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Abstract: The real-time control optimization of electrified vehicles is one of the most demanding tasks
to be faced in the innovation progress of low-emissions mobility. Intelligent energy management
systems represent interesting solutions to solve complex control problems, such as the maximization
of the fuel economy of hybrid electric vehicles. In the recent years, reinforcement-learning-based con-
trollers have been shown to outperform well-established real-time strategies for specific applications.
Nevertheless, the effects produced by variation in the reward function have not been thoroughly
analyzed and the potential of the adoption of a given RL agent under different testing conditions
is still to be assessed. In the present paper, the performance of different agents, i.e., Q-learning,
deep Q-Network and double deep Q-Network, are investigated considering a full hybrid electric
vehicle throughout multiple driving missions and introducing two distinct reward functions. The
first function aims at guaranteeing a charge-sustaining policy whilst reducing the fuel consumption
(FC) as much as possible; the second function in turn aims at minimizing the fuel consumption
whilst ensuring an acceptable battery state of charge (SOC) by the end of the mission. The novelty
brought by the results of this paper lies in the demonstration of a non-trivial incapability of DQN
and DDQN to outperform traditional Q-learning when a SOC-oriented reward is considered. On
the contrary, optimal fuel consumption reductions are attained by DQN and DDQN when more
complex FC-oriented minimization is deployed. Such an important outcome is particularly evident
when the RL agents are trained on regulatory driving cycles and tested on unknown real-world
driving missions.

Keywords: artificial intelligence; fuel consumption; hybrid electric vehicles; real-time control; rein-
forcement learning

1. Introduction

Optimizing the energy management of an electrified vehicle under real-time condi-
tions can be a demanding task. More specifically, the energy management system (EMS) of
a hybrid electric vehicle (HEV) could require the solution of very complex optimization
problems given that multiple power sources (thermal engine, motor-generators) and en-
ergy storage systems (batteries, ultra-capacitor) are embedded in the powertrain [1]. The
assessment of the performance achieved by different strategies for on-board implementable
EMSs is typically performed offline before moving to real-world driving cycles. Within
such a framework, a virtual ecosystem must be developed to comprise a HEV model, a
control strategy and a driving scenario [2]. Consistently, a simulation (or experiment) with
type-approval driving cycles or real driving missions must be performed to investigate the
response of the hybrid powertrain.
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As far as real-time capable control strategies are concerned, a wide set of approaches
has been developed in the recent years and proposed in the literature [3]. Among the latter,
EMSs based on deterministic rules (RBC) [4] and the equivalent consumption minimization
strategy (ECMS) [5] saw a major spread until 2010. Both RBC and ECMS hold the capability
to achieve good results should a precise tuning operation be manually performed. More
sophisticated techniques have hence been presented after 2010 to overcome such a major
limitation, e.g., model predictive control (MPC) [6] and reinforcement learning (RL) [7].
Considering the impressive and continuous improvement in the research field of artificial
intelligence (AI) [8], RL appears to be a very promising solution to design an intelligent
control logic for HEV applications. Therefore, a detailed analysis of RL-based techniques
for the energy management of HEVs is of major importance.

Several RL agents have been tested for HEV applications and various applications are
to be found in the literature [9,10]. The performance of a Q-learning agent for a parallel
HEV has been investigated in both [11,12]. The former considers the effects produced by a
variation of some RL parameters; the latter focuses on the adaptability of Q-learning. In [13],
Q-learning is adopted to optimize the fuel economy of a mild parallel HEV, outperforming
both the baseline thermostatic rule-based EMS and ECMS. The results of the application
of more sophisticated RL approaches to the real-time control of HEVs have also been
presented in the literature. In [14], a deep Q-Network (DQN) was designed for a parallel
hybrid architecture exploiting the learning actions of the state of the system. In [15], the
authors successfully tested an online DQN algorithm to control the thermal engine and
the continuously variable transmission of a parallel HEV. The application of DQN to a
hybrid electric bus was also investigated in [16]. An evolution of DQN, namely double
deep Q-Network (DDQN), was tested for a hybrid electric tracked vehicle and compared
to a classic DQN in [17]. Other deep reinforcement learning (DRL) techniques have been
presented (examples can be found in [18–21]) but are considered beyond the scope of the
present article.

Regardless of the specific agent selected for a given test case, the literature of RL for
HEV real-time EMS lacks a thorough assessment of the influence produced by different
reward functions on the quality of the training process. In [11,12], one reward formulation
was considered for the entire set of analyses with Q-learning agents. A similar operation was
performed in [22] considering an enhanced variant of Q-learning. Moving to DRL, [16,17]
account for fixed rewards even in the case of DQN and DDQN agents, respectively. Still,
the response produced by such RL agents should be assessed as changes in the reward
formulation are applied.

Different reward formulations could significantly alter the complexity of the control
problem by increasing or decreasing the number of roadblocks in the training process. It is
hence worth investigating the effects produced by different reward functions.

In the present paper, the assessment of the performance of four different agents
is carried out considering two distinct reward functions. The latter was designed by
drastically modifying the parameters of a single formulation to relevantly change the
reward orientation. A detailed analysis of agent response was conducted considering
both regulatory driving cycles and real-world driving missions as RL environments. In
both cases, the focus was on the advantages brought by the specific selected agent. As a
matter of fact, an increase in the complexity of the RL agent would not necessarily lead to
improved performance.

The main contributions of the present paper can be summed up as follows.

• An approach to evaluate the meaningful stages of the driving missions for an appro-
priate assessment of the RL agent learning process;

• An assessment of the change in the performances achieved by different RL agents
trained on different regulatory driving cycles with two distinct reward functions;

• A detailed analysis of the potential carried by the selected agent when tested on
real-world driving conditions.
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The article is organized as follows: the vehicle model and the general RL control
framework are presented in Section 2, the main characteristics of a RL-based EMS for HEVs
are presented in Section 3 and the main results of the analyses are discussed in Section 4.

2. Vehicle Model and Control Framework

Approaches based on RL require the definition of two main components, namely the
agent and the environment, which are intended to interact continuously. In the research
activity presented in this article, the agent–environment interactions were deployed through
three different modules, namely the vehicle, the mission and the controller. The vehicle
module comprises the HEV model and was used to predict the evolution of the system state
(i.e., state dynamics) when a given control action was selected by the agent. The mission
module constitutes the driving scenario and was modeled using the vehicle velocity signal
tracked throughout the driving mission. Finally, the considered RL agents (Q-learning,
DQN and DDQN) and the entire set of rules and parameters needed for the training process
are embedded in the controller module. The integrated modular software framework (IMSF)
presented in [23] was employed to connect the three models in a single virtual ecosystem
and is not hereafter reported for the sake of conciseness.

2.1. Vehicle

In the vehicle module, a quasi-static backward-facing model of a pre-transmission
parallel HEV architecture was developed [23] and used to simulate the evolution of the
state of the system when a given control action was implemented by the agent module. This
operation was replicated for each time step throughout the driving mission, i.e., at each
stage of the training episode. Once the state evolved, the vehicle model sent a feedback
signal to the environment module on the results of the training step that was accomplished.

According to the backward-facing modeling approach, the vehicle velocity profile of a
given driving mission is considered as the exogenous input and translated into a reference
power signal that must be satisfied by the powertrain. Starting from the power at the
wheels, the power demand backwardly propagates to each driveline component (final
drive, gearbox, torque-coupling device, clutches) up to the internal combustion engine
(ICE) and the motor-generator (MG). As far as the main elements of the driveline are
considered, speed ratios with fixed efficiencies were used to model the final drive, the
torque-coupling device, and each gear of the transmission. Experimentally derived 2D
look-up tables were employed for the fuel consumption and the efficiency of the ICE and
the MG, respectively [23]. The battery was modeled as an equivalent resistant circuit [23].
Finally, the general specs of the vehicle used for the experiments as well as the main
characteristics of the ICE, the MG and the battery are reported in Table 1.

2.2. Environment

The environment module sent an amount of meaningful information to the agent
module at the end of each training step. Specifically, information about both the external
world (i.e., the driving mission) and the updated state of the system was passed to the
agent module to allow the latter to select new control actions.

Three different driving scenarios were considered for the analyses, i.e., the World
Harmonized Light-Duty Test Cycle (WLTC) [24], the first two parts of the Federal Test Pro-
cedure (FTP-75) [25] and an experimentally derived real-world driving mission (RDM) [26].
The type-approval test cycles (WLTC and FTP-75) were considered to assess the capability
of the RL-based agent to comply with the regulatory framework. On the contrary, RDM
was selected to test the performances of the RL agents in a more realistic driving scenario.
In Figure 1, the power profiles of the HEV for each driving scenario are charted along
with the velocity trajectories. Note that the maximum and minimum power demands are
comparable throughout the missions (≈40 kW in traction and ≈20 kW in braking) even if
different distributions can be detected. On each power profile of Figure 1, the three marked
time-steps assume a fundamental role for a detailed analysis of the RL agents performances.
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Specifically, T0 is the initial time step of the driving missions, whereas T1 and T2 are the
stages of the missions with the maximum power requests. These two were defined as “at-
tractors” given that the complexity of the control problem tends to increase as the training
episode approaches them. In fact, the identification of the optimal chain of actions becomes
a harder task given that a shrunken set of actions is feasible for such steps of the mission.
Therefore, a smaller number of control sequences should be implemented in the time steps
preceding the attractor so as to avoid unfeasibility. The attractors were hence considered to
assess the effectiveness of the learning progress throughout the training phase.

Table 1. Vehicle data.

General Specifications

Vehicle class Passenger car
Kerb weight (kg) 750

Vehicle mass (w/pwt components) 1200
Transmission 6-gears

Internal Combustion Engine

Fuel type Gasoline
Maximum power (kW (@ rpm)) 88 (@ 5500)
Maximum torque (Nm (@ rpm)) 180 (@ 1750–4000)

Rotational speed range (rpm) 0–6250

Motor-Generator

Maximum power (kW (@ rpm)) 70 (@ 6000)
Maximum torque (Nm (@ rpm)) 154 (@ 0–4000)

Rotational speed range (rpm) 0–13,500

Battery

Peak power (kW) 74
Energy content (kWh) 6.1

AC/DC converter efficiency (-) 0.95
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2.3. Agent

At each stage of a training episode, the agent was responsible for selecting the con-
trol actions. The control problem was modeled through a Markovian decision process
(MDP) [27] in which the environment cannot provide the agent with the entire information
on the state of the system. Therefore, the signals transferred from the environment to the
agent were considered as a subset of the state, namely the “observations”. The formula-
tion of the control problem turned into a partially observable Markov decision process
(POMDP) [28], where the observation satisfies the Markovian property.

The objective of any RL agent is that of maximizing the sum of the rewards obtained
throughout the experiment. Given the necessity of avoiding a distinction between episodic
and continuous tasks, the authors considered the unique notation of the discounted return
Gt, presented in [29]:

Gt =
T

∑
k=t+1

γk−t−1Rk (1)

where γ = [0, 1] is the discount factor, Rk is the immediate reward and T is the final time-
step. The latter can be set to infinite in case of γ < 1. Moreover, RL agents estimating the
optimal action-value functions were considered, and the expected return was consistently
evaluated as:

Q(s, a) = Eπ [Gt] = Eπ

[
T

∑
k=t+1

γk−t−1Rk

]
(2)

where Eπ represents the expected value of the discounted return following a given policy π.
Assuming the expectation of the value was met, the agent could choose the optimal action
for every encountered state (or observation) by properly selecting the action corresponding
to the largest value of Q(s, a). Thanks to an efficient training process, the agent could
achieve proper estimations of the Q-values.

A brief dissertation of the considered RL agents is reported hereafter. The first consid-
ered RL category was traditional Q-learning [30], in which observations and actions are
discretized and the Q-values are stored in a matrix, namely the Q-table. At each time step t,
the estimated new Q-values Qn related to a given tuple of observations Ot and actions At
are updated using the old Q-values Qo through:

Qn(Ot, At) = Qo(Ot, At) + α(Ut) (3)

Ut = Rt + γmax
a

Qo(Ot+1, a)−Qo(Ot, At) (4)

where α is the learning rate and Ut is the updated Q-value. Q-learning achieves good perfor-
mance in different applications despite its limitations. On the one hand, the discretization
of the observation and the action impairs the possibility to apply and test all the possible
control solutions. On the other hand, enlarging the Q-table (i.e., adding discretization
levels), thus increasing the number of possible control solutions, leads to an increase in
computational time (“curse of dimensionality”) as well as a worsening of the convergence
to the optimal policy.

Beyond Q-learning, DRL algorithms have evidenced capability to deal with dimension-
ality issues by employing deep neural networks (DNNs). These are used as approximators
to estimate action-value functions. Two DRL algorithms were hence considered in the
present research paper, namely the DQN and the DDQN. In the DQN [31], a DNN, namely
the “Q-network”, receives a continuous signal from the system state at each stage of the
training episode. No discretization is needed, and the curse of dimensionality is mitigated
given that any continuous change in the system state directly reflects in a change in the
corresponding Q-value. High-dimensional state spaces can be hence handled without
significantly compromising the computational time. Besides Q-networks, the DNN “tar-
get network” was introduced to guarantee algorithm stability. The weights of the target
networks are updated every n step (n > 1), with a lower frequency with respect to the
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Q-network [32]. Finally, the “experience replay memory” buffer was used to store the data
needed to update the weights of the DNNs during the training operations. The full DQN
and DDQN algorithms are presented in Algorithm 1.

The weights of the QN network were randomly initialized before starting the training
phase. At each time step t, the experience replay memory stored a tuple (Ot, At, Rt, Ot+1)
containing the current observation Ot, the current selected action At, the immediate reward
Rt and the following observation Ot+1. For every training iteration, a batch of random
tuples (“mini-batch”) was sampled from the experience replay memory and used to train
the Q-network. Consistent with the POMDP approach discussed for Q-learning, the state
of the system was approximated by its observations. The formulation of the loss function
of the Q-network can be written as:

L = Rt + γmax
a

QT(Ot+1, a)−QN(Ot, At) (5)

where QT and QN are the Q-values estimated by the target network and the Q-network,
respectively. However, the DQN algorithm suffers from a possibly critical problem typically
referred to as the overestimation bias [33]. Therefore, DDQN has been introduced in the
literature as a DQN variant with the aim of avoiding bias in the estimation of the Q-
values [34]. For the DDQN algorithm considered in the present paper, the loss function
formulation of Equation (5) was modified to:

L = Rt + γQT

(
Ot+1, argmax

a
Q(Ot+1, a)

)
−QN(Ot, At) (6)

Four different RL agents were hence developed within the agent module of the IMSF:
the Q-learning 1 obs, the Q-learning 3 obs, the DQN and the DDQN. The difference between
the Q-learning 1 obs and the Q-learning 3 obs is discussed in the following Section. The
hyperparameters of the considered agents are summarized in Table 2.

Table 2. Setup of the experiments.

Hyperparameters Values

Training episodes 1000
Discount factor 0.99

Learning rate (Q-learning) 0.9
Learning rate (DNNs) 2 × 10−4

Exploration rate @E = 1 0.8
Minimum exploration rate @E = 1 0.05

Update frequency of target network 6000
Mini-batch size 32

Experience replay memory size 100,000
Number of hidden layers (DNNs) 1

Neurons in the hidden layers (DNNs) 64
Reward coefficient a 10

Reward coefficient b (SOC-oriented) −1000
Reward coefficient b (FC-oriented) −3000

Reward coefficient c (SOC-oriented) −1000
Reward coefficient c (FC-oriented) −150

Reward penalty p −100
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Algorithm 1 DQN and DDQN

Initialize Q-network QN and target network OT with random weights
for each episode do

for each environment step do
Collect observation Ot and select action At
Execute At and collect next observation Ot+1 and reward Rt
Store tuple (Ot, At, Rt, Ot+1) in memory replay buffer
Sample tuple (Ot, At, Rt, Ot+1) from memory buffer
Compute loss function of the Q-network:

L = Rt + γmax
a

QT(Ot+1, a)−QN(Ot, At) for DQN

L = Rt + γQT

(
Ot+1, argmax

a
Q(Ot+1, a)

)
−QN(Ot, At) for DDQN

Perform gradient descent to update QN
Every n steps the QT is updated

end for
end for

3. Reinforcement Learning for the Energy Management of Hybrid Powertrains

The configuration of an RL agent must be properly tuned for the specific learning task.
The observation, the action and the reward function considered in this article were chosen
to highlight the potentials of RL when embedded into a real-time capable EMS for HEVs. In
case of HEVs based on the charge-sustaining mode [35], one of the most interesting results
is the minimization of fuel consumption (FC) without a full battery charge depletion. It is
anyhow also worth considering different metrics in the vehicle control, e.g., pure charge
sustaining. Therefore, the configuration of the RL-based controllers tested is describable
by the set of observations, actions, and reward function pushing the agent towards either
FC-oriented or SOC-oriented training.

3.1. Observation

Three different signals were considered for the observation, namely the battery state
of charge (SOC), the vehicle velocity, and the vehicle acceleration. For three out of the
four RL agents (i.e., Q-learning 3 obs, DQN and DDQN), all the observation signals were
employed. On the contrary, the battery SOC was exploited as a stand-alone observation for
the Q-learning 1 obs. Such an additional configuration was studied to test the performance
of Q-learning with a restrained set of observations, which could promisingly avoid the
dimensionality issues of Q-learning. The discretization of the SOC consisted of 500 levels
within the SOC window [0.55–0.65] [36], whereas 10 levels were used for the vehicle velocity
and acceleration.

3.2. Action

A wide spectrum of control decisions is possible for an HEV given that different opti-
mal solutions can be targeted. For the present study, the action signals identified comprise
the power-split between the ICE and the MG together with the gear number. Considering
the pre-transmission HEV architecture modeled in the vehicle section, the power-split be-
tween the propellers is a key indicator of the operating mode of the powertrain, Moreover,
the gear number affects the working point of both the ICE and the MG. A filtering operation
was carried out to speed up the training process. More specifically, the real-time evaluation
of the action feasibility was carried out, e.g., a given power-split might not be realized
with a given gear number. Therefore, at a generic time step the agent could only choose
amongst physically possible actions (“feasibility condition”), these representing a sub-set
of the whole action set.
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3.3. Reward

The formulation of the reward function is crucial for every RL agent as it is deeply
connected to the optimization targets. The following reward function was considered to
study the response of the agent to changes in the reward orientation:

R =

{
a + b· .

m f + c· .
m f ,eq i f 0.55 < SOC < 0.65

p i f SOC < 0.55 | SOC > 0.65
(7)

where a (positive), b (negative) and c (negative) are tuning coefficients, p is a negative
penalty obtained when the battery SOC oversteps the SOC window boundaries,

.
m f is the

actual fuel consumption and
.

m f ,eq is the equivalent fuel consumption corresponding to a
SOC level below the reference value:

.
m f ,eq = |SOC∗ − SOC|·(Eb HiηICE)

−1 (8)

where SOC∗ is the reference battery SOC (imposed to be equal to the initial value), Eb
is the energy content of the battery, Hi is the lower heating value of gasoline and ηICE
is an average ICE efficiency conventionally set to 0.35 for the present investigation. The
formulation of Equation (8) was derived from the procedures of the WLTC framework. The
real cumulative FC at the end of the driving mission is hence expressed as:

M f ,r = M f + M f ,eq (9)

where M f is the cumulative FC and M f c,eq is the additional fuel to be added whenever
SOC∗ < SOC.

Two different reward function orientations were studied. More specifically, the so-
called “SOC-oriented” and the so-called “FC-oriented” reward functions were obtained
by imposing b = c and |b| � |c| in Equation (7), respectively. The coefficients b and c
were selected after a massive testing campaign characterized by several experiments in the
WLTC driving mission. The SOC-oriented reward should thrust the RL agent to comply
with an almost perfect charge-sustaining mode whilst reducing the FC as much as possible.
In such case, a limited battery recharge was accepted at the end of the mission and a final
battery SOC value lower than the initial one would not be tolerated (i.e., the experiment
would be considered as failed). As far as the FC-oriented reward is concerned, the RL agent
faced the opposite control problem, i.e., the agents targeted the minimization of the fuel
consumption whilst maintaining the battery SOC within reasonable sustaining operations.

4. Results

The results of the two different reward function orientations are hereafter presented.
A comparison was initially carried out among the responses obtained by the four RL agents
discussed in Section 2 employing the two reward function orientations described above
(i.e., SOC-oriented and FC-oriented) and two driving scenarios (WLTC and FTP-75). The
adaptability of the trained agents was hence assessed for testing the performance on a
real-world driving mission (RDM).

As far as the exploration strategy is concerned, a linearly decreasing ε-greedy policy
was selected to model the exploration decay throughout the experiment. The value of ε
for the first training episode (E1) was set to 0.8 and a minimum value of 0.05 was achieved
in episode 375. From such episode onwards, the value of ε was no longer modified to
maintain a small but constant exploration rate for the residual interval of the experiment.
The experiments were performed on a i7-1165G7 2.80 GHz laptop.

4.1. SOC-Oriented Reward

The effects produced by the variation in reward orientation on the performances of
the Q-learning 1 obs, the Q-learning 3 obs, the DQN and the DDQN are presented in the
present Section for the WLTC and FTP-75 type-approval cycles.
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It is worth recalling that the SOC-oriented rewarding was designed to perfectly sustain
the battery SOC, still complying with a minor recharge by the end of the mission. The
SOC-oriented approach led to a simpler control problem given that the agent was merely
forced to maintain the battery SOC close to its initial value, thus avoiding the battery SOC
exceeding the limits of the SOC window. The battery SOC profiles produced by the policies
of the considered RL agents at the end of the training process are reported in Figures 2 and 3
for the WLTC and the FTP-75, respectively. For both missions, the battery SOC signals
generated by the control policies of the Q-learning 1 obs (blue), the DQN (yellow) and
the DDQN (purple) were consistent with the charge-sustaining task. In fact, the battery
SOC was sustained for most of the driving cycles, whereas a relatively small recharge
was only attained at the end of the episode. Furthermore, enlarging the observation of
the Q-learning agent from 1 (Q-learning 1 obs) to 3 (Q-learning 3 obs) for a fixed number
of training episodes (1000) did not improve the learning capability. Indeed, an overall
battery discharge was produced by Q-learning 3 obs on both the WLTC and FTP-75. Such
behavior can be ascribed to the increased number of tuples (observation-action) connected
to the increased number of observations, thus enlarging the number of Q-values and hence
impairing agent effectiveness.
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In Table 3, four different metrics are reported to compare the numerical results obtained
from the agents in terms of cumulative FC (M f ), final battery SOC value (SOCT), and real
cumulative FC (M f ,r). The relative difference between the real fuel consumption of each
agent with respect to the Q-learning 1 obs agent (∆M f ,r) is also reported. Surprisingly,
Q-learning 1 obs outperforms any other RL agent in terms of FC minimization on the
WLTC. Interesting results are once more produced by the Q-learning 1 obs on the FTP-75,
with a small increase in FC with respect to those produced by the other DRL agents.

Table 3. Results for the SOC−oriented reward.

Agent Mf (g) SOCT (−) Mf,r (g) ∆Mf,r (%)

WLTC

Q-learning (1 obs) 822 0.614 822 -
Q-learning (3 obs) 815 0.585 836 −1.66

DQN 845 0.616 845 −2.77
DDQN 863 0.620 863 −4.93

FTP-75

Q-learning (1 obs) 368 0.604 368 -
Q-learning (3 obs) 376 0.589 392 −2.20

DQN 363 0.602 363 1.52
DDQN 362 0.609 362 1.77

The discounted return obtained at the end of each training episode over the two type-
approval cycles is reported in Figures 4 and 5 for a complete assessment of the performance
of the training progress of the RL agents. More specifically, the discounted return evaluated
in the initial time step of the missions (T0) and in the two attractors (T1 and T2) are reported
in the upper, mid, and lower charts, respectively. It is worth underlining that null values
were reported for the unfinished episodes.
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The poor results reported in Table 3 for the Q-learning 3 obs are confirmed in Figures 4
and 5 by the lowest discounted return trend. On the contrary, good trends are observed
for the remaining RL agents. A difference can only be observed in the convergence rate
as the DRL agents are faster than Q-learning 1 obs and the number of episodes needed
for convergence increases from T0 to T2. Finally, the shape of the discounted return is
investigated from a different perspective in Figures 6 and 7. Specifically, the discounted
return is plotted for the WLTC considering the actual mission time-steps for testing episode
number 100 (Figure 6) and number 1000 (Figure 7), with pure exploitation. Consistent with
the issues introduced by the attractors (see Section 2), the curves related to T1 and T2 bring
significant information only when the attractors are properly overcome.
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Such an unconventional representation of the discounted return allows for acknowl-
edging the faster convergence to the final value of the DRL agents with respect to the
Q-learning 1 obs. The training algorithm of the latter is, in fact, affected by an effective
learning progress from episode 100 to episode 1000. As far as the SOC-oriented approach is
concerned, the increased complexity of the RL agent is not counterbalanced by a refinement
in the performance of the HEV control strategy.

4.2. FC-Oriented Reward

The FC-oriented approach aims at minimizing the FC for the considered driving
mission while constraining the battery SOC within its admissible SOC window. The trends
of the battery SOC resulting from the last training episode are plotted along with the
cumulative FC for the RL agents over the WLTC and the FTP-75 type-approval cycles in
Figures 8 and 9, respectively. The DRL-based controllers now significantly outperform the
Q-learning ones. As far as the WLTC is concerned (Figure 8), the DQN (yellow) and the
DDQN (purple) achieve the lowest final FC values. As a matter of fact, the Q-learning 1 obs
is only able to sustain the battery SOC, whereas the Q-learning 3 obs fails to accomplish the
task. The reasons behind such behavior are thoroughly explained in Section 4.1. As far as
the FTP-75 scenario is concerned (Figure 9), DQN and DDQN still demonstrate superiority,
whereas Q-learning 3 obs manages to complete the mission and promisingly outperform
Q-learning 1 obs in terms of FC minimization. The increased performance of the Q-learning
3 obs is mainly ascribable to the shorter cycle duration and reduced power demand, thus
reducing the complexity of the task. Nevertheless, although the Q-learning agents can
achieve FCs comparable to the DQN and the DDQN, unsatisfactory battery SOC profiles
are generated. The FTP-75 demonstrates that the RL agents holding a higher number of
observations hold better performance. As a matter of fact, the FC is highly influenced by
the vehicle speed and acceleration and hence better estimated when such information is
fed to the agent. Still, the capability of the Q-learning 3 obs agent is strongly impaired for
a more demanding and longer cycle such as the WLTC, where the high number of tuples
(observation–action) cannot be fully explored. The DRL agents overcome this issue thanks
to the continuous observation space.
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In Table 4, the comparison among the real FCs is reported. It is worth noting that these
results significantly differ from those related to the SOC-oriented reward (Table 3). The
DQN and the DDQN agents achieve relevant FC savings compared to the Q-learning ones.
Specifically, the DDQN produces the lowest FC for both the WLTC and the FTP-75 with a
satisfactory battery charge-sustain.

Table 4. Results of the FC−oriented reward.

Agent Mf (g) SOCT (−) Mf,r (g) ∆Mf,r (%)

WLTC

Q-learning (1 obs) 954 0.603 954 -
Q-learning (3 obs) - - - -

DQN 726 0.580 753 21.07
DDQN 721 0.602 721 24.41

FTP-75

Q-learning (1 obs) 335 0.570 378 -
Q-learning (3 obs) 313 0.571 355 6.08

DQN 337 0.601 337 10.85
DDQN 313 0.589 329 12.96

The change in the reward configuration produces a modification to the learning curves
as shown in Figure 10 (WLTC) and Figure 11 (FTP-75). Indeed, the discounted returns
obtained throughout the whole training episodes for both WLTC and FTP-75 are not
characterized by increasing trends when the initial time-step is considered (T0, upper
charts). Instead, an increasing trend can be identified for the attractors T1 (mid charts)
and T2 (lower charts), which is a clue to an effective training process. The analysis of the
discounted return in the attractors T1 and T2 allows for a more appropriate assessment of
the agent learning progress, which is not guaranteed by solely analyzing T0. Moreover,
for the FC-oriented reward, the DRL-based agents better maximize the final value of the
discounted return than Q-learning ones. Nevertheless, the convergence of the training
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process obtained with the FC-oriented reward for all the agents is slower than the one
obtained with the SOC-oriented reward (Figures 4 and 5). Such a result is due to the
increased number of unfeasible episodes encountered by the agents. Indeed, the FC-
orientation of the reward function pushes the agent to a wider utilization of the MG and
hence to the exploration of low battery SOC regions. Thus, the agent can easily push
the battery SOC out of the admitted SOC window (0.5–0.7) and generate an unfeasible
condition that stops the training episode.
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Figure 10. Discounted return per episode profiles obtained by the RL agents on the WLTC in the case
of FC−oriented reward.

The trends of the discounted return evaluated for the WLTC scenario at testing
episodes 100 and 1000 are reported in Figures 12 and 13. The learning difficulties en-
countered by the agents are confirmed as all four agents are not capable of overcoming
attractor T2, and the Q-learning 3 obs alone overcomes attractor T1 at episode 100. This
result shows a slow convergence of the algorithms with this reward orientation in terms
of the number of training episodes. Such a result is opposed to that of the SOC-oriented
reward (Figure 12).
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Figure 13. Discounted return through time profiles obtained by the RL agents on the WLTC at episode
1000 in the case of FC−oriented reward.

On the contrary, Figure 13 clearly shows that the learning process does not improve for
Q-learning 3 obs, whereas a promising trend in the discounted return arises for the other
three agents. As a matter of fact, the Q-learning 1 obs, the DQN and the DDQN evidently
have the capability to complete the environment while increasing the final value of the
discounted return at the end of the driving mission. Such an outcome is consistent with
Figure 10, where the maximum value of the discounted return obtained by the Q-learning
3 obs in T1 and T2 is clearly overcome by the one achieved with the Q-learning 1 obs and
the DRL agents.

The results of Table 4 and the learning curves from Figures 10–13 identify the DQN and
the DDQN as the most appropriate RL agents for HEV control to address FC minimization
in a charge-sustaining mode.

4.3. Testing Reinforcement Learning Agents on a Real-World Driving Mission

Finally, the four RL agents trained on a single type-approval driving cycle were tested
on the RDM. The battery SOC trends obtained for the RDM when the agents are trained
with a SOC-oriented reward on the FTP-75 and the WLTC are reported in Figures 14 and 15,
respectively. As far as the WLTC is concerned (Figure 15), the Q-learning 1 obs and the
DQN outperform the DDQN, the latter leading to a final battery SOC value significantly
higher with respect to the reference one. On the other hand, the Q-learning 3 obs and the
DDQN are clearly outperformed by the Q-learning 1 obs when the training occurs on the
FTP-75 (Figure 14). The real FCs are reported in Table 5. The Q-learning 1 obs once more
establishes its superiority when a SOC-oriented reward function is adopted.
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Table 5. Results of the testing on RDM for the SOC−oriented reward.

Agent Mf (g) SOCT (−) Mf,r (g) ∆Mf,r (%)

Train WLTC—Test RDM

Q-learning (1 obs) 436 0.601 436 -
Q-learning (3 obs) 447 0.599 448 −2.75

DQN 463 0.619 463 −6.19
DDQN 407 0.604 407 6.65

Train FTP-75—Test RDM

Q-learning (1 obs) 394 0.601 394 -
Q-learning (3 obs) 416 0.588 433 −9.90

DQN 404 0.602 404 −2.54
DDQN 459 0.617 459 −16.50

As far as the FC-oriented reward is concerned, the battery SOC and cumulative FC
traces over the RDM are reported in Figures 16 and 17 for the WLTC and the FTP-75
training, respectively. The performances of the RL agents are aligned with the results of the
previous Section considering the FC minimization control task. Indeed, the DRL agents are
once more capable of outperforming the Q-learning agents. The numerical results related
to the plots of Figures 16 and 17 are reported in Table 6, further assessing the dominance of
the DRL over the Q-learning agents for the FC-oriented approach.
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Table 6. Results of the testing on RDM for the FC−oriented reward.

Agent Mf (g) SOCT (−) Mf,r (g) ∆Mf,r (%)

Train WLTC—Test RDM

Q-learning (1 obs) 516 0.595 523 -
Q-learning (3 obs) 388 0.582 414 20.84

DQN 384 0.599 385 26.39
DDQN 372 0.602 372 28.87

Train FTP-75—Test RDM

Q-learning (1 obs) 397 0.594 406 -
Q-learning (3 obs) 370 0.569 415 −2.22

DQN 382 0.602 382 5.91
DDQN 354 0.592 366 9.85

5. Conclusions

The performances of different RL agents for the real-time control of a full hybrid
electric vehicle were assessed considering multiple driving conditions (both regulatory
driving cycles and real-world driving missions) and two different reward functions. The
latter were selected and considered to push the agents towards different optimization
objectives. On the one hand, a SOC-oriented reward function was designed to lead the
control policy towards the optimal sustaining mode for the battery state of charge whilst
still complying with reduction in fuel consumption (FC). On the other hand, a FC-oriented
reward was designed to primarily minimize fuel consumption whilst maintaining the
battery SOC within an acceptable range. The agents were initially trained on the WLTC
and the FTP-75 and tested for the same driving conditions. The trends in battery SOC, the
cumulative FCs, and the learning curves suggest that disconnecting the selection of the RL
agent from the actual reward function formulation might lead to non-optimal responses.
In fact, for the simpler RL agents, e.g., Q-learning, surprisingly, the SOC-oriented reward
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leads to to comparable or even better results than with the more sophisticated agents,
e.g., the DQN and the DDQN. Dominance of the DQN and the DDQN agents is exhibited
only when the FC-oriented reward is considered. In fact, the utilization of more powerful
RL agents should only be justified by the increased complexity of the control problem;
minimizing fuel consumption while maintaining the battery state of charge within a given
range clearly represents a very difficult task to be solved, as demonstrated by the amount
of research activities to this end presented in the literature.

The findings of this paper demonstrate the need for RL users to prioritize the selection
and tuning of each experiment configuration rather than just relying upon the latest RL
agents in the literature. To further support the thesis, the trained RL agents were also tested
on real-world driving conditions. Regardless of the training conditions, the results confirm
that simple RL agents behave efficiently in the case of a SOC-oriented reward, whereas
more sophisticated agents are needed when FC-oriented rewards are considered.
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