In order to verify vulnerabilities to spoofing, ASVspoof organisers evaluated
an ASV baseline system using ASVspoof 2015 evaluation data. Results are
illustrated in Table 2.6, reproduced from [15]. The ASV baseline utilised an
i-vector [61] embedding extractor with probabilistic linear discriminant analysis
(PLDA) [62] as a back-end. The first row indicates ASV baseline performance.
Rows 2-11 present performance for the same ASV system when subjected to
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Table 2.6: ASV baseline performance when subjected to various spoofing attacks
for ASVspoof 2015 database..

Attack EER (%)
PLDA (ASV) 2.30

S1 32.55
S2 2.66
S3 40.29
S4 43.35
S5 46.24
S6 44.71
S7 29.29
S8 36.19
S9 33.53

S10 51.17
Avg (S1-S10) 36.00

different spoofing attacks. Performance degrades significantly (2.30% to 51.17%
EER for the S10 attack). These results confirm vulnerabilities to spoofing and
demonstrate the need for robust CMs.

The ASVspoof 2015 challenge attracted the submission of 16 primary (fusion-
based) submissions. While most CM submissions achieved an EER below 1% for
known attacks, none generalised well to unknown attacks. The top-performing
system, as described in [63], employed two different front-end features: Mel-
Frequency Cepstral Coefficients (MFCC) and Cochlear Filter Cepstral Coefficients
with change in Instantaneous Frequency (CFCC-IF). This system achieved an
average EER of 0.41% for known attacks, and 2.01% for unknown attacks, for
a combined average EER of 1.21%. This trend was consistent among the top
primary submissions, which showed higher EERs for unknown attacks than for
known attacks. One explanation for this disparity is the difficulty in detecting
the unknown S10 attack, which was implemented using a unit selection-based
waveform concatenation TTS algorithm. Table 2.7 provides a summary of results
for top-performing solutions including ASVspoof 2015 challenge submissions and
as well as post-challenge results.

As illustrated in Table 2.7, all top-performing CM systems use the fusion of dif-
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Table 2.7: Comparison of CM systems for the ASVspoof 2015 LA task. There
were some top-performing challenge submissions and other results are from post-
challenge studies. Results reported in terms of average EER (%) of all known and
unknown attacks.

Challenge results

Ref. front-end back-end EER (%)
Known Unknown Avg.

[63] MFCC, CFCC-IF GMM 0.40 2.01 1.21
[64] MFCC, MFPC,CosPhase SVM 0.01 3.92 1.97
[65] F-bank energies DNN 0.06 4.99 2.52
[66] LMS,RLMS,MGD,IF MLP 0.01 5.23 2.61
[67] MFCC+MGDFCC+WLP-GDCC GMM 0.04 5.34 2.69

Post-challenge results

Ref. front-end back-end EER (%)
Known Unknown Avg.

[68] raw-waveform MLP 0.03 5.75 2.89
[69] GD RNN 0.40 3.33 1.86
[70] Spec CNN 0.16 2.64 1.40
[16] RFCC GMM 0.12 1.92 1.02
[16] LFCC GMM 0.11 1.67 0.89
[71] CQCC GMM 0.05 0.46 0.25

ferent magnitude and phase-based features. These include Mel-frequency cepstral
coefficients (MFCC) [72], Rectangular frequency cepstral coefficients (RFCC) [16],
CFCC-IF [63], group delay (GD), modified group delay (MGD) [73], relative-phase,
and instantaneous frequency derivatives (IF) [73]. Additionally, other front-ends,
such as spectrogram (Spec), Mel-filter bank (FBank), and linear filter bank (LFB)
outputs, were also explored. All top-performing systems demonstrate excellent
results in the detection of known attacks as shown in Table 2.7, with EERs con-
sistently below 0.5%. However, EERs for unknown attacks are notably higher
and all above 2%. The performance gap between known and unknown attacks is
significant and highlights the challenge to develop generalised CMs. In order to
improve generalisation, a novel front-end based on constant Q cepstral coefficients
(CQCCs) [71,74] was proposed in 2016 (post-challenge) and is now widely used as
a default front-end for spoofing detection. CQCCs are derived using the constant
Q transform (CQT), and improve substantially upon the performance of ASVspoof
2015 challenge submissions. A CQCC front-end with a Gaussian mixture model
(GMM) classifier obtained the lowest average EER of 0.25% for the ASVspoof
2015 challenge database at the time of publication. CQCC features with a GMM
classifier was adopted as a baseline in subsequent ASVspoof editions.
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Table 2.8: ASV baseline performance when subjected to various spoofing attacks
for ASVspoof 2019 LA database.

Attack system Development Evaluation
ASV (x-vector) 2.43 2.48

A01 24.52 -
A02 15.04 -
A03 56.94 -
A04 63.02 -
A05 21.90 -
A06 10.11 -
A07 - 59.68
A08 - 40.39
A09 - 8.38
A10 - 57.73
A11 - 59.64
A12 - 46.18
A13 - 46.78
A14 - 64.01
A15 - 58.85
A16 - 64.52
A17 - 3.92
A18 - 7.35
A19 - 14.58

2.3.2 ASVspoof 2019 logical access task
The results of the ASVspoof 2015 challenge [15] show that CM designs primarily
focused on identifying salient features rather than investigating advanced neural
network-based classifiers. The ASVspoof 2019 challenge and subsequent studies
shifted towards more complex and better performing neural network-based
classifiers. The minimum tandem Decision Cost Function (min t-DCF) [56]
(described in Section 2.2) was introduced as the default evaluation metric. The
ASVspoof 2019 challenge showed the detrimental effects of advanced TTS and
VC-based spoofing attacks on ASV performance, as shown in Table 2.8 (results
reproduced from [53]). The ASV baseline utilised an x-vector [75] embedding
extractor with PLDA [62] as a back-end. The first row in Table 2.8 illustrates
ASV baseline performance with target and non-target (impostor) bona fide trials,
while the remaining rows depict results with target and spoofing attack trials.
The severity of the spoofing attacks varies among the different attack algorithms.
For e.g. the TTS-based (A04) attack generated with a waveform concatenation
method increases the ASV EER from 2.43% (target vs. non-target) to 63.02%
(target vs. A04 attack) on the development set. Attack A16 increases the ASV
EER from 2.48% to 64.52% on the evaluation set. There attacks were found to
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Table 2.9: Empirical description of top-5 submissions for ASVspoof 2019 LA task.

Team ID Front-end features Classifiers System Fusion
T05 DFT, DCT, MobileNet, DenseNet Weighted

ResNet50 score average
T45 LFCC, CQT, DFT GMM-UBM, LCNN Weighted

score average
T60 MFCC,IMFCC,SCMC GMM-UBM,CNN Logistic

Log-DFT, Mel-spec CRNN,Wave-U-Net regression
raw audio, CQCC SVM

T24 CQCC, LFB Resnet18, NN layer Score fusion
T50 Log CQT, Phase-gram VAE, CGCNN Score averaging

CGRNN, ResNet18

be the most damaging to ASV performance.

The ASVspoof 2019 challenge LA challenge attracted 48 submissions out of
which 27 submissions outperformed the strong B02 baseline (LFCC-GMM) [49].
Table 2.9 provides a summary of the top-5 challenge submissions, which are mostly
ensembles of several complex deep neural network (DNN) based sub-systems.
The top-performing T05 system used a fusion of seven sub-models, including four
MobileNets [76], one DenseNet [77, 78], and two ResNet50 [79] networks. Other
teams explored more efficient DNN architectures such as a light convolutional
neural network (LCNN) [80], variational auto-encoders (VAEs), complex gated
convolutional networks (CGCNN) [81], and Wave-U-Net [82] models. Among
these, LCNNs have proven to be particularly efficient and are widely used for
spoofing and deepfake detection. LCNN models use a max-feature-map (MFM)
non-linearity function to select optimal feature maps during training and achieved
the best single system (T45) performance in the ASVspoof 2019 challenge for
the LA task [83]. Full details related to the ASVspoof 2019 challenge results and
findings can be found in [47, 49].

Among the post-challenge studies, front-end approaches that use CQCCs, CQT,
LFCCs and learnable audio front-end features [84] with neural network-based
back-ends, such as CNN, LCNN, ResNet, CapsuleNet and LSTM, have shown
improved performance [83,85–91]. Other notable work includes one-class learning
approaches [92–94] which model the distribution of genuine (bona fide) utterances
only. They can still be used as two-class classifiers and to reject utterances that
do not produce a sufficiently high likelihood when compared to the model. In
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this case, spoofing detection becomes an out-of-distribution detection or anomaly
detection problem. A new loss function, called the one-class (OC) softmax
function [93], was introduced in 2021. It compacts the bona fide utterance
representation and injects an angular margin to separate bona fide utterances
from spoofing attacks in the latent space. One-class learning approaches also
perform reliably for spoofing and deepfake detection [93, 94].

Another interesting approach to improve CM generalisation and robustness to
different channel variability for in-the-wild scenarios is reported in [95]. It
shows a significant degradation in CM performance when a model trained on the
ASVspoof 2019 LA database is evaluated using out-of-domain databases, such
as the ASVspoof 2015 and 2020 voice conversion challenge (VCC) evaluation
databases. The CM EER increased from 2.09% for ASVspoof 2019 evaluation
set to 26.03% for ASVspoof 2015 evaluation set, and to 41.66% for 2020 VCC
dataset. The substantial degradation in CM performance is likely due to the
channel-mismatch between training and testing conditions. This work shows the
importance of developing CMs which are robust to channel variability as well as
different spoofing attacks. This scenario was explored in the most recent ASVspoof
2021 LA challenge [41].

2.3.3 ASVspoof 2021 logical access task
Both the 2015 and 2019 ASVspoof LA databases contain clean utterances without
any background noise or channel variation. Such ideal conditions are not realistic.
Several studies have shown the significant degradation in CM performance
when they are deployed in more realistic conditions, e.g. involving telephony
transmission [42, 43]. To address this problem, the LA task of the ASVspoof
2021 challenge [41] was designed to foster improvements in spoofing detection
reliability in the face of nuisance variation stemming from unknown encoding
and telephony transmission conditions. The LA task involved more realistic
conditions in which audio data is passed through telephony or VoIP networks.
The codecs used in generating the ASVspoof 2021 LA database are a combination
of traditional codecs, such as A-law, µ-law and G.722, and more modern codecs
like OPUS. The default metric remained the min t-DCF [56], with the EER
serving as a secondary metric.

ASVspoof 2021 challenge participants applied various techniques such as different
transmission codecs, compression algorithms, and low-pass filtering in the form
of data augmentation (DA) to the original ASVspoof 2019 LA training data [87,
95, 98, 101, 103–106]. Table 2.10 summarises the top-performing submissions for
LA and DF tasks. Results are presented separately for two subsets: progress and
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evaluation. The top-performing system [96] explored DA using FIR filtering to
emulate the application of different telephony codecs. This approach obtained the
lowest EER of 1.32% for the ASVspoof 2021 LA evaluation set. More traditional
DA techniques, such as SpecAugment [107], the introduction of additive noise using
the MUSAN database [108], the introduction of convolutive noise using the room
impulse response (RIR) database [109], and telephony codec augmentation [98],
were more popular. All these DA techniques utilise additional data resources. As
illustrated in Table 2.10, the top-performing challenge entries used some form of
spectral or cepstral features, and raw waveform inputs and efficient LCNN, ResNet
and TDNN back-end classifiers. Most ensemble systems explored traditional fusion
approaches, including weighted score averaging and logistic regression.

2.3.4 ASVspoof 2021 deepfake task
The ASVspoof 2021 challenge introduced a new deepfake (DF) detection task, in
addition to LA and PA tasks. It focuses on spoofing and deepfake detection in
the presence of general audio compression. The DF database consists of audio
utterances collected from different sources which are compressed with different
lossy media codecs, e.g. mp3 and m4a. Utterances are first compressed using
a codec and then decoded to recover uncompressed audio. The compression
and decoding is lossy and introduces distortions that vary based on the type
of codec and its configuration, distortions which impact both bona fide and
spoofed utterances and which can mask spoofing artefacts. This scenario mimics
a detection task when deepfakes are posted to social media, or broadcast on
television. Unlike for the LA task, for the DF task there is no ASV system.
Accordingly, the CM EER is used as the default performance metric. As shown in
Table 2.10, the top-performing system obtained an EER of 0.24% on the progress
set and 15% EER for the evaluation subset. This performance gap indicates
that models trained solely on ASVspoof 2019 LA training data do not generalise
well to previously unseen attacks and out-of-domain data, resulting in degraded
performance. This is a consequence of over-fitting. For more detailed information
on the ASVspoof 2021 LA and DF challenge results and findings, readers are
referred to [54].

Table 2.11 presents a summary of the recent trends observed in all three edi-
tions of the ASVspoof challenge which focused on LA attacks. The first edition,
ASVspoof 2015 challenge generated spoofed utterances using unit-selection TTS
and vocoders. The 2019 edition built on this with more advanced neural and acous-
tic waveform models, such as Tacotron2 [23], WaveNet [19,110], and waveform con-
catenation algorithms. The recent ASVspoof 2021 LA challenge [41] incorporated
both the 2015 and 2019 editions with more realistic telephony and compression
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2.4. SUMMARY

conditions. The trends in front-end features and back-end classifiers also shifted
towards more advance front-end features and neural network-based classifiers, such
as from GMM, DNN, MLP in the 2015 edition to LCNN, ResNet, Siamese and
capsule neural networks in the 2019 edition. These advances were further devel-
oped in the recent 2021 challenge, which includes emphasized channel attention
propagation and aggregation time delay neural networks (ECAPA-TDNN) [111],
and ResNet with the squeeze-and-excition (SENet) [112] neural networks.

2.4 Summary
This chapter provides an overview of the ASVspoof challenge series, and highlights
the advances and goals specific to each edition. We also described the tandem
detection cost function and the databases used for experimental work presented
later in this thesis. Finally, we provide a brief overview of the recent trends in CM
development across all ASVspoof editions with a focus on LA scenarios.
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Chapter 3

An Explainability Study of the
CQCC Front-end

One of the best performing front-end features, known as Constant Q Cepstral
Coefficients (CQCCs) [71] proposed in 2016, have been shown to be especially
effective in detecting spoofing attacks implemented with a unit selection-based
speech synthesis algorithm [20]. Despite their success, they largely fail in detect-
ing other forms of spoofing attacks, where more traditional Linear Frequency
Cepstral Coefficient (LFCC) [16] front-end representations give substantially
better performance. We also observed similar differences in the ASVspoof 2019
challenge submissions and baseline results [49]. These observations have led us
to ask ourselves why? What could account for these performance differences?
The work presented in this chapter aims to revisit CQCC front-end features
and attempts to explain why they are effective in detecting some attacks but
less effective in detecting others. This chapter aims to shed light upon what is
being detected in the signal, i.e. the signal or feature-level artefacts that serve
to distinguish different forms of spoofing attack from bone fide speech. The
explanation at this level would surely help us to go beyond CQCC feature and to
design more reliable countermeasures (CMs) that can detect a broader range of
attacks.

This work aims to investigate the effectiveness of a CQCC front-end in detecting
different forms of spoofing attacks for speaker verification. To this end, we perform
a sub-band analysis to understand where information relevant to spoofing detection
is located in the spectrum, and we evaluate the performance of CQCCs on the
ASVspoof 2015 and 2019 LA databases. We also examine the impact of a variable
spectro-temporal resolution on spoofing detection performance.
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3.1. CONSTANT Q CEPSTRAL COEFFICIENTS

CQT Power 
spectrum Log uniform 

resampling DCT

waveform CQCC

Figure 3.1: Block diagram of CQCC feature extraction.

3.1 Constant Q cepstral coefficients
In this section, we explain the rationale for utilising CQCCs and the process of
deriving them from the constant Q transform (CQT). Additionally, we present a
comparison of CQCCs to discrete Fourier transform (DFT) derived features and
their performance on the ASVspoof 2015 database.

3.1.1 Motivation
The fundamental motivation behind the development of CQCCs was that, since
attackers try to replicate the same features used for ASV when generating spoofed
speech, features not optimised for ASV should have a better potential for spoof
detection. CQCCs are derived using the CQT, which is commonly used in music
processing and reflects human perception more closely than the linear scale used
in the discrete Fourier transform [113]. Although CQCCs have also been found to
be useful for other speech tasks including speaker diarization, ASV and utterance
verification [74, 114], they were not specifically designed for ASV.

3.1.2 From the CQT to CQCCs
The perceptually motivated CQT [115,116] approach to the spectro-temporal anal-
ysis of a discrete signal x(n) is defined by:

XCQ(k, n) =
n+⌊Nk/2⌋∑

l=n−⌊Nk/2⌋
x(l)s∗

k(l − n + Nk/2) (3.1)

where n is the sample index, k = 1, 2, ..., K is the frequency bin index, sk(n) are
the basis functions, ∗ is the complex conjugate and Nk is the frame length. The
basis functions sk(n) are defined by:

sk(n) = gk(n)ej2πnfk/fs , n ∈ Z (3.2)

where gk(n) is zero-centred window function, fk is the center of each frequency bin
and fs is the sampling rate. Further details of the CQT algorithm are available
in [117].
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3.1. CONSTANT Q CEPSTRAL COEFFICIENTS

The centre of each frequency bin fk is defined according to fk = 2(k−1)/(B)f1,
where f1 is the centre of the lowest frequency bin and B is the number of bins per
octave. B determines the trade-off between spectral and temporal resolutions. The
value of Nk ∈ R in Eqs. 3.1 and 3.2 is a real number and inversely proportional
to fk. As a result, the summation in Eq. 3.1 is over a number of samples that
is dependent upon the frequency. Hence, the spectro-temporal resolution is also
dependent on the frequency. The quality (Q) factor, given by Q = fk/δf , where
δf is the bandwidth, reflects the selectivity of each filter in the filter bank. For the
CQT transform, Q is constant for all frequency bins k; filters are logarithmically
spaced. The CQT gives XCQ(k, n) a geometrically spaced spectrum, whereas the
basis functions of the DCT are linearly spaced. As a result, the geometric DCT
basis is no longer orthogonal. To address this, the non-uniform frequency scale
of the CQT is resampled using a spline interpolation method to a uniform, linear
scale, giving X̄CQ(l, n) which attributes equal weighting to information across the
full spectrum [71]. CQCCs are obtained from the discrete cosine transformation
(DCT) of the logarithm of the squared-magnitude CQT as follows:

CQCC(p, n) =
L−1∑
l=0

log
∣∣∣X̄CQ(l, n)

∣∣∣2 cos

p
(
l − 1

2

)
π

L

 (3.3)

where p = 0, 1, ..., L − 1, and where l is now the linear-scale frequency bin in-
dex. The feature extraction process of CQCCs is summarised in the Figure 3.1.
Full details of the CQCCs extraction algorithm can be found in [71]. Efficient
implementations of the CQT can be found in [117] and [118].

3.1.3 Differences between DFT and CQT
The main differences between DFT and CQT relate to their spectro-temporal
resolution. Essentially, spectral decomposition acts as a filter bank, but the CQT
and DFT have different properties. In contrast to the CQT, the set of filter
bank frequencies in the DFT are linearly distributed and the bandwidth of each
filter is constant. Additionally, the Q factor in the DFT is no longer constant;
it increases linearly as the frequency increases. The series of filters in the DFT
is no longer logarithmically spaced, but linearly spaced, which ensures that the
DFT exhibits constant spectral resolution. This is not the case for the CQT.
Compared to the DFT (linear frequency scale), the CQT-derived spectrum has
greater frequency resolution at lower frequencies than at higher frequencies, as a
direct consequence of the constant Q property. The CQT-derived spectrogram
will then exhibit greater temporal resolution at higher frequencies than at lower
frequencies.
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3.2. PERFORMANCE ON ASVSPOOF 2015 DATABASE

Table 3.1: EERs (%) for the ASVspoof 2015 database, evaluation partition. Re-
sults for GMM-CQCC and GMM-LFCC baseline systems. Results for two attacks
(S8 and S10) show stark differences in performance for each system.

System S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Avg.

GMM-CQCC 0.01 0.11 0.00 0.00 0.13 0.09 0.06 1.03 0.05 1.07 0.26
GMM-LFCC 0.03 0.41 0.00 0.00 0.11 0.15 0.01 0.07 0.03 8.19 0.89

3.2 Performance on ASVspoof 2015 database
Both CQCC and LFCC front-ends were typically used with a classic Gaussian mix-
ture model (GMM) classifiers. The performance obtained with GMM-CQCC and
GMM-LFCC systems in terms of EER for the evaluation partition of the ASVspoof
2015 database is illustrated in Table 3.1, which reproduces results from [71]. Aver-
ages for all attacks (S1–S10) are shown in the last column. Results for two attacks
show marked differences in performance for the CQCC and LFCC front-ends.
These are S8 (a tensor-based voice conversion [119]), for which LFCCs outperform
CQCCs by 93% relative, and S10 (unit-selection based TTS 1) for which CQCCs
outperform LFCCs by 87% relative. However, our assumption is for S10 attack
as we will see later in Section 3.6.1, the artefacts are present at higher frequencies
and CQCC-resampling [71] front-end which gives more emphasis to information
at higher frequency, hence why CQCCs outperforms LFCCs for this attack. The
comparatively high EER for S10 dominates, and so the average EER for all attacks
is lower for CQCCs than for LFCCs. While the motivation for our work stems
from these two stark differences for the ASVspoof 2015 database, results reported
later in this chapter relate to the more recent ASVspoof 2019 database [49].

3.3 Experimental setup
Experiments were conducted using the standard ASVspoof 2019 LA database de-
scribed in the Section 2.1. All experiments were conducted with the evaluation set
only. Performance is assessed in terms of the EER [120] also as described in Sec-
tion 2.2. Although the tandem detection cost function (t-DCF) metric [121] is the
default metric for the ASVspoof 2019 challenge, the work reported in this chapter
is focusing on CM performance rather than its impact on the ASV performance.
We used the ASVspoof 2019 official challenge baseline systems provided by the
organisers, namely the GMM-CQCC and GMM-LFCC systems. The CQCC fea-
tures are extracted using 12-bins per octave, followed by re-sampling applied with
a sampling rate of 16 kHz. The CQCC feature representation includes 19 static

1http://mary.dfki.de/
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3.4. SUB-BAND ANALYSIS

STFT Power 
spectrum

Linear 
filterbank Log DCT

waveform

LFCC

Figure 3.2: Block diagram of LFCC feature extraction.

with energy coefficients, velocity (∆), acceleration (∆∆) coefficients. The LFCC
features are extracted using 20 ms window length with a 10 ms frame-shift using
a 512 -point FFT. The LFCC features comprise 20 static, ∆, and ∆∆ coefficients,
resulting in 60-dimension feature vectors. The feature extraction process for both
baseline systems is illustrated in Figure 3.1 and Figure 3.2, respectively. Results
reported in Table 3.2 are those obtained with the original ASVspoof 2019 baseline
CMs as reported in [49]. Both baseline systems use a traditional GMM classi-
fier with two models, one for bona fide speech and one for spoofed speech, each
with 512 Gaussian mixture models. Output scores are conventional log-likelihood
ratios.

3.4 Sub-band analysis

The variations in the spectro-temporal resolution of the DFT and CQT can po-
tentially explain the differences in the performance of GMM-LFCC and GMM-
CQCC systems. This is because the spectral resolution at lower frequencies and
temporal resolution at higher frequencies are different. It may suggest that the
artefacts which distinguish spoofed speech from bona fide speech may be located
in specific sub-bands, rather than in the full-band signal. Previous research works
[85, 122–124] also suggest that not all sub-bands are equally useful for detecting
spoofing attacks. The artefacts present in certain frequency sub-bands may be
more informative. This led us to investigate whether differences at the sub-band
level could explain the difference in performance for the GMM-LFCC and GMM-
CQCC systems. The set of experiments conducted to test this hypothesis consists
of an extensive sub-band analysis in which the GMM-LFCC and GMM-CQCC
classifiers are applied to the ASVspoof 2019 LA database at a sub-band level. In
each experiment, the entire database is processed with a low-pass and/or high-pass
filter. With both low-pass and high-pass filters, the result is a band-pass filter with
cut-in fmin and cut-off fmax. Corresponding GMM models are retrained each time
to learn band-specific features. The filter cut-in and cut-off frequencies are varied
in steps of 400 Hz between 0 Hz and the sampling frequency of 8 kHz.
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3.5. HEATMAP VISUALISATION
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Figure 3.3: (a) Audio spectrogram of a signal; (b) A 2-dimensional heatmap vi-
sualisation of sub-band analysis results for an arbitrary spoofing attack. The
horizontal axis depicts the high-pass cut-in frequency fmin whereas the vertical
axis depicts the low pass cut-off frequency fmax. The colour bar to the right of the
plot depicts the EER obtained for each band-pass filter configuration (pair of fmin
and fmax). (Best viewed in colour.)

3.5 Heatmap visualisation
We apply a 2-dimensional heatmap, a visualisation method to LFCC and CQCC
front-end features to show where the artefacts are localised in the spectrum.
Sub-band results are visualised in the form of a 2-D heatmap representations for
specific spoofing attacks, as exemplified in Figure 3.3. We use a low-pass, high-
pass and band-pass filter to generate a sub-band signal such as that highlighted
in Figure 3.3-(a). The horizontal and vertical axes of the heatmap represent the
cut-in frequency fmin and cut-off frequency fmax of the high-pass and low-pass
filters, respectively. For band-pass filters, fmin < fmax, hence the triangular form
of the heatmap in Figure 3.3-(b) . Each point in the 2-D heatmap represents
the EER of a given sub-band with different cut-in and cut-off frequency pairs.
The EER corresponding to each sub-band configuration is indicated with the
colorbar to the right of Figure 3.3-(b), where blue colours indicate lower EERs
and red colours indicate higher EERs. The left-most column of the heatmap
shows the EER with no high pass filtering and an increasingly aggressive low pass
filtering moving from top to bottom. The top-most row of the heatmap shows
the EER with no low pass filtering and an increasingly aggressive high-pass filter
moving from left-to-right. The full-band configuration is located at the top-left.
Everywhere else corresponds to a band-pass filter. EERs along the diagonal of Fig-
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3.6. RESULTS

ure 3.3-(b) highlight the significance of spectrum information at the sub-band level.

For the arbitrary example shown in Figure 3.3, EERs along the diagonal suggest
that information at lower frequencies is discriminative, whereas information at
higher frequencies is not as discriminative when used alone. EERs in the left-most
column reveal that the most discriminative information is found at low frequencies.
As long as this information is used, then the EER is low. EERs in the top-most row
demonstrate that, as soon as low frequency information is discarded, then the EER
increases. Information between 1 and 3 kHz and above 7 kHz is not discriminative.
Information between 3 and 7 kHz is less discriminative, and reasonable EERs can
only be achieved when the information from different sub-bands is combined.

3.6 Results
This section describes the sub-band analysis results for ASVspoof 2015 and 2019
LA databases.

3.6.1 Sub-band results for ASVspoof 2015 database
Results for the CQCC-GMM and LFCC-GMM CMs in Table 3.1 show substantial
variations in performance for S8 and S10 attacks. CQCC-GMM works well for
the S10 attack and LFCC-GMM works well for the S8 attack. To explain this, we
performed sub-band analysis experiments for S8 and S10 attacks and the result are

(a) (b)

Figure 3.4: Sub-band analysis results; (a) 2-D heatmap visualisation for S8 attack
with LFCC-GMM system and (b) 2-D heatmap visualisation for S10 attack with
CQCC-GMM CM. (Best viewed in colour.)
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3.6. RESULTS

illustrated in Figure 3.4. As shown in Figure 3.4-(a) the artefacts for S8 attack are
localised in the lower to a higher frequency in the spectrum those easily captured
by DFT derived LFCC front-end features as it gives constant resolution to all
frequency bands in the spectrum whereas CQCC-resampling front-end emphasis
more on higher frequency might fail to capture artefacts localised in the lower
frequency. On the other hand for the S10 attack as shown in Figure 3.4-(b) the
artefacts are localised in the higher frequencies, at which CQCC-resampling front-
end gives more emphasis to information, hence why CQCCs outperforms LFCCs.
Even only using information between 7.8 and 8 kHz frequency band as shown in
Figure 3.4-(b), CQCC-GMM CM can easily obtain lower EER.

3.6.2 Sub-band results for ASVspoof 2019 LA database
EER results for the two CMs assessed using the evaluation partition of the
ASVspoof 2019 LA database are illustrated in Table 3.2. They show substantial
variations in performance for the GMM-LFCC and GMM-CQCC CMs. For at-
tacks A07, A16 and A19, the GMM-CQCC system outperforms the GMM-LFCC
system, whereas for attacks A13, A14 and A17, it is the GMM-LFCC system
which performs best, although still with relatively high error rates. Subsequent
experiments were performed separately for this subset of 6 specific spoofing
attacks, all examples of where one front-end representation leads to substantially
better results than the other. Brief details of the specific algorithms used in
creating each spoofing attack are summarised in Chapter 2 (see Table 2.2).
Among them are four voice conversion algorithms (A13, A14, A17 and A19) and
two speech synthesis algorithms (A07 and A16), even though the input to two
of the voice conversion algorithms is also synthetic speech (A13 and A14). Full
details of each attack algorithm are available in [53].

Sub-band analysis results for these six attacks are shown in Figure 3.5. Results
for the GMM-CQCC and GMM-LFCC systems are illustrated in rows one and
two, respectively. In each case, the EER for the full-band systems is indicated
by the top-left-most point in each 2D heatmap. Figures 3.5 (a)-(c) show that
the baseline GMM-CQCC system (top-left-most point) gives low EERs, whereas
Figures 3.5 (g)-(i) show that the GMM-LFCC system performs consistently worse.
Figures 3.5 (d)-(f) and (j)-(l) show the opposite, even if the performance for A17
(l) is still poor for both systems. Our analysis of the heatmaps for both CQCC
and LFCC front-ends reveal that the discriminative information for the detection
of all three attacks is located at higher frequencies. This suggests that both CMs
rely heavily on information extracted from the higher-frequency band. While not
visible in the plots at this scale, the discriminative information lies above 7.6 kHz;
near-to-zero EERs can be obtained using information between 7.6 and 8 kHz only,
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3.7. SPECTRO-TEMPORAL RESOLUTION

using either front-end. However, the situation for attacks A13, A14 and A17 is
slightly different. The diagonals of the heatmaps in Figures 3.5 (d), (e), (j) and
(k) all suggest that the most informative information is at lower frequencies. The
left-most columns of Figures 3.5 (d), (e) and (j) suggest that the most critical
information is located at the very lowest sub-bands for the LFCC front-end. For
A17, neither front-end performs especially well, with the CQCC front-end failing
completely, whereas the LFCC front-end is able to capture information across the
majority of the full band.

3.7 Spectro-temporal resolution
The results presented above dispel somewhat our hypothesis that CQCCs perform
better than LFCCs for some attacks due to their higher temporal resolution
at high frequencies. If this were true, reliable performance would not have
been obtained with the LFCC front-end using high-frequency sub-bands alone.
The explanation lies elsewhere. The same results show that the discriminative
information simply lies in the highest sub-bands; with appropriate band-pass
filtering, both front-ends perform well for attacks A07, A16, and A19. However,
this straightforward explanation does not account for why the original, full-band
CQCC front-end also performs well, i.e. without band-pass filtering. The expla-
nation for this observation requires us to revisit the issue of spectro-temporal
resolution in CQT and DFT-based front-ends.

Figure 3.6 illustrates a set of DFT and CQT-derived spectra for an arbitrary
speech frame. Each plot also shows the second basis function of the DCT (black
solid line) used in cepstral analysis. The vertical bars serve to illustrate the
spectral resolution across the spectrum and give some indication of the temporal
resolution. It is inversely proportional to the spectral resolution. The top plot
in Figure 3.6 shows the CQT-derived spectrum (without re-sampling) [125]. It
clearly shows that the spectral resolution is higher at lower frequencies than
at higher frequencies. The DCT basis function is plotted with a logarithmic
frequency scale, hence the regularity of the vertical lines and DCT basis function.
These plots demonstrate that, without resampling, the DCT will attribute greater
emphasis to lower frequency components and generate a smoother spectrum
(orange shaded area in the top plot) than to higher frequency components. The
second plot shows the CQT-derived spectrum after resampling to a uniform
frequency scale. The vertical bars in Figure 3.6 show how resampling acts to
linearise the sampling rate in the frequency domain. Note the difference in
frequency scales for the top and middle plots. The higher spectral resolution (and
hence lower temporal resolution) for lower frequencies is still clearly apparent; the
spectrum is much smoother at higher frequencies (light green shaded area in the
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Figure 3.6: Illustrations of spectra for an arbitrary speech frame derived using the
CQT and DFT (blue) and the second basis function of the discrete cosine transform
used in cepstral analysis (black solid line). The top plot shows the CQT-derived
spectrum without resampling, hence the logarithmic sampling (compression of
vertical blue lines) in the logarithmic frequency scale. The second plot shows
the CQT-derived spectrum after resampling to a uniform, linear frequency scale
(Section 2; thus more vertical lines). The third plot shows the corresponding DFT-
derived spectrum. (Best viewed in color.)

middle plot) after resampling.

A comparison of the cosine basis functions to the CQT-derived spectra in the
top and middle plots shows that resampling acts to dilute (weaken) information at
lower frequencies (pink shaded area) but to distil (emphasise) information at higher
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frequencies (light green shaded area in middle plot) compared to the CQT-dervied
spectrum without resampling (yellow shaded area in top plot). Hence, spoofing
artefacts localised at high frequencies are emphasised by CQCC-resampling. The
bottom plot of Figure 3.6 shows the DFT-derived spectrum and linear sampling in
the frequency domain. Here, the DCT acts to weight all frequency components uni-
formly. Spoofing artefacts at high frequencies are not clearly emphasised; reliable
performance is then obtained only by using band-pass filtering. The explanation
for why the LFCC front-end outperforms the CQCC front-end for attacks A13,
A14 and A17 is now straightforward. The artefacts for these specific attacks are
at lower and mid-range frequencies where the CQT acts to dilute information,
hence why the GMM-CQCC system performs poorly for these attacks. Since the
DFT gives uniform weighting to information at all frequencies in the spectrum,
the GMM-LFCC system gives better, though still somewhat poor performance.
This is because information at low frequencies is not emphasised.

3.8 Validation
To validate these findings, we performed an additional experiment with the
original CQCC (geometrically-scaled) front-end. The CQT-derived spectra
in the top plot of Figure 3.6 show more dense sampling of the spectrum at
lower frequencies but sparse sampling at higher frequencies. Hence, without
resampling, the cepstral analysis (DCT) should emphasis the information situated
at lower frequencies. In this case, a CQCC front-end without linear resampling
should produce better detection performance in the case of attacks A13 and
A14 for which artefacts are located at lower frequencies. Performance for
attack A17 might still not be improve, since the artefacts appear not to be
localised especially at lower frequencies. We repeated the sub-band analysis ex-
periments described in Section 3.4 using the geometrically-scaled CQCC front-end.

Results are illustrated in Figures 3.5 (m)-(r) for the same set of 6 attacks for which
EER results are shown in the last row of Table 3.2. The comparison of the right-
most columns in the heatmaps of Figures 3.5 (d) and (p) and those in (e) and (q)
clearly show that lower EERs are obtained using the geometrically-scaled CQCC,
rather than the linearly-scaled CQCC front-end. Low EERs are even obtained
when the front-end is applied without any band-pass filtering. This is because the
original CQT geometric frequency scale results in the emphasis of information
at lower frequencies where the artefacts are located. As expected, attack A17
remains troublesome. For some attacks, the EER for the geometrically-scaled
CQCC front-end is slightly higher, but is slightly lower for others. Once again,
performance for A17 is poor and even worse than for both the linearly-scaled
CQCC and LFCC front-ends. Those for A13 and A14 clearly confirm our findings,
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with substantially lower EERs than those obtained with both the linearly-scaled
CQCC and LFCC front-ends.

3.9 Summary
This chapter presents an explanation for why the CQCC front-end works so reli-
ably in detecting some forms of spoofing attack, but why it fails to generalise to
others. Through the sub-band analysis of CQCC-GMM CM system, we observe
that discriminative information in the spectrum is present at the different sub-
band, not all frequency sub-bands are informative. This confirms that different
spoofing attacks exhibit artefacts at different frequencies in the spectrum, arte-
facts that are better captured with specific front-ends. The standard CQT exhibits
a dense sampling of the spectrum at lower frequencies and a sparse sampling at
higher frequencies. Hence, geometrically-sampled CQCCs perform well in detect-
ing spoofing artefacts when they are located at low frequencies. Linear sampling
(resampling) shifts the emphasis to higher frequencies so that artefacts at similarly
high frequencies are emphasised and captured reliably. The main findings from
this chapter are that no single CQCC or LFCC front-end configuration can per-
form well for diverse range of spoofing attacks; different sub-band front-ends have
different potential to distinguish spoofed speech from bona fide. These findings
may explain why classifier fusion has proven to be so important to CM generali-
sation, i.e. reliable performance in the face of varying spoofing attacks. We may
then need to rethink the approach to classifier fusion to exploit the complementary
strengths of each CM.
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Chapter 4

A Non-linear Ensemble of
Sub-band Countermeasures

In Chapter 3, we have seen that no single front-end can effectively detect all types
of spoofing attacks. This finding is confirmed by ASVspoof 2019 challenge results
which have consistently shown that the most reliable performance in detecting
spoofed speech requires the use of an ensemble of different front-ends [47,83,126].
Designing a single robust model to detect unforeseen attacks can be challenging,
as also shown by ASVspoof 2019 challenge results [47]. The top-performing
system used an ensemble of seven sub-systems. As evident from the litera-
ture [85, 124, 127, 128] and Chapter 3 findings, we argue that not all frequency
bands are useful for spoof detection. The work presented in the Chapter 3 showed
that spoofing artefacts lie at the sub-band level and have better potential be
to captured by front-ends with appropriate spectral resolution within the same
frequency band.

To this end, we propose in this chapter an ensemble of sub-band countermeasures
(CMs), each tuned to detect artefacts in different sub-bands. We will see that
it can improve spoofing detection performance beyond what can be achieved
through the fusion of CMs operating directly upon the full-band signals. However,
our assumption that different front-ends are required to detect artefacts within
different sub-bands implies that traditional linear approaches to score fusion may
not be optimal. This is because a single spoofing attack may only be detected
reliably by a single CM within an ensemble. In this case, linear approaches
to score fusion may not fully utilise the complementary strengths of each CM,
as they may simply combine mostly non-informative scores while diluting any
informative scores. Non-linear approaches to fusion may hence have better
potential to exploit the complimentarity of different sub-band CMs.
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4.1. RESEARCH HYPOTHESES

The key contributions of this work include:

• introduce a optimised version of the LFCC-GMM baseline using high-
spectral resolution front-end features.

• propose a non-linear ensemble of sub-band countermeasures to leverage
attack-specific discriminative information present in the different sub-bands.

4.1 Research hypotheses
To better illustrate the ideas explored in this chapter, we consider the hypo-
thetical anti-spoofing example illustrated in Figure 4.1. Plotted on each axis
are the scores produced by two different spoofing CMs: CM1 and CM2. CM1
is tuned to detect artefacts present within a lower frequency band, at 0-4 kHz
for example. CM2 is tuned to detect artefacts within a higher frequency band,
at 4-8 kHz for example. Each point in the 2D plot signifies the scores produced
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Figure 4.1: A scatter plot of scores for CM1 and CM2. Clusters correspond to bona
fide utterances (green) and three spoofing attacks (A1-blue, A2-red, A3-orange).
The dashed black line indicates a non-linear decision boundary that best separates
bona fide from spoofed utterances.
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by each CM for a set of bona fide and spoofed utterances. Scores for bona fide
(genuine) utterances are illustrated by green points (top-right). The scores for
three different types of spoofing attacks are also shown: Attack A1, characterised
by artefacts predominantly at low frequencies (blue points, top-left); Attack
A2, characterised by artefacts at high frequencies (red points, bottom right);
Attack A3, which exhibits artefacts at both low and high frequencies (orange
points, bottom left). The first hypothesis is that different spoofing attacks are
characterised by artefacts within different sub-bands in the spectrum and that
an ensemble of different front-ends are needed in order to detect such artefacts
reliably.

Both CMs produce predominantly high scores for bona fide utterances; as per
standard ASVspoof practice, high CM scores reflect bona fide trials, whereas low
scores reflect spoof trials. Since CM1 and CM2 and their respective thresholds
θ1 and θ2 are tuned for the detection of spoofing attacks A1 and A2 respectively,
spoofing attack A1 provokes mostly low scores for CM1 and mostly high scores for
CM2, and vice versa for attack A2. Attack A3 provokes low scores for both CMs.
Considering multiple diverse attacks and CMs, a notional decision boundary that
best separates bona fide from spoofing utterances might correspond to a non-linear
function. Linear score fusion operators may not perform well in this case, leading to
poor reliability. The second hypothesis is that a non-linear approach to score fusion
or system combination is needed in order to best exploit the complementarity of
an ensemble of CMs tuned for the detection of specific spoofing attacks.

4.2 Sub-band countermeasures

In Chapter 3, we used two different CQCC front-ends that were tuned to increase
spectral resolution at either low or high frequencies. The main idea in this chapter
is an ensemble of sub-band CMs, each of which is tuned for the detection of a
specific set of spoofing attacks and the associated artefacts, regardless of their
location in the spectrum. Since the CQT has a non-linear spectral resolution [117,
129] that is difficult to tune to specific sub-bands, we adapted the LFCC front-end,
which has a linear spectral resolution and can easily be applied at the sub-band
level. Here, we describe the strategy of spectral resolution and front-end tuning
at the sub-band level for the detection of specific spoofing attacks and present the
results for each front-end when used with a GMM back-end and tested against
each unseen spoofing attack in the ASVspoof 2019 LA database [49] described in
Section 2.1.
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4.2. SUB-BAND COUNTERMEASURES

Table 4.1: min t-DCF, EER and Bhattacharyya distance between bona fide and
spoofed score distributions for different numbers of sub-band filters N . Baseline
configuration illustrated in bold; selected configuration in italics.

Filters (N) min t-DCF EER (%) DB

20 0.2110 2.71 0.1338
30 0.0000 0.79 0.1706
40 0.0000 0.00 0.1770
50 0.0000 0.00 0.1785
60 0.0000 0.00 0.1793
70 0.0000 0.00 0.1826
80 0.0000 0.00 0.1788
90 0.0000 0.00 0.1823
100 0.0000 0.00 0.1830
120 0.0000 0.00 0.1820

4.2.1 High-spectral resolution front-end
Our findings in Chapter 3 showed that reliable spoofing attack detection requires
a front-end with higher spectral resolution within the relevant frequency band.
However, using a spectral resolution that is too high can result in noisy features.
Hence, before sub-band optimisation, we set out first to optimise the spectral
resolution at the full-band level. Sub-band optimisation was performed using
the full ASVspoof 2019 LA training and development subsets [49]. While other
techniques could also have been applied, e.g. zero padding, larger window-sizes,
we simply modified the baseline LFCC front-end to use 30 ms frame blocking
with a 15 ms frame-shift and used a larger 1024-point Fourier transform. The
resolution was then decreased using a filterbank in the usual fashion by varying
the number of filters N [123]. Higher values of N capture greater spectral detail,
while the use of fewer filters may cause over-smoothing in the spectrum [130] and
loss of critical spectral detail resulting in degraded classification performance.
Hence, it is necessary to find the optimal number of filters for reliable spoof
detection.

Results depicted in Table 4.1 show CM performance in terms of the min t-DCF
and EER against the number of filterbank filters N (first 3 columns). For N > 30
filters, both the min t-DCF and the EER are zero. An alternative approach to
optimisation is hence necessary. We elected arbitrarily to use the Bhattacharyya
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Figure 4.2: A 2-D heatmap visualisation illustrating sub-band level CM perfor-
mance for attack A04 of the ASVspoof 2019 LA database. The cut-in frequencies
fmin and cut-off frequencies fmax are indicated on horizontal and vertical axes re-
spectively. Those of the CoM-defined sub-band is indicated by the white cross.

distance [131] between the CM score distributions for bona fide and spoofed trials.
The Bhattacharyya distance is a simple metric to compute the distance between
two Gaussian distributions by computing the mean and variances of two separate
classes or distributions. The greater the distance between score distributions the
better the separation between classes. The Bhattacharyya distance between bona
fide and spoof Gaussian distributions is defined by Eq.(4.1):

DB(b, s) = 1
4

ln

(
1
4

(
σ2

b

σ2
s

+ σ2
s

σ2
b

+ 2
))

+ 1
4

(
(µb − µs)2

σ2
b + σ2

s

)
(4.1)

where subscripts b and s indicate parameters for bona fide and spoofed score
distributions and where µ and σ refer to the means and standard deviations re-
spectively. Results in the last column of Table 4.1 show that the distance between
score distributions increases for N > 30 filters, but with little gain beyond N = 70
filters, which is the configuration used for all further experiments reported in this
chapter.

4.2.2 Sub-band selection
Attack-specific, sub-band front-ends are designed using heat-map visualisations
(see Section 3.5) which indicate CM performance at the sub-band level. An exam-
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Figure 4.3: A 2D heatmap visualisation illustrating sub-band level CM perfor-
mance for the six spoofing attacks (A01-A06) on the development set. The cut-in
frequencies fmin and cut-off frequencies fmax are indicated on horizontal and verti-
cal axes respectively. Each CoM-defined sub-band is indicated by the white cross
in a heatmap. (Best viewed in colour.)

ple for the A04 attack is illustrated in Figure 4.2. The heat-map colour signifies
CM performance in terms of min t-DCF for a front-end with cut-in and cut-off
frequencies of fmin (x-axis) and fmax (y-axis) respectively. We used the Centre-of-
Mass (CoM) approach [132] to identify a single point in the heat-map to define
a specific sub-band for the detection of each attack in the development subset
(A01–A06). The CoM is a crude means of coping with a noisy surface containing
multiple minima. The CoM of a distribution of mass in space is the unique point
where the weighted relative position of the distributed mass sums to zero. We con-
sider the 2D heat-map as a system of particles Pi where i = 1, . . . , n. Each particle
has coordinates ri = [f i

min, f i
max] and mass mi = (min t-DCFi)−1. The coordinates

R = [fCoM
min , fCoM

max ] of the CoM satisfy the condition ∑n
i=1 mi(ri − R) = 0. Solving

for R yields:
R = 1

M

n∑
i=1

miri (4.2)

where M is the sum of the masses of all the particles in the full 2D heat-map
representation. We obtain a different R for each spoofing attack and hence define
six attack-optimised, sub-band CMs for spoofing attacks in the ASVspoof 2019
LA development dataset. The CoM-defined sub-bands for each spoofing attacks
(A01-A06) are defined by the white cross in Figure 4.3. They correspond to the
bandwidth of each sub-band CM in first column of Table 4.2.

4.3 Non-linear fusion of sub-band classifiers
The second hypothesis under investigation in this chapter is that a non-linear
approach to score fusion or system combination is needed in order to best exploit
the complimentarity of an ensemble of CMs, each tuned for the detection of a
specific spoofing attack. In order to validate this hypothesis, we explored four
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different fusion techniques comprising both linear and non-linear approaches to
effectively combine sub-band CM scores. They are defined as follows:

(i) Support Vector Machine (SVM) based fusion: A SVM is a super-
vised machine learning algorithm which uses a decision boundary known as a
hyperplane, to separate data points into different classes [133]. The objective
is to find the best hyperplane that maximises the margin between bona fide
and spoofed classes. We used a SVM-based fusion approach to find the optimal
decision boundary to distinguish between bona fide and spoofed class. A SVM
model is trained on the input feature vector generated from a set of sub-band
CM scores for the ASVspoof 2019 LA development set. We used a polynomial
kernel function with a seventh-order polynomial. Linear and residual basis kernel
functions were also tested, however, they yielded inferior results. The SVM model
was then tested using evaluation set and the same sub-band CM systems to
produce the fused output score. The polynomial kernel function represents the
similarity between training samples in a feature space over polynomials of the
original variables, allowing for the learning of a non-linear decision boundary [133].

(ii) Gaussian Mixture Model (GMM) based fusion: Another non-linear
approach is the GMM-based fusion approach used in [134] to combine ASV and
CM scores. Inspired by this work, we also explored non-linear GMM-based fusion
with 64 Gaussian component models learned from the set of scores for bona fide
and spoofed classes and compute log-likelihood ratios (LLRs) as the fused output
score. We also tested models with 16, 32, and 128 GMM components, but these
yielded inferior results.

(iii) Multinomial Logistic Regression (MLR) fusion [135] and (iv) tradi-
tional linear fusion using the bosaris toolkit [55]: Both approaches are super-
vised. Fusion weights are again optimised using ASVspoof 2019 LA development
set. Both fusion methods linearly combine the outputs of multiple sub-systems
into a single score and produce LLR outputs.

4.4 Results
Experiments were performed using the ASVspoof 2019 LA database [49] described
in Section 2.1. We present results for the sub-band CMs, and fusion performance
and compare their results to the ASVspoof 2019 challenge official baseline systems
without any modifications, namely the GMM-CQCC (B1) and GMM-LFCC (B2)
systems [49] as described in Section 3.3, as well as results for the top-performing
ASVspoof 2019 LA challenge entries.
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4.4.1 Sub-band countermeasures

Results presented in Table 4.2 show the performance of six single sub-band sys-
tems (rows 2-7) and one full-band CM (row 8) in terms of the min t-DCF [56].
Columns P1 and P2 show performance in terms of the pooled min t-DCF and
EER (%), respectively for the evaluation set. The bandwidth of each CoM defined
sub-band CM is illustrated in the first column (in kHz). Results for the develop-
ment set (columns A01-A06) show that sub-band CMs all yield zero min t-DCFs
for the attacks they were designed for (results in boldface), as they also do for
some other attacks. This is not surprising given the considerable spectrum overlap
among the set of sub-band CMs. Interestingly, the full-band CM is the only one
to achieve zero min t-DCF for all six attacks in the development set. Results for
the evaluation set (columns A07-A19) show that the full-band CM gives similar
or lower min t-DCFs than individual sub-band CMs. These observations are con-
firmed by pooled min t-DCFs for the evaluation set. These results raise questions
about: (i) whether or not the ensemble of attack-specific, sub-band CM scores can
give better performance when their individual performance is poor relative to the
full-band CM performance; (ii) what should be the best fusion approach to exploit
the complimentarity of an ensemble of sub-band CMs tuned for the detection of
specific spoofing attacks.

4.4.2 Fusion

Table 4.3 presents the performance of all four fusion methods in terms of the min t-
DCF. Columns P1 and P2 show pooled min t-DCF and pooled EER results for the
evaluation set respectively. Results for the development set (columns A01-A06)
show that all fusion techniques achieve zero min t-DCFs for all spoofing attacks.
The non-linear GMM-based fusion approach achieves the best performance, with a
pooled min t-DCF of 0.074 for the evaluation set. The next best system is the non-
linear SVM fusion approach with a min t-DCF of 0.075. The two linear approaches
yield t-DCFs of 0.091 and 0.118. These findings seem to confirm the hypothesis
that a non-linear approach is better suited to the fusion of sub-band CMs. This is
because spoofing artefacts that are localised in the spectrum may be detected only
by sub-band CMs whose focus is directed towards the same parts of the spectrum
and hence be detected reliably by a subset of CMs only (or even only a single CM).
In this case, full-band CMs may dilute relevant information by smoothing across
the spectrum and linear approaches to fusion may not identify the best decision
boundary between bona fide and spoofed speech. Better performance is obtained
with non-linear decision boundaries.
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Table 4.4: Performance for the ASVspoof 2019 evaluation partition in terms of
pooled min t-DCF and pooled EER (%) for top-performing systems (T05, T45,
T60 and T24), fusion results (in boldface) and baseline results (B1, B2).

System min-tDCF EER (%)
T05 0.0069 0.22

T45 [83] 0.0510 1.86
GMM fusion 0.0740 2.92

SVM fusion (polynomial kernel) 0.0748 2.92
T60 [126] 0.0755 2.64

High res. LFCC (Proposed single system) 0.0900 3.50
Linear fusion 0.0910 3.38

T24 0.0953 3.45
Multinomial logistic regression fusion 0.1180 4.50
Best single system in Challenge [47] (T45) 0.1560 5.06

LFCC:B2 [49] 0.2116 8.09
CQCC:B1 [49] 0.2366 9.57

4.4.3 Performance comparison
Table 4.4 also shows results for the two ASVspoof 2019 baseline systems (B1 and
B2, last two rows) and the four top-performing (out of 48 submissions) challenge re-
sults [47,49]. The latter are denoted by their anonymous ASVspoof 2019 identifiers
T05, T45, T60 and T24 [49]. Only T45 [83] and T60 [126] system descriptions are
publicly available. It is worth noting that all four of these competing systems are
based upon an ensemble of comparatively complex neural network-based architec-
tures [47], in contrast to the very simple GMM-based solution used in our work.
The top performing system (T05) used a combination of seven complex neural
network-based sub-models, including MobileNet, DenseNet and different variant
of ResNet architecture (see Figure 2 in [47]) to generate fused scores. Furthermore,
they used a combination of multiple, different front-end parameterisations, unlike
the single, common base front-end used in our work. As shown in Figure 4.4, even
though the comparison is between evaluation and post-evaluation results, both
non-linear GMM and SVM-based approaches to fusion outperform all but two of
the 48 competing systems. Even though the gap is not substantial, the two non-
linear approaches to fusion are outperformed by the traditional linear approaches.
Our proposed single system, utilising high-spectral resolution based LFCC front-
end and a simple GMM back-end, demonstrates a relative improvement of 42% in
terms of min t-DCF by utilising only 10% of the training data compared to the
best single system T45 (row 11 in Table 4.4).
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Figure 4.4: Performance comparisons with the ASVspoof 2019 LA challenge sub-
missions.

4.5 Summary
This chapter investigates whether spoofing attacks leave sub-band artefacts that
necessitate specific spoofing CMs for detection. It also explored the potential of a
non-linear ensemble approach to effectively combine the set of scores produced by
sub-band CMs. The competitive results obtained using a high spectral-resolution,
full-band CM alone demonstrate the effectiveness of the front-end features. This
finding could be beneficial to other anti-spoofing researchers that use neural net-
works with standard, low-resolution front-ends. Switching to high-resolution front-
ends may improve detection performance. The proposed high-resolution front-end
outperforms the challenge LFCC-GMM baseline by a large margin. Furthermore,
the non-linear fusion of sub-band CMs improves detection performance showing
the effectiveness of the non-linear fusion approach.
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Chapter 5

End-to-End Anti-Spoofing Using
RawNet2

For nearly a decade, the combination of a front-end feature extractor and a
back-end classifier has been the standard framework for spoof detection. Within
this framework, the majority of the existing works have mainly focused on the
development of hand-crafted acoustic front-end features. The design of appropri-
ate feature representations and suitable classifiers have often been considered as
separate tasks. One drawback of these standard frameworks is that the designed
features might not be optimal for the classification objective at hand. Since neural
networks have the capability of learning representative features automatically,
it raises the question of whether the use of handcrafted features is necessary
or beneficial. The use of hand-crafted features can lead to the loss of useful
information, such as phase information. To avoid this, why not allow the neural
network to learn more discriminative feature representations automatically from
the raw waveform. End-to-end frameworks operate directly upon raw waveform
inputs, streamlining the training and evaluation process. The objective of this
work is to develop more efficient, robust end-to-end spoofing and deepfake
detection CM that can capture the fundamental differences between spoofed and
bona fide speech, i.e., between machine-generated and human-generated speech.

Chapter 4 presented the high-resolution front-ends as a promising solution,
but highlighted poor reliability for the worst-case A17 attack detection. A
similar trend was seen for the top-performing entries of the ASVspoof 2019 LA
challenge [47]. This may be because A17 attack exhibits more temporally-distinct
artefacts, which are not ease captured by pre-processed hand-crafted features
commonly used in conventional approaches. This highlights the need for a more
sophisticated CM solution capable of detecting a wide range of previously unseen
spoofing attacks. Rather than relying heavily on pre-processed, hand-crafted
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acoustic features, it may be more beneficial to use end-to-end (E2E) neural
network model that can automatically learn the relevant information in both
the temporal and spectral domains for reliable spoofing detection. This work is
motivated by literature analysing raw waveform-based DNNs front-end [136], as
well as the success of E2E models for related speech processing tasks, such as
speech recognition [137], speech separation [138], and speaker verification [139].
To the best of our knowledge, this is the first successful application of end-to-end
RawNet2 network for anti-spoofing and audio deepfake detection.

The key contributions of this work include:

• introduce a robust E2E deep neural network for anti-spoofing and deepfake
detection;

• motivated by Chapter 3, we incorporate different spectral resolutions (mel,
linear, inverse-mel spaced filters) in the sinc-layer front-end, in order to ef-
fectively capture artefacts that are localised in different frequency-bands;

• improve the worst case scenario A17 spoofing attack detection performance
by a large margin compared to the state-of-the-art solutions at the time of
publication.

5.1 Related work
This section provides a brief overview of previous work which led to the
development of RawNet2 [140]. In recent years, E2E classifiers have been
widely adopted in speech processing tasks, where every component between
and including any DNN-based front-end and back-end classification is jointly
optimised [137, 140, 141]. Many of these solutions which operate directly upon
the raw waveform inputs, thus avoiding the limitations imposed by the use of
knowledge-based, hand-crafted acoustic features. There is already a significant
amount of research in the automatic speaker verification (ASV) literature which
reports E2E solutions operate directly upon raw waveform. One of the early
solutions is RawNet [140], introduced in 2019. RawNet is a convolutional neural
network architecture that generates speaker embeddings for the verification task.
The first convolutional layer is applied directly to the raw waveform input, with
all filter parameters being learned automatically to extract representative features
for the given task. Among the higher layers are deep residual neural networks [79]
which extract frame-level representations. They use either long short-term mem-
ory (LSTM) as in [139] or gated recurrent units (GRUs) as in [140], to aggregate
utterance-level representations and either a b-vector classifier [142,143] as in [139]
or a simple DNN classifier with concatenation and multiplication (concat & mul)
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scoring approach as used in [140] for speaker verification. The use of a wholly
unconstrained convolutional neural network (CNN) layer whose parameters are
learned automatically can increase the number of network parameters resulting
in slow convergence. Additionally, the first layer outputs also tend to be noisy,
especially when training data is limited.

One approach to address these issues is the E2E SincNet [144] network proposed
in 2018 for speaker recognition. While the higher layers of the SincNet archi-
tecture are relatively standard, the first convolutional layer operates on the raw
waveform and is composed of a bank of band-pass filters parameterised in the
form of sinc functions. Sinc filters act as time-invariant rectangular band-pass
filters. The use of a constrained first layer, with fewer learnable parameters,
whereby only the cut-off frequencies and filter bandwidths are learned with a fixed
rectangular-shaped filter response, leads to the learning of a more meaningful
filterbank structure and outputs. With fewer parameters, the convergence speed
for SincNet is faster than a standard convolutional layer.

An improved version of RawNet [145] (RawNet2) combines the merits of the
RawNet [140] approach with the use of SincNet as a front-end to learn repre-
sentative features for speaker verification. The first layer of RawNet2 is essentially
the same as that of SincNet, whereas the upper layers consist of the series of six
residual blocks and GRU layers. Additionally, RawNet2 incorporates filter-wise
feature map scaling (FMS) using a sigmoid function which is applied individually
to each filter output. Despite the growing interest in E2E approaches, only one
study in the literature explored E2E approach for anti-spoofing [146]. In 2017,
dinkel et al. proposed the first raw waveform-based E2E convolutional long short-
term neural network (CLDNN) [146]. The CLDNN model uses CNN and LSTM
layers as a front-end to extract a utterance-level representations and the DNN as
back-end classifier. However, the CLDNN model was evaluated on other, older
databases (BTAS [147] and AVspoof [148]) with a half total error rate (HTER)
evaluation metric, making it difficult to compare its performance to that of other
models. The recent speaker recognition literature [140, 141] suggest that E2E ar-
chitectures which avoid the use of hand-crafted features have potential to improve
upon performance. We sought to determine whether the benefit of E2E auto-
matic feature learning translates well to anti-spoofing, especially in the worst-case
scenario A17 attack [47].

5.2 RawNet2 architecture for anti-spoofing
In this section, we describe modifications made to the original RawNet2 archi-
tecture [145] in order to effectively adapt it to the anti-spoofing and deepfake
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Figure 5.1: Spectral resolutions (frequency-scale) used in sinc-layer front-end ini-
tialisation.

detection task. Details of these modifications can be found in Table 5.1, in which
changes to parameters or architecture components are highlighted in bold text.
The first modification concerns the first layer of the architecture, which ingests
raw speech. Since it leads to worse performance, we did not apply any layer
normalisation [149] to the raw input. On account of training data sparsity, or
rather the limited number of different spoofing attacks (only 6 for the training
& development set for the ASVspoof 2019 LA database), we neither learn cut-off
frequencies nor the bandwidth of each sinc filter. Other experiments, not reported
here showed that learning cut-off frequencies leads to over-fitting. To prevent
over-fitting, we neither learn automatically the bandwidth nor spectral position
of each sinc filter.

Inspired by the success of different filterbank spectral resolutions as described
in [16] and Chapter 3, we also initialised sinc filters with mel-distributed, linearly-
distributed and inverse-mel spaced filters, as shown in Figure 5.1. We optimised
the filter length (number of filter coefficients). This is because the duration of
cues used to detect spoofing are not necessarily the same as those for speaker
recognition. We use a series of six residual blocks [79] with pre-activation [150] to
extract the high-level feature representation. Each residual block comprises a 1D
convolutional layer, batch normalisation [151] with SeLU activation units [152],
and a max-pooling layer for data down-sampling.
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Figure 5.2: End-to-end RawNet2 framework.

We apply FMS independently to the output of each residual-block in the network.
FMS acts as an attention mechanism [153] applied in the spectral-domain. It acts
to emphasise the most informative filter outputs by assigning higher attention
weights to that filter. To conduct FMS, we first perform global average pooling
operation on the residual-block output to obtain the feature-map corresponding to
each filter. Then, a scalar vector is derived by feed-forwarding each filter output
through a fully-connected linear layer followed by a sigmoid layer. We adopt a
combined additive and multiplicative feature scaling approach to obtain a scaled
feature-map output as described in [145]. A GRU layer [154] with 1024 hidden
nodes is used to aggregate frame-level representations into a single utterance-level
representation. Instead of producing speaker embeddings as in RawNet2 [145],
the GRU output is followed by an additional fully connected layer which precedes
the output layer. Output layer is then applied in order to produce two-class
predictions: bona fide or spoofed. The architecture is illustrated in Figure 5.2,
whereas the full architecture is summarised in Table 5.1.
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Table 5.1: The RawNet2 architecture used for anti-spoofing. Modifications made
to the original architecture are highlighted in boldface. BN refers to batch nor-
malisation.

Layer Input≈64000 samples Output shape
Conv(129,1,128)

Sinc filters Maxpooling(3) (21290,128)
BN & LeakyReLU

Residual-block



BN & LeakyReLU
Conv(3,1,128)

BN & LeakyReLU
Conv(3,1,128)
Maxpooling(3)

FMS


× 2 (2365,128)

Residual-block



BN & LeakyReLU
Conv(3,1, 512)

BN & LeakyReLU
Conv(3,1, 512)
Maxpooling(3)

FMS


× 4 (29, 512)

GRU GRU(1024) (1024)
FC 1024 (1024)

Output 1024 2

5.3 Experiments
Experiments were performed on the ASVspoof 2019 LA database described in
Section 2.1. There was no standard E2E anti-spoofing system available at the
time of publication. Therefore, we use the high-spectral resolution-based LFCC-
GMM CM system presented in Chapter 4 as a baseline. It uses 30 ms windows, a
15 ms frame-shift and 70 linearly-spaced filters with conventional cepstral analysis
and a simple GMM back-end classifier. RawNet21 is implemented using PyTorch,
a deep learning toolkit in Python. The first sinc layer is initialised with 128 mel-
scaled filters and a filter size of 129 samples (8 ms duration) which is convolved
with the raw waveform. Audio waveforms are truncated or concatenated to give
segments of 4 second (64000 samples) duration. The entire architecture is trained
using the ASVspoof 2019 LA training set to minimise a weighted cross entropy
(WCE) loss function, where the ratio of weights assigned to bona fide and spoofed
trials are 9:1 to manage the data imbalance in the training set. The standard
Adam optimiser [155] is used with a mini-batch size of 32, and a learning rate of
0.0001. The network is trained for 100 epochs. The feature extractor and back-end

1https://github.com/eurecom-asp/rawnet2-antispoofing
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classifier are jointly optimised using back-propagation [156]. The best model was
selected based on the minimum validation loss on ASVspoof 2019 LA development
set.

5.4 Results
Results are reported for three different RawNet2 variants, their fusion perfor-
mance. Performance comparisons are made to the top-performing ASVspoof 2019
LA challenge entries [47,49]. Results are presented in terms of the minimum tan-
dem detection cost function (min t-DCF) [56] and the equal error rate (EER)
described in Section 2.2.

RawNet2
Table 5.2 illustrates the results for the baseline (L) and three different RawNet2
variants (S1-S3) for the ASVspoof 2019 LA evaluation set. Columns P1 and P2
show performance in terms of the pooled min t-DCF and EER (%), respectively.
The baseline exhibits a pooled min t-DCF of 0.090, whereas the best performing
RawNet2-S2 system, which uses fixed inverse Mel-spaced sinc filters gives a best
pooled min t-DCF of 0.1175. Results for the A17 attack, which is known to be
the most difficult attack for the baseline and other top-performing ASVspoof 2019
LA challenge entries [47], is more favourable for the RawNet2-S3 system which
uses linearly-spaced sinc filters, and for the RawNet2-S1 system which uses Mel-
spaced sinc filters. The baseline system gives a min t-DCF of 0.3524 for attack
A17, whereas the RawNet2-S3 system exhibits a lower min t-DCF of 0.181 (49%
relative reduction in min t-DCF). To the best of our knowledge, this represents
one of the best EER results reported for the A17 attack at the time of publication.

Fusion
Since the high resolution LFCC-GMM baseline system provides the best overall
pooled result, and the RawNet2-S3 system performs best for the worst case A17
attack, it is worth evaluating the benefits of their fusion to exploit their comple-
mentarity. Experiments were conducted using the support vector machine (SVM)
based fusion approach (see Section 4.3). A SVM-based approach used to fuse the
high-spectral resolution baseline (L) with the different RawNet2 variants such as
RawNet2-S1, RawNet2-S2 and RawNet2-S3. Table 5.3 presents the fusion per-
formance. The results for the two official AVSspoof 2019 challenge baseline sys-
tems: the CQCC-GMM (B1) and the low-spectral resolution LFCC-GMM (B2)
baseline [49], are also shown in the Table 5.3. All systems outperform the base-
lines, with the high-spectral resolution baseline (L) giving a min t-DCF of 0.0904,
marginally better than the min t-DCF of 0.0953 for team T24. Team T60 produced
a min t-DCF of 0.0755, and team T45 achieved a min t-DCF of 0.0510. All fusions
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Table 5.3: Performance for the ASVspoof 2019 evaluation partition in terms of
pooled min t-DCF and pooled EER for top-4 systems (T05, T45, T60 and T24),
SVM-based fusions of high-spectral-resolution LFCC (L) and RawNet2 systems
(boldface), and ASVspoof 2019 baseline systems (B1, B2). Individual min t-DCF
results for A17 are illustrated in the right-most column.

System min-tDCF EER worst case A17
(min t-DCF)

T05 0.0069 0.22 0.0040
L+S1 0.0330 1.12 0.1161

L+S1+S2+S3 0.0347 1.14 0.0808
L+S3 0.0370 1.14 0.0965
L+S2 0.0443 1.35 0.1339

T45 [83] 0.0510 1.86 0.2208
T60 [126] 0.0755 2.64 0.3254
L [157] 0.0904 3.50 0.3524

T24 0.0953 3.45 0.3547
LFCC:B2 [49] 0.2116 8.09 0.2880
CQCC:B1 [49] 0.2366 9.57 0.5859

of the high-spectral resolution baseline (L) with either S1, S2 and S3 RawNet2 sys-
tems perform better, with the L+S1 combination even outperforming fusion with
all three RawNet2 variants (L+S1+S2+S3). The last column of Table 5.3 shows
the performance in terms of the min t-DCF for the worst-case scenario A17 attack.
Just like individual system results shown in Table 5.2, all RawNet2 fused systems
produce a substantially lower min t-DCF than the baseline system (L), confirming
that the end-to-end RawNet2 system is complementary as it learns artefacts that
the baseline system fails to capture. Last, the results for team T052 show a lower
pooled min t-DCF and lower min t-DCF for the worst-case scenario A17 attack,
our results are fully reproducible with open-source code.

5.5 Summary
In this chapter, we present the successful application of an E2E RawNet2 to anti-
spoofing and audio deepfake detection. Our results show that E2E automatic
feature learning has a positive impact on spoofing detection, especially in the
worst-case scenario, compared to traditional hand-crafted feature learning. Addi-
tionally, fusion results suggest that the RawNet2 classifier is capable of learning
cues that are distinct from those captured by traditional front-end features. Tra-

2Note that the best ensemble T05 system remains unreproducible to date.
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ditional acoustic features and the features learned directly from raw waveform are
hence complementary, and combining them can lead to further improvements in
performance. E2E modes are widely known for their ease of training and minimal
need for feature engineering, which makes them efficient and practical for various
application. Moreover, the RawNet2 model has been adopted as one of the strong
baselines for the ASVspoof 2021 challenge.
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Chapter 6

End-to-End Spectro-temporal
Graph Attention Network

The work presented in Chapter 5 demonstrates that a model can be optimised
to learn the relative importance of specific spectral and temporal intervals. This
work is inspired by the work reported in Chapter 5 and the psychoacoustic
studies [115, 116], which demonstrated the ability of the human auditory system
to select the most discriminative spectral bins and to perform an auto-correlation
between adjacent temporal frames. Therefore, the learning of correlation between
spectral and temporal cues may improve spoof detection reliability. In recent
years, graph neural networks (GNNs) [158] and their variants have seen an impres-
sive level of success in learning the relationships among different features (nodes).
Inspired by the power of GNNs to model complex relationships among different
nodes/edges, we explored their use to model the relationship between the spectral
and temporal representations. The self-attention mechanism [153] assigns weights
to different nodes based on their relevance to neighboring nodes, with highly
weighted node features likely contributing more to the final model prediction.
The contribution in this chapter lies in proposing an end-to-end attention-based
framework using GNNs to learn the relationship between discriminative spoofing
cues for reliable detection.

6.1 Motivation
In previous chapters, we have learned that spoofing attacks often leave detectable
cues in specific sub-bands or temporal intervals. A model can be trained to
recognise the relative importance of both spectral and temporal spoofing cues.
However, traditional methods for detecting these cues often rely on ensemble sys-
tems, each of which is specifically designed to detect a particular type of artefact
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Figure 6.1: Illustration depicting the application of graph neural networks for
spoof detection.

either in the spectral or temporal domain. This can be computationally expensive.
To address this issue, we sought to learn the spectral and temporal artefacts si-
multaneously and model the relationship between them to improve detection using
a single end-to-end system. To illustrate the concept of using GNNs for spoofing
detection, we use high-level feature representations learned from a deep neural
network in Figure 6.1. As shown in Figure 6.1, the discriminative information or
spoofing cues can be localised in both spectral bands and temporal intervals. To
capture this information efficiently, we need to learn the correlation between them.

To model the relationship between artefacts spanning different sub-bands and
temporal intervals, we explored the use of graph attention networks (GATs) [159].
One of the main motivations for using GATs is their ability to effectively capture
complex relationships between different features in the data. In the context of
audio anti-spoofing, it is important to identify relationships between different
feature representations, such as spectral and temporal characteristics, that may
be indicative of spoofing. GATs are well-suited to this task as they are designed
to learn and assign weights to dependencies between different features in the
data using attention mechanisms. As shown in Figure 6.1 to construct the input
graph, we consider each time-frequency (T-F) atom (single ‘bin’ across the time
and frequency axis) as a node in a non-euclidean space, specifically, a graph. The
number of channels represents the node feature dimensionality. The input graph
generation process is summarised in Section 6.4.

Work presented in Chapter 5 showed the merit of attention mechanisms to capture
artefacts located in different spectral sub-bands or temporal intervals. The objec-
tive in this chapter is to model the relationships using a joint spectro-temporal
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attention network. This approach facilitates the aggregation of complementary,
discriminative information concurrently in both domains. In this chapter, we in-
troduce an end-to-end spectro-temporal graph attention network, called RawGAT-
ST, which operates directly on the raw waveform. Such a fully end-to-end approach
is designed to maximise the potential of capturing discriminative cues in both
spectral and temporal domains concurrently. Inspired by the end-to-end speaker
verification model [144,145] and in building upon our end-to-end anti-spoofing so-
lution, RawNet2, reported in Chapter 5, the proposed RawGAT-ST model uses a
bank of sinc-shaped rectangular band-pass filters which operate directly upon the
raw audio waveform through time-domain convolution. The key contributions of
this work include:

• a fully end-to-end architecture comprising feature representation learning
and graph modeling;

• a novel spectro-temporal graph attention network which learns the relation-
ships between cues at different sub-band and temporal intervals;

• a new attentive graph pooling strategy to reduce computational cost and to
improve discrimination power by discarding irrelevant nodes;

• the exploration of different model-level, graph combination strategies.

6.2 Related work
In recent years, GNNs [158,160–163] have attracted growing attention, particularly
its variants, such as graph convolution networks (GCNs) [164] and GATs [165].
GNNs are a type of neural network designed to operate on graph-structured data,
such as the relationship between different segments of a speech signal. GNNs
use an aggregation function to update the feature representation of each node
by aggregating feature representations from neighboring nodes. Some commonly
used aggregation functions include Mean, Max and Summation [163, 166]. GNNs
also use a readout operation such as simple average or max-pooling to combine
the feature information of all nodes into a single feature representation for the
entire graph. Several prior studies have demonstrated the effectiveness of GNNs
and their variants in various speech processing tasks [167–171], including audio
classification, speaker verification and speaker diarization.

Zhang et al. [167] applied GCNs to a few-shot audio classification task in order
to derive an attention vector that helps to improve the discrimination between
different audio classes. Tzirakis et al. [170] used GCNs to find spatial correlations
among the different microphone channels (considered as nodes in the graph)
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for a multi-channel speech enhancement problem. The speech signal received
from each microphone channel is first transformed into a time-frequency (T-F)
representation, which is then fed into a neural network framework. They used
a U-Net neural network architecture [172] where the encoder extracts high-level
features from the inputs. The high-level feature representations obtained for
each microphone channel are subsequently used to construct a input graph that
captures the multi-channel information through its nodes and edges, and GCNs
are used to aggregate information from each node (microphone channels). Jung et
al. [169] demonstrated the use of GATs as a back-end classifier to learn the rela-
tionships between enrolment and test utterances for speaker verification. Kwon et
al. [171] used GATs for multi-scale speaker diarisation to calculate the similarity
between the two speech segments and for speaker clustering to identify the speak-
ers. GATs can be used effectively to model the relationship between different
segments of a speech signal, which can be useful for various speech processing tasks.

Our preliminaries study on GATs, as reported in [173], demonstrated how GATs
can be used effectively to model the relationship between spoofing artefacts lo-
calised in different sub-bands and temporal frames. This is accomplished by util-
ising a self-attention mechanism [153], which focuses on the most salient sub-
bands or temporal frames and the relationships between them. We applied GATs
separately to model the relationships in either spectral or temporal domains and
demonstrated their complementarity through a score-level fusion (i.e., late fusion).
Our hypothesis is that the integration of these two graphs has better potential to
leverage complementary information between spectral and temporal graph rep-
resentations and to further enhance detection performance while using a single,
end-to-end system.

6.3 Graph attention networks
A graph is defined as:

G(N, E , h), (6.1)
where N = {1, ...., n} is the set of nodes, and E represents the edges between
all possible node connections, including self-connections. We assume that every
node has a feature vector h ∈ Rd, where d is the dimensionality of the feature
vector. GNNs are a class of neural network which can model the non-Euclidean
data manifold between different nodes by utilising high-dimensional feature vectors
as the nodes. In this work, we consider fully-connected graphs with edges between
every pair of nodes, including self-connections. Algorithm 1 provides an overview
of the GAT learning process. The input graph G is formed from a set of node
features, h , where h ∈ RN×d, where N is set of nodes and where d is the feature
dimensionality (number of channels in the feature map). The GAT layer operates
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Algorithm 1 The GAT Learning Process
Input: Graph G = (N , E , h), where hn ∈ Rd for n ∈ N

Output: Updated graph G ′ = (N , E , o), where on ∈ Rd′ for n ∈ N

for n ∈ N do
∀u ∈M(n) ∪ {n}, whereM(n) is the set of neighboring nodes of n

αu,n ← softmax(Wmap(hn ⊙ hu))

mn ←
∑

u αu,nhu, node aggregation w.r.t Eq. 6.2

on ← SeLU(BN(Watt(mn) + Wres(hn)))
end

Output: Updated graph G ′ ← o

upon an input graph G to produce an output graph G ′. Steps involved in the GAT
learning process described in the following sections.

6.3.1 Node aggregation
Each graph transmits information between its neighboring node pairs. During
the node aggregation process, the information from a single node is gathered by
aggregating information from its neighboring node pairs using learnable weights via
a self-attention mechanism. Node features are aggregated with attention weights
that reflect the connective strength or relationship between a given node pair. The
information from neighboring nodes is aggregated according to:

mn =
∑

u∈M(n)∪{n}
αu,nhu, (6.2)

whereM(n) refers to the set of neighboring nodes for node n, and αu,n refers to
the attention weight between nodes u and n. The GAT layer assigns learnable
attention weights α to each edge (see Figure 6.5). The attention weights are
calculated using a feed-forward neural network and the softmax [174] function,
which allows individual nodes to aggregate discriminative information.

6.3.2 Self-attention mechanism
The self-attention mechanism is an effective information aggregator [159]. Since
different neighboring nodes may contain different information, we use the self-
attention mechanism to learn the importance of each node w.r.t. its neighboring
nodes. Attention weights reflect how relevant or informative one node is to another,
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where higher weights imply stronger correlations between node pairs. In order to
update the node features, a shared learnable linear transformation is applied to
each node. Then a self-attention mechanism is applied via a single feed-forward
neural network. The attention weight α between each neighboring node pair is
derived according to:

αu,n = exp(Wmap(hn ⊙ hu))∑
w∈M(n)∪{n} exp(Wmap(hn ⊙ hw))

, (6.3)

where Wmap ∈ Rd′×1 is the learnable attention weights multiplied to the dot prod-
uct of every neighboring node pair hn ∈ Rd′ and hu ∈ Rd′ , and where ⊙ denotes
element-wise multiplication. The estimated attention weight αu,n indicates the im-
portance of node u (neighboring node) to node n, which is then normalised across
all nodes using the softmax function.

6.3.3 Output graph
The output graph G ′ comprises a new set of node features on, where n ∈ N , with
target dimensionality d′ < d. Output node feature on is derived according to:

on = SeLU(BN(Watt(mn) + Wres(hn))), (6.4)

where SeLU refers to a scaled exponential linear unit [152] activation function, BN
refers to batch normalisation [175], mn is the aggregated information for node n,
and hn ∈ Rd represents the feature vector of node n ∈ N . Each output node on ∈
Rd′ has a target dimensionality d′. Watt ∈ Rd′×d is a learnable weight matrix which
projects the aggregated information for each node n to the target dimensionality d′

using a linear transformation layer. Wres projects the residual (skip) connection
output to the same dimension. In this step, we obtain the final feature vectors for
all nodes n ∈ N .

6.4 Spectro-temporal graph attention network
In this section, we introduce the proposed RawGAT model with spectro-temporal
attention. It comprises four stages: i) learning higher-level semantic feature repre-
sentations in truly end-to-end fashion by operating on the raw waveform (RawNet2
encoder); ii) a novel graph attention module with spectro-temporal attention; iii)
a new graph pooling layer for discriminative node selection; iv) model-level fusion.
The RawGAT-ST architecture is illustrated in Figure 6.2.

6.4.1 RawNet2 encoder
The RawGAT-ST model operates directly upon the raw waveform inputs. Some
literature [140, 144, 176] shows that solutions based upon a bank of sinc filters
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Figure 6.2: The proposed RawGAT-ST model architecture. The top-left spec-
tral attention block captures discriminative spectral information. The top-right
temporal attention block captures discriminative temporal information. Fusion is
performed at the model level (middle ellipse). The bottom block comprises the
spectro-temporal graph attention model.

are particularly effective in terms of both convergence stability and performance
and also require fewer parameters compared to conventional convolution layers.
Accordingly, we use a sinc convolution layer to learn feature representations
similarly to our work in [176] and also reported in Chapter 5. It performs
time-domain convolution of the raw waveform with a set of parameterised sinc
functions which correspond to rectangular band-pass filters [122,123]. The center
frequencies of each sinc filter are initialised according to a mel-scale in an identical
fashion to SincNet [144].

The choice of using sinc filters over conventional convolution filters is due to con-
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Figure 6.3: Illustration of graph formulation using higher-level feature representa-
tions.

strained parameterisation and fewer network parameters. In contrast to the orig-
inal RawNet2 model, we interpret the output of the sinc layer as a 2-D time-
frequency (T-F) representation by adding a single channel dimension, rather than
a 1-D sequence. These 2-D features fed to a residual blocks [79] to extract the
high-level representation S ∈ RC×F ×T , where C, F and T refers to the number
of channels, frequency bins and time samples respectively. Each residual block
comprises a 2-D convolutional layer, a batch normalisation [151], SeLU activation
unit [152] and a max-pooling layer. As illustrated in Figure 6.3, the higher-level
feature extractor is identical to that of the RawNet2 encoder presented in Chap-
ter 5.

6.4.2 Spectro-temporal graph attention
The approach to bring spectro-temporal graph attention to a single end-to-end
model is a core contribution in this work. An overview of the proposed RawGAT-
ST architecture is illustrated in Figure 6.2. The input to the model is a higher-level
feature map (S) (top of Figure 6.2). Figure 6.3 depicts the temporal and spectral
graph formulation from the higher-dimensional feature representation. The
RawGAT-ST model comprises three principal blocks, each of which contains a
single GAT layer: a spectral attention block (top-left of Figure 6.2); a temporal
attention block (top-right); a final spectro-temporal attention block (bottom).
The spectral and temporal attention blocks have the goal of emphasising the
spectral and temporal cues. The third, joint spectro-temporal attention block
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operates upon the pair of resulting graphs to model the relationships spanning
both domains. All three blocks contain GAT [159] and graph pooling layers [177].

This process is first applied separately with attention to either spectral or temporal
domains. Both spectral and temporal blocks operate upon the higher-level feature
map S ∈ RC×F ×T . The spectral and temporal attention blocks first collapse tem-
poral and spectral information respectively to a single dimension via max-pooling
operation before the GAT layer. For the spectral attention block, max-pooling
is applied to the absolute values across the temporal dimension thereby giving a
spectral feature map f ∈ RC×F :

f = max
T

(abs(S)), (6.5)

The temporal attention block operates instead across the spectral dimension giving
a temporal feature map t ∈ RC×T :

t = max
F

(abs(S)), (6.6)

Since S is derived from temporal data and hence contains both positive and nega-
tive values, use of absolute values in Eqs. 6.5 and 6.6 prevents meaningful negative-
valued data from being discarded. Graphs Gf ∈ RNf×d and Gt ∈ RNt×d are then
constructed from the transpose of f and t feature maps, respectively. Gf contains a
set of 23 nodes (the number of spectral-bins) whereas Gt contains a set of 29 nodes
(the number of temporal segments). Both graphs have a common dimensionality
of d = 64 (number of channels). Separate GAT layers are then applied to both Gf
and Gt to model the relationships between different sub-bands and temporal seg-
ments thereby producing a pair of new output graphs G ′

f ∈ RNf×d′ and G ′
t ∈ RNt×d′

with a common, reduced target dimensionality d′ = 32.

6.4.3 Graph pooling
Various graph pooling layers have been proposed to obtain effective and discrim-
inative graph representations [177, 178]. Graph pooling layers utilises learnable
scoring functions to prune nodes with comparatively lower significance scores.
Our approach is based on the attentive graph pooling layer proposed in [177]
for the node classification task. We apply the graph pooling layer to the output
of the GAT layer, as illustrated in Figure 6.2. An attentive graph pooling layer
is included in all three GAT blocks to generate more discriminative graphs by
selecting a subset of the most informative nodes and by dropping less irrelevant
nodes to reduce the computation power. An example of graph pooling is illustrated
in Figure 6.4.
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Figure 6.4: An illustration of the graph pooling layer [177]. The input graph
G ∈ RN×d has N = 4 nodes and feature dimensionality d = 4. q ∈ Rd×1 is
a learnable projection vector (attention weight vector). Projection scores y are
obtained from the dot product between q and the node feature vector in input
graph G for each node n. The indices idx corresponding to the nodes with the
top-k highest projection scores are used to form a new pooled graph G ′ from the
element-wise multiplication of Gnidx

with sigmoid(ynidx
) (Eq. 6.8).

Let G,G ∈ RN×d be the input graph for a graph attention layer where N is the
number of nodes and where d refers to the feature dimensionality of each node.
Note that the order of nodes in the graph is meaningless; the relationships between
them are defined via the attention weights assigned to each edge. Attention weights
are derived via G · q, where [·] is the dot product and q ∈ Rd is a projection
vector that returns a scalar attention weight for each node. Graph pooling uses
an attention weight vector q ∈ Rd×1. The dot-product between the input graph G,
and q gives learnable projection scores y:

y = G · q (6.7)

Nodes in the input graph G corresponding to the top-k-hot vectors y′ are then
retained according to element-wise multiplication:

G ′
pooled = Gnidx

⊙ sigmoid(ynidx
), (6.8)

where the pooling ratio k is a hyperparameter, and where Gnidx
and ynidx

are
the node features and projection scores selected corresponding to the highest
top-k indices, idx. After the multiplication of a sigmoid non-linearity with the
corresponding k nodes, the nodes with the top-k values are retained while the
rest are dropped.
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Figure 6.5: An illustration of the proposed graph-based process including a GAT
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dimension d = 8. Circles with different colours denote the d-dimension node
features hn. A self-attention mechanism is applied on the node features to learn the
influence among different nodes and to estimate attention weights α between each
node pair. The edges between the neighboring node pair indicate that a learned
pairwise relationship is used to calculate the relative importance between nodes
using self-attention mechanism. Thicker lines (see in left-most graph) indicate
higher attention weights for the given node pairs. Then, the information from
the node itself and neighboring nodes are aggregated, and projected to an output
feature space on ∈ Rd′ with target dimensionality d′ = 4. The graph pooling layer
reduces the number of nodes to improve discrimination. (Best viewed in colour.)

The graph pooling operator is defined as a function Gpool which maps a graph G
to a new pooled graph G ′

pooled ∈ (N ′, E ′, o):

G ′
pooled = Gpool(G) (6.9)

Finally, pooled graph representations G ′
fpooled and G ′

tpooled are generated from the
original spectral G ′

f and temporal G ′
t output graphs (described in Section 6.4.2),

respectively. Since spectral G ′
fpooled (N ′

f=14) and temporal G ′
tpooled (N ′

t=23) pooled
graphs have different numbers of nodes, both sets of graph nodes are projected into
the same dimensional space using an affine-transform. This is accomplished using
two fully-connected layers, each of which projects the node of the graph to the same
node dimensionality. Figure 6.5 illustrates an example of a graph learning process,
where a GAT layer operating upon an input graph G(N, E , h) with N= 4 nodes.
The GAT layer aggregates node information using self-attention weights between
neighboring node pairs to produce an output graph G ′(N, E , o). Subsequently, a
graph pooling layer is applied to the output graph to retain the most discriminative
nodes, resulting in N ′= 3 nodes as illustrated in Figure 6.5.
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6.4.4 Model-level combination
A spectral and temporal graph combination module represents the forth contri-
bution of this work. Inspired by the idea of multi-model fusion used in emotion
classification [179], we simply combine two different graphs at the model-level.
Model-level graph combinations (ellipse in Figure 6.2) are used to exploit comple-
mentary information captured by the spectral and temporal attention graphs. We
studied three different traditional approaches to graph combination:

Gft =


G ′

fpooled⊕ G ′
tpooled

G ′
fpooled⊙ G ′

tpooled

G ′
fpooled || G ′

tpooled

(6.10)

where the combined graph Gft ∈ RNft×dft is generated from one of the fusion
approaches in Eq. 6.10. It acts to combine the spectral pooled graph G ′

fpooled

with the temporal pooled graph G ′
tpooled . A combined graph Gft contains a set

of Nft = 12 nodes and each have feature dimensionality dft = 32. The three
different operators in Eq. 6.10 are element-wise addition ⊕, multiplication ⊙ and
concatenation ||. A third GAT layer is then applied to Gft to produce output
graph G ′

ft ∈ RNft×d′
ft , where d′

ft = 16 is the output feature dimensionality. Graph
pooling is then applied one last time to generate a pooled graph G ′

ftpooled . The final
two-class prediction (bona fide or spoofed) is then obtained using linear projection
and output layers. A summary of the RawGAT-ST model illustrated in Figure 6.2
is presented in the Table 6.1.

6.5 Experiments
All experiments were conducted using the ASVspoof 2019 LA database [49, 53]
described in Section 2.1. The baseline is the end-to-end RawNet2 system [176]
described in Chapter 5. In contrast to the baseline RawNet2 system and in order
to reduce computational complexity, we reduced the number of filters to 70 in
the sinc-layer for RawGAT-ST model. Like the baseline RawNet2 system, it also
operates directly upon raw waveform inputs. To improve generalisation, we added
channel masking in similar fashion to frequency masking [87,107,180] to mask (set
to zero) the output of a random selection of contiguous sinc channels during train-
ing. The same channel mask is applied to all training data within each mini-batch.
The number of masked channels is chosen from a uniform distribution between 0
and Fmask, where Fmask = 14 is the maximum number of masked channels selected
based on minimum validation loss (on the ASVspoof 2019 LA development set).
In contrast to usual practice, we also use fewer filters (32 and 64) in the first
and second residual blocks to further protect generalisation to previously unseen
attacks [181]. Graphs with a larger number of nodes will increase computation
cost. To avoid this, we applied attentive graph pooling to select only the top-k
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Table 6.1: The details of RawGAT-ST model architecture. Numbers denoted in
sinc layer & Conv layer refer to (filter size, stride, and number of filters). The
output size refers to (CNN channels, Freq, Time). Separate GAT layers are use
for spectral and temporal attention blocks.

Layer Input: 64600 samples Output shape
Sinc-layer Conv-1D(129,1,70) (70,64472)

add channel (TF representation) (1,70,64472)
Maxpool-2D(3) (1,23,21490)
BN & SeLU

Residual-block



Conv-2D((2,3),1,32)
BN & SeLU

Conv-2D((2,3),1,32)
Maxpool-2D((1,3))


×2 (32,23,2387)

Residual-block



Conv-2D((2,3),1,64)
BN & SeLU

Conv-2D((2,3),1,64)
Maxpool-2D((1,3))


×4 S=(64,23,29)

Spectral-attention Temporal-attention
maxT(abs(S)) = (64, 23) maxF(abs(S)) = (64, 29)
GAT layer =(32,23) GAT layer =(32,29)

Graph pooling=(32,14) Graph pooling=(32,23)
Projection=(32,12) Projection=(32,12)

Model-level element-wise addition (⊕) (32,12)
graph element-wise multiplication (⊙) (32,12)

combinations concatenation (along feature dim) (||) (64,12)
Spectro- GAT layer (16,12)
temporal Graph pooling (16,7)
attention Projection (along feature dim) (1,7)
Output FC(2) 2

highest scoring nodes where k are empirically selected pooling ratios of 0.64, 0.81,
and 0.64 for spectral, temporal and spectro-temporal attention blocks respectively.

The full model is trained using the ASVspoof 2019 LA training partition to min-
imise a weighted cross entropy (WCE) loss function, where the ratio of weights

81



6.6. RESULTS

Table 6.2: Results for the ASVspoof 2019 LA database are shown in terms of
Pooled min t-DCF and pooled EER. Results are shown for the RawNet2 baseline
system and the three variants of the RawGAT-ST system introduced in this paper.

System Pooled min t-DCF Pooled EER (%)
baseline 0.1300 5.64

RawGAT-ST-add 0.0373 1.15
RawGAT-ST-concat 0.0388 1.23

RawGAT-ST-mul 0.0335 1.06

assigned to bonafide and spoofed trials are 9:1 to manage the data imbalance
in the training set. We used the standard Adam optimiser [155] with a mini-
batch size of 10 and a fixed learning rate of 10−4. The model is trained for 300
epochs. The feature extractor and back-end classifier are jointly-optimised using
back-propagation [156] during training. The best model was selected based on the
minimum validation loss. The proposed spectro-temporal GAT model has 0.22 M
parameters and is comparatively lightweight compared to the baseline as well as
other state-of-the-art systems. The code and model checkpoints are available in
an open-source Python implementation.1

6.6 Results
Results are illustrated in Table 6.2, where columns P1 and P2 indicate results in
terms of pooled min t-DCF and pooled EER for the baseline system (RawNet2)
and three different variants of the proposed RawGAT-ST system. The variants in-
volve the use of different spectro-temporal graph combination strategies. Whereas
all RawGAT-ST systems outperform the baseline by a substantial margin, the
best result is obtained using the RawGAT-ST-mul system for which the t-DCF is
0.0335 (cf. 0.1547 for the baseline) and the EER is 1.06% (5.54%). These results
show that all RawGAT-ST systems are effective in exploiting spectro-temporal
attention and model successfully and beneficially the relationships between dif-
ferent spectro-temporal estimates, thereby improving the discrimination between
spoofed and bona fide inputs. Figure 6.6 shows that the proposed system con-
sistently outperforms the baseline for a broad range of spoofing attacks, which is
demonstrated by lower min t-DCFs and lower EERs compared to the baseline sys-
tem. The RawGAT-ST-mul system gives an 87 % relative reduction in min t-DCF
performance for attack A18 (which is difficult to detect with baseline RawNet2).

1https://github.com/eurecom-asp/RawGAT-ST-antispoofing
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Figure 6.6: Attack-wise performance in-terms of min t-DCF for different RawGAT-
ST systems along with baseline on the ASVspoof 2019 LA evaluation set.

6.7 Ablation study
Only through ablation experiments can we properly demonstrate the merit of the
RawGAT-ST approach. To investigate how much the proposed spectro-temporal
attention module contributes to model performance, we ran a further set of ex-
periments while removing one of the blocks in the full RawGAT-ST architecture
illustrated in Figure 6.2. Results are illustrated in Table 6.3. The top row high-
lighted in boldface is the RawGAT-ST-mul result that uses both spectro-temporal
attention together. Ablation of the spectral GAT attention block (top left in Fig-
ure 6.2) leaves the system capable of exploiting only temporal GAT attention to

Table 6.3: Results for ablation studies

System min-tDCF EER
w/ spectro-temporal attention 0.0335 1.06

w/o spectral attention 0.0514 1.87
w/o temporal attention 0.0385 1.13

w/o graph pooling 0.0788 2.47
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encode temporal information. Without spectral attention (third row of Table 6.3),
performance degrades by 34% relative to the full system (0.0514 cf. 0.0335). The
degradation in performance without temporal attention (0.0385) is less severe (13%
relative), indicating the greater importance of spectral attention versus temporal
attention, even though both are beneficial. Lastly, we demonstrate the benefit
of graph pooling by ablating the pooling layers in all three blocks. The relative
degradation in performance of 58% (0.0788 cf. 0.0335) is even more substantial
and shows the benefit of using a graph pooling layer to concentrate on the most
informative node features.

6.8 Performance comparison
A comparative study of RawGAT-ST to competing single systems was furthermore
conducted to gauge the benefit of spectro-temporal attention in improving perfor-
mance. The comparison in Table 6.4 shows that our system which uses GATs
with self-attention outperforms alternative attention approaches such as a Convo-
lutional Block Attention Module (CBAM), a traditional Squeeze-and-Excitation
(SE) attention module, and a Dual attention module with pooling and convolution
operations. Furthermore, to the best of our knowledge, at the time of publication
our approach is the best single system reported in the literature. With only 0.22M
parameters, the proposed RawGAT-ST system is among the least complex CM
systems. Despite the simplicity, the proposed RawGAT-ST system outperforms
all single state-of-the-art systems presented in Table 6.4. This result also points
toward the benefit of operating directly upon the raw waveform and of learning
the relationship between artefacts spanning spectral and temporal domains.

6.9 Summary
This chapter introduces a fully end-to-end, joint spectro-temporal graph attention
network, called RawGAT-ST. This network operates directly upon raw waveform
and utilises a self-attention mechanism to learn the correlation between different
spectro-temporal estimates and the most discriminative nodes within the resulting
graph representation. Results for the ASVspoof 2019 LA database show that
the RawGAT-ST model generalises well to a diverse range of spoofing attacks,
including previously unseen attacks. Our approach RawGAT-ST achieved the
lowest EER at the time of publication.
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Table 6.4: A comparison to recently proposed top-performing, competing state-of-
the-art systems. Results reported in terms of pooled min t-DCF and EER (%).

Ref. Front-end Back-end min t-DCF EER (%)
Proposed Waveform RawGAT-ST 0.0335 1.06
[182] Waveform Res-TSSDNet 0.0481 1.64
[183] Spec. CNN 0.0510 1.87
[184] Waveform Raw

PC-DARTS
0.0517 1.77

[185] CQT MCG-
Res2Net50

0.0520 1.78

[87] LFB ResNet18-
LMCL-FM

0.0520 1.81

[186] LFCC LCNN-LSTM-
sum

0.0524 1.92

[88] LFCC Capsule
network

0.0538 1.97

[187] LFCC Resnet18-
OCsoftmax

0.0590 2.19

[89] CQT SE-Res2Net50 0.0743 2.50
[188] LFCC LCNN-Dual

att.
0.0777 2.76

[189] Waveform RW-ResNet 0.0820 2.98
[173] LFB GAT-T 0.0894 4.71
[190] LFCC PC-DARTS 0.0914 4.96
[191] LFCC Siamese 0.0930 3.79
[188] LFCC LCNN-

4CBAM
0.0939 3.67

[104] DASC LCNN 0.0940 3.13
[83] LFCC LCNN 0.1000 5.06
[192] CQT LCNN 0.1020 4.07
[90] CQT ResNet 0.1190 3.72
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Chapter 7

An Integrated Spectro-temporal
Graph Attention Network

In Chapter 6, we introduced the RawGAT-ST model, which assumes that the
spectral and temporal graphs are homogeneous and combine them using tradi-
tional addition and multiplication operation. This model might be sub-optimal
since it cannot fully exploit the different types of node information. To address
this, we consider both spectral and temporal graph representations as heteroge-
neous graphs composed of multiple types of nodes/edges. This approach can be
beneficial as it allows the model to take into account both local and global feature
interactions, which may be important for accurately detecting spoofing artefacts.
Furthermore, the use of a heterogeneous graph attention network enables the
integration of different types of node feature representations, such as spectral
and temporal characteristics which cannot be well exploited via traditional
homogeneous graph combinations. To further enhance performance, we propose
an extension to the RawGAT-ST model by introducing a heterogeneous stacking
graph attention layer [48] leading to a new, integrated spectro-temporal graph
attention network, named AASIST.

The key contributions of this work include:

• introduce an extended variant of the graph attention layer, namely a hetero-
geneous stacking graph attention layer (HS-GAL);

• introduce a new mechanism referred to as max graph operation (MGO);

• an exploration of a new readout scheme for graph aggregation that utilises
the stack node.
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7.1 Methodology
AASIST is an integrated spectro-temporal graph attention network as illustrated
in Figure 7.1. It builds upon the RawGAT-ST model, whereby two heteroge-
neous graphs such as spectral and temporal graphs are combined at the model
level. However, instead of using traditional element-wise operations as used in
RawGAT-ST, AASIST employs a joint attention learner approach using the pro-
posed heterogeneous stacking graph attention layer (HS-GAL), in addition to the
proposed MGO and a new readout scheme. It also operates directly upon raw
waveform inputs. First, a RawNet2-based encoder (see Section 6.4.1) is used to
extract high-level feature representations S ∈ RC×F ×T where C, F and T refer to
the number of channels, spectral bins and temporal segments, respectively. Then,
a pair of graph modules which comprise graph attention layer (GAT) and graph
pooling layers is used to model the temporal and spectral features in parallel, by
constructing Gt and Gf. Both Gf and Gt graphs combined into a joint spectro-
temporal graph Gft using a HS-GAL layer. Graph Gft is then processed by the max
graph operation (MGO) which comprises four HS-GAL layers and graph pooling
layers. The readout operation is performed at the node level, followed by an out-
put layer with two nodes to distinguish bona fide from spoofed utterances. Each
block in Figure 7.1 is described in the following.

7.1.1 Graph combination
Separate spectral and temporal feature representations are learned from the high-
level feature representation S using a max-pooling operation which is applied to the
absolute values across either temporal or spectral dimensions in order to construct
either a spectral graph (Gf ∈ RNf×df) or a temporal graph (Gt ∈ RNt×dt). Nf and
Nt are the set of nodes, and df and dt are the node dimensionalities for spectral
and temporal graphs respectively. Spectral Gf and temporal Gt graphs are derived
according to:

Gt = graph_module(maxF(abs(S))) (7.1)

Gf = graph_module(maxT(abs(S))) (7.2)

where each graph_module (grey boxes in Figure 7.1) comprise a GAT and a graph
pooling layers. We generate a combined graph (Gft) by adding edges between ev-
ery node in Gf and Gt, vice versa. This results in a heterogeneous graph (Gft) with
Nf+Nt nodes. The new edges in the combined graph (Gft) allow for the estima-
tion of attention weights between pairs of heterogeneous nodes which each span
both spectral and temporal domains. Graph combination enables the concurrent
modeling of heterogeneous graph representations with different node dimensions.
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7.1. METHODOLOGY

7.1.2 Heterogeneous stacking graph attention layer
An HS-GAL layer contains an attention mechanism modified in order to accommo-
date graph heterogeneity [48] and an additional stack node [193]. Our use of a het-
erogeneous attention layer is inspired by the approach to modeling heterogeneous
data described in [48]. First, Gt and Gf are projected using an affine-transformation
to another latent space with common dimensionality dft before being fed as input
to the HS-GAL layer. Unlike RawGAT-ST, which used a single projection vector
to derive attention weights between node pairs, AASIST uses three different pro-
jection vectors to estimate the attention weights between heterogeneous graphs.
These projection vectors are used to learn attention weights for edges connecting:
(i) nodes in Gf to other nodes in Gf (intra-connection between orange nodes); (ii)
nodes in Gf to nodes in Gt and nodes in Gt to nodes in Gf (inter-connection be-
tween orange and blue nodes (dotted edges)); (iii) nodes in Gt to other nodes in
Gt (intra-connection between blue nodes). A heterogeneous graph (Gft) compris-
ing two types of nodes, temporal nodes (blue nodes in Figure 7.1) and spectral
nodes (orange nodes), with different node dimensionality. The stack node is used
to accumulate heterogeneous information between spectral and temporal graphs.
The stack node is connected to all other nodes (stemming from Gf and Gt), and
we use uni-directional edges from all other nodes to the stack node to preserve
information in both Gf and Gt. Stack node does not transmit information to other
nodes.

7.1.3 Max graph operation
The max graph operation (MGO) layer, illustrated in Figure 7.1, is inspired by
the popularity in the anti-spoofing literature [194] of element-wise maximum op-
erations using max feature map (MFM) [80]. The motivation behind MGO is to
enable different branches to learn different groups of artefacts in parallel. In our
proposed framework, HS-GALs are applied with a MGO layer consisting of two
branches, each consisting of two HS-GALs in sequence. A graph pooling layer is
applied to the output of each HS-GAL layer. Thus, the MGO layer comprises a
total of four HS-GALs and four graph pooling layers. An element-wise maximum
operation is applied to the outputs of each branch to produce another heteroge-
neous graph GFT. HS-GALs in each branch share a common stack node. The
stack node of each preceding HS-GAL is fed to the following HS-GAL so that
information in both temporal and spectral graphs is preserved.

7.1.4 Readout scheme
The readout scheme (penultimate block in Figure 7.1) performs node-wise maxi-
mum and average operations on the heterogeneous graph GFT. The output of the
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7.1. METHODOLOGY

Table 7.1: The AASIST model architecture and configuration. Output dimensions
refer to (channels, frequency, time). Batch normalisation (BN) and scaled expo-
nential linear unit (SeLU).

Layer Input:64600 samples Output shape
Sinc-layer Conv-1D(129,1,70) (70,64472)

add channel (T-F representation) (1,70,64472)
Maxpool-2D(3) (1,23,21490)
BN & SeLU

R
aw

N
et

2
en

co
de

r

Residual-block



Conv-2D((2,3),1,32)
BN & SeLU

Conv-2D((2,3),1,32)
Maxpool-2D((1,3))


×2 (32,23,2387)

Residual-block



Conv-2D((2,3),1,64)
BN & SeLU

Conv-2D((2,3),1,64)
Maxpool-2D((1,3))


×4 S=(64,23,29)

Spectral-attention Temporal-attention
maxF(abs(S)) =(64,23) maxT(abs(S)) =(64,29)
Gf = (64(df ),11(Nf)) Gt = (64(dt),20(Nt))

Hetero. graph (Gft) HS-GAL (64(dft),31(Nft))

←−−−−−−−−−−−−
Identicalto

R
aw

G
A

T
−−−−−−−−−−−−−−→

HS-GAL→HS-GAL, HS-GAL→HS-GAL,
stack node stack node

(32(dft), 15(Nft)), (32, ) (32(dft), 15(Nft), (32, )
MGO (GF T ) element-wise max. (32(dft), 15(Nft)), (32, )
readout node-wise max. and avg. (160(dft), )

& concatenation
Output FC(2) 2

←
−−−−−−

A
A

SIST
−−−−−−−→
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7.2. EXPERIMENTS

readout layer is formed from the concatenation of five nodes. The first four nodes
are derived by applying a maximum and average operations to the spectral nodes
(orange) and temporal nodes (blue) of GFT. The last is the copied stack node.
The fully connected layer with two nodes is used to generate a two-class predic-
tion output (bona fide and spoofed). A summary of the AASIST model illustrated
in Figure 7.1 is presented in Table 7.1.

7.2 Experiments
Experiments were performed using the ASVspoof 2019 LA dataset [49] described
in Section 2.1. We used RawGAT-ST described in Chapter 6 as a baseline. The
performance of spoofing detection systems can vary significantly with different
random seeds as reported in [91]. In order to examine the variability in model per-
formance, we trained and evaluated each model independently three times with
different random seeds. Audio utterances are cropped or concatenated to give
segments of ≈ 4 seconds duration (64, 600 samples) which are then fed to the
RawNet2-based encoder to extract high-level representations. The encoder com-
prises a first layer of time-domain sinc-convolution [144] with 70 filters, and a
series of six residual blocks. As illustrated in Table 7.1, the first two residual
blocks contain 32 filters, whereas the remaining four contain 64 filters. The first
two GAT layers have node dimensions of 64 (df and dt) in graph modules, whereas
the following GAT layers have node dimensions of 32 (dft). Graph pooling layers
were applied to remove 30% and 50% of temporal and spectral nodes, respectively.
Subsequent GAT layers are followed by graph pooling layers which further reduce
the number of nodes by 50%. Adam optimiser [195] was used with a learning rate
of 10−4. The model was trained for 100 epochs.

7.3 Results
Results are illustrated in Table 7.2, where the last two columns (P1 and P2)
indicate the pooled min t-DCF and pooled EER results for the RawGAT-ST
baseline and AASIST model, respectively. Results show the average of three runs
of each experiment with different random seeds. The single best performance
is provided in parentheses. They show that the proposed AASIST model sig-
nificantly outperforms the RawGAT-ST baseline system by substantial margins.
The best result was obtained using the AASIST model for which t-DCF is 0.0275
(0.0335 for the baseline) and the EER is 0.83% (1.19% for the baseline). In the
best case, AASIST improves upon the baseline by over 20% relative in terms of
pooled min t-DCF.
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Table 7.3: Results for ablation studies. Performance reported in terms of pooled
min t-DCF and EER and for “average(best)” results from three experiments with
different random seeds.

Configuration min t-DCF EER
AASIST 0.0347 (0.0275) 1.13 (0.83)
w/o heterogeneous attention 0.0415 (0.0384) 1.44 (1.37)
w/o stack node 0.0380 (0.0330) 1.21 (1.03)
(conventional readout)
w/o MGO 0.0410 (0.0378) 1.35 (1.19)

7.4 Ablation study
Table 7.3 presents the results of ablation experiments, in which we remove indi-
vidual blocks or operations from the full AASIST architecture to evaluate their
contribution to performance. Results show that all three proposed techniques,
the heterogeneous stacking graph attention layer, MGO and stack node are ben-
eficial to spoof detection. By removing any of them, results are worse than for
the full AASIST architecture. The heterogeneous attention layer has the most
significant impact on performance. The impact of MGO is also substantial, with
a relative degradation of 27% (0.0378 cf. 0.0275) when removed from the AASIST
model. This demonstrates the benefit of MGO in allowing different branches to
learn different groups of artefacts. The stack node also contributes positively to
performance.

7.5 Performance comparison
Table 7.4 presents a comparison of the proposed AASIST model to the performance
of the top-4 competing single CM systems from the literature [182, 184, 186]. The
set of systems covers a broad range of different front-end representations and dif-
ferent model architectures. As shown in Table 7.4, four of the top five systems
operate upon raw waveform inputs while the top two systems are based upon graph
attention networks. The proposed AASIST system is also among the least com-
plex system. To the best of our knowledge, and at the time of writing, AASIST
was the best single CM system reported in the literature.

7.6 Summary
This chapter introduces an extension to the RawGAT-ST model by introducing a
heterogeneous graph attention layer leading to a new, integrated spectro-temporal
graph attention network, called AASIST. The model incorporates a heterogeneous
stacking graph attention layer which allows for the modeling of a relationship be-
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Table 7.4: A comparison to recently proposed, competing state-of-the-art systems.
Results reported in terms of pooled min t-DCF and pooled EER (%). For the
proposed AASIST model, we report the best single result. All systems shown are
single models without any kind of score-level fusion.

Ref. Front-end Model Min EER (%)
t-DCF

Ours Waveform AASIST 0.027 0.83
Ours Waveform RawGAT-ST 0.033 1.06
[196] CQT Non-OFD - 1.35
[182] Waveform Res-TSSDNet 0.048 1.64
[184] Waveform Raw PC-DARTS 0.052 1.77

tween different nodes and edges in heterogeneous spectral and temporal graph
representation using a self-attention mechanism. The proposed approach demon-
strates 20% relative improvement over the baseline in terms of min t-DCF. AA-
SIST is one of the least complex models among all the CM solutions reported in
the literature to date.
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Chapter 8

Data Augmentation

With more powerful TTS and VC techniques emerging, the robustness and gener-
alisation of spoofing countermeasures has become a critical challenge. Generalised
spoofing detection solutions are especially important for real-world scenarios in
which one can expect spoofing attacks. The results presented earlier in this thesis,
together with other work [41, 197, 198] has shown that the fundamental differ-
ences between training and testing data lead to a substantial difference in per-
formance, indicating a persisting lack of generalisation in the face of previously
unseen spoofing attacks. To reduce this performance gap and improve general-
isation, we propose a novel data augmentation technique to produce additional
data to train countermeasures. This approach can help to reduce over-fitting and
improve reliability and domain robustness, particularly in the face of previously
unseen spoofing attacks.

8.1 Motivation
The recent ASVspoof 2021 challenge [199] focused on the problem of spoofing
detection in a challenging logical access scenario, where both bona fide and
spoofed utterances are encoded and transmitted across telephony (PSTN+VoIP)
networks. The goal was to develop reliable detection solutions using only the
training and development partitions of the ASVspoof 2019 LA dataset, neither of
which includes encoding or transmission effects. There is hence a need for data
augmentation techniques to compensate for the lack of in-domain training and
development data. The work presented in this chapter focuses on our solution to
address transmission, and channel variability issues by introducing a novel raw
data augmentation technique called RawBoost. The goal of this work is to improve
spoofing detection reliability in the face of nuisance variation stemming from
unknown encoding, and transmission conditions and from different microphones
and amplifiers, and both linear and non-linear device-generated distortion, all of
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which characterise a logical access or telephony scenario.

The key contributions of this work include:

• Propose a novel raw data-augmentation technique to introduce the variabil-
ity in the training dataset;

• Explore simple linear and non-linear signal processing algorithms to incor-
porate different noise variations in the training data online.

8.2 Related work
Data augmentation (DA) is commonly applied in many machine learning tasks to
generate new samples from a source database, here utterances, to augment the
pool of data available for training. The use of additional augmented data which
exhibits variability not contained in the source data can help to reduce model
over-fitting and bias, and hence improve classification performance. Nowadays,
DA is an integral component of modern machine learning pipelines and has been
applied successfully in a host of different machine learning fields, such as image
processing [200], speech recognition [201, 202] and speaker verification [203]. Re-
cent work has also demonstrated its use in anti-spoofing [87, 95, 98, 101, 103–105].
A number of approaches to DA have been proposed in the literature, e.g., random
cropping, rotation and mirroring for image-related tasks [204]; speed perturba-
tion, pitch shifting, time stretching, random frequency filtering, reverberation,
text-to-speech data augmentation and vocal tract length transformations for
speech-related tasks [205, 206].

Knowing that ASVspoof 2021 evaluation data would contain both bona fide and
spoofed utterances treated with a variety of unknown codecs and compression
effects, ASVspoof 2021 challenge participants used DA techniques such as
speed perturbation [201], SpecAugment [107], codec augmentation [202] and
SpecMix [207] to improve performance. SpecAugment and SpecMix DA tech-
niques are suitable for spoofing detection models which operate on 2-D feature
representations. The current trend is towards raw end-to-end techniques for
spoofing detection [101, 105, 146, 176, 184, 208]. Hence, there is a need for DA
techniques that account for the variability expected in logical access or telephony
scenarios and, in particular, techniques that can also be applied at the raw
waveform level. We hence proposed a DA technique that is compatible with our
end-to-end models such as RawNet2, RawGAT-ST and AASIST presented in
Chapters 5, 6 and 7 respectively.
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8.3 RawBoost
RawBoost1 is a data boosting and augmentation technique which operates
directly upon raw waveforms. Data boosting can encode prior knowledge about
data or task-specific invariances, act as a regulariser to prevent over-fitting,
and can improve model robustness [209]. RawBoost is built upon simple signal
processing techniques and is less complex with regard to the other standard DA
techniques using deep neural networks. Unlike WavAugment [206], a approach to
DA through band-reject filtering, and reverberation (libsox library) or additive
noises (MUSAN [210] and AudioSet [211]), RawBoost operates upon the waveform
without the need for any external data resources. It generate augmented data
online (on-the-fly) from the existing source database. RawBoost uses established
linear and non-linear signal processing techniques to boost or distort a set of
utterances in a training dataset. The RawBoost framework is illustrated in
Figure 8.1 and comprises the three independent DA processes. They are described
in the following:

1 Linear and non-linear convolutive noise
Any channel involving some form of encoding, compression, decompression and
transmission introduces stationary convolutive distortion. Most such channels will
also introduce non-linear disturbances which are themselves subject to a stationary
convolutive distortion, but of different characteristics (see [53], Figure 6). In order
to improve robustness to such nuisance variation, we explored the combination of
multi-band filtering with Wiener-Hammerstein systems (one linear and one non-
linear filter) [212]. Hammerstein systems are proven, popular models of non-linear
systems in which non-linear static and linear dynamic subsystems are separated
into different orders [212]. While Hammerstein models estimate multi-band filters
from the response of non-linear systems, here we use the same idea to generate
signal distortions.

Multi-band filters are designed to generate convolutive noise (CN noise) using
time domain notch filtering. They are applied to a single utterance at a time and
with a set of Nnotch notch filters, each with a randomly-chosen center frequencies fc

and filter widths ∆f . A single finite impulse response (FIR) filter with a randomly-
chosen gain gcn

j is then defined using a window-based filter design method [213],
resulting in a filter with the desired frequency response using a randomly-chosen
number of filter coefficients Nfir. The higher the number of coefficients, the more
abrupt the frequency response; filters with fewer coefficients will exhibit passband
ripple or distortion in addition to smoother cut-in and cut-off responses. An ex-

1https://github.com/TakHemlata/RawBoost-antispoofing
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8.3. RAWBOOST

Figure 8.2: Magnitude response of a multi-band filter with Nnotch = 3 notch filters
centered at normalised frequencies of 0.01, 0.35 and 0.45, bandwidths 0.06, 0.03
and 0.02 and number of filter coefficients 30, 94 and 52.

ample filter frequency response is illustrated in Figure 8.2. It has Nnotch = 3 notch
filters, each with different center frequencies, stop-band widths and number of
filter coefficients.

Hammerstein systems generate higher-order harmonics whereby a component
f0 in the input to a non-linear system is supplemented at the output by Nf − 1
new components at 2f0, 3f0, ..., Nff0, leading to non-linear harmonic distortion.
The frequency and amplitude of each higher-order harmonic are dependent upon
those of the original component and the characteristics of the non-linear system.
Convolutive noise ycn (See 1 in Figure 8.1), is generated according to:

ycn[n] =
Nf∑

j=1
gcn

j

Nfirj∑
i=0

bij
· xj[n− i], (8.1)

where x ∈ [−1, 1]l×1 denotes a raw waveform of l samples, j ∈ [1, Nf] is the order
of the (non-)linearity (Nf = 1 refers to the filter applied to the linear component
x), bij

denotes the coefficients of the jth multi-band filter.

2 Impulsive signal-dependent additive noise
Impulsive signal-dependent (ISD) noise is commonly introduced through data-
acquisition, resulting from, e.g., clipping, non-optimal device operation (micro-
phones and amplifiers), synchronisation and overflow issues, or as a result of insuf-
ficient computational power. It is typically orders of magnitude lower in amplitude
than signal-independent noise [214]. We model such nuisance variability as non-
stationary impulsive disturbances (See 2 in Figure 8.1) consisting of instantaneous
or impulse-like amplitude variations. The disturbance zsd is applied to a maximum
of P ≤ l uniformly distributed samples {p1, p2, ..., pP} in x to obtain ysd according
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to:
ysd[n] = x[n] + zsd[n], (8.2)

where

zsd[n] =

 gsd ·DR{−1, 1}[n] · x[n], if n = {p1, p2, ..., pP}
0, otherwise

(8.3)

is a signal-dependent additive noise component, gsd > 0 is a signal dependent gain
parameter and where DR{−1, 1}[n] denotes P values randomly chosen from the
distribution:

fR(r) =

−log(r), 0 < r ≤ 1
−log(−r), −1 ≤ r < 0

(8.4)

For convenience, the maximum number of samples P is chosen relatively as
Prel = P/l.

3 Stationary signal-independent additive noise
The use of signal-independent additive (SIA) noise is one of the most popular forms
of DA approaches and has been applied in a wide variety of applications, including
speech recognition [215], speaker recognition [216], emotion recognition [217], as
well as audio forgery [218] and spoofing detection [104, 219, 220]. SIA noise can
result from loose or poorly joined cable connections, transmission channel effects,
electromagnetic interference or thermal noise. In contrast to the generation of
impulsive noise, a stationary white noise w (See 3 in Figure 8.1) is coloured using
a FIR filter designed in the same way as described in Section 3.1, before being
added to the entire utterance:

ysi[n] = x[n] + gsi
snr · zsi[n], (8.5)

where
gsi

snr = 10SNR
20

∥zsi∥2 · ∥x∥2 (8.6)

is a gain parameter corresponding to a randomly chosen SNR and where zsi is the
result of white noise w coloured by the FIR filter.

8.4 Experiments
Experiments were conducted using the ASVspoof 2021 LA database described in
Section 2.1. As per the ASVspoof 2021 Challenge rules [199,221], we used only the
ASVspoof 2019 LA training data to train our spoofing CM and used development
data for validation. The baseline is the end-to-end RawNet22 system described in

2https://github.com/asvspoof-challenge/2021/tree/main/LA/Baseline-RawNet2
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Table 8.1: The RawNet2 architecture used for anti-spoofing. BN refers to batch
normalisation. The output size refers to (CNN channels, Freq., Time).

Layer Input: 64600 samples Output shape
Conv(1025,1,20)

Sinc layer Maxpooling(3) (21192,20)
BN & SeLU

Res block 1



BN & LeakyReLU
Conv(3,1,20)

BN & LeakyReLU
Conv(3,1,20)

Maxpooling(3)
FMS


× 2 ( 2354,20)

Res block 2



BN & LeakyReLU
Conv(3,1, 128)

BN & LeakyReLU
Conv(3,1, 128)
Maxpooling(3)

FMS


× 4 ( 29,128)

GRU GRU(1024) (1024)
FC 1024 (1024)

Output 1024 2

Chapter 5. To reduce computational complexity, we reduced the number of sinc
filters in the first layer to 20. We found that a larger number of coefficients in
sinc filters results in better detection performance; hence, we used a filter length
of 1025 (number of filter coefficients) for each sinc filter. Full architecture details
are summarised in Table 8.1 and also described in Chapter 5.

RawBoost parameters are generated according to the configuration illustrated
in Table 8.2 for each of the three techniques. Values expressed within ranges are
drawn from the corresponding uniform distributions. Each technique is applied
alone as well as in different combinations and in both series and parallel. For se-
ries combinations, the output of one technique is used as the input to the next. For
parallel combinations, an original input utterance is treated independently with
each technique before the resulting distortions are combined. Output waveforms
are normalised to prevent overflow. In our experiments, we used RawBoost to add
nuisance variability on-the-fly to existing training data, instead of to generate ad-
ditional data. RawBoost parameters and ranges illustrated in Table 8.2 were then
selected based on the results of experimentation involving boosted and augmented
training and development data only. Other state-of-the-art DA techniques such
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8.5. RESULTS

Table 8.2: RawBoost parameter values. Values within expressed ranges are se-
lected at random (uniform distributions).

Param. Nnotch Nfir Nf fc ∆f gcn
1 gcn

2−Nf
Prel gsd SNR

[Hz] [Hz] [dB] [dB] [%] [dB]

1 5 [10,100] 5 [20,8000] [100,1000] [0,0] [-5,-20] - - -

2 - - - - - - - [0,10] 2 -

3 5 [10,100] 1 [20,8000] [100,1000] - - - - [10,40]

as SpecAugment and WavAugment are also applied to show the effectiveness of
RawBoost data augmentation. For SpecAugment experiments, frequency-masking
is not applied to raw waveforms, but to the sinc filterbank output instead. Fre-
quency masking is applied during training to mask random contiguous sinc chan-
nels, whereas time-masking is applied to the temporal segments. The number of
masked filter channels is chosen from a uniform distribution between 0 and 4. The
time masking length is similarly chosen, between 0 and 40 randomly chosen sam-
ples. WavAugment [206] is applied through band reject filtering, time dropping
and by adding additive noises from external database such as MUSAN [210] and
the AudioSet [211] in exactly similar manner as described in [206].

8.5 Results
Results are illustrated in Table 8.3 for the baseline system (row 2) without
the application of any DA technique, and for the same system trained using
one of the three approaches: RawBoost; WavAugment; SpecAugment. In each
case, results are shown for separate augmentation techniques and a selection of
combinations (column 2). Columns 3-9 show results for each evaluation condition
(C1-C7). Columns 10 and 11 show the pooled min t-DCF (P1) and pooled EER
(P2). Results are presented in terms of the minimum tandem detection cost
function (min t-DCF) [57] and equal error rate (EER). All results are derived
using updated min t-DCF metric which used in ASVspoof 2021 challenge [221].
Table 8.3 shows that all RawBoost DA strategies led to better performance than
the baseline for all 7 evaluation conditions. The baseline pooled min t-DCF of
0.4257 drops to 0.3527 when using linear and non-linear convolutive noise 1 ,
to 0.3260 using ISD additive noise 2 , and to 0.3372 using stationary SIA noise 3 .

The best result is obtained using the RawBoost 1 + 2 system, which achieves a
27% relative reduction in the min t-DCF (0.3099) and a 45% relative reduction
in the EER (5.31%). The addition of stationary SIA noise, while beneficial on
its own, did not lead to any improvements when combined with other techniques.
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8.6. PERFORMANCE COMPARISON

Table 8.4: A performance comparison with top-performing single system for
ASVspoof 2021 LA challenge in terms of pooled min t-DCF and pooled EER
(%). Results are presented in order according to lower pooled min t-DCF.

System Front-end DA approach min t-DCF EER
LCNN [96] Mel STFT RS Mixup and FIR filtering 0.2430 2.21

ResNet-L-LDE [97] LFB Frequency masking, 0.2720 3.68
codecs, RIR, MUSAN

Ours: RawNet2 Raw waveform RawBoost 1 + 2 0.3099 5.31
SE-ResNet18 [100] LFCC codecs 0.3129 6.62

LCNN [98] CQT codecs 0.3197 5.27

This could be due to the absence of ambient noise in the ASVspoof 2021 LA
dataset. The effect of DA using SIA noise matches the effects of mp3/mp4 lossy
compression [222] used in ASVspoof 2021 DF database generation. Hence, it may
work well for the detection of deepfake audio.

8.6 Performance comparison
Illustrated in Table 8.4 is a comparison of RawBoost performance to that of
competing systems reported in the literature. To focus upon the benefits of
DA, the comparison is restricted to single systems.3 The RawNet2 system with
1 + 2 RawBoost DA gives the third best result. Among the top three systems,
only RawNet2 operates directly upon raw waveform inputs. The ResNet-L-LDE
system [97], which uses three different DA techniques: i) SpecAugment (frequency
masking); ii) speech codecs; iii) external noisy recordings contained from the
MUSAN databases [210]. In contrast, RawBoost requires no such external
data sources. The top-performing LCNN system [96] uses random square (RS)
Mixup [223] and FIR filtering DA. The FIR filtering DA approach aims to emulate
the application of different telephony codecs and is conceptually similar to our
use of FIR filtering in RawBoost. While applied at the data level, RS Mixup is
accompanied with modifications at the model level (the loss function in [96]).
RawBoost requires no such intervention at the model level. The same baseline
(RawNet2) system listed in Table 8.5 with different DA techniques clearly shows
the effectiveness of our proposed DA technique. RawBoost is competitive with
all these DA approaches while not requiring the use of any additional codec
implementations.

3While some ensemble systems outperform those considered here, they are substantially
more complex and their inclusion would compound the difficulty in assessing data augmentation.
Unlike the comparisons made in Table 8.3, differences in Table 8.4 stem from differences in DA
techniques as well as the underlying models/classifiers.
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Table 8.5: A baseline performance comparison with standard data-augmentation
techniques. Results for first two rows copied from Table 8.3.

Augmentation min t-DCF EER (%)
SpecAugment 0.3418 8.25
WavAugment 0.3435 7.32
Trans. codec 0.3297 8.17

Multimedia codec 0.3168 6.36
RawBoost 0.3099 5.31

8.7 Summary
This chapter introduces a new data augmentation technique called RawBoost de-
signed to expand and enhance the available training data by modifying utterances
which exhibit the variability expected in telephony scenarios. Rawboost gener-
ates augmented waveforms by perturbing a set of existing utterances with linear
and non-linear convolutive, impulsive, and stationary randomly coloured additive
noise. Despite its simplicity, RawBoost is also data, application and model ag-
nostic; it operates upon an existing source database without the need for any
additional external data resources, nor intervention at the model level. While
this chapter demonstrates its application to improve spoofing and deepfake detec-
tion performance, it might have application to other related classification tasks
where similar nuisance variability is expected, e.g. automatic speaker verification
or automatic speech recognition. Additionally, an independent data augmentation
algorithm can be applied easily with any machine learning framework. However,
the application of these processes to raw waveforms is not yet standardised, and
further research is required to achieve the maturity of boosting techniques applied
directly to the models and activations, allowing the neural network to learn the
appropriate Rawboost parameters for the given classification task.
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Chapter 9

A Self-supervised Learning Based
Front-end

It is impractical or even impossible to acquire training data that is representative
of spoofing attacks with near-boundless variability. Nonetheless, the performance
of spoofing countermeasure (CM) systems depends on the use of sufficiently repre-
sentative training data. The results of the ASVspoof 2021 challenge [96–101, 224]
shows a fundamental gap between the performance for development and evaluation
data, indicating a persisting lack of generalisation in the face of unseen spoofing
attacks. In this chapter, we sought to investigate whether self-supervised models
trained on large speech databases can improve generalisation and deliver advance
in spoof and deepfake detection performance.

9.1 Motivation
Given the fact that the training data used for ASVspoof challenges consists of
spoofed utterances generated with a limited number of different attack algorithms
(six in the case of the ASVspoof 2019 LA database), it may be difficult to improve
generalisation without the use of more, external representative training data.
On the other hand, the training of any supervised DNN front-end requires a
large amount of bona fide and spoofed data, which is impractical to generate.
This motivates the exploration of self-supervised pre-trained speech models as a
CM front-end. Inspired by (i) SSL effectiveness in learning generalised feature
representations for a variety of speech tasks [225–232], (ii) evidence that proper
fine-tuning with modest amounts of labelled data can achieve state-of-the-art per-
formance [233], (iii) encouraging results obtained from the use of self-supervised
learning in anti-spoofing [234–236], and (iv) the appeal of one-class classification
approaches [93, 237], we have explored the use of self-supervised learning to
improve generalisation. Our hypothesis is that better representations trained on
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diverse speech data at large-scale, even those learned for other tasks and initially
using only bona fide data (hence one-class), may help to reduce over-fitting and
improve reliability and domain robustness, particularly in the face of previously
unseen spoofing attacks.

The key contributions of this work include:

• improved generalisation and domain robustness using a pre-trained, self-
supervised speech model with fine-tuning;

• additional improvements using raw data augmentation showing complemen-
tary benefits to self-supervised learning;

• a new self-attention-based aggregation layer which brings complementary
improvements.

There are several advantages of using a self-supervised DNN front-end for spoofing
and deepfake detection tasks.

1. Improved feature representation: self-supervised front-ends can learn
more robust and generalised representations of audio signals compared to
manually processed hand-crafted features. This leads to better detection
performance.

2. Data efficiency: self-supervised models can be trained on massive amounts
of unlabelled data, which is available in abundance. This allows for an effi-
cient training process, and can also lead to better generalisation to diverse
spoofing attacks by fine-tuning using in-domain bona fide and spoof utter-
ances.

3. Reducing domain mismatch: self-supervised models fine-tuned on in-
domain data can be effective in addressing the domain-shift problem when
in-domain data is limited.

9.2 Related work
Self-supervised learning (SSL) has recently gained growing attention in the
speech research community. Many works in the literature have demonstrated
that pre-trained SSL models can be adapted to multiple tasks using only a small
amount of labelled data [193]. Recently, many self-supervised speech models
have been proposed such as contrastive predictive coding (CPC) [229, 238],
auto-regressive predictive coding [239], wav2vec [240], HuBERT [241, 242],
wav2vec 2.0 [226, 243] and Wavlm [244]. These have shown promising results
for various speech-related tasks, such as automatic speech recognition [226],
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mispronunciation detection [245, 246], speaker recognition [247, 248] and emotion
recognition [249]. Some studies have shown the benefits of using SSL for spoofing
detection, e.g., Xie et al. [235] demonstrated the use of SSL with a Siamese
network [250]. However, it is difficult to determine the specific benefits of SSL
without comparative assessments using other representations or without exploring
other methods such as data augmentation or domain mismatch.

Recent works have also investigated the use of self-supervised models such as
wav2vec 2.0 [226] as a feature extractor (front-end) for spoofing detection. Martin-
Donas et al. [251] used a SSL wav2vec 2.0 model as a feature extractor and pro-
posed a method for the normalisation of encoded representations produced by the
transformer layers to improve detection performance. Wang et al. [236] compared
the use of different SSL front-ends and back-end architectures and demonstrated
the importance of fine-tuning SSL models for spoofing detection. They showed
a relative reduction in EER of 68% and 79% for the ASVspoof 2021 LA and DF
databases respectively. However, they did not investigate the use of data augmen-
tation to further improve domain robustness. Eom et al. [252] proposed a transfer
learning approach based on wav2vec 2.0 with a variational information bottleneck
(VIB) to extract more generalised information. Cai et al. [230] used an iterative
self-supervised pre-training method to train a front-end model and showed that the
learned features generalise better across different databases and also improve per-
formance. In this work, we explore the use of the wav2vec 2.0 XLS-R model [253]
as a CM front-end to learn more generalised feature representations. We further
investigate the effectiveness of our proposed method using simple raw data aug-
mentation technique called RawBoost described in Chapter 8, as well as a more
sophisticated classifier, which brings complementary improvements.

9.3 Self-supervised front-end
In this section, we describe the replacement of the conventional sinc-layer front-end
shown in Figure 9.1-(a) with the self-supervised wav2vec 2.0 front-end illustrated in
Figure 9.1-(b). We describe both pre-training and fine-tuning processes to support
downstream spoofing detection, both illustrated in Figure 9.2.

9.3.1 wav2vec 2.0 model
The pre-trained wav2vec 2.0 model is used to extract an output sequence of feature
representations o1:N from the raw input waveform x1:L, where L is the number of
samples. As shown in Figure 9.2, the wav2vec 2.0 model consists of a convolutional
neural network (CNN) and a transformer [153,193] network. The former converts
the input x1:L to a latent sequence z1:N whereas the latter transforms z1:N to an
output sequence o1:N . The ratio between L and N is dictated by the CNN stride
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Figure 9.1: Front-end systems: (a) the baseline sinc-layer front-end; (b) the
wav2vec 2.0 front-end.

of 20 ms (the default setting).

9.3.2 Pre-training
An illustration of the pre-training procedure following [226] is illustrated to the
left in Figure 9.2. Latent representations z1:N are quantised to representations
q1:N . Some portion of the latent representation z1:N is then masked and fed to
the transformer which builds new context representations c1:N . A contrastive loss
for each masked time step n is then computed to measure how well the target
qn can be identified from among a set of distractors (i.e., qn′ sampled from the
other masked time steps where n′ ̸= n) given the corresponding context vector cn.
All experiments were performed with the wav2vec 2.0 XLS-R (0.3M parameters)
model [253]. We followed the example in the Fairseq project toolkit [254] to extract
feature representations using the pre-trained self-supervised model wav2vec 2.0.1

9.3.3 Fine-tuning
Since pre-training is performed with only bona fide data (with no spoofed data), as
per [236], fine-tuning using in-domain bona fide and spoofed training data is neces-
sary in order to perform spoofing detection. Our hypothesis is that fine-tuning will
prevent over-fitting and hence promote better generalisation to previously unseen
attacks and different domains. For all experiments presented in this work, includ-
ing those related to the ASVspoof 2021 LA dataset and the ASVspoof 2021 DF
dataset, fine-tuning is performed using the ASVspoof 2019 LA training partition
only. Whereas the 2021 LA data contains codec and transmission variation and

1https://github.com/pytorch/fairseq/tree/main/examples/wav2vec
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Figure 9.2: An overview of the pre-training and fine-tuning of the wav2vec 2.0
model.

the 2021 DF data contains compression variation, the 2019 LA data used for fine-
tuning contains neither. During fine-tuning, the pre-trained wav2vec 2.0 XLS-R
model is jointly optimised with the AASIST CM via back-propagation [156] using
the ASVspoof 2019 LA training partition as illustrated in Figure 9.2. Fine-tuning
is performed using a weighted cross-entropy objective function to minimise the
training loss. In contrast to pre-training, input masking is not applied to latent
representation z1:N during fine-tuning. Additionally, we add a fully connected
layer on top of the wav2vec 2.0 transformer encoder output o1:N in order to reduce
the output feature dimension (top-right of Figure 9.2).

9.4 Self-attention based aggregation layer
Attention-based pooling layers, such as self-attentive pooling (SAP) and at-
tentive statistical pooling (ASP) [255] have been shown to be beneficial to
the aggregation of frame-level features and the extraction of embeddings for
speaker recognition and verification [141, 169, 256–258]. We have also found
that the introduction of a 2-D self-attention based aggregation layer between
the front-end and back-end helps to further improve spoofing detection per-
formance. This new self-attentive aggregation layer is used to extract more
attentive/relevant spectral and temporal features. It aggregates and assigns
higher attention weights through weighted summation to the most discriminative
temporal and spectral features. We generate 2-D attention maps (an attention
weight matrix) using a 2-D convolutional (conv2d) layer with one kernel-size,
rather than a conventional conv1d-based attention map applied to a single domain.

113



9.5. IMPLEMENTATION DETAILS

Weights are derived from the high-level feature representations S processed by a
conv2d layer followed by an activation & batch normalisation layer, a 2-D convo-
lutional layer, and a softmax layer to normalised the weights:

W = Softmax(conv2d(BN(SeLU(conv2d(S))))), (9.1)

where conv2d(·) denotes the 2-D convolution operation with scaled exponential
linear unit SeLU(·) as the activation function [152], and where BN is batch nor-
malisation [175]. Temporal and spectral feature representations are then extracted
using the self-attentive aggregation layer according to:

t =
∑
F

S⊙W, (9.2)

f =
∑
T

S⊙W, (9.3)

where ⊙ denotes element-wise multiplication. W ∈ RF ×T is the 2-D attention
normalised learnable weight matrix used in the self-attentive aggregation layer
to calculate the weighted sum of the feature representation S across time and
frequency domains. A summary of the wav2vec 2.0 front-end and downstream
AASIST model configurations is presented in Table 9.1.

9.5 Implementation details
Experiments were performed using the ASVspoof 2021 LA and DF evalua-
tion databases described in Section 2.1. As per the ASVspoof 2021 Challenge
rules [199, 221], we used the ASVspoof 2019 LA training data to fine-tune
the spoofing CM and used development data for validation. We use AASIST
model as a baseline system described in Chapter 7. Raw input waveforms are
cropped or concatenated giving segments of approximately 4 seconds duration
(64,600 samples). For all experiments, we used sinc-layer, fixed wav2vec 2.0
(without fine-tuning), and fine-tuned wav2vec 2.0 model as a front-ends. For SSL
experiments, sinc-layer front-end illustrated in Figure 9.1-(a) is replaced with
the wav2vec 2.0 front-end shown in Figure 9.1-(b). As described in Section 9.3,
wav2vec 2.0 front-end output o1:N is fed to a RawNet2-based encoder which is
used to learn higher-level feature representations S. AASIST baseline extracts
temporal and spectral representations t and f from S using a max-pooling opera-
tion to construct input graph representation similar to described in Section 7.1.
Whereas a self-attentive aggregation layer described in Section 9.4 was found to
be effective for all front-ends. Temporal and spectral representations are then
fed to the AASIST model to obtain a two-class prediction (bona fide and spoofed).

114



9.5. IMPLEMENTATION DETAILS

Table 9.1: The wav2vec 2.0 and AASIST model architecture. Dim. refer to (Chan-
nels, Frequency, Time). Batch normalisation (BN) and scaled exponential linear
unit (SeLU), beneath the dotted line, are applied to RawNet2 encoder output.

Layer Input:64600 samples Output shape

Data-aug RawBoost (64600)

SSL wav2vec 2.0 (201,1024) (T,F)

front-end FC (fine-tuning) (201,128)

transpose o=(128,201) (F,T)

post- add channel (1,128,201)

processing Maxpool-2D(3) (1,42,67)

BN & SeLU

R
aw

N
et

2
en

co
de

r

Res-block


Conv-2D((2,3),1,32)

BN & SeLU

Conv-2D((2,3),1,32)


×2 (32,42,67)

Res-block


Conv-2D((2,3),1,64)

BN & SeLU

Conv-2D((2,3),1,64)


×4 (64,42,67)

BN & SeLU

Spectral-attention Temporal-attention

Self att. agg. layer (f)=(64, 42) Self att. agg. layer (t)=(64, 67)

Gf = (64(df),21(Nf)) Gt = (64(dt),33(Nt))

hetero. graph (Gft) HS-GAL (64(dft),54(Nft))

HS-GAL→HS-GAL, HS-GAL→HS-GAL,

stack node stack node

(32,26), (32,) (32,26),(32,)

MGO (GF T ) element-wise max. (32,26), (32,)

readout node-wise max. and avg., concat. (160,)

Output FC(2) 2
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The large wav2vec 2.0 (XLSR) model contains 24 transformer layers with model
dimension 1024 and 16 attention heads. As illustrated to the right of Figure 9.2,
a fully connected layer is applied to the output of the wav2vec 2.0 front-end to
reduce the output dimensions from 1024 to 128. For the fixed SSL front-end (no
fine-tuning), CM is trained in the same manner as the AASIST baseline. Graph
pooling is applied in the AASIST model with an empirically chosen pooling
ratio of k = 0.5 for spectral and temporal graphs. For model training, we used
the standard Adam optimiser [155] with a fixed learning rate of 0.0001 with a
batch size of 24 for experiments with baseline. Since SSL fine-tuning demands
high GPU computation, experiments with wav2vec 2.0 front-end were performed
with a smaller batch size of 14 and a lower learning rate of 10−6 to avoid model
over-fitting. The proposed SSL-based CM is fine-tuned on ASVspoof 2019 LA
training data to minimise a weighted cross entropy (WCE) loss function.

We applied RawBoost data augmentation (DA) in the same fashion and using
the same configuration as described in Section 8.3 and with parameters reported
in Table 8.2, using linear and non-linear convolutive noise and impulsive signal-
dependent additive noise. These augmentation strategies suit the convolutive and
device-related noise sources that characterise typically telephony applications. In
contrast, for the DF database, DA works best using stationary signal-independent
additive noise, which matches better the effects of audio compression [222] applied
in generating the DF database. The best model was selected according to the
minimum validation loss for the ASVspoof 2019 development data. All other hy-
perparameters are the same for both front-ends which are jointly optimised with
the AASIST back-end classifier using back-propagation [156]. The performance
of spoofing model can vary significantly with different random seeds as reported
in [91]. In order to examine the variability in model performance, we performed
each experiment with three runs using different random seeds to initialise the net-
work weights (except for the pre-trained SSL front-end). All models were trained
for 100 epochs. The model scripts and checkpoints are available in an open-source
implementation.2

9.6 Results
In this section, we present six sets of experiments. The first is a comparison of each
front-end in terms of performance for the ASVspoof 2021 LA database. The second
and third assess the complementary benefits coming from the new self-attentive
aggregation (SA) layer and RawBoost DA. The fourth is an assessment performed
on the ASVspoof 2021 DF database. The fifth is a cross-databases evaluation

2https://github.com/TakHemlata/SSL_Anti-spoofing
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Table 9.2: Pooled EER and pooled min t-DCF results for the ASVspoof 2021 LA
database evaluation set, for the sinc-layer, wav2vec 2.0 fixed, and wav2vec 2.0
fine-tuned front-ends. Results are the best (average) obtained from three runs of
each experiment with different random seeds. SA: Self-attentive aggregation layer;
DA: Data augmentation.

front-end SA DA Pooled EER Pooled min t-DCF
sinc-layer × × 11.47 (11.95) 0.5081 (0.5139)

wav2vec 2.0 (fixed) × × 9.26 (12.46) 0.4097 (0.4293)
wav2vec 2.0 (fine-tuned) × × 6.15 (6.46) 0.3577 (0.3587)

sinc-layer ✓ × 8.73 (11.61) 0.4285 (0.5203)
wav2vec 2.0 (fixed ) ✓ × 8.16 (10.24) 0.3897 (0.4058)

wav2vec 2.0 (fine-tuned) ✓ × 4.48 (6.15) 0.3094 (0.3482)
sinc-layer × ✓ 6.0 (6.18) 0.3532 (0.3583)

wav2vec 2.0 (fixed) × ✓ 7.32 (7.71) 0.3418 (0.3607)
wav2vec 2.0 (fine-tuned) × ✓ 1.19 (1.39) 0.2175 (0.2236)

sinc-layer ✓ ✓ 7.65 (7.87) 0.3894 (0.3960)
wav2vec 2.0 (fixed) ✓ ✓ 7.79 (9.05) 0.3407 (0.3608)

wav2vec 2.0 (fine-tuned) ✓ ✓ 0.82 (1.00) 0.2066 (0.2120)

assessment, whereas the last is a comparative assessment using a simplified CM
solution.

9.6.1 Front-end comparison
Results for the AASIST baseline with the sinc-layer front-end (Figure 9.1-(a)) and
the same system with the wav2vec 2.0 fixed and fine-tuned front-end (Figure 9.1-
(b)) are presented in the first three rows of Table 9.2. These systems use neither SA
layer nor DA. The baseline EER of 11.47% is high and shows that the system is not
robust to the codec and transmission variability which characterises the ASVspoof
2021 LA dataset. The same system using the wav2vec 2.0 fixed and fine-tuned
front-end delivers an EER of 9.26% and 6.15% respectively. Figure 9.3 depicts
an attack and codec condition analysis for the LA database, where Figure 9.3-(a)
shows a breakdown in the EER decomposed over spoofing attacks and Figure 9.3-
(b) shows a breakdown EER decomposed over codecs conditions. Experimental
results demonstrate that our wav2vec 2.0 front-end with fine-tuning consistently
outperforms the baseline across different spoofing attacks and codec conditions.

9.6.2 Self-attentive aggregation layer
Results for the same two front-end variants but using the SA layer introduced in
Section 9.4 are presented in rows 4–6 of Table 9.2. In all cases, the EER drops
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Figure 9.3: Decomposed EERs (a) across spoofing attacks, and (b) across codec
conditions for ASVspoof 2021 LA dataset.

substantially, to 8.73% for the sinc-layer front-end, to 8.16% for the wav2vec 2.0
fixed front-end, and to 4.48% for the wav2vec 2.0 fine-tuned front-end. In this case,
the wav2vec 2.0 fine-tuned front-end is responsible for a relative improvement of
almost 50%.

9.6.3 Data augmentation
Results for the same systems, but using the RawBoost DA introduced in Chap-
ter 8, are presented in rows 7–9 of Table 9.2. In all three cases using DA the EER
drops substantially, to 6% for the sinc-layer front-end, to 7.32% for the wav2vec
2.0 fixed front-end, and to 1.19% for the wav2vec 2.0 fine-tuned front-end. The
wav2vec 2.0 fine-tuned front-end with DA showed a substantial improvement in
EER of 81%. Figure 9.4 shows codec performance with and without RawBoost
DA using the wav2vec 2.0 fine-tuned front-end. The use of RawBoost DA further
enhances the detection performance, especially for the most difficult (PSTN)
telephony condition. These results demonstrate the effectiveness of RawBoost
DA in more realistic and challenging telephony scenarios.

We also performed experiments to leverage the benefits of SA and DA together.
Results for the same systems, both with the SA layer, and now also with DA,
are shown in rows 10–12 of Table 9.2. DA reduces the EER only marginally from
8.73% to 7.65% in case of the sinc-layer front-end. Its effect is more pronounced
when using the fine-tuned wav2vec 2.0 front-end for which the EER decreases from
4.48% to 0.82%. This result corresponds to a relative improvement of almost 90%
when compared to the baseline EER of 7.65%. To the best of our knowledge, this
was the lowest EER reported for the ASVspoof 2021 LA database at the time of
writing.
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Figure 9.4: Performance comparisons of fine-tuned wav2vec 2.0 front-end with and
without RawBoost data augmentation.

9.6.4 Deepfake results
Results for the same experiments, but for the ASVspoof 2021 DF database, are
shown in Table 9.3. While neither SA, nor DA improve upon the baseline EER
of 21.06%, consistency improvements are obtained for the wav2vec 2.0 fine-tuned
front-end for which the EER drops from 7.69% to 2.85% using both SA and DA.
To the best of our knowledge, this was the lowest EER reported for the ASVspoof
2021 DF database at the time of writing. These results, while determined with
the same wav2vec 2.0 front-end used for LA experiments, relate to a DA strategy
optimised for the DF database (stationary signal-independent additive noise –
see Section 8.3). A component of the DF database originates from multiple data
resources [199] including spoofed utterances generated with more than 100 diverse
attack algorithms.

Figure 9.5-(a) depicts a breakdown of EERs (%) across evaluation codec condi-
tions. Results show that with proper fine-tuning, the SSL front-end brings substan-
tial improvements in detection performance over the baseline system. With the
ASVspoof 2019 LA training data containing neither codec nor different compres-
sion effects, results show that the use of fine-tuned SSL models leads to consistent
improvements in generalisation, here being previously unseen spoofing attacks.
Results for the DF database show that the benefit extends also to the case of do-
main mismatch. As shown in Figure 9.5-(b), the SSL front-end also outperforms
the baseline on in-domain ASVspoof 2019 LA evaluation data and out-of-domain
VCC 2018 and 2020 source data as well. We further checked the impact of dif-
ferent vocoders used in VCC 2018 [45] and 2020 [46] subsets on DF performance.
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Table 9.3: As for Table 9.2 except for the ASVspoof DF database, evaluation set.
Since there is no ASV in the DF scenario, there are no min t-DCF results.

Front-end SA DA Pooled EER
sinc-layer × × 21.06 (22.11)

wav2vec 2.0 (fixed) × × 14.22 (16.46)
wav2vec 2.0 (fine-tuned) × × 7.69 (9.48)

sinc-layer ✓ × 23.22 (25.08)
wav2vec 2.0 (fixed) ✓ × 19.98 (21.56)

wav2vec 2.0 (fine-tuned) ✓ × 4.57 (7.70)
sinc-layer × ✓ 16.62 (18.64)

wav2vec 2.0 (fixed) × ✓ 16.05 (17.01)
wav2vec 2.0 (fine-tuned) × ✓ 3.64 (3.98)

sinc-layer ✓ ✓ 24.42 (25.38)
wav2vec 2.0 (fixed) ✓ ✓ 19.98 (20.35)

wav2vec 2.0 (fine-tuned) ✓ ✓ 2.85 (3.69)
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Figure 9.5: DF decomposed EER (a) across different codecs ; (b) across different
ASVspoof 2019 LA, VCC 2020 and VCC 2018 source databases.

Table 9.4 shows a breakdown in the EER for VCC 2018 and 2020 data according
to the type of codec and vocoder (breakdown results correspond to the last row in
Table 9.3). Results indicate that, for any given codec, neural AR vocoders yield
worse EERs than waveform concatenation and traditional vocoders.
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Table 9.4: Decomposed EERs using wav2vec 2.0 front-end for VCC 2018/2020
subset of the DF database, according to the codecs and the vocoder type used in
voice conversion.

Vocoder type C1 C2 C3 C4 C5 C6 C7 C8 pooled
Unknown 1.99 4.30 2.65 2.10 2.23 1.27 2.66 2.14 2.45

Wav. Concat 2.28 5.84 3.35 2.09 2.23 1.50 2.96 2.52 2.85
Neural non-AR 1.56 3.33 2.02 1.65 1.62 1.00 2.05 1.57 1.84

Neural AR 3.45 5.96 3.79 3.75 3.67 2.92 4.49 3.79 4.05
Traditional 1.22 2.72 1.83 1.57 2.35 1.57 3.01 2.28 2.15

9.6.5 Cross-database evaluation
To evaluate the generalisation capability of our proposed method, we tested it on
multiple test sets. In cross-database evaluation settings, the model was trained on
the ASVspoof 2019 LA training set and evaluated on multiple test sets, including
the ASVspoof 2015 [15], 2019 LA [53], and 2021 LA and DF test sets [199]. Our
results, shown in Table 9.5, indicate that the SSL front-end features have excellent
transferability in cross-database settings. This suggests that the CM model is able
to generalise well to different test sets and domains as well. In particular, the
model performed well on the more challenging ASVspoof 2021 LA and DF tasks,
which measure the model’s generalisability to unknown attacks and mismatched
domains. In conclusion, using a well-trained, fine-tuned SSL front-end can signif-
icantly improve the generalisation of a model and help it to perform better on a
wide range of attacks.

Table 9.5: Performance comparisons of single CM systems in terms of pooled EER
(%) across cross-evaluation databases, namely, ASVspoof 2015, 2019 and 2021 LA
and DF databases.

Systems front-end 2015 LA 2019 LA 2021 LA 2021 DF
Wang et al. [236] wav2vec 2.0 0.24 2.31 7.18 6.18
Eom et al. [252] wav2vec 2.0 1.52 0.40 4.92 -
Wang et al. [259] wav2vec 2.0 - 0.20 3.73 3.28
Martin et al. [251] wav2vec 2.0 - - 3.54 4.98
Wang et al. [260] wav2vec 2.0 0.59 0.21 3.30 4.12
Ours: Proposed wav2vec 2.0 0.24 0.21 0.82 2.85
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Table 9.6: Pooled EER and pooled min t-DCF (LA only) results for the ASVspoof
2021 LA and DF databases, evaluation sets, using their respective optimised Raw-
Boost data augmentation (DA) strategies and the simplified back-end.

Front-end DA Database Pooled EER Pooled min t-DCF
wav2vec 2.0 ✓ LA 1.19 0.2175
wav2vec 2.0 ✓ DF 4.38 -
wav2vec 2.0 × LA 7.15 0.3830
wav2vec 2.0 × DF 9.55 -

9.6.6 Simplified countermeasure solution
The last set of experiments were performed in order to investigate the relative
importance of the more sophisticated AASIST back-end and to determine whether
the improvements in generalisation are obtained also for a simpler CM solution.
We removed the RawNet2-based encoder and replaced AASIST back-end with
a simple back-end comprising a max-pooling layer, a single graph module layer
and a linear layer. Results for both ASVspoof 2021 LA and DF databases using
optimised DA strategies for each are shown in Table 9.6. Results are not as good
as for the more sophisticated AASIST back-end. However, LA and DF results of
1.19% and 4.38% for the simple CM show that competitive EERs can nonetheless
be obtained using the fine-tuned wav2vec 2.0 front-end even with relatively less
complex networks and that the benefits to generalisation are still complementary
to those of DA. However, when the SSL front-end was fine-tuned, the choice of the
back-end has less impact on performance. Even the use of a simple graph layer as
a back-end achieves competitive performance for the ASVspoof 2021 LA and DF
databases.

9.7 Summary
The work presented in this chapter demonstrates that a well-trained and fine-tuned
front-end can substantially improve generalisation, even when learned initially us-
ing massive quantities of only bona fide utterances. When combined with a new SA
layer and RawBoost DA technique, the SSL front-end outperforms a conventional
sinc-layer-based front-end by delivering up to a 90% relative reduction in the EER
for the LA task and up to an 88% relative reduction for a domain mis-matched
DF task. Extensive experiments show that SSL-based front-end fine-tuned on
ASVspoof 2019 training data performs well on 2015, 2021 LA and 2021 DF test
sets and also converges faster than conventional front-ends. These results demon-
strate that the use of larger and more diverse training data helps to improve the
generalisability of CMs in-the-wild scenarios.
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Chapter 10

Conclusions and Future
Directions

In this chapter, we present a summary of the contributions and findings of the
work presented in this thesis. This material is reported in Section 10.1. Some
potential directions for future research are discussed in Section 10.2.

10.1 Summary
As described in Chapter 1, this thesis aimed to develop robust countermeasure
(CM) systems to improve detection performance for a wide range of spoofing
attacks and further reduce the performance gap between the best ensemble and
best single systems. We developed a set of spoofing CMs which brought advances
in the state-of-the-art as judged from experiments performed using the ASVspoof
2019 and ASVspoof 2021 LA and DF databases. Figure 10.1 depicts detection
error trade-off (DET) profiles for single system CMs proposed in this thesis, in
addition to the set of ASVspoof 2019 LA challenge submissions (gray profiles).
Highlighted profiles in Figure 10.1 correspond to the single systems proposed in
this thesis, the best ensemble (T05) and best single (T45) systems from among
the ASVspoof 2019 LA challenge entries, and the best B02 challenge baseline
(LFCC-GMM). Figure 10.1 shows that the proposed graph neural network (GNN)
based solutions, RawGAT-ST and AASIST, reduce the performance gap to
the best ensemble solution (T05) by a substantial margin. The self-supervised
learning (SSL) based CM system significantly outperforms all other systems. The
SSL-based CM is a new, fully-reproducible, efficient, state-of-the-art solution for
spoofing and deepfake detection. We note that the best ensemble T05 system
remains unreproducible to date. We also acknowledge that this comparison is
between evaluation and post-evaluation performance.
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ASSIST 
single 0.83%

RawGAT-ST
single 1.06%

High-res LFCC 
single 3.5%

T45 single 
5.06%

Baseline B02 
8.09 %

RawNet2 
single 4.6%

SSL CM 
single 0.21%

T05  best 
ensemble 0.22% 

Figure 10.1: DET profiles for proposed single systems along with ASVspoof 2019
LA challenge submissions results. Proposed single CM systems (solid box). All
grey profiles from the ASVspoof 2019 LA challenge entries (ensemble systems).

Thesis contributions are summarised in the following. Chapters 4 to 7 focus on
the development of novel spoofing CMs. Chapters 8 and 9 focus on generalisation
techniques to improve CM performance in more realistic scenarios.

Chapter 3 presents an explainability study of constant Q cepstral coefficients
(CQCCs), one of the most popular spoofing CM front-ends when this work began.
Reported, is an investigation of why the CQCC front-end works so reliably in
detecting some spoofing attack, but why it fails to generalise to others. Through a
sub-band analysis of the CQCC-GMM CM system, we found that CQCCs without
resampling perform well in detecting spoofing artefacts when they are located
at low frequencies. Linear sampling (resampling) shifts the emphasis to higher
frequencies so that spoofing artefacts at similarly high frequencies are emphasised
and captured reliably. This work showed that no single silver bullet works well for
a diverse range of spoofing attacks; different spoofing attacks produce artefacts at
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different parts of the spectrum and these can only be detected reliably when the
front-end emphasises information in the same frequency bands. These findings
may explain why classifier fusion has proven to be so important to generalisation.

In Chapter 4, we introduced a non-linear ensemble approach comprising
a set of sub-band CMs, each tuned to detect artefacts in different sub-bands.
The proposed high spectral resolution front-end outperforms the baseline by a
large margin. Furthermore, the non-linear fusion of sub-band CMs significantly
improves detection performance.

In Chapter 5, we introduced an end-to-end RawNet2 CM system which learns
representative features automatically. The end-to-end system operates directly
on raw waveform inputs without any pre-processing transformation, streamlining
training and evaluation. Results confirm that the end-to-end classifier is capable
of learning spoofing cues that are different to those captured with traditional
front-end features. Traditional hand-crafted front-end features and the features
learned directly from raw waveforms are hence complementary, and further im-
provements can be achieved by combining these different feature representations.
The RawNet2 model was adopted as a baseline for the most recent ASVspoof
2021 challenge and outperformed other systems that use traditional hand-crafted
features.

Inspired by the effectiveness of the end-to-end RawNet2 model, in Chap-
ter 6 we introduced an end-to-end spectro-temporal graph attention network,
called RawGAT-ST. It also operates directly upon raw waveform inputs and
concurrently learns the relationship between discriminative cues in both spectral
and temporal domains. Results show that the RawGAT-ST CM generalises
well to unseen attacks and achieved the lowest reported EER for the ASVspoof
2019 LA database at the time of publication. Chapter 7 presents an extension
to the RawGAT-ST model, which introduces a heterogeneous graph attention
layer leading to an integrated spectro-temporal graph attention network, named
AASIST. AASIST incorporates a new heterogeneity-aware attention mechanism,
a max-graph operation, and an additional stack node, which facilitates the con-
current modeling of heterogeneous temporal and spectral graph representations.
The work also analyses the impact of joint spectro-temporal attention upon
the most difficult-to-detect spoofing attacks. We demonstrated the benefit of
self-attention in learning the relationship between spectral and temporal cues for
spoofed speech detection.

Further contributions to improve CM generalisation and domain robustness
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in real-world scenarios, are reported in Chapters 8 and 9. In Chapter 8, we
propose a novel data augmentation technique, RawBoost, which can be used to
introduce nuisance variation stemming from unknown encoding, transmission
and compression to training data thereby reducing domain mismatch between
training and testing data. RawBoost is data, application and model agnostic. The
RawBoost algorithms introduce non-linearity into the input utterances, which
effectively aligns with the neural networks and enables it to learn more complex
patterns and information from the training data. While this thesis demonstrates
its application to improve spoofing and deepfake detection performance, it might
have application to other related classification tasks, e.g. automatic speaker
verification or automatic speech recognition.

Chapter 9 explores a self-supervised based front-end which is trained on a
large quantity of diverse speech data. Experiments with the most challenging
ASVspoof 2021 LA and DF databases show that the use of RawBoost data aug-
mentation with a SSL wav2vec 2.0 front-end brings substantial improvements in
performance showing that a well-trained, fine-tuned front-end, even when trained
initially using massive quantities of only bona fide utterances, can improve gener-
alisation. Our new CM solution for logical access and deepfake detection improved
further upon the state-of-the-art. Its performance remains to be bettered. Data
augmentation not only helps prevent over-fitting, but also improves model robust-
ness to different kinds of compression and channel variation. Our system shows
the best performance for an unknown telephony condition (PSTN+VoIP) and re-
liable performance for different compression (ogg) for the DF database. Results
indicate the potential gain in performance which can be obtained with the use
of additional, diverse external training data. This might suggest that the relaxed
training policy which allows for the use of larger, more complex CM models trained
using external data might be worth adopting for future ASVspoof evaluations.

10.2 Future directions
As research efforts in spoofing and deepfake detection continue to grow, several
promising future research directions have emerged. In the following, we outline
four major directions that we believe hold great potential for advancing CM effec-
tiveness in real-world scenarios:

1. Background and real-world noises: Past and current spoofing detection
studies have relied on ASVspoof databases which contain clean data without
background noise such as babble noise, volvo noise and cafe noise. It is
important to determine whether graph neural networks and self-supervised
learning-based CM systems are effective in such more realistic conditions. As
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the literature [219,220] shows, CM performance degrades significantly in the
presence of background noise. However, attackers can easily deceive system
by introducing real-world noises, hence there is a need for further research
to develop noise-robust CMs. Future challenges should take the additive
background noise into account. This work might also help to address the
machine learning shortcut issue connected to spoofing detection with the
use of information in non-speech intervals, as reported in [112, 261, 262].

2. Diversity in database collection: To better understand the challenges
posed by new and unpredictable attacks in real-world settings, more com-
prehensive, larger databases are required. Some database initiatives in
this direction already exist, for e.q. Fake or Real (FoR) [263] and SYN-
SPEECHDDB [264] databases for synthetic speech detection. Countermea-
sures tested on the recent ASVspoof 2021 DF database show a performance
gap between progress and evaluation subsets, indicating model over-fitting
to known attacks in the training data. To mitigate this issue, training with
large and diverse data is essential, as discussed in Chapter 9, and as shown
from the exploration of a self-supervised front-end trained on extensive data.
Increasing the diversity of bona fide and spoofed utterances by including a
greater number of different spoofing algorithms, diverse languages, differ-
ent accents and data collected from more speakers might help to improve
generalisation in real-world scenarios.

3. Adversarial attacks: Investigating the impact of adversarial attacks on
ASV and CM model decisions is a interesting research topic within the
broader speech community [265, 266]. Some studies show the threat posed
by adversarial attacks to reliable ASV [267, 268]. Adversarial examples are
meticulously crafted speech samples that are difficult to distinguish from the
original input samples, and often imperceptible to humans. Ensuring the ro-
bustness of ASV and CM models against such malicious attacks is crucial for
the development of secure voice biometrics systems. Although some recent
studies [267,268] have focused on adversarial attacks primarily targeting the
ASV systems, attacks on the CM are less common. However, since the reli-
ability of security estimates is only as good as, the strength of the adversary
model, the investigation of adversarial attacks that target both ASV and
CM systems will be extremely important in the future.

4. Joint audio-visual deepfake detection: In recent years, researchers have
proposed several deepfake detection algorithms to determine whether an au-
dio frame or a visual frame is manipulated. Most of the research work primar-
ily focuses on single-modality deepfake detection [88,269–271]. Multi-modal
deepfake detection in real-world scenarios remains a challenging task. Also,
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it is very common in current deepfake detection tasks, that detectors can
not obtain the number of modalities and forgery methods of deepfakes in
advance. Therefore, in this case, it is interesting to explore graph neural
network-based approaches to learn the correlations or relationships between
audio-visual cues to improve the performance of deepfake detection in the
wild.
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