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ABSTRACT Querying with SQL Question answering with NL

In many use-cases, information is stored in text but not avail-
able in structured data. However, extracting data from natural
language (NL) text to precisely fit a schema, and thus enable
querying, is a challenging task. With the rise of pre-trained Large
Language Models (LLMs), there is now an effective solution to
store and use information extracted from massive corpora of
text documents. Thus, we envision the use of SQL queries to
cover a broad range of data that is not captured by traditional
databases (DBs) by tapping the information in LLMs. This ability
would enable the hybrid querying of both LLMs and DBs with
the SQL interface, which is more expressive and precise than NL
prompts. To show the potential of this vision, we present one
possible direction to ground it with a traditional DB architec-
ture using physical operators for querying the underlying LLM.
One promising idea is to execute some operators of the query
plan with prompts that retrieve data from the LLM. For a large
class of SQL queries, querying LLMs returns well structured rela-
tions, with encouraging qualitative results. We pinpoint several
research challenges that must be addressed to build a DBMS that
jointly exploits LLMs and DBs. While some challenges call for
new contributions from the NLP field, others offer novel research
avenues for the DB community.

1 INTRODUCTION

Declarative querying is one of the main features behind the pop-
ularity of database systems. However, SQL can be executed only
on structured datasets with a well defined schema, leaving out
of immediate reach information expressed as unstructured text.

Several technologies have been deployed to extract structured
data from unstructured text and to model such data in relations or
triples [11, 58]. While these methods have been studied for more
than 20 years, creating well-formed structured data from text
is still time consuming and error prone. Existing tools require
engineers to manually prepare extraction pipelines, which are
typically static and can only extract fixed pairs of attributes [58].
Creating such pipelines is expensive, as training examples must
be defined for every relation to extract. Indeed, the precise ex-
traction of typed data in a tuple format (n-ary relations) is still
an unsolved task [1, 41].

Querying vs QA. While declarative querying of text is a big
challenge, there has recently been incredible progress in ques-
tion answering (QA) over text [47]. In this setting, a question
in natural language (NL) is answered by gathering information
from a corpus of text documents. Transformers enable the cre-
ation of Large Language Models (LLMs), neural networks that
are used in a wide variety of NL processing tasks. LLMs, such as
those in the GPT family [9, 43, 44], have been trained on large
data, such as the entire Web textual content, and can answer
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List names of the cities and
mayor birth date for the cities
where the current mayor has

been in charge since 2019.

V@
LLM

SELECT c.cityName, cm.birthDate

FROM city c, cityMayor cm

WHERE c.major = cm.name,
cm.electionYear = 2019

GALOIS A/(1)

Break it down into LLM
simple sub-tasks
cityName birthDate - New York City: Bill de Blasio,
; born May 8, 1961
Chicago August 4 1962 0
: : - Chicago: Lori Lightfoot, born
Tampa December 7 1960 August 4, 1962
[5 more rows] [5 more lines]

Figure 1: Querying a pre-trained LLM with SQL is differ-
ent from question answering (QA). We assume a user SQL
query as input. GALOIS executes the query, and obtains rela-
tions, by retrieving data from a LLM (1). The corresponding
QA task consumes and produces natural language text (2).

complex questions in a closed-book fashion [46] (example (2)
in Figure 1). Question answering is reaching new state of the
art performance with the release of new LLMs, but it is still not
possible to query, in a SQL-like declarative fashion, such models.
While it has been shown that such models store high quality fac-
tual information [30, 42], they are not trained to answer complex
SQL queries and may fail short with such input.

SQL for LLMs. We envision querying pre-trained LLMs with
SQL scripts. As depicted in example (1) in Figure 1, the pre-trained
LLM can act as the data storage containing the information to
answer the query. We argue that a solution should preserve
the main characteristics of SQL when executed over this new
source of data: (i) queries are written in arbitrary SQL over a user
defined relational schema, enabling a precision and a complexity
in contrast with the limitation of NL prompts; (ii) answers are
correct and complete w.r.t. the information stored in the LLM.
This last point requires the correct execution of the queries and
does not assume that LLMs always return perfect information.
In contrast to generation of images or fiction, where small errors
are unnoticeable by users in most cases, any error in data can be
critical for the target application. While LLMs still make factual
mistakes, this work shows that it is already possible to collect
tuples from them with promising results. With the ongoing efforts
in LLMs, with new training architectures and increasing amount
of text used as input, there is evidence that their factuality and
coverage is quickly improving [17, 51].

Applications. We envision the execution of SQL queries to ob-
tain relations from the information stored in LLMs. Given the
increasing adoption of proprietary LLMs by companies, domain-
specific textual information is getting stored in such models [12,
56]. This is a promising solution for several applications. In any
domain, data is scattered across different modalities such as email,
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Figure 2: With the increasing number of enterprise LLMs
trained with proprietary data, hybrid SQL querying enables
to extract structured data from heterogeneous sources. The
DB models the relational data, while the LLM exposes the
data from unstructured sources. This paradigm can query
data in text without human preprocessing.

text, and PDF files. Querying their representation in a LLM en-
ables the retrieval of information that is out of reach by accessing
only the DB, as depicted in Figure 2. We envision the ability
to query data beyond what is already modeled in a structured
schema, for example by designing a polystore system on hetero-
geneous storage engines [2, 16]. An example of jointly querying
with one user-provided script a DB and a LLM is the following

q: SELECT c.GDP, AVG(e.salary)
FROM LLM.country c, DB.Employees e
WHERE c.code = e.countryCode
GROUP BY e.countryCode

where c iterates over the tuples in the LLM and e over the tuples
in the DB. With hybrid querying, the data from the LLM can be
used as a source in metadata inference [14], data integration [19],
augmentation [60], imputation[33], and cleaning [36]. This paper
does not claim to detail a concrete solution to all these applica-
tions, but rather to show a possible path to combine traditional
DBMSs and LLMs in novel hybrid query execution plans [26].

Which Architecture? Being able to SQL query LLMs is appeal-
ing, but it is not clear on which architecture a solution should
pivot on. Looking at the architectures for LLMs and DBMSs,
there are different paths to explore. One is LLM-first, where ex-
ternal information (including structured data) is accessed by the
LLM [8, 40]. While this approach is gaining visibility, the lim-
ited context size in LLMs does not allow yet to execute queries
that require a large number of tuples as input, such as aggregate
queries over tables with thousands of rows. The alternative path
is DB-first, where LLMs are used as a component in a traditional
DB query processing architecture, which is what we envision in
this work.

Contributions. In this paper, we focus on how to query pre-
trained LLMs (in isolation) and preliminary empirical evidence
of its potential. We present one possible way to implement a DB-
first architecture. The core idea is that the query plan is a natural
decomposition of the (possibly complex) process to obtain the
result, in analogy with the recent approaches in NLP showing
that breaking a complex task in a chain of thoughts is key to
get the best results [28, 54]. To bridge the gap between a logical
query plan and its execution on a LLM, we suggest new physical
operators for such plan.
Our main ideas are summarized in the following points:
e We introduce the problem of querying with SQL existing
pre-trained LLMs. To ground our vision, we built Garors?,
a DB-first prototype that executes SPJA queries under

Evariste Galois (rhymes with French word wvoild) was a 19t century
mathematician.

assumptions that enable a large class of applications (code
available at https://gitlab.eurecom.fr/saeedm1/galois).

o The logical query plan breaks down the complex task into
simpler steps that can be handled effectively by the LLM.
Physical operators in the query plan are implemented as
textual prompts for LLMs. Such prompts are automatically
generated from the information in the input schema and
the logical operators.

e We show that the results obtained by GALo1s on 46 queries
on top of popular LLMs are (1) comparable to those ob-
tained by executing the same queries on DBMS and (2) bet-
ter than those obtained by manually rewriting the queries
(and parsing the results) in NL for QA over the same LLM.

Outline. Section 2 covers recent progress in NLP and compares
Garors to prior work. Section 3 discusses the challenges in query-
ing LLMs. Section 4 describes the architecture of our DB-first
prototype. Section 5 reports preliminary experimental results
from datasets in the Spider corpus. Section 6 discusses open
problems and research directions. Section 7 concludes the paper.

2 BACKGROUND

Our vision is inspired by recent advances in the domain of nat-
ural language processing (NLP). Progress in this field has been
driven by two major concepts: the Transformer neural network
architecture and the application of transfer learning [15]. One
of the transformer’s benefits is its suitability for parallelization
w.r.t. previous approaches, which has enabled the creation of
massive LLMs [9]. These models are pre-trained on tasks, such as
predicting the next word in a sentence, for which large amounts
of data are easily accessible. Although pre-training is costly, the
models can then be adapted to new tasks. Traditionally, “fine-
tuning” with annotated examples for a target task has been the
main way of customizing pre-trained LLMs. However, the latest
generation of pre-trained models has opened up new possibilities.
Models of sufficient size complete new tasks without any addi-
tional training, simply by being given NL descriptions of the task
("instruction tuning®). Precision is improved by incorporating a
limited number of examples (e.g., five to ten) that pair the input
for the task with its solution ("few-shot learning"). An example
of a prompt for GPT-3 is a question in natural language (“what is
the capital of USA?") or a request (“The EU state capitals are:").

Our effort is different from the problem of semantic parsing,
i.e., the task of translating NL questions into SQL [27, 38, 57].
Our goal is also different from querying an existing relational
database to answer a NL question [22]. We are interested in re-
trieving data from the LLM with SQL queries, with the traditional
semantics and with the output expressed in the relational model,
as if the query were executed on a DBMS. While some of these
facts can be retrieved with QA, (i) the SQL query must be rewrit-
ten as an equivalent question in NL, which is not practical for
complex scripts, (ii) the textual result must be parsed into a rela-
tion, (iii) current LLMs in some cases fail in answering complex
queries expressed as NL. Indeed, QA systems are optimized for
answering questions with a text, while SQL queries return re-
sults in the form of tuples, possibly with complex operations to
combine intermediate values, such as aggregates, where LLMs
fail short [45]. To overcome some of these limits, it has recently
been shown that a series of intermediate reasoning steps (“chain
of thought” and question decomposition [55]) improve LLMs’
ability in complex tasks [54].
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Our work is also different from the recent proposal for Neural
DBs [52], where textual facts are encoded with a transformer and
queries are posed with short NL sentences. We do not assume
facts as input and we focus on traditional SQL scripts executed
on LLMs.

Using an LLM query as a component in SQL query answer-
ing has analogies with other DBMS extensions in the literature,
such as involving crowed workers to answer open world ques-
tions [18].

3 DESIGN CONSIDERATIONS

Our goal is to execute SQL query over the data stored into LLMs.
When we look at these models from a DB perspective, they (i)
have extensive coverage of facts from massive textual sources; (ii)
have perfect availability; (iii) directly query a very compressed
version of the data, as facts are stored effectively in the parameters
of the model: the CommonCrawl+ text corpus takes 45TB, while
GPT-3 only 350GB. However, LLMs have their shortcomings, as
we discuss next, including poor data manipulation skills, e.g.,
they fail with numerical comparisons. Conversely, traditional
query operators are great at processing data with rich operators,
such as joins and aggregates, but only within the data available
in the given relation.

The combination of LLMs and traditional DBMSs shows the
potential for a hybrid system that can jointly query existing
relational tables and facts in the LLM. However, it is crucial to
consider the limitations and challenges in querying LLMs. We
now delve into three key issues that have impacted the design of
GarLors.

1. Tuples and Keys. As far as we know, LLMs do not have a
concept of schema or tuple, but they model existing relationships
between entities (“Rome is located in Italy”) or between entities
and their properties (“Rome has 3M residents”). However, a query
asking for city names may assume that a name identifies a city,
which is not the case in reality, e.g., there is a Rome city in
Georgia, USA.

In some cases, key attributes exist in the real world. For ex-
ample, LLMs contain keys such as IATA codes for airports. , e.g.,
‘JFK‘. However, in general, we do not have a universal global key
for several entities, such as cities, and the default semantics for
the LLM is to pick the most popular interpretation, with popular-
ity defined by occurrences of terms in the original pre-training
data.

In general, this problem can be solved with keys defined with
multiple attributes, i.e., the context in NLP terminology. For exam-
ple a composite key defined over (name, state, country) enables
us to distinguish the Rome in Italy from the one in Georgia. In
our initial prototype, we assume that every relation involved
in the query has a key and that the key can be expressed with
one attribute, e.g., its name. This constraint can be relaxed by
handling composite keys.

2. Schema Ambiguity. A major challenge in language is ambigu-
ity. Similarly to the issue with entities, several words, including
attribute labels, can have multiple meanings. These alternatives
are represented differently in the parameters of LLMs. In our
setting, a given attribute label in the query can be mapped to
multiple “real world” attributes in the LLM, e.g., size for a city
can refer to population or urban area [53].

In this initial effort, we assume that meaningful labels for
attributes and relations are used in the queries. This allows the
system to obtain prompts of good quality automatically.

3. Factual Knowledge in LLMs. LLMs do not know what they
know. This is an intrinsic challenge in the transformer architec-
ture and the decoder, specifically. The decoder returns the next
token in a stream. Such token may be based on either reliable
acquired knowledge, or it may be a guess. For this reason, a
query result obtained LLMs is not 100% reliable and cannot be
immediately verified as LLMs do not expose their sources with
the results. However, with GaLois, we experimentally demon-
strate that it is possible to extract factual information from LLMs
to answer SQL queries. Moreover, new models keep increasing
the factuality of their answers?. In this work, we do not tackle
the general problem of separating the knowledge about language
and reasoning from factual knowledge, which is an ongoing NLP
research topic as we discuss in Section 6.

4 OVERVIEW

The high-level architecture of Gavrois is presented in Figure 1. We
assume that the schema (but no instances) is provided together
with the query. The system processes SQL queries over data
stored in a pre-trained LLM. This design enables developers to
implement their applications in a conventional manner, as the
complexities of using an LLM are encapsulated within GALoI1s.

Operators. The core intuition of our approach is to use LLMs to
implement a set of specialized physical operators in a traditional
query plan, as demonstrated in Figure 3. As tuples are not directly
available, we implement the access to the base relations (leaf
nodes) with the retrieval of the key attribute values. We then
retrieve the other attributes as we go across the plan. For example,
if the selection operator is defined on attribute A different from
the key, the corresponding implementation is a prompt that filters
every key attribute based on the selection condition, e.g., "Has city
c.name more than 1M population?”, where c.name iterates over
the set of key values. If a join or a projection involve an attribute
that has not been collected for the tuple, this is retrieved with a
special node injected right before the operation. For example, if
a join involves an attribute “currentMayor”, the corresponding
attribute values are retrieved with a prompt that collects it for
every key, such as “Get the current mayor of ¢’name". Once the
tuples are completed, regular operators, implemented in Python
in our prototype, are executed on those, e.g., joins and aggregates.

On one hand, the query plan acts as a chain of thought decom-
position of the original task, i.e., the plan spells outs intermediate
steps. On the other hand, the operators that manipulate data fill
up the limitations of LLMs, e.g., in computing average values or
comparing quantities [31]. Together, these two features make the
LLM able to execute complex queries.

Prompts. Figure 3 shows how prompts, suitable for execution
on LLMs, implement logical operators in GALo1s. A prompt is ob-
tained for each operator by combining a set of operator-specific
prompt templates with the labels/selection conditions in the
given SQL query. In the example query ¢, politicians (Politicians
p) are filtered according to their age (p.age<40); this corresponds
to retrieving a set of tuples (P) with one key attribute (name),
which is then followed by a prompt that for each politician checks
in the LLM its age. For example, we instantiate the template
“Has relationName keyName attributeName operator value?”, with
‘politician’ , ‘B. Obama’, ‘age’, ‘less than’, ‘40’, respectively. Tem-
plates are a simple solution for prompting. However, DB-first

2For example, “GPT-4 scores 40% higher than our latest GPT-3.5 on our factuality
evaluations” - https://openai.com/research/gpt-4 - published on March 157 2023
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q’: SELECT c.name, p.name :
© FROM Cities ¢, Politicians p :

WHERE c.population> “1M’,
p.age<40,
p.name=c.currentMayo

vV c’eC”, V p'eP’
p’.name=c”.currentMayor

Vv c’eC’, ¢’.currentMayor = KII;LM"
“Get current mayor of ¢’.name” *<__.*’ V p€eP “Has
C politician p.name

V c€eC, “Has city c.name age less than 407"

more than 1M population?” ¢

Tuples C: “Get city names” LLM LLM

Tuples P: “Get
politician names”

Figure 3: Logical plan for query q’. Base relations are ac-
cessed by retrieving sets of tuples (C, P) with one key at-
tribute (name) from the LLM. Other LLM operators con-
sume and produce tuple sets, retrieving for every tuple the
required attributes, if not in the tuple yet. The last two
operators do not involve the LLM.

approaches such as Garors can directly exploit results in prompt
engineering [32], as those could be plugged in step (2) of the
workflow described next.

Workflow. The main operations in GALOIS’s query processing
are:

(1) Obtain a logical query plan for a query q and the source
schema. We assume the label of the key attribute is given.

(2) Access the LLM to retrieve the tuples composed of the key
attribute and to gather more attributes in case of selection,
join and projection. Each operation is done with a prompt
template filled up with the labels and conditions at hand.

(3) Convert the string of answers from the LLM to a set of
CELL values in the attribute.

(4) Use traditional algorithms for any operator involving at-
tributes that have already been retrieved.

Two critical steps enable the practical use of Gavois. First, as
relations can be large, we iterate with the a prompt until we stop
getting new results. For example, we ask for city names, collect
the answer in a set, and keep asking for more names with another
prompt (“Return more results”). The termination condition could
be replaced by a user-specified threshold. A second issue is the
cleaning of the data gathered from the LLM. For example, nu-
merical data can be retrieved in different formats. We normalize
every string expressing a numerical value (say, 1k) into a number
(1000). The enforcing of type and domain constraints is a simple
but crucial step to limit the incorrect output due to model hallu-
cinations. More LLM-specific methods can be plugged for this
cleaning step. For example, the generated output can be critiqued
by another model [35, 49], or the LLM can be augmented with
external information [25].

In contrast with the traditional approach based on extract-
ing structured data from text, LLMs and prompts enable the
extraction of such data without human annotations. In a DB-first
approach, prompts are automatically generated, thanks to the

logical plan.
5 EXPERIMENTS

All experiments are executed on popular LLMs for a set of SQL
queries for which we have the ground truth according to a data-
base.

I am a highly intelligent question answering bot. If you ask
me a question that is rooted in truth, I will give you the short
answer. If you ask me a question that is nonsense, trickery,
or has no clear answer, I will respond with "Unknown". If the
answer is numerical, I will return the number only.

Q: What is human life expectancy in the United States?
A:78.

Q: Who was president of the United States in 19557

A: Dwight D. Eisenhower.

Q: What is the capital of France?

A: Paris.

Q: What is a continent starting with letter O?

A: Oceania.

Q: Where were the 1992 Olympics held?

A: Barcelona.

Q: How many squigs are in a bonk?

A: Unknown

Figure 4: Few shot examples for the GPT-3’s prompt.

Implementation. GaLois is written in Python and all LLMs have
been executed locally with the exception of ChatGPT, for which
we used the API. Query plans are obtained from DuckDB. Code
and datasets are available at https://gitlab.eurecom.fr/saeedm1/
galois. This initial implementation serves as the experimental
platform to show the promise of the vision, rather than a full-
fledged solution.

Dataset. Spider is a Text2SQL dataset with 200 databases, each
with a set of SQL queries [57]. For each query, it provides its
paraphrases as a NL question. We focus on a subset of 46 queries
for which we expect to obtain answers from an existing LLM. More
precisely, we leave out queries that are specific to the relational
dataset provided by Spider (e.g., “How many heads of the de-
partments are older than 56?”) and use in our evaluation only
queries about generic topics, such as world geography and air-
ports (“What are the names of the countries that became inde-
pendent after 1950?”). If there are multiple paraphrases for a
question, we pick the first one.

Setup. We test four LLMs. Flan-T5-large (Flan): T5 fine-tuned
on datasets described via instructions (783M parameters). TK-
instruct-large (TK): T5 with instructions and few-shot with pos-
itive and negative examples (783M parameters). InstructGPT-3
(GPT-3): fine-tuned GPT-3 using instructions from humans [37]
(175B parameters). GPT-3.5-turbo (ChatGPT): chat model in the
OpenAl API (175B parameters). We construct prompts appropri-
ately for each model, we report the one for GPT-3 in Figure 4,
showing the instruction in the prompt followed by some few-shot
examples.

For a given LLM M and a SQL query g with its Spider relation
D and the corresponding NL question ¢, we collect four results:
(a) relation Ry from Garois executing q over M, (b) relation Rp
by executing g over D, (c) text Tys by asking ¢ over M, (d) text TIEI
by asking t over M using a chain-of-thought prompt. The last
result (d) explores the middle ground between standard questions
answering (c) and Gatois (a). For NL question ¢, an engineered
prompt contains a complete example of a manually crafted chain-
of-thought (CoT), similar to the logical plan execution for the
query, followed by t and instructions to reason step by step. In
this method, the CoT example in the prompt is fixed as how to
derive a decomposition automatically from ¢ is an open problem.
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Flan TK GPT-3 ChatGPT

Difference as % of Rp size -47.4 -43.7 +1.0 +19.5

Table 1: Average difference in the cardinality of GaLo1s’s
output relations (Rys) w.r.t. the ground truth results |Rp|
for the 46 Spider queries. Closer to 0 is better.

All Selections Aggregates Joins

only
Ryr (SQL Queries) 50 80 29 0
Ty (NL Questions) 44 71 20 8
T§; (NL Quest.+CoT) 41 71 13 0

Table 2: Cell value matches (%) between the result returned
by a method and the same query executed on the ground
truth data (Rp) for the 46 Spider queries. Averaged results
for ChatGPT.

Only (b) uses the relations from Spider, (a), (c) and (d) get the
data from the LLM.

Evaluation. We analyze the results across two dimensions.

1) Cardinality. First, we measure to which extent GALOISs returns
correct results in terms of number of tuples. As NL questions
always return text paragraphs, we cannot include their results in
this analysis. For GavLors, all output relations have the expected
schema, this is obtained by construction from the execution of
the query plan, i.e., every Ry has the same schema as every

Rp. However, in terms of number of tuples there are differences.

% , where the

interval for f is [0,2] and best result occurs when Rp == Ry
(f=1). Consider expected Relation Rp with size (3,2), i.e., 3 tuples
and 2 columns. Assume Garois produced Ry = (1,2). In this case,
f=2*3| / (3+1) = 6/4 = 1.5.

In Table 1, we report the difference as percentage (averaged
over all queries with non-empty results) with the formula 1-f.

Results show that smaller models do worse and miss lots of
result rows, up to 47.4% w.r.t. the size of results from the SQL
execution Rp. For GPT models, almost all queries return a number
of tuples close to Rp. Most differences are explainable with errors
in the results of the prompts across the query pipeline, as we
discuss next.

We compute the ratio of the sizes as f =

2) Content. Second, we measure the quality of the results by com-
paring the content of each cell value after manually mapping
tuples between Rp on one side (ground truth) and (Ryz, Ty, TA%)

on the other. As Ty, T]EI contain NL text, we manually postprocess
them to extract the values as records. In our manual mapping,
we split comma-separated values, remove repeated values and
punctuation, and map the resulting tuples to the ground truth
records - how to automate this mapping process is an open prob-
lem. We consider a numerical value in (R, Ty, TA%) as correct if
the relative error w.r.t. Rp is less than 5%.

As this analysis requires to manually verify every result, we
conduct it only for one LLM. Results in Table 2 show that GaLois
executes the queries on ChatGPT with a better average accuracy
in the results compared to the same queries expressed as ques-
tions in NL. We believe this is a very promising result, as one
can think that the results coming from the NL QA task are the

upper bound for what the LLM knows. For the easiest subclass
of queries, selection-only, the query approach returns correct
values in 80% of the cases. Joins are the most problematic, as we
observe failure in the join step due to different formats of the
same text, e.g., an attempt to join the country code “IT" with “ITA”
for entity Italy. This challenging subclass of queries clearly re-
quires more work to drastically increase the homogeneity of the
intermediate results. The results also show that well-engineered
chain-of-thought NL prompts (TA(/:I) do not lead to better results
than Garor1s, confirming the quality of the chain of prompts
obtained automatically.

As we do not control the infrastructure of OpenAl, we do
not report API execution times. On average, GPT-3 takes ~20
seconds to execute a query (~110 batched prompts per query).
Distributions for these metrics are skewed as they depend on the
result sizes.

6 RESEARCH DIRECTIONS

GALoIs aims at creating a system that can push the boundaries of
declarative query execution over LLMs, while achieving compara-
ble accuracy and performance to queries executed on a traditional
DBMS. While the current prototype does not yet meet these goals,
we discuss the main next steps in this vision, including open re-
search questions and associated challenges.

Query optimization. As in a traditional DBMS, optimization
can be organized according to the logical and physical plans.

For the logical plan, an advantage of the DB-first approach is
the automatic generation of chain-of-thought prompts. However,
the ability to combine in one query plan operators over tradi-
tional storage and LLMs is a vision that go beyond the scope
of chain-of-thought. For example, an optimizer may be able to
recognize when the execution of the (more expensive) LLM is
needed at runtime. We also need optimization heuristics to ob-
tain equivalent logical plans that reduce the number of prompt
executions (which can be large) over the LLM. In the example
in Figure 3, pushing down the selection over city population to
the data access call (leaf) requires to combine the prompts, e.g.,
“get names of cities with > 1M population”. This simple change
removes the prompt executions for filtering the list of all cities.
However, the optimization decision is not trivial as combining
too many prompts lead to complex questions that have lower
accuracy than simple ones.

For the physical plan, interesting problems arise around the
textual prompts. Research questions include how to generate
them automatically given only the attribute labels, especially
when those are ambiguous or cryptic. The rule of thumb is that
the more precise the prompt, the better will be the accuracy of
its results. One direction is to make use of data samples, when
available. Giving examples of the desired output would guide the
LLM to the right format and encoding, which is an issue in our
current implementation. Another approach is to optimize the
prompt for the retrieval task, with some fine tuning or by exploit-
ing pre-defined embeddings for the desired attribute types [61].
For fine tuning, reinforcement learning from human feedback
(RLHF) can be explored to better stir the generation towards the
factual values that are needed for query processing [5]. For the
second approach, given a library of type embeddings such as
“Person” and “City”, those can be added to prompts for accurate
retrieval [48].



Knowledge of the Unknown. To overcome the problem of the
results mixing real facts and hallucinations, one direction is to
verify generated query answers by another model, possibly also
build on LLMs. In most cases, verification is easier than genera-
tion, e.g., it is easier to verify a proof rather than generate it. Our
enforcing of simple domain constraints shows benefit, but there
is the need to adapt more general data cleaning techniques [24].
Another direction is retrieval augmented language models,
where they design modules that separate the “language under-
standing and reasoning" part and “factual knowledge" part [13].
Our prompting is a basic approach to surface facts, but more
principled solutions are needed to obtain reliable results [23].

Provenance. Retrieval augmented models are also a promising
direction to address the fact that LLMs cannot always precisely
cite the sources, or provenance [59], of their output. This is an
issue, because it is not possible to judge correctness without the
origin of the information. With prompt engineering, LLMs can
produce an explanation supporting their output and there are
ongoing efforts on linking generated utterances, or values in our
case, to sources [7]. This can also be done through the generation
process or in a post-processing step [50].

Schema-less querying. We currently assume the SQL schema
as given by the user. An interesting extension is to allow users to
query without providing a schema. This removes friction from
the user, but raises new challenges. Consider the following two
queries.

Q1: SELECT c.cityName, cm.birthDate
FROM city c, cityMayor cm
WHERE c.mayor=cm.name

Q2: SELECT cityName, mayorBirthDate
FROM city

Both of them collect the names of cities with the birth date
of the mayor. As the LLMs have no schema, both queries should
give the same output when executed, i.e., two SQL queries that
are both correct translation of the same NL question should give
equivalent results. How to guarantee this natural property (for
DBs) is a challenge that requires to combine the new challenges
in the LLM setting with results on SQL query equivalence [20].

Portability. As SQL queries are portable across DB engines, the
same SQL script executes on different LLMs. Differently from
the schema-less query case, in this case the query q if fixed, but
the LLM changes. If two LLMs are trained on the same data,
ideally they should return the same answer for gq. However, this
requirement is hard to achieve because of the non deterministic
learning process for LLMs. As a consequence, the same prompt
does not give equivalent results across LLMs.

Architecture. GaLrors is based on a DB-first architecture, where
the LLM is plugged in the operators. The alternative LLM-first
architecture is also promising, but with different challenges. An
open question is if LLMs can replace DBMSs by consuming the
structured data in a training process or as part of the input con-
text. Research on tabular language models show that we are far
from this scenario, mostly due to the limitation to the size of the
context [4], but recent research is addressing this issue [3]. How-
ever, despite the progress in LLM research, legal and economic
hurdles (e.g., the need for formal guarantees in transactions)
would still affect an LLM-first solution and may ultimately limit
its impact.

Updates and Cost. In the DB-first approach, we envision that
querying LLMs will be less common than querying traditional
DBMSs; LLMs are a source for some use cases, but not a replace-
ment. However, training and using LLMs is expensive and energy
consuming. Given the cost of training, it is not clear how to deal
with the continuous creation of new information [29]. One short
term solution is to update LLMs without retraining [10, 34]. In
the long term, cost will be reduced by cheaper training and infer-

ence3.

Coverage and Bias. LLMs focus on common and probable cases
by design. We found that, for some queries, missing results are
due to their lower popularity, compared to those surfaced by the
LLM. Researchers are focusing more on this challenge [17, 51].
However, LLMs do well with huge amount of data, which is
available only for few languages. While the problem is mitigated
with machine translation, i.e., by translating from English to a
target language, in terms of factual knowledge there is no clear
solution. In general, the impact of training data and how to select
high quality sources is getting more attention with proprietary
LLMs [21, 39].

LLMs encode biases and stereotypes that are present in ob-
served human language, we therefore must be careful when
applying these models in real-world applications [6].

7 CONCLUSION

This paper presents a vision for the DB community by highlight-
ing the potential of querying Large Language Models with SQL,
thereby opening up novel research avenues and opportunities.
We report an example for a DB-first approach that leverages the
power of LLMs in combination with traditional DBMSs to create
a hybrid query execution environment. As LLM factuality and
coverage continues to improve, the integration of these models
into database systems will not only enable a wide range of data
applications, but also inspire new contributions from the NLP
field. By showcasing a prototype and envisioning the usage of
SQL for querying LLMs, we hope to stimulate further exploration
and collaboration between DB and NLP communities, ultimately
leading to innovative solutions that unlock previously untapped
information from unstructured text data in various domains.
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