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Abstract—This paper considers the problem of ground users
localization aided by an unmanned aerial vehicle (UAV) flying
radio capable of collecting measurements from users. To do so,
we exploit the phase information of the received radio signals
from users at the UAV in different locations along with time-
of-arrival (ToA) measurements. The location of the UAV is
also not perfectly known, hence the problem at hand turns
to a simultaneous user localization and tracking of the UAV
location. The phase measurements are inherently more precise
than ToA measurements while bringing ambiguity since it follows
a periodic behavior. To solve this issue, we unwrap the phase
measurements by tracking the phase while the UAV moves. Then
a time-difference-of-arrival (TDoA)-based algorithm is proposed
by treating each UAV location as a virtual antenna/anchor (yet
with unknown locations) and exploiting the unwrapped phase
measurements to precisely localize the users and jointly track
the UAV trajectory. We employed a least-squares simultaneous
localization and mapping (SLAM) framework to fuse TDoA data,
estimated from phase, with other measurements such as ToA,
an erroneous estimate of UAV location available from GPS, and
the UAV velocity measured by an inertial measurement unit
(IMU) onboard. The simulations verified the performance of
the developed algorithm when compared to other benchmarks
including scenarios with traditional terrestrial anchor-enabled
localization systems.

Index Terms—UAV, localization, phase, TDoA, ToA, wireless
communications

I. INTRODUCTION

In a wireless localization system, nodes with perfectly-
known positions known as anchor nodes (which can be sta-
tionary or mobile) collect various radio measurements from
the emitted radio frequency (RF) signals from the users in
the network and use them for localization purposes. Various
measurements such as received signal strength (RSS), time-
of-arrival (ToA), angle of arrival (AoA), etc., can be obtained
from the RF signals by the anchor nodes [1], [2].

On the other hand, advancements in robotic technologies and
the miniaturization of wireless equipment have made it pos-
sible to have flying radio networks (FRANs), where wireless
connectivity to ground users can be provided by aerial base
stations (BSs) or relays that are mounted on unmanned aerial
vehicles (UAVs) [3], [4]. The advantage of FRANs includes
fast and dynamic network deployment during an emergency
or temporary crowded events, providing connectivity in areas
lacking network infrastructure, etc. While in terrestrial radio
access networks static BSs are used as anchor nodes, in FRANs
UAV BSs can be used as mobile anchor nodes. However, when

it comes to aerial anchors, the location of the UAV is of crucial
importance. Unfortunately, the UAV location is not precisely
known and is subject to noise. Therefore, when using aerial
mobile anchors, the problem becomes not only localizing the
users but also tracking the UAV location.

Localization of ground users using radio measurements
collected by aerial UAV anchor nodes has recently gained
interest [5]–[12]. The main advantage of using UAV anchors
in localization compared to static anchors is that UAVs with
their inherent 3D mobility can collect radio measurements in
different geographic locations which improve the localization
performance. In other words, the UAV in different locations
can be considered as virtual static anchors.

UAV-aided user localization systems by exploiting RSS
measurements are studied in [5]–[8]. The authors in [9] con-
sidered a multi-UAV-aided localization scenario where a com-
bination of ToA and AoA measurements are used to localize
ground users. The deployment of UAVs is also optimized for
further improvement of localization performance. In [10], a
hybrid ToA along with 1D AoA localization approach that
merely requires elevation AoA estimations to combine with
ToA measurements is proposed. The impact of the antenna
radiation pattern for the channel between the UAV and the
ground users in a 3D localization system using time-based
(ToA and TDoA) measurements has been studied in [11], [12].

In [13], a phase-based indoor localization system is pro-
posed. An extended Kalman filter (EKF) is employed to local-
ize the radio devices using the phase difference measurements
collected by the base stations with known locations. In [14],
a time-difference-of-arrival (TDoA)-based method is used to
track a mobile user with an unknown static anchor location. An
EKF is used to keep track of the multi-path component (MPC)
phases. However, the method proposed in [14] is suitable for
indoor localization and might fail for outdoor use cases. In
[15], a similar method to [14] is proposed but by exploiting
the ToA measurements from a user equipped with multiple
antennas. The algorithm is shown to work in indoor situations.
In [16], the trajectory of a mobile user equipped with a
single antenna is studied. The location of the mobile user is
considered as a virtual antenna, and then a single-antenna-
based AoA estimation technique is proposed to find the angle
of arrival and the location of the users at each time. To make
this algorithm work, a rough estimate of each virtual antenna
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Fig. 1: UAV-aided ground user localization system.

location is required, however, if the uncertainty of the prior
guess of virtual antenna location is big, the algorithm fails.

In this paper, we propose a new algorithm for UAV-aided
user localization systems. The location of the UAV is not
also precisely known, hence the algorithm has to track the
UAV location too. To do so, we exploit the phase information
of the received radio signals along with ToA measurements.
The phase measurements are known to be precise but bring
ambiguity since it follows a periodic behavior. To solve this
issue, we unwrap the phase measurements by tracking the
phase while the UAV moves. Then a TDoA-based algorithm is
used by treating each UAV location as a virtual antenna/anchor
and exploiting the unwrapped phase measurements to precisely
localize the users and jointly track the UAV trajectory. We em-
ployed a least-squares simultaneous localization and mapping
(SLAM) framework to fuse TDoA data (estimated from phase)
with other measurements such as ToA, UAV location estimate
available from GPS, and the UAV velocity measured by an
inertial measurement unit (IMU) onboard.

To the best of our knowledge, simultaneous localization
of users and tracking a mobile flying radio by exploiting
phase measurements has not been studied in the literature.
Specifically, our contributions are as follows:

• An anchor-free localization system by utilizing a mobile
flying radio node capable of collecting radio measure-
ments from ground nodes is proposed.

• A TDoA-based algorithm is developed capable of ex-
ploiting radio phase measurements by treating the UAV
locations at different times as virtual antennas.

• A least-squares-based SLAM problem is formulated for
fusing different types of measurements to jointly localize
the users and track the UAV.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a scenario similar to the one illustrated in
Fig.1, where a UAV equipped with radio devices capable
of measuring radio signals from K ground-level users in a
given service area. The users are spread over the area and
uk = [xk, yk]

T ∈ R2, k ∈ [1,K] denotes the k-th user’s

location. The users are considered static and their locations
are unknown.

The aim of the UAV is to estimate the unknown user
locations based on radio measurements taken over a mission of
duration T . We discretize the UAV mission time into N equal
time steps such that the UAV velocity is assumed to be constant
within each time step. In the n-th time step, the UAV/drone
position is denoted by x[n] = [x[n], y[n], z[n]]T ∈ R3. We
assume that the UAV is equipped with a GPS receiver, the
UAV location obtained using the GPS is given by

x̂[n] = x[n] + η, (1)

where η is the GPS measurement noise and is modeled by a
Gaussian random variable with N (0, σ2

gps ∗ I2) [17], where I2
is the identity matrix of size 2× 2. The UAV velocity is also
available from a IMU onboard the UAV and is denoted by

v̂[n] = v[n] + ν, (2)

where v[n] is the true UAV velocity at time step n, and ν is the
velocity measurement noise which is modeled by a Gaussian
random variable as N (0, σ2

vel ∗ I2) [17]. Assuming that the
UAV moves with constant speed within each time step, the
UAV velocity can be modeled as follows

v[n] =
x[n]− x[n− 1]

∆t
, (3)

where ∆t = T
N . Therefore, (2) can be reformulated as

v̂[n] =
x[n]− x[n− 1]

∆t
+ ν. (4)

A. Channel Model

We now describe the radio channel model between the
UAV and ground users. We assume that the UAV and the
users are synchronized. Since air-to-ground channels known
to exhibit few known dominant paths [18], channel between
UAV position x[n] and user location uk can be modeled as

gk[n] =
∑
l

al,k[n] exp(−jϕl,k[n])sk [n− τl,k[n]] , (5)

where gk[n], sk[n] are , respectively, the received signal from
user k and the transmitted signal by the k-th user, al,k[n] is
the overall attenuation, and τl,k[n] is the propagation delay of
the l-th path between user k and the UAV at time n. The phase
of the received signal from user k at time n for the l-th path
is denoted by ϕl,k[n] which is given by

ϕl,k[n] = 2πfcτl,k[n], (6)

where fc is the carrier frequency.
Assuming that the transmitter and the receiver are station-

ary during a short period of time, then by taking several
samples form gk[n], the parameters al,k[n], ϕl,k[n], τl,k[n] can
be estimated using classical channel estimation methods. The
estimated phase and the propagation delay can be modeled



by Gaussian variables, ϕ̂l,k[n] ∼ N (ϕl,k[n], σ
2
ϕ), τ̂l,k[n] ∼

N (τl,k[n], σ
2
τ ), where σ2

τ depends on the Bandwidth of the
channel. Generally speaking, σ2

τ ∝ 1
Bandwidth

1
SNRk[n]

[19], [20].
Where SNRk[n] is the signal-to-noise-ratio (SNR) of the signal
between the UAV at time step n and user k. For simplicity,
in this paper we assume an average SNR over the channel to
model the ToA as follows

σ2
τ ∝ 1

Bandwidth
1

SNR
, (7)

where SNR is the average SNR.
Note that, in this paper we assume the UAV can always

maintain a line-of-sight (LoS) connection to users. We denote
the LoS path with l = 0. The true propagation delay for LoS
path as a function of user and UAV locations is given by

τ0,k[n] =
∥x[n]− uk∥

C
, (8)

where C is the speed of light. Consequently, the phase for LoS
path can be computed by substituting (8) into (6).

III. USER LOCALIZATION AND UAV TRACKING

In this section, we propose an algorithm to estimate
the user locations from the radio measurements collected
by the UAV. Let us denote an arbitrary set of measure-
ments taken by the UAV during the mission as G =
{γk[n], n ∈ [1, N ], k ∈ [1,K]}, where γk[n] is a tuple of mea-
surements collected from user k at time step n defined as
follows

γk[n] =
(
x̂n, v̂n, ϕ̂0,k[n], τ̂0,k[n]

)
, (9)

where x̂n is the UAV location measured by the GPS, v̂n is the
measured UAV velocity given by the IMU, and ϕ̂0,k[n], τ̂0,k[n]
are the estimated phase and propagation delay for LoS path
between the UAV at time step n and user k, respectively. It
is worth mentioning that, the true location and the velocity
of the UAV are not available (i.e. the GPS and the IMU
measurements are subject to the noise), therefore we not only
have to localize the users but also need to track the UAV
location.

To solve this problem, we employ the TDoA along with ToA
measurements to localize the users. In other words, we assume
that the UAV location at each time step as a virtual static
anchor. However, the complexity of TDoA-based localization
methods rapidly increases as the number of anchors grows (in
our case, as more measurements are collected). Moreover, the
TDoA measurements, computed from the unwrapped phase
(explained in the following section), are potentially subject to
cumulative error over time. To deal with these issues, we first
divide our measurements into M partitions, then the phase
is only unwrapped within each partition and consequently,
the TDoA is computed for each partition individually. Each
partition consists of δ = N

M , δ > 3 consecutive measurements.
Equivalently, the measurement set G can be rewritten as

G =

K⋃
k=1

M⋃
m=1

γk [(m− 1)δ + 1 : mδ] , (10)

where

γk [(m− 1)δ + 1 : mδ] ≜ {γk[i], i ∈ [(m− 1)δ + 1,mδ]} ,
(11)

is the m-th partition of data containing the collected measure-
ments between time step (m− 1)δ + 1 to time step mδ from
user k. Now we instead apply the TDoA-based method to each
partition.

Having partitioned the measurements and assuming that
collected measurements conditioned on the channel and user
positions are independent and identically distributed (i.i.d), the
negative log-likelihood of measurements leads to

L =

K∑
k=1

N∑
n=1

1

σ2
gps

∥x̂[n]− x[n]∥2 +

K∑
k=1

N∑
n=2

1

σ2
vel

∥∥∥∥v̂[n]− x[n]− x[n− 1]

∆t

∥∥∥∥2 +
K∑

k=1

N∑
n=1

1

σ2
τ

∣∣∣∣τ̂0,k[n]− ∥x[n]− uk∥
C

∣∣∣∣2 +
K∑

k=1

M∑
m=1

δm−1∑
i=(m−1)δ+1

δm∑
j=i+1

1

2σ2
ϕ

∣∣∣∆ϕ̂i,j,k −∆ϕi,j,k

∣∣∣2 .
(12)

where ∆ϕ̂i,j,k = ϕ̂0,k[i]− ϕ̂0,k[j] is the difference between the
measured phase of LoS path between user k at two different
UAV locations i and j. In other words, ∆ϕ̂i,j,k can be seen
as the measured time difference between the received signal
from user k at two different UAV locations at time steps i and
j. ∆ϕi,j,k is defined similarly and can be modeled using (8)
as

∆ϕi,j,k =
2πfc
C

(∥x[i]− uk∥ − ∥x[j]− uk∥) . (13)

The estimate of the unknown user and the UAV locations
can then be obtained by solving

min
x[n],uk
∀n,k

L. (14)

Solving problem (14) is challenging, since it is a simultaneous
user localization and UAV tracking, and the objective function
is highly non-linear and non-convex. Moreover, the absolute
value of phase measurements is not available due to the
periodic nature of the phase measurements which bring an
ambiguity into the optimization problem. In the following
sections, we first try to unwrap the phase measurements to
deal with the ambiguity, and then we iteratively solve the
optimization problem (14).

A. Phase Unwrapping

As mentioned earlier phase measurements are inherently
ambiguous and they rotate between the range of [0, 2π], which
makes the phase measurements unsuitable for our application.
To deal with this problem, in this section, we propose a simple
(yet efficient) algorithm to unwrap the phase measurement
to a continuous form by exploiting the fact that the drone’s



maximum speed is limited to vmax. To do so, for each user k,
we denote ∆ϕ̂n,n−1,k = ϕ̂0,k[n] − ϕ̂0,k[n − 1] as the change
in the LoS phase measurements within time step n. Given the
drone maximum speed, we expect that the maximum change
in the phase is limited by

|∆ϕ̂n,n−1,k| ≤ ∆ϕmax ≜
2πfc
C

T

N
vmax. (15)

Above expression implies that the phase change should be
always less than ∆ϕmax unless the phase overflows because
of the transition from 2π to 0 (or vice versa). Therefore, in
this situation the phase change is recalculated as follows:

∆ϕ̂n,n−1,k :=

{
ϕ̂0,k[n]− ϕ̂0,k[n− 1] + 2π, if∆ϕ̂n,n−1,k < 0

ϕ̂0,k[n− 1]− ϕ̂0,k[n] + 2π, else.
(16)

Moreover, the phase measurements are subject to noise which
can cause a false phase overflow detection. To avoid this
to happen, we define a threshold ϵ to account for the noise
of phase measurements. Hence, before compensating for the
overflow in (16), the phase is corrected by taking into account
the threshold as follows:

∆ϕ̂n,n−1,k :=

{
0, if ∆ϕ̂n,n−1,k < ϵ

∆ϕ̂n,n−1,k, else.
(17)

Finally, the unwrapped phase for user k and time step n is
given by

ϕ̃0,k[n] = ϕ̃0,k[n− 1] + ∆ϕ̂n,n−1,k. (18)

The different steps of phase unwrapping are explained in
Algorithm 1. Note that, Algorithm 1 can be similarly used
to unwrap the phase measurements within each partition of
data γk [(m− 1)δ + 1 : mδ] ,m ∈ [1,M ].

Algorithm 1 Phase unwrapping

1: ϕ̃0,k[1] = 0,∀k
2: for n = 2 to N do
3: compute ∆ϕ̂n,n−1,k = ϕ̂0,k[n]− ϕ̂0,k[n− 1].
4: Remove the effect of the phase noise as (17).
5: Detect and compensate for the phase overflow as (16).
6: Compute ϕ̃0,k[n] = ϕ̃0,k[n− 1] + ∆ϕ̂n,n−1,k

7: end for

B. User Localization and UAV Tracking

Having unwrapped the phase measurements we continue
to localize the users and track the UAV by solving problem
(14). As mentioned earlier, this problem is challenging since
the objective function is non-linear and non-convex. To deal
with this problem, we employ an iterative approach similar
to the one presented in [21], where at each iteration the
problem first is locally linearized and then is solved. The
algorithm then iterates until the convergence. In the following,
we first introduce a general framework for solving optimization

problems similar to (14), and then we will elaborate on how
our problem can be solved with this framework.

Let’s assume that we want to optimize the following prob-
lem

min
ϑ

∑
i

eTi (ϑi)Q
−1
i ei(ϑi). (19)

where ϑ = [ϑT
0 , ϑ

T
1 , · · · ]T is a vector of all the unknown

variables, ei(ϑi) is a vector function of the unknown variables
ϑi, and Qi is a known diagonal matrix. By using the first-order
Taylor approximation around an initial guess ϑ̆i, we can write

e(ϑ̆i +∆ϑi) ≈ ĕi + Ji∆ϑi (20)

where ĕi ≜ e(ϑ̆i), and Ji is the Jacobian of ei(ϑi) computed
in ϑ̆i. By substituting (20) in (19), we have

min
ϑ

∑
i

ĕTi ĕi+2ĕTi Q
−1
i Ji∆ϑi+∆ϑT

i J
T
i Q

−1
i Ji∆ϑi. (21)

We can reformulate (21) in a matrix form as follows

min
ϑ

ĕ+ 2bT∆ϑ+∆ϑT H∆ϑ, (22)

where ĕ ≜ [ĕT0 , ĕ
T
1 , · · · ]T , b = [ĕT0 Q

−1
0 J0, ĕ

T
1 Q

−1
1 J1, · · · ]T ,

and H is a block diagonal matrix defined as

H ≜ diag
(
JT
0 Q

−1
0 J0,J

T
1 Q

−1
1 J1, · · ·

)
. (23)

The linear problem (21) can now be solved and the solution
is given by

ϑ∗ = ϑ̆+∆ϑ∗ = ϑ̆−H−1 b, (24)

where ϑ̆ = [ϑ̆T
1 , ϑ̆

T
2 , · · · ]T is a vector of initial guesses. This

procedure then repeats until ϑ∗ converges to a local minima.
We now convert problem (14) into a proper form for being

solved with the above framework. To do so, we first define ϑ
as follows

ϑ =
[
x[1]T , · · · ,x[N ]T ,uT

1 , · · ·T ,uT
K

]T
. (25)

We now reformulate problem (12) as follows

L = eTgpsQ
−1
gpsegps + eTvelQ

−1
velevel+

eTτ Q
−1
τ eτ + eTϕQ

−1
ϕ eϕ,

(26)

where

egps ≜
[
x̂T [1]− xT [1], · · · , x̂T [N ]− xT [N ]

]T
,

evel ≜
[
v̂T [2]− vT [2], · · · , v̂T [N ]− vT [N ]

]T
,

eτ ≜
[

ˆτ0,1[1]− τ0,1[1], · · · , ˆτ0,K [N ]− τ0,K [N ]
]T

,

eϕ ≜
[
ΦT

1,1, · · · ,Φ
T
M,K

]T
,

(27)

where



Φm,k ≜

 ∆ϕ̃1,2,k −∆ϕ1,2,k

· · ·
∆ϕ̃δ m−1,δ m,k −∆ϕδ m−1,δ m,k

 , (28)

where ∆ϕ̃i,j,k = ϕ̃0,k[i]− ϕ̃0,k[j], and

Qgps ≜σ2
gps ∗ IN ,Qvel ≜ σ2

vel ∗ IN−1,

Qτ ≜σ2
τ ∗ IN ,Qϕ ≜ 2σ2

ϕ ∗ IN ,
(29)

where In is the identity matrix of size n × n, and N =
K M δ (δ+1)

2 . To solve (26) using the above framework, the GPS
measurements are used for initializing the UAV location, and
the users’ locations are randomly initialized.

IV. NUMERICAL RESULTS

A service area as shown in Fig. 2 is considered where
the users are randomly scattered. The standard deviation of
ToA measurements is chosen as στ = 8 m, which is roughly
equivalent to 40 MHz bandwidth. The standard deviation of
phase measurements is selected as σϕ = 25 degrees. The
altitude of the UAV is assumed to be fixed and set to 80 m.
The GPS and the IMU have a standard deviation of σgps =
2 m, σvel = 0.5 m/s, respectively. To collect measurements
from users, the UAV flies along a rectangular trajectory 1

with a fixed length of L meters, as shown in Fig. 2. We
have compared the results of the proposed algorithm with the
following benchmarks:

• Benchmark 1: The same algorithm as proposed in this
paper is used without exploiting the phase measurements.
Only ToA measurements are used along with IMU and
GPS data.

• Benchmark 2: A conventional localization setting is
considered where the UAV is replaced with four terrestrial
BSs. The BSs are randomly scattered over the service
area with perfectly known locations. To localize the
users, the same framework is used by only utilizing ToA
measurements collected by BSs.

In Fig. 2, the result of the proposed algorithm for the multi-
user case (K = 5) is shown. To localize the users, the UAV
trajectory has a length of L = 160 m. The estimation of
UAV trajectory is also shown with the dashed line. It can be
seen that the algorithm localizes the users and tracks the UAV
accurately. The average localization accuracy over all users is
1.1 m, and the average UAV localization accuracy over the
whole trajectory is 0.5 m.

In Fig. 3, the cumulative distribution function (CDF) of user
localization error for our proposed algorithm over Monte-Carlo
simulations is shown. The length of the UAV trajectory is set
to L = 160 m, while in each iteration of the Monte-Carlo
simulation, the location of users changes randomly. The results
are also compared with different benchmarks 2. As we can see,
the exploitation of phase measurements can bring a substantial

1By no means the rectangular trajectory is restrictive and any type of
trajectory can be chosen.

2The same set of users used for all benchmarks.

Fig. 2: The top view of the UAV trajectory and the performance
of proposed localization algorithm for multi-user case.

Fig. 3: The CDF of user localization error for different
algorithms over Monte-Carlo simulations.

gain to localization accuracy. The result of UAV tracking is
shown with the green dashed line. It is worth mentioning that
with the proposed algorithm, all the measurements taken from
users (TDoA and ToA measurements) can be also exploited
to improve the tracking of the UAV trajectory. Therefore, we
can verify by utilizing a mobile flying radio node, the user
localization accuracy can be dramatically improved when com-
pared to the traditional terrestrial anchor-enabled localization
systems considered in Benchmark 2.

In Fig. 4, the performance of the proposed algorithm, in
terms of root-mean-square error (RMSE), over several Monte-
Carlo simulations is shown when the length of the UAV
trajectory increases. The accuracy of user localization increases
when the UAV trajectory length increases. This stems from the
fact that by increasing the UAV trajectory length, the UAV can
collect more measurements. We can see the out-performance
of our algorithm when compared to Benchmark 1.

The result of phase unwrapping is shown in Fig. 5. As
we can see the collected phase measurements are periodic
and subject to noise, nevertheless, the proposed algorithm can



Fig. 4: The comparison of proposed localization accuracy in
terms of RMSE versus increasing the UAV trajectory length.

Fig. 5: The result of phase unwrapping using Algorithm 1.

successfully unwrap the phase even with large measurement
noise.

V. CONCLUSIONS

This paper considered the problem of simultaneous UAV
tracking as a mobile anchor (yet with an imperfect position)
and localization of ground users. To do so, we exploit the phase
information of the received radio signals from users at the UAV
along with ToA measurements. The phase measurements are
inherently more precise than ToA measurements while bring-
ing ambiguity since it follows a periodic behavior. To solve
this issue, we unwrap the phase measurements by tracking the
phase while the UAV moves. Then a TDoA-based algorithm is
used by treating each UAV location as a virtual anchor/antenna
and exploiting the unwrapped phase measurements to precisely
localize the users and jointly track the UAV trajectory. We
employed a least-squares SLAM framework to fuse TDoA
data, which is estimated from phase, with other measurements
such as ToA, UAV location estimate available from GPS,
and the UAV velocity measured by an IMU onboard. The
performance of the developed algorithm is verified over various
simulations and in comparison with other benchmarks.
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[21] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial on
graph-based slam,” IEEE Intelligent Transportation Systems Magazine,
vol. 2, no. 4, pp. 31–43, 2010.


