
A Practical TFHE-Based Multi-Key
Homomorphic Encryption with Linear
Complexity and Low Noise Growth⋆

Yavuz Akın1, Jakub Klemsa1,2(�), and Melek Önen1

1 EURECOM
Sophia-Antipolis, France

{yavuz.akin,jakub.klemsa,melek.onen}@eurecom.fr
2 Czech Technical University in Prague

Prague, Czech Republic

Abstract. Fully Homomorphic Encryption enables arbitrary computa-
tions over encrypted data and it has a multitude of applications, e.g., se-
cure cloud computing in healthcare or finance. Multi-Key Homomorphic
Encryption (MKHE) further allows to process encrypted data from mul-
tiple sources: the data can be encrypted with keys owned by different par-
ties. In this paper, we propose a new variant of MKHE instantiated with
the TFHE scheme. Compared to previous attempts by Chen et al. and by
Kwak et al., our scheme achieves computation runtime that is linear in
the number of involved parties and it outperforms the faster scheme by
a factor of 4.5-6.9×, at the cost of a slightly extended pre-computation.
In addition, for our scheme, we propose and practically evaluate param-
eters for up to 128 parties, which enjoy the same estimated security as
parameters suggested for the previous schemes (100 bits). It is also worth
noting that our scheme—unlike the previous schemes—did not experi-
ence any error in any of our seven setups, each running 1 000 trials.

Keywords: Multi-key homomorphic encryption · TFHE scheme · Se-
cure cloud computing

1 Introduction

Fully Homomorphic Encryption (FHE) refers to a cryptosystem that allows for
an evaluation of an arbitrary computable function over encrypted data (first-ever
scheme in [14], find a survey in [1]). With FHE, a secure cloud-aided computa-
tion, between a user (U) and a semi-trusted cloud (C), may proceed as follows:

– U generates secret keys sk, and evaluation keys ek, which she sends to C;
– U encrypts her sensitive data d with sk, and sends the encrypted data to C;
– C employs ek to evaluate function f , homomorphically, over the encrypted

data, yielding an encryption of f(d), which it sends back to U;
– U decrypts the message from C with sk, obtaining the result: f(d) in plain.

⋆ This work was supported by the MESRI-BMBF French-German joint project UP-
CARE (ANR-20-CYAL-0003-01). Find the full version at https://ia.cr/2023/065.

https://ia.cr/2023/065

2 Y. Akın et al.

In such a setup, there is one party that holds all the secret keying material. In
case the data originate from multiple sources, Multi-Key (Fully) Homomorphic
Encryption (MKHE) comes into play. First proposed by López-Alt et al. [20],
MKHE is a primitive that enables the homomorphic evaluation over data en-
crypted with multiple different, unrelated keys. This allows to relax the intrinsic
restriction of a standard FHE, which demands a single data owner.

Previous Work. Following the seminal work of López-Alt et al. [20], different
approaches to design an MKHE scheme have emerged: first attempts require
a fixed list of parties at the beginning of the protocol [12, 25], others allow par-
ties to join dynamically [5, 27], Chen et al. [8] extend the plaintext space from
a single bit to a ring. Later, Chen et al. [6] propose an MKHE scheme based
on the TFHE scheme [11], and they claim to be the first to practically imple-
ment an MKHE scheme; in this paper, we refer to their scheme as CCS. The
evaluation complexity of their scheme is quadratic in the number of parties and
authors only run experiments with up to 8 parties. The CCS scheme is improved
in recent work by Kwak et al. [19], who achieve quasi-linear complexity (actu-
ally quadratic, but with a very low coefficient at the quadratic term); in this
paper, we refer to their scheme as KMS. Parallel to CCS and KMS, which are
both based on TFHE, there exist other promising schemes: e.g., [7], defined for
BFV [4, 13] and CKKS [10], improved in [16] to achieve linear complexity, or
[23], implemented in the Lattigo Library [24], which requires to first construct
a common public key; also referred to as the Multi-Party HE (MPHE). The
capabilities/use-cases of TFHE and other schemes are fairly different, therefore
we solely focus on the comparison of TFHE-based MKHE.

Our Contributions. We propose a new TFHE-based MKHE scheme with a lin-
ear evaluation complexity and with a sufficiently low error rate, which allows for
a practical instantiation with an order of hundreds of parties while achieving eval-
uation times proportional to those of plain TFHE. More concretely, our scheme
builds upon the following technical ideas (k is the number of parties):

Summation of RLWE keys: Instead of concatenation of RLWE keys (in certain
sense proposed in both CCS and KMS), our scheme works with RLWE en-
cryptions under the sum of individual RLWE keys. As a result, this particular
improvement decreases the evaluation complexity from quadratic to linear.

Ternary distribution for RLWE keys: Widely adopted by existing FHE im-
plementations [15, 24, 22, 29], zero-centered ternary distribution ζ : (−1, 0, 1)
→ (p, 1− 2p, p) works well as a distribution of the coefficients of RLWE keys;
we suggest p ≈ 0.1135. It helps reduce the growth of a certain noise term by
a factor of k, which in turn helps find more efficient TFHE parameters.

Avoid FFT in pre-computations: In our experiments, we notice an unex-
pected error growth for higher numbers of parties and we verify that the
source of these errors is Fast Fourier Transform (FFT), which is used for
fast polynomial multiplication. To keep the evaluation times low and to de-
crease the number of errors at the same time, we suggest replacing FFT with
an exact method just in the pre-computation phase. We also show that FFT

A Practical TFHE-Based Multi-Key Homomorphic Encryption 3

causes a considerable amount of errors in KMS, however, replacing FFT in
its pre-computations is unfortunately not sufficient.

We provide two variants of our scheme:

Static variant: the list of parties is fixed – the evaluation cost is independent of
the number of participating parties, and the result is encrypted with all keys;

Dynamic variant: the computation cost is proportional to the number of par-
ticipating parties, and the result is only encrypted with their keys (i.e., any
subset of parties can go offline).

The variants only differ in pre-computation algorithms – performance-wise, given
a fixed number of parties, the variants are equivalent (it only depends on the
parameters of TFHE) and the evaluation complexity is linear in the number of
involved parties. The construction of our scheme remains similar to that of plain
TFHE, making it possible to adopt prospective advances of TFHE (or its imple-
mentation) to our scheme. In addition to the design of a new MKHE scheme:

– We support our scheme by a theoretical noise-growth & security analysis.
Thanks to the low noise growth, we instantiate our scheme with as many as
128 parties. We show that our scheme is secure in the semi-honest model;

– We design and evaluate a deep experimental study, which may help evalu-
ate future schemes. In particular, we suggest simulating the NAND gate to
measure errors more realistically. Compared to KMS, we achieve 4.5-6.9×
better bootstrapping times, while using the same implementation of TFHE
and parameters with the same estimated security (100 bits). The bootstrap-
ping times are around 140ms per party (experimental implementation);

– We extend previous work by providing an experimental evaluation of the
probability of errors. For our scheme, the measured noises fall within the
expected bounds, which are designed to satisfy the rule of 4σ (1 in 15 787);
we indeed do not encounter any error in any of our 9 000 trials in total.

Paper Outline. We briefly recall the TFHE scheme in Section 2 and we present
our scheme in Section 3. We analyze the security, correctness & noise growth,
and performance of our scheme in Section 4, which is followed by a thorough
experimental evaluation in Section 5. We conclude our paper in Section 6.

2 Preliminaries

In this section, we briefly recall the original TFHE scheme [11]. First, let us
provide a list of symbols & notation that we use throughout the paper:

– B: the set of binary coefficients {0, 1} ⊂ Z,
– T: the additive group R/Z referred to as the torus (i.e., real numbers mod 1),
– Zn: the quotient ring Z/nZ (or its additive group),
– M (N)[X]: the set of polynomials modXN + 1, with coefficients from M ,
– $: the uniform distribution,
– a

α← M : the draw of random variable a from M with distribution α (for
α ∈ R, we consider the /discrete/ normal distribution N(0, α)),

– E[X], Var[X]: the expectation and the variance of random variable X.

4 Y. Akın et al.

2.1 TFHE Scheme

The TFHE scheme is based on the Learning With Errors (LWE) encryption
scheme introduced by Regev [28]. TFHE employs two variants, originally referred
to as T(R)LWE, which stands for (Ring) LWE over the Torus. The ring variant
(shortly RLWE; introduced in [21]) is defined by polynomial degree N = 2ν (with
ν ∈ N), dimension n ∈ N, noise distribution ξ over the torus, and key distribu-
tion ζ over the integers (generalized to respective polynomials modXN +1).
Informally, to encrypt torus polynomial m ∈ T(N)[X], RLWE outputs the pair
(b = m−⟨z,a⟩+e,a), referred to as the RLWE sample, where z

ζ← (Z(N)[X])n is
a secret key, e ξ← T(N)[X] is an error term (aka. noise), and a

$← (T(N)[X])n is
a random mask. To decrypt, evaluate φz(b,a) = b+ ⟨z,a⟩ = m+ e, also referred
to as the phase. Internally, RLWE samples are further used to build so-called
RGSW samples, which encrypt integer polynomials, and which allow for homo-
morphic multiplication of integer-torus polynomials. It is widely believed that
RLWE sample (b,a) is computationally indistinguishable from a random element
of (T(N)[X])1+n (shortly random-like), provided that adequate parameters are
chosen. If a = 0 and e = 0, we talk about a trivial sample. The plain variant
(shortly LWE) operates with plain torus elements instead of polynomials.

Bootstrapping. By its construction, (R)LWE is additively homomorphic: the
sum of samples encrypts the sum of plaintexts. However, the error terms also
add up, i.e., the average noise of the result grows. To deal with this issue, TFHE
(as well as other fully homomorphic schemes) defines a routine referred to as
bootstrapping. In addition to refreshing the noise of a noisy sample, TFHE boot-
strapping is capable of evaluating a custom Look-Up Table (LUT), which makes
TFHE fully homomorphic. Find an illustration of the operation flow in Figure 1.
For a comprehensive technical description of TFHE, we refer to Appendix A.

In this paper, we focus on the basic variant of TFHE with a Boolean message
space: true and false are encoded into T ∼ [−1/2, 1/2) as −1/8 and 1/8, respectively.
To homomorphically evaluate the NAND gate over input samples c1,2, the sum
(1/8,0) − c1 − c2 is bootstrapped with a LUT, which holds 1/8 and −1/8 for the
positive and for the negative half of T, respectively.

{mi}
input

message(s)

LWE−−−→
encr.

{
(bi,ai)

}
fresh/

bootstrapped
sample(s)

hom.−−−−−→
addition

∑
(bi,ai)

to be boot-
strapped

(high noise)

bootstrapping
(hom. LUT evaluation)︷ ︸︸ ︷

round−−−−→ (b̃, ã)
BlindRotate,−−−−−−−−→
KeySwitch

(b′,a′)

freshly
bootstrapped
(low noise)

Fig. 1. The flow of TFHE: homomorphic addition and bootstrapping, which is com-
posed of other operations. The output sample (b′,a′) may proceed to another homo-
morphic addition, or to the output and decryption.

A Practical TFHE-Based Multi-Key Homomorphic Encryption 5

3 The AKÖ Scheme

In this section, we recall the notion of Multi-Key Homomorphic Encryption
(MKHE) and we propose two variants of MKHE. We outline changes that lead
from the basic TFHE [11] towards our proposal of MKHE – we outline the format
of multi-key bootstrapping keys, and we comment on a distribution for RLWE
keys. We provide a technical description of our scheme, which we denote AKÖ.

3.1 Towards the AKÖ Scheme

In addition to the capabilities of a standard FHE scheme, an MKHE scheme:

(i) runs a homomorphic evaluation over ciphertexts encrypted with unrelated
keys of multiple parties (accompanied by corresponding evaluation keys);

(ii) requires the collaboration of all involved parties, holding the individual keys,
to decrypt the result.

Note that there exist multiple approaches to reveal the result: e.g., one outlined
in [6], referred to as Distributed Decryption, or one described in [23], referred to
as Collective Public-Key Switching.

We propose our scheme in two variants:

Static variant: the list of parties is fixed at the beginning, then evaluation keys
are jointly calculated – no matter how many parties join a computation, the
evaluation time is also fixed and the result is encrypted with all the keys;

Dynamic variant: after a “global” list of parties is fixed, evaluation keys are
jointly calculated, however, only a subset of parties may join a computation
– the evaluation cost is proportional to the size of the subset and the result
is only encrypted with respective keys (i.e., the remaining parties can go
offline). If a party joins later, a part of the joint pre-calculation of evaluation
keys needs to be executed in addition, as opposed to CCS [6] and KMS [19].

Note that in many practical use cases—in particular, if we require semi-honest
parties—the (global) list of parties is fixed, e.g., hospitals may constitute the
parties. In addition, the pre-calculation protocol is indeed lightweight.

As already outlined, our scheme is based on the three following ideas:

(i) create RLWE samples encrypted under the sum of individual RLWE keys,
(ii) use a ternary (zero-centered) distribution for individual RLWE keys, and
(iii) avoid Fast Fourier Transform (FFT) in pre-computations.

Below, we discuss (i) and (ii), leaving (iii) for the experimental part (Section 5).
Note that the following lines might require an in-depth knowledge of TFHE.

(R)LWE Keys & Bootstrapping Keys. First, let us emphasize that secret
keys of individual parties are never revealed to any other party, however, the
description of AKÖ involves all of them. The underlying (and never reconstructed)
LWE key is the concatenation of individual keys, i.e., s :=

(
s(1), s(2), . . . , s(k)

)
∈

6 Y. Akın et al.

Bkn, where s(p) ∈ Bn are secret LWE keys of individual parties. We refer to
s as the common LWE key. For RLWE keys, we consider their summation, i.e.,
Z :=

∑
p z

(p), which we refer to as the common RLWE key. This particular
improvement decreases the computational complexity from O(k2) to O(k).

For bootstrapping keys, we follow the original construction of TFHE, where
we use the common (R)LWE keys. For blind-rotate keys, we generate an RGSW
sample of each bit of the common LWE key s =

(
s(1), . . . , s(k)

)
, under the com-

mon RLWE key Z =
∑

p z
(p). In addition, any party shall neither leak its own

secrets nor require the secrets of others. Hence, we employ RLWE public key
encryption [21]. Let us outline the desired form of a blind-rotate key for bit s:

BKs =

(
b∆ + s · g a∆

b□ a□ + s · g

)
, BKs ∈

(
T(N)[X]

)2d×2
, (1)

where (b∆,a∆) and (b□,a□) hold d + d RLWE encryptions of zero under the
key Z; cf. TFHE.RgswEncr. For key-switching keys, we need to generate an LWE
sample of the sum of j-th coefficients of individual RLWE secret keys z(p), under
the common LWE key s, for j ∈ [0, N −1]. Here a simple concatenation of masks
(values a) and a summation of masked values (values b) do the job. With such
keys, bootstrapping itself is identical to that of the original TFHE.

Ternary Distribution for RLWE Keys. For individual RLWE keys, we suggest
to use zero-centered ternary distribution ζp : (−1, 0, 1) → (p, 1 − 2p, p), param-
eterized by p ∈ (0, 1/2), which is widely adopted by the main FHE libraries like
HElib [15], Lattigo [24], SEAL [22], or HEAAN [29]. Although not adopted in
CCS nor in KMS, in our scheme, a zero-centered distribution for RLWE keys
is particularly useful, since we sum the keys into a common key, which is then
also zero-centered. This helps reduce the blind-rotate noise from O(k3) to O(k2),
which in turn helps find more efficient TFHE parameters.

It is worth noting that for “small” values of p, such keys are also referred to
as sparse keys (in particular with a fixed/limited Hamming weight), and there
exist specially tailored attacks [9, 31]. At this point, we motivate the choice of
p solely by keeping the information entropy of ζp equal to 1 bit, however, there
is no intuition—let alone a proof—that the estimated security would be at least
similar (more in Section 5.1). For the information entropy of ζp, we have

H(ζp) = −2p log(p)− (1− 2p) log(1− 2p)
!
= 1, (2)

which gives p ≈ 0.1135. For zi ∼ ζp, we have Var[zi] = 2p ≈ 0.227.

3.2 Technical Description of AKÖ

Algorithms with index q are executed locally at the respective party, encryption
algorithms naturally generalize to vector inputs.

Static Variant of AKÖ. Below, we provide algorithms for the static variant:

◦ AKÖ.Setup(1λ, k): Given security parameter λ and the number of parties k,
generate & distribute parameters for:

A Practical TFHE-Based Multi-Key Homomorphic Encryption 7

– LWE encryption: dimension n, standard deviation α > 0 (of the noise);
– LWE decomposition: base B′, depth d′;
– set up LWE gadget vector: g′ ← (1/B′, 1/B′2, . . . , 1/B′d′);
– RLWE encryption: polynomial degree N (a power of two), std-dev β > 0;
– RLWE decomposition: base B, depth d;
– set up RLWE gadget vector: g← (1/B, 1/B2, . . . , 1/Bd);
– generate a common random polynomial (CRP) a

$← T(N)[X].

◦ AKÖ.SecKeyGenq(): Generate secret keys s(q)
$← Bn and z(q) ∈ Z(N)[X], s.t.

z
(q)
i

ζp← {−1, 0, 1}.
◦ AKÖ...: Algorithms for (R)LWE en/decryption and bootstrapping (including
BlindRotate, KeySwitch, etc.) are the same as in TFHE; cf. Appendix A.

◦ AKÖ.RLwePubEncr
(
m, (b, a)

)
: Given message m ∈ T(N)[X] and public key

(b, a) ∈ T(N)[X]2 (an RLWE sample of 0 ∈ T(N)[X] under key z ∈ Z(N)[X]),
generate temporary RLWE key r(q), s.t. r(q)i

ζ← {−1, 0, 1}. Evaluate b′ ← RLwe-
SymEncrq(m, b, r(q)) and a′ ← RLweSymEncrq(0, a, r

(q)). Output (b′, a′), which is
an RLWE sample of m under the key z.

◦ AKÖ.RLweRevPubEncr
(
m, (b, a)

)
: Proceed as RLwePubEncr, with a difference

in the evaluation of b′ ← RLweSymEncrq(0, b, r(q)) and a′ ← RLweSymEncrq(m, a,

r(q)), where only m and 0 are swapped, i.e., m is added to the right-hand side
instead of the left-hand side.

◦ AKÖ.BlindRotKeyGenq(): Calculate and broadcast public key b(q) ← RLwe-

SymEncrq(0, a), using the CRP a as the mask. Evaluate B =
∑k

p=1 b
(p) (n.b.,

(B, a) = RLWEZ(0), hence it may serve as a common public key). Finally, for
j ∈ [1, n], output the blind-rotate key (related to s

(q)
j and Z):

BK
(q)
j ←

 RLwePubEncrq
(
s
(q)
j · g, (B, a)

)
RLweRevPubEncrq

(
s
(q)
j · g, (B, a)

)
 , (3)

which is an RGSW sample of the j-th bit of s(q), under the common RLWE key Z.

◦ AKÖ.KeySwitchKeyGenq(): For i ∈ [1, N], broadcast [b
(q)
i |A

(q)
i] ← LweSym-

Encrq
(
z
(q)∗
i · g′), where z(q)∗ ← KeyExtract(z(q)). Aggregate and for i ∈ [1, N],

output the key-switching key (for Zi =
∑

p z
(p)
i and s = (s(1), . . . , s(k))):

KSi =
[k∑
p=1

b
(p)
i

bi

∣∣∣ A(1)
i ,A

(2)
i , . . . ,A

(k)
i

Ai

]
, (4)

which is a d′-tuple of LWE samples of g′-respective fractions of Z∗
i under the

common LWE key s, where Z∗
i is the i-th element of the extraction of the com-

mon RLWE key Z =
∑

p z
(p).

8 Y. Akın et al.

Changes to AKÖ towards the Dynamic Variant. For the dynamic variant,
we provide modified versions of BlindRotKeyGen and KeySwitchKeyGen; other
algorithms are the same as in the static variant. Note that, in case we allow
a party to join later, all temporary keys need to be stored permanently and both
algorithms need to be (partially) repeated. This causes a slight pre-computation
overhead over CCS and KMS.

◦ AKÖ.BlindRotKeyGen_dynq(): Calculate and broadcast public key b(q) as de-
scribed in the AKÖ.BlindRotKeyGenq() algorithm. Then, for j ∈ [1, n]:

1: generate two vectors of d temporary RLWE keys r
(q)
j and r′

(q)
j

2: for p ∈ [1, k], p ̸= q, output b
∆(p)
q,j ← RLweSymEncrq(0, b

(p), r
(q)
j)

3: output b
∆(q)
q,j ← RLweSymEncrq(s

(q)
j · g, b(q), r

(q)
j)

4: output a∆q,j ← RLweSymEncrq(0, a, r
(q)
j)

5: for p ∈ [1, k], output b
□(p)
q,j ← RLweSymEncrq(0, b

(p), r′
(q)
j)

6: output a□q,j ← RLweSymEncrq(s
(q)
j · g, a, r′

(q)
j)

To construct the j-th blind-rotate key of party q, related to subset of parties
S ∋ q, evaluate

BK
(q)
j,S ←

∑
p∈S b

∆(p)
q,j a∆q,j∑

p∈S b
□(p)
q,j a□q,j

 , (5)

which is an RGSW sample of s(q)j under the subset RLWE key ZS =
∑

p∈S z(p).

N.b., BK(q)
j,S is only calculated at runtime, once S is known.

◦ AKÖ.KeySwitchKeyGen_dynq(): Proceed as AKÖ.KeySwitchKeyGenq(), while in-
stead of outputting aggregated KSi’s, aggregate relevant parts once S is known:

KSi,S =
[∑
p∈S

b
(p)
i

∣∣∣ (A(p)
i

)
p∈S

]
. (6)

Possible Improvements. In [6], authors suggest an improvement that de-
creases the noise growth of key-switching, which can also be applied in our
scheme; we provide more details in the full version of this paper [18].

4 Theoretical Analysis of AKÖ

In this section, we provide a theoretical analysis of our AKÖ scheme with respect to
security, correctness (noise growth), and performance. For a detailed technical
description of some of the involved algorithms, we refer to Appendix A – in
particular, for those shared by AKÖ and TFHE; cf. AKÖ... in Section 3.2.

4.1 Security

We assume that all parties follow the protocol honestly-but-curiously (aka. the
semi-honest model). First, let us recall what is secure and what is not in LWE
(selected methods; also holds for RLWE):

A Practical TFHE-Based Multi-Key Homomorphic Encryption 9

✓ re-use secret key s with fresh mask a and fresh noise e;
✓ re-use common random mask a with multiple distinct secret keys s(p) and

fresh noises e(p);
✗ publish ⟨s,a⟩ in any form (e.g., release the phase φ or the noise e);
✗ re-use the pair (s,a) with fresh noises ei.

Below, we show that if all parties act semi-honestly, our scheme is secure in both
of its variants. Note that rather than formal proofs, we provide informal sketches.

Public Key Encryption. In AKÖ, there are two algorithms for public key en-
cryption: RLwe(Rev)PubEncr

(
m, (b, a)

)
. They re-use a common random mask

(the public key pair (b, a)) with fresh temporary key r(q). Provided that b and
a are indistinguishable from random (random-like), it does not play a role to
which part the message m is added/encrypted, i.e., both variants are secure.

Blind-Rotate Key Generation (static variant). Provided that CRP a is
random-like, which is trivial to achieve in the random oracle model, we can as-
sume that (our) b(q) is random-like. Assuming that other parties act honestly,
also their b(p)’s are random-like, hence the sum B is random-like, too. With (B, a)
random-like, public key encryption algorithms are secure, hence AKÖ.BlindRot-
KeyGenq is secure, too.

Blind-Rotate Key Generation (dynamic variant). In this variant, party q
re-uses temporary secret key r(q) for encryption of zeros using public keys b(p) of
other parties, and for encryption of own secret key s(q). This is secure provided
that b(p)’s are random-like, which is true if generated honestly.

Key-Switching Key Generation (both variants). The AKÖ.KeySwitchKey-
Gen(_dyn)q algorithms employ the standard LWE encryption, hence they are
both secure.

4.2 Correctness & Noise Growth

The most challenging part of all LWE-based schemes is to estimate the noise
growth across various operations. First, we provide estimates of the noise growth
of blind-rotate and key-switching, next, we combine them into an estimate of
the noise of a freshly bootstrapped sample. Finally, we identify the maximum of
error, which may cause incorrect bootstrapping. We evaluate all noises for the
static variant, while for the dynamic variant, we provide more comments below
respective theorems. All proofs can be found in the full version of this paper [18].

Theorem 1 (Noise Growth of Blind-Rotate). The AKÖ.BlindRotate al-
gorithm returns a sample with noise variance given by

Var[⟨Z̄,ACC⟩] ≈ knNdVBβ
2(3 + 6pkN)

BK error

+ 1/2 · knε2(1 + 2pkN)

decomp. error

+ Var[tv]︸ ︷︷ ︸
usually 0

. (7)

For the dynamic variant, we have (3 + k · 6pN) →
(
1 + k(2 + 6pN)

)
in the BK

error term, which we consider practically negligible as 6pN ≈ 700.

10 Y. Akın et al.

Theorem 2 (Noise Growth of Key-Switching). The AKÖ.KeySwitch al-
gorithm returns a sample that encrypts the same message as the input sam-
ple, while changing the key from Z∗ to s, with additional noise eKS, given by〈
s̄, c̄′′

〉
=

〈
Z̄∗, c̄′

〉
+ eKS, for which

Var[eKS] ≈ Nkd′VB′β′2

KS error

+ 2pkNε′2

decomp. error

. (8)

For the dynamic variant, key-switching keys are structurally equivalent, hence
this estimate holds in the same form.

Corollary 1 (Noise of a Freshly Bootstrapped Sample). The AKÖ.Boot-
strap algorithm returns a sample with noise variance given by

V0 ≈ 3knNdVBβ
2(1+2pkN)

BK error

+ 1/2knε2(1+2pkN)

b.-r. decomp.

+Nkd′VB′β′2

KS error

+ 2pkNε′2

k.-s. decomp.

.

(9)
For the dynamic variant, the BK error term is changed according to Theorem 1.

Maximum of Error. During homomorphic evaluations, freshly bootstrapped
samples get homomorphically added/subtracted, before being possibly boot-
strapped again; cf. Figure 1. Before a noisy sample gets blindly rotated, it gets
scaled and rounded to Z2N , which induces an additional rounding error.

Lemma 1 (Rounding Error). The rounding step before BlindRotate induces
an additional error with variance (in the torus scale) given by

Var
[〈
s̄, 1/2N · (b̃, ã)− (b,a)

〉]
=

1 + kn/2

48N2
=: Vround(N,n, k). (10)

After rounding, the noise gets refreshed inside the BlindRotate algorithm,
which “blindly-rotates” a torus polynomial, referred to as the test vector, which
encodes a LUT. I.e., the rounding step is where the maximum of errors across
the whole computation appears. We focus on this error in the experimental part,
since it may cause incorrect blind-rotation, in turn, incorrect LUT evaluation.
In the following corollary, we evaluate the variance of the maximal error and we
define quantity κ, which is a scaling factor of normal distribution N(0, 1).

Corollary 2 (Maximum of Error). The maximum average error through-
out homomorphic computation is achieved inside AKÖ.Bootstrap by the rounded
sample 1/2N · (b̃, ã) with variance

Vmax ≈ max
{∑

k2i

}
· V0 + Vround, (11)

where ki are coefficients of linear combinations of independent, freshly boot-
strapped samples, which are evaluated during homomorphic calculations, before
being bootstrapped (e.g.,

∑
k2i = 2 for the NAND gate evaluation). We denote

κ :=
δ/2√
Vmax

=
δ

2σmax
, (12)

A Practical TFHE-Based Multi-Key Homomorphic Encryption 11

where δ is the distance of encodings that are to be distinguished (e.g., 1/4 for
encoding of bools).

We use κ to estimate the probability of correct blind rotation (CBRot). E.g.,
for κ = 3, we have Pr[CBRot] ≈ 99.73% ≈ 1/370 (aka. rule of 3σ), however, we
rather lean to κ = 4 with Pr[CBRot] ≈ 1/15 787. Since the maximum of error
is achieved within blind-rotate, it dominates the overall probability of correct
bootstrapping (CBStrap), i.e., we assume Pr[CBStrap] ≈ Pr[CBRot].

4.3 Performance

Since the structure of all components in both variants of AKÖ is equivalent to that
of plain TFHE with only n→ kn (due to LWE key concatenation), we evaluate the
performance characteristics very briefly: AKÖ.BlindRotate is dominated by 4d ·
kn degree-N polynomial multiplications, whereas AKÖ.KeySwitch is dominated
by Nd′ · (1 + kn) torus multiplications, followed by 1 + kn summations of Nd′

elements. Using FFT for polynomial multiplication, for bootstrapping, we have
the complexity of O(N logN · 4dkn) +O(Nd′ · (1 + kn)).

For key sizes, we have |BK| = 4dNkn·|TRLWE| and |KS| = d′N(1+kn)·|TLWE|,
where |T(R)LWE| denotes the size of respective torus representation.

5 Experimental Evaluation

For a fair comparison, we implement our AKÖ scheme3 side by side with pre-
vious schemes CCS [6] and KMS [19]. These are implemented in a fork [30] of
a library4 [26] that implements TFHE in Julia. For the sake of simplicity, we
implement only the static variant on AKÖ – recall that performance-wise, the two
variants are equivalent, for noise growth, the differences are negligible.

In this section, we first comment on errors induced by existing TFHE imple-
mentations. Then, we introduce type-1 and type-2 decryption errors that one
may encounter during TFHE-based homomorphic evaluations. Finally, we pro-
vide three kinds of results of our experiments:

1. for all the three schemes (CCS, KMS, and AKÖ) and selected parameter
sets, we measure the performance, the noise variances, and the amount of
decryption errors of the two types,

2. we demonstrate the effect of FFT during the pre-computation phase of AKÖ,
3. we compare the performance of all the three schemes with a fixed parameter

set tailored for 16 parties, with different numbers of actually participating
parties (i.e., the setup of the dynamic variant).

We run our experiments on a machine with an Intel Core i7-7800X processor
and 128GB of RAM.
3 Available at https://gitlab.eurecom.fr/fakub/3-gen-mk-tfhe as 3gen.
4 As noted by the authors, the code serves solely as a proof-of-concept.

https://gitlab.eurecom.fr/fakub/3-gen-mk-tfhe

12 Y. Akın et al.

Implementation Errors. The major source of errors that stem from a par-
ticular implementation of the TFHE scheme is Fast Fourier Transform (FFT),
which is used for fast modular polynomial multiplication in RLWE; find a study
on FFT errors in [17]. Also, the finite representation of the torus (e.g., 64-bit in-
tegers) changes the errors slightly, however, we neglect this contribution as long
as the precision (e.g., 2−64) is smaller than the standard deviation of the (R)LWE
noise. Note that these kinds of errors are not taken into account in Section 4.2,
which solely focuses on the theoretical noise growth of the scheme itself.

Due to the excessive noise that we observe for higher numbers of parties with
our scheme, we suggest replacing FFT in pre-computations (i.e., in blind-rotate
key generation) with an exact method. This leads to an increase of the pre-
computation costs (n.b., it has no effect on the bootstrapping time), however, in
Section 5.2, we show that the benefit is worth it.

Types of Decryption Errors. The ultimate goal of noise analysis is to keep
the probability of obtaining an incorrect result reasonably low. Below, we de-
scribe two types of decryption errors, which originate from bootstrapping, and
which we measure in our experiments. N.b., the principle of BlindRotate is the
same across the three schemes, hence it is well-defined for all of them.
Note 1. For the notion of correct decryption, we always assume symmetric in-
tervals around encodings. E.g., for the Boolean variant of TFHE, which encodes
true and false as ±1/8, we only consider the “correct” interval for true as (0, 1/4),
although (0, 1/2) would work, too. Hence in the Boolean variant, actual incorrect
decryption & decoding would be half less likely than what we actually measure.
Fresh Bootstrap Error. We bootstrap noiseless sample c of µ, i.e., BlindRotate
rotates the test vector “correctly”, meaning that φ̃/2N = µ selects the correct
position from the encoded LUT. Then, we evaluate the probability of the resulting
phase φ′ falling outside the correct interval. We refer to this error as the type-1
error, denoted Err1. This probability relates to the noise of a correctly blind-
rotated, freshly bootstrapped sample. It can be estimated from V0; see (9).

Blind Rotate Error. Let us consider a homomorphic sum of two independent,
freshly bootstrapped samples (cf. Figure 1). We evaluate the probability that
the sum, after the rounding step inside bootstrapping, selects a value at an
incorrect position from the test vector, which encodes the LUT (as discussed in
Section 4.2). We refer to this error as the type-2 error, denoted Err2. It can be
estimated from Vmax; see (11). We evaluate Err2 by simulating the NAND gate:

fresh c1
Bootstr.−−−−−→ c′1

fresh c2
Bootstr.−−−−−→ c′2

}
(1/8− c′1 − c′2)→ get rounded φ̃→ check φ̃/2N

?∈ (0, 1/4).

(13)

5.1 Experiment #1: Comparison of Performance & Errors

For the three schemes—CCS, KMS and AKÖ—we measure the main quantities:
the bootstrapping time (median), the variance V0 of a freshly bootstrapped sam-
ple (defined in (9)), the scaling factor κ (defined in (12)), and the number of

A Practical TFHE-Based Multi-Key Homomorphic Encryption 13

errors of both types. We extend the previous work – there is no experimental
evaluation of noises/errors in CCS nor in KMS. In all experiments, we replace
FFT in pre-computations with an exact method. For CCS and KMS, we employ
the parameters suggested by the original authors, and we estimate their security
with the lattice-estimator by Albrecht et al. [2, 3]. We obtain an estimate of
about 100 bits, therefore for our scheme, we also suggest parameters with esti-
mated 100-bit security. We provide more details on concrete security estimates of
the parameters of CCS, KMS and AKÖ in the full version of this paper [18]. The
results for CCS, KMS and AKÖ can be found in Table 1, 2 and 3, respectively.

In the results for CCS, we may notice that for 2 to 8 parties, the measured
value of κ, denoted κ(m), agrees with the calculated value κ(c), whereas for 16
parties (n.b., parameters added in KMS [19]), the measured value κ(m) drops
significantly, which indicates an unexpected error growth.

In the results for KMS, we may notice a similar drop of κ – here it occurs for
all numbers of parties – we suppose that this is caused by FFT in bootstrapping
(more on FFT later in Section 5.2). For both experiments, we further use κ(m)

and Z-values of the normal distribution to evaluate the expected rate of Err2,
which is in perfect accordance with the measured one.

For our AKÖ scheme, the results do not show any error of any type. Regard-
ing the values of κ (also V0), we measure lower noise than expected – this we
suppose to be caused by a certain statistical dependency of variables – indeed,
our estimates of noise variances are based on an assumption that variables are
independent, which is not always fully satisfied. We are able to run AKÖ with up
to 128 parties, while the only limitation for 256 parties appears to be the size of
RAM. We believe that with more RAM (> 128GB) or with a more optimized
implementation, it would be possible to practically instantiate the scheme with
even more parties.

Table 1. Key sizes (taken from [19]), bootstrapping times (tB ; median), noises and
errors of the CCS scheme [6], with original parameters and without FFT in pre-
computations (i.e., using precise calculations). ∗Parameters for k = 16 added by [19].
Labels (c) and (m) refer to calculated and measured values, respectively. Running 1 000
trials, i.e., evaluating 2 000 bootstraps; cf. (13). N.b., the actual error rate of a NAND
gate would be approximately half of Err2; cf. Note 1.

k
|keys| tB V

(c)
0 V

(m)
0

κ(c) κ(m) Err1,2 Exp.

[MB] [s] [10−4] [10−4] [‰] Err2

2 95 .58 16.2 14.6 2.19 2.30 1 24 21

4 108 2.4 19.1 18.6 2.01 2.04 3 41 41

8 121 10 6.36 6.27 3.39 3.41 0 0 .65
∗16 214 86 2.15 34.5 5.07 1.49 29 128 136

14 Y. Akın et al.

Table 2. Key sizes (taken from [19]), bootstrapping times (tB ; median), noises and
errors of the KMS scheme [19], with original parameters and without FFT in pre-
computations. Running 1 000 trials.

k
|keys| tB V

(c)
0 V

(m)
0

κ(c) κ(m) Err1,2 Exp.

[MB] [s] [10−4] [10−4] [‰] Err2

2 215 .61 .458 11.5 12.7 2.60 1.5 12 9.3

4 286 2.1 .915 15.3 8.97 2.26 4 29 24

8 251 5.4 1.83 17.1 6.34 2.13 3 35 33

16 286 15 3.66 32.0 4.49 1.56 22.5 122 119

32 322 35 7.32 30.1 3.17 1.60 23 109 110

Table 3. Parameters, key sizes (calculated), bootstrapping times (tB ; median), noises,
and errors of the static variant of AKÖ, without FFT in pre-computations. Running 1 000
trials, no errors of type Err2 (let alone Err1) experienced.

k
LWE RLWE |keys| tB V

(c)
0 V

(m)
0

κ(c) κ(m)

n log2(α) B′ d′ N log2(β) B d [GB] [s] [10−4] [10−4]

2 520 −13.52 23 3

1 024 −30.70

27 2 .08 .19 4.69 4.18 4.04 4.27

4 510 −13.26 22 5 26 3 .24 .56 3.96 2.02 4.33 5.93

8 540 −14.04 22 5 24 4 .66 1.2 4.43 4.20 4.01 4.11

16 590 −15.34 23 4

2 048 −62.00

226 1 .93 1.8 4.56 1.02 4.04 7.90

32 620 −16.12 23 4 226 1 2.0 4.3 3.58 1.21 4.38 6.78

64 650 −16.90 23 4 225 1 4.1 8.6 3.41 1.80 4.20 5.25

128 670 −17.42 23 5 224 1 9.1 18 2.40 .486 4.15 5.47

5.2 Experiment #2: The Effect of FFT in Pre-Computations

As outlined, polynomial multiplication in RLWE, when implemented using FFT,
introduces additional error, on top of the standard RLWE noise. In this exper-
iment, we compare noises of freshly bootstrapped samples: once with FFT in
blind-rotate key generation (induces additional errors), once without FFT (we
use an exact method instead). We choose our AKÖ scheme with 32 parties.

We observe a tremendous growth of the noise of a freshly bootstrapped sam-
ple in case FFT is employed for blind-rotate key generation: in almost 4% of
such cases, even a freshly bootstrapped sample gets decrypted incorrectly (i.e.,
Err1 ≈ 4%). On the other hand, such a growth does not occur for lower numbers
of parties, hence we suggest verifying whether in the particular case, the effect
of FFT is remarkable, or negligible, and then decide accordingly. Recall that
pre-computations with FFT are much faster (e.g., for 64 parties, we have 33 s
vs. 212 s of the total pre-computation time).

A Practical TFHE-Based Multi-Key Homomorphic Encryption 15

Unexpected Error Growth in KMS. For the KMS scheme, we observe
an unexpected error growth (cf. Table 2), which we suppose to be caused by
FFT in bootstrapping. We replace all FFTs in the entire computation of KMS—
including bootstrapping—with an exact method, and we re-run Experiment #1
with the KMS scheme with (only) 2 parties – due to a ∼ 40× slower evaluation.

We obtain V
(m)
0 ≈ 5.58 · 10−4, which is still much more than the expected

value V
(c)
0 ≈ 0.458 ·10−4, but the value of κ(m) increases from 2.60 to 3.73 and it

results in no type-2 errors. At least partially, this confirms our hypothesis that
the unexpected error growth in KMS is caused by FFT in evaluation.

Supporting evidence can be found in the design of KMS: in its blind-rotate,
we observe that there are (up to) 4 nested FFTs: one in the circled ⋆ product,
followed by three inside ExtProd: one in the ⊙ product and two in NewHbProd.
Compared with AKÖ, where there is just one level of FFT inside blind-rotate in
Prod, this is likely the most significant practical improvement over KMS.

5.3 Experiment #3: Performance Comparison

We extend the performance comparison of CCS and KMS, presented in Figure 2
of KMS [19] (which we re-run on our machine), by the performances of our AKÖ
scheme. Note that the setup of that experiment corresponds to the dynamic vari-
ant – recall that performance-wise, the dynamic variant is equivalent to the static
variant, which is implemented in our experimental library. For each scheme, we
employ its own parameter set tailored for 16 parties, while we instantiate it with
different numbers of actually participating parties; find the results in Figure 2.

0

4

8

12

16

2-p. 4-party 8-party 16-party

22

84
4.5× 5.7× 6.5× 6.9×

B
o
ot
st
ra
p
p
in
g
ti
m
e
[s
]

CCS
KMS
ours

Speed-up of our scheme over KMS

Fig. 2. Comparison of median bootstrapping times of the CCS scheme [6], the KMS
scheme [19], and our AKÖ scheme. 100 runs with respective parameters for 16 parties
were executed. N.b., FFT in pre-computations does not affect performance.

16 Y. Akın et al.

5.4 Discussion

The goal of our experiments is to show the practical usability of our AKÖ scheme:
we compare its performance as well as the probability of errors with previous
schemes – CCS [6] and KMS [19].

In terms of bootstrapping time, AKÖ runs faster than both previous attempts
(cf. Figure 2). Also, the theoretical complexity of AKÖ is linear in the number of
parties (cf. Section 4.3), as opposed to quadratic and quasi-linear for CCS and
KMS, respectively.

To evaluate the number of errors that may occur during bootstrapping, we
propose a new method that simulates the rounding step of BlindRotate (cf.
(13)), which is the same across all the three schemes. Our experiments show
that both CCS and KMS suffer from a considerably high error rate (cf. Table 1
and 2, respectively): for CCS, the original parameters are rather poor; for KMS,
it seems that there are too many nested FFT’s in bootstrapping – we show that
FFT in evaluation—at least partially—causes the unexpected error growth.

To sum up, AKÖ significantly outperforms both CCS & KMS in terms of boot-
strapping time and/or error rate. The major practical limitation of the CCS
scheme is the quadratic growth of the bootstrapping time, whereas the KMS
scheme suffers from the additional error growth in implementation. A disadvan-
tage of AKÖ is that it requires (a small amount of) additional pre-computations
if a new party decides to join the computation in the dynamic variant. Also AKÖ
does not enable parallelization, as opposed to KMS.

6 Conclusion

We propose a new TFHE-based MKHE scheme named AKÖ in two variants, de-
pending on whether only a subset of parties is desired to take part in a homo-
morphic computation. We implement AKÖ side-by-side with other similar schemes
CCS and KMS, and we show its practical usability in thorough experimentation,
where we also suggest secure & reliable parameters. Thanks to its low noise
growth, AKÖ can be instantiated with hundreds of parties; namely, we tested up
to 128 parties. Compared to previous schemes, AKÖ achieves much faster boot-
strapping times, however, a slight overhead of pre-computations is induced. For
KMS, we show that FFT errors are prohibitive for its practical deployment –
unfortunately, replacing FFT in pre-computations is not enough.

Besides benchmarking, we suggest emulating (a part of) the NAND gate to
achieve a more realistic error analysis: the measured amount of errors shows
to be in perfect accordance with the expected amount. This method may help
future schemes to evaluate their practical reliability.

Future Work. We plan to extend the threat model to assume malicious parties.

A Practical TFHE-Based Multi-Key Homomorphic Encryption 17

References

1. Acar, A., Aksu, H., Uluagac, A.S., Conti, M.: A survey on homomorphic encryption
schemes: Theory and implementation. ACM Computing Surveys (Csur) 51(4), 1–
35 (2018)

2. Albrecht, M.R., contributors: Security Estimates for Lattice Problems. https://
github.com/malb/lattice-estimator (2022)

3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015)

4. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical gapsvp. In: Annual Cryptology Conference. pp. 868–886. Springer (2012)

5. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key fhe with short
ciphertexts. In: Annual International Cryptology Conference. pp. 190–213. Springer
(2016)

6. Chen, H., Chillotti, I., Song, Y.: Multi-key homomorphic encryption from tfhe.
In: International Conference on the Theory and Application of Cryptology and
Information Security. pp. 446–472. Springer (2019)

7. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient multi-key homomorphic encryption
with packed ciphertexts with application to oblivious neural network inference. In:
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communi-
cations Security. pp. 395–412 (2019)

8. Chen, L., Zhang, Z., Wang, X.: Batched multi-hop multi-key fhe from ring-lwe
with compact ciphertext extension. In: Theory of Cryptography Conference. pp.
597–627. Springer (2017)

9. Cheon, J.H., Hhan, M., Hong, S., Son, Y.: A hybrid of dual and meet-in-the-middle
attack on sparse and ternary secret lwe. IEEE Access 7, 89497–89506 (2019)

10. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: International Conference on the Theory and Appli-
cation of Cryptology and Information Security. pp. 409–437. Springer (2017)

11. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption over the torus. Journal of Cryptology 33(1), 34–91 (2020)

12. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled fhe from learning
with errors. In: Annual Cryptology Conference. pp. 630–656. Springer (2015)

13. Fan, J., Vercauteren, F.: Somewhat Practical Fully Homomorphic Encryption.
Cryptology ePrint Archive, Paper 2012/144 (2012), https://ia.cr/2012/144

14. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the forty-first annual ACM symposium on Theory of computing. pp. 169–178
(2009)

15. Halevi, S., Shoup, V.: Design and implementation of a homomorphic-encryption
library. IBM Research (Manuscript) 6(12-15), 8–36 (2013)

16. Kim, T., Kwak, H., Lee, D., Seo, J., Song, Y.: Asymptotically Faster Multi-Key
Homomorphic Encryption from Homomorphic Gadget Decomposition. Cryptology
ePrint Archive, Paper 2022/347 (2022), https://ia.cr/2022/347

17. Klemsa, J.: Fast and error-free negacyclic integer convolution using extended
fourier transform. In: Cyber Security Cryptography and Machine Learning: 5th
International Symposium, CSCML 2021, Be’er Sheva, Israel, July 8–9, 2021, Pro-
ceedings. pp. 282–300. Springer (2021)

18. Klemsa, J., Önen, M., Akın, Y.: A practical tfhe-based multi-key homomor-
phic encryption with linear complexity and low noise growth. Cryptology ePrint
Archive, Paper 2023/065 (2023), https://eprint.iacr.org/2023/065, https:
//eprint.iacr.org/2023/065

https://github.com/malb/lattice-estimator
https://github.com/malb/lattice-estimator
https://ia.cr/2012/144
https://ia.cr/2022/347
https://eprint.iacr.org/2023/065
https://eprint.iacr.org/2023/065
https://eprint.iacr.org/2023/065

18 Y. Akın et al.

19. Kwak, H., Min, S., Song, Y.: Towards Practical Multi-key TFHE: Paralleliz-
able, Key-Compatible, Quasi-linear Complexity. Cryptology ePrint Archive, Paper
2022/1460 (2022), https://ia.cr/2022/1460

20. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computa-
tion on the cloud via multikey fully homomorphic encryption. In: Proceedings of
the forty-fourth annual ACM symposium on Theory of computing. pp. 1219–1234
(2012)

21. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 1–23. Springer (2010)

22. Microsoft: SEAL (release 4.1). https://github.com/Microsoft/SEAL (Jan 2023)
23. Mouchet, C., Troncoso-Pastoriza, J., Bossuat, J.P., Hubaux, J.P.: Multiparty ho-

momorphic encryption from ring-learning-with-errors. Proceedings on Privacy En-
hancing Technologies pp. 291–311 (2021)

24. Mouchet, C.V., Bossuat, J.P., Troncoso-Pastoriza, J.R., Hubaux, J.P.: Lattigo:
A multiparty homomorphic encryption library in go. In: Proceedings of the 8th
Workshop on Encrypted Computing and Applied Homomorphic Cryptography.
pp. 64–70. No. CONF (2020)

25. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key fhe. In:
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 735–763. Springer (2016)

26. NuCypher: TFHE.jl. https://github.com/nucypher/TFHE.jl (2022)
27. Peikert, C., Shiehian, S.: Multi-key fhe from lwe, revisited. In: Theory of cryptog-

raphy conference. pp. 217–238. Springer (2016)
28. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-

phy. In: Proceedings of the thirty-seventh annual ACM symposium on Theory of
computing. pp. 84–93 (2005)

29. SNUCrypto: HEAAN (release 1.1). https://github.com/snucrypto/HEAAN (2018)
30. SNUPrivacy: MK-TFHE. https://github.com/SNUPrivacy/MKTFHE (2022)
31. Son, Y., Cheon, J.H.: Revisiting the hybrid attack on sparse secret lwe and appli-

cation to he parameters. In: Proceedings of the 7th ACM Workshop on Encrypted
Computing & Applied Homomorphic Cryptography. pp. 11–20 (2019)

A Technical Description of TFHE

We provide a technical description of the TFHE scheme in a form of self-descriptive
algorithms. Parameters and secret keys are considered implicit inputs.

◦ TFHE.Setup(1λ): Given security parameter λ, generate parameters for:

– LWE encryption: dimension n, standard deviation α > 0 (of the noise);
– LWE decomposition: base B′, depth d′;
– set up LWE gadget vector: g′ ← (1/B′, 1/B′2, . . . , 1/B′d′);
– RLWE encryption: polynomial degree N (a power of two), standard deviation

β > 0;
– RLWE decomposition: base B, depth d;
– set up RLWE gadget vector: g← (1/B, 1/B2, . . . , 1/Bd).

https://ia.cr/2022/1460
https://github.com/Microsoft/SEAL
https://github.com/nucypher/TFHE.jl
https://github.com/snucrypto/HEAAN
https://github.com/SNUPrivacy/MKTFHE

A Practical TFHE-Based Multi-Key Homomorphic Encryption 19

Other input parameters of the Setup algorithm may include the maximal allowed
probability of error, or the plaintext space size (for other than Boolean circuits).

◦ TFHE.SecKeyGen(): Generate secret keys for:

– LWE encryption: s $← Bn;
– RLWE encryption: z

$← B(N)[X], (alternatively zi
ζ← {−1, 0, 1} for some

distribution ζ).

For LWE key s ∈ Bn, we denote s̄ := (1, s) ∈ B1+n the extended secret key,
similarly for an RLWE key z ∈ Z(N)[X], we denote z̄ := (1, z) ∈ Z(N)[X]2.

◦ TFHE.LweSymEncr(µ): Given message µ ∈ T, sample fresh mask a
$← Tn and

noise e
α← T. Evaluate b← −⟨s,a⟩+µ+e and output c̄ = (b,a) ∈ T1+n, an LWE

encryption of µ. This algorithm is used as the main encryption algorithm of the
scheme. We generalize this as well as subsequent algorithms to input vectors and
proceed element-by-element.

◦ TFHE.RLweSymEncr(m, a = ∅, zin = z): Given message m ∈ T(N)[X], sample

fresh mask a
$← T(N)[X], unless explicitly given. If the pair (a, zin) has been

used before, output ⊥. Otherwise, sample fresh noise e ∈ T(N)[X], ei
β← T, and

evaluate b← −zin ·a+m+e. Output c̄ = (b, a) ∈ T(N)[X]2, an RLWE encryption
of m. In case a is given, we may limit the output to only b.

◦ TFHE.(R)LwePhase(c̄): Given (R)LWE sample c̄, evaluate and output φ ←
⟨s̄, c̄⟩, where s̄ is respective (R)LWE extended secret key.

◦ TFHE.EncrBool(b): Set µ = ±1/8 for b true or false, respectively. Output
LweSymEncr(µ).

◦ TFHE.DecrBool(c̄): Output LwePhase(c̄) > 0, assuming T ∼ [−1/2, 1/2).

◦ TFHE.RgswEncr(m): Given m ∈ Z(N)[X], evaluate Z ← RLweSymEncr(0),
where 0 is a vector of 2d zero polynomials (i.e., Z ∈ (T(N)[X])2d×2). Output
Z+m ·G, an RGSW sample of m.

◦ TFHE.Prod
(
BK, (b, a)

)
: Given RGSW sample BK of s ∈ Z(N)[X], and RLWE

sample (b, a) of m ∈ T(N)[X], evaluate and output:

(b′, a′)←
(
g−1(b)
g−1(a)

)T

· BK =: BK⊡ (b, a), (14)

which is an RLWE sample of s ·m ∈ T(N)[X]; in TFHE also referred to as the
external product.

◦ TFHE.BlindRotate
(
c̄, {BKi}ni=1, tv

)
: Given c̄ = (b, a1, . . . , an) ∈ T1+n, an

LWE sample of µ ∈ T under key s ∈ Bn; (BKi)
n
i=1, RGSW samples of si under

RLWE key z (aka. blind-rotate keys); and RLWEz(tv) ∈ T(N)[X]2, (usually trivial)
RLWE sample of tv ∈ T(N)[X] (aka. test vector), evaluate:

20 Y. Akın et al.

1: b̃← ⌊2Nb⌉, ãi ← ⌊2Nai⌉ for 1 ≤ i ≤ n

2: ACC← X b̃ · RLWE(tv)
3: for i = 1, . . . , n do
4: ACC← ACC+ Prod

(
BKi, X

ãi · ACC− ACC
)

▷ ACC or X ãi · ACC if
si = 0 or si = 1, resp.

Output ACC = RLWEz(X
φ̃ · tv), an RLWE encryption of test vector “rotated” by

φ̃, where φ̃ = ⌊2Nb⌉+ s1⌊2Na1⌉+ . . .+ sn⌊2Nan⌉ ≈ 2N(s̄ · c̄) ≈ 2Nµ.

◦ TFHE.KeyExtract(z): Given RLWE key z ∈ Z(N)[X], output z∗ ← (z0,−zN−1,
. . . ,−z1).
◦ TFHE.SampleExtract(b, a): Given RLWE sample (b, a) ∈ T(N)[X]2 of m ∈
T(N)[X] under RLWE key z ∈ Z(N)[X], output LWE sample (b′,a′)← (b0, a0, . . . ,
aN−1) ∈ T1+N of m0 ∈ T (the constant term of m) under the extracted LWE
key z∗ = KeyExtract(z).

◦ TFHE.KeySwitchKeyGen(): For j ∈ [1, N], evaluate and output a key-switching
key for zj and s: KSj ← LweSymEncr

(
z∗j · g′), where z∗ ← KeyExtract(z). KSj

is a d′-tuple of LWE samples of g′-respective fractions of z∗j under the key s.

◦ TFHE.KeySwitch
(
c̄′, {KSj}Nj=1

)
: Given LWE sample c̄′ = (b′, a′1, . . . , a

′
N) ∈

T1+N (extraction of an RLWE sample), which encrypts µ ∈ T under the extrac-
tion of an RLWE key z∗ = KeyExtract(z), and a set of key-switching keys for z
and s, evaluate and output

c̄′′ ← (b′,0) +

N∑
j=1

g′−1(a′j)
T · KSj , (15)

which is an LWE sample of the same µ ∈ T under the LWE key s.

◦ TFHE.Bootstrap
(
c̄, tv, {BKi}ni=1, {KSj}Nj=1

)
: Given LWE sample c̄ of µ ∈ T

under LWE key s, test vector tv ∈ T(N)[X] that encodes a LUT, and two sets
of keys for blind-rotate and for key-switching (aka. bootstrapping keys – the
evaluation keys of TFHE), evaluate:
1: c̄′ ← BlindRotate

(
c̄, {BKi}ni=1, tv

)
;

2: c̄′′ ← KeySwitch
(
SampleExtract(c̄′), {KSj}Nj=1

)
.

Output c̄′′, which is an LWE sample of—vaguely speaking—“evaluation of the
LUT at µ”, under the key s, with a refreshed noise. Details on the encoding of
the LUT are out of the scope of this paper.

◦ TFHE.Add(c1, c2): Output c1+c2, which encrypts the sum of input plaintexts.
Using just “+”.

◦ TFHE.NAND
(
c1, c2, {BKi}ni=1, {KSj}Nj=1

)
: Given encryptions of bools b1 and

b2 under LWE key s, and bootstrapping keys for s and z, set the test vector
as tv ← 1/8 · (1 +X +X2 + . . . +XN−1). Output c̄′′ ← Bootstrap

(
1/8 − c1 −

c2, tv, {BKi}ni=1, {KSj}Nj=1

)
, which is an encryption of ¬(b1∧b2) under the key s.

	 A Practical TFHE-Based Multi-Key Homomorphic Encryption with Linear Complexity and Low Noise Growth

