-

R

|

Lo e]

ST

SN o o

LR J

——— S

Institut EURECOM
2229, route des Crétes, B.P. 193,
06904 Sophia Antipolis Cedex

Research Report N° 94-015

The Fast Subsampled-Updating Stabilized
Fast Transversal Filter (FSU SFTF) Algorithm

for Adaptive Filtering Based on a Schur
Procedure and the FFT

Dirk T.M. Slock Karim Maouche

November, 199/

Telephone: +33 93 00 26 26 E-mail:
Dirk T.M. Slock: +33 93 00 26 06 slock@eurecom . fr
Karim Maouche: +33 93 00 26 32 maouche@eurecom fr

Fax: +33 93 00 26 27

Abstract

We present a new fast algorithm for Recursive Least-Squares (RLS) adaptive filtering that uses
displacement structure and subsam pled-updating. The Fast Subsampled-Updating Stabilized
Fast Transversal Filter (FSU SFTF) algorithm is based on the Stabilized Fast Transversal
Filter (SFTF) algorithm, which 1s a numerically stabilized version of the classical FTF algo-
rithm. The FTF algorithm exploits the shift invariance that is present in the RLS adaptation
of a FIR filter. The FTF algorithm is in essence the application of a rotation matrix to a set
of filters and in that respect resembles the Levinson algorithm. In the subsampled-updating
approach, we accumulate the rotation matrices over some time interval before applying them
to the filters. It turns out that the successive rotation matrices themselves can be obtained
from a Schur type algorithm which, once properly initialized, does not require inner prod-
ucts. The various convolutions that thus appear in the algorithm are done using the Fast
Fourier Transform (FFT). For relatively long filters, the computational complexity of the new
algorithm is smaller than the one of the well-known LMS algorithm, rendering it especially
suitable for applications such as acoustic echo cancellation.

e = HAE h

r——

J

]

(="

L.

i

e il hisooos o L U |

N b/

Contents

Abstract

1

2

3

Introduction

The RLS Algorithm

The SFTF Algorithm

The Schur-SFTF Algorithm
Fast computation using the FFT
The FSU SFTF Algorithm

Concluding Remarks

1

10

12

1 Introduction

Nowadays, adaptive filtering became an important tool in digital signal processing. Recent
advances in VLSI technology have rendered this technique very attractive and have led to
diverse applications such as equalization, echo cancellation, interference cancelling, signal
detection, etc. [3]. The coefficients of an adaptive filter vary periodically according to an
adaptive filtering algorithm in order to minimize a certain cost function. There exist two
major families of adaptive algorithms. The first family is builded around the Least-Mean-
Square (LMS) algorithm [9]. The LMS algorithm minimizes a mean square error by using a
gradient search type algorithm and is very popular because of its low computational complexity
which is 2N (N is the FIR filter length) and its robustness. However, the convergence rate of
the LMS depends on the length of the filter and on the input statistics. In applications such as
acoustic echo cancellation where the FIR filter which modelizes the acoustic path is relatively
large and the input signal is highly correlated (speech signal), LMS algorithm does not provide
a satisfactory solution because of the very low convergence rate of the filter estimate. The
mainstay of the second family is the Recursive Least-Squares (RLS) algorithm that minimizes
a deterministic sum of squared errors. The RLS algorithm is known to perform much better
than the LMS algoritm [2] but shows a computational complexity of O(N?) operations which
disqualify it from being used in applications where the FIR filter is relatively long. Fast RLS
algorithms such as the Fast Transversal Filter (FTF) algorithm [1] exploit a certain shift
invariance structure in the input data vector to reduce the computational complexity to TN
for the FTF algorithm.

In [6], we have pursued an alternative way to reduce the complexity of RLS adaptive filtering
algorithms. The approach consists of subsampling the filter adaptation, i.e. the LS filter
estimate is no longer provided every sample but every L > 1 samples (subsampling factor
L). This leads to the Subsampled-Updating RLS (SU RLS) algorithm, which nevertheless
provides exactly the same filtering error signal as the RLS algorithm. The computational
complexity of the SU RLS algorithm is certainly not reduced w.r.t. to that of the RLS
algorithm. However, in the SU RLS algorithm the Kalman gain and the likelihood variable
are L x N and L x L matrices resp. which, due to the shift invariance present in the problem,
exhibit a low displacement rank. Hence, by using the displacement structure and the FIF'T
(when computing convolutions), we have derived a fast version of SU RLS that we have called
the FSU RLS algorithm.

In [7], we have proposed a dual strategy that allowed us to derive the FSU FTF algorithm,
see Fig. 1. Namely, we exploit shift-invariance in the RLS algorithm to obtain the FTF
algorithm. Hence, we apply the subsampled-updating strategy (SUS) to the estimation of the
filters involved. The starting point is an interpretation of the FTF algorithm as a rotation
applied to the vectors of filter coefficients. Using the filter estimates at a certain time instant,
we compute the filter outputs over the next L time instants. Using what we have called a
Schur-FTF algorithm, it becomes possible to compute from these multi-step ahead predicted
filter outputs the one step ahead predicted filter outputs, without updating or using the filters.
These quantities allow us to compute the successive rotation matrices of the FTF algorithm for
the next I time instants. Because of the presence of a shift operation in the FTF algorithm,
it turns out to be most convenient to work with the z-transform of the rotation matrices and
the filters. One rotation matrix is then a polynomial matrix of order one, and the product of
I, successive rotation matrices is a polynomial matrix of order L.

- =

—

u— ;MA

|

L1

[(e

S

L | ER—— SR bl s b

L

2 2 THE RLS ALGORITHM

RLS

block processing

(FFT)

displacement

structure

SU RLS FTF
displacement block processing
structure (FFT)
Y Y
FSU RLS FSU FTF

Figure 1: Dual strategies for the derivation of the FSU FTF and FSU RLS algorithms.

Applying the L rotation matrices to the filter vectors becomes an issue of multiplying polyno-
mials, which can be efficiently carried out using the FFT. Unfortunately, the FTF algorithm is
numerically instable because of round-off error accumulation that arises with finite precision
implementation. Inheritting the round-off errors dynamic of the SFTF algorithm, the FSU
FTF algorithm is also numerically instable. Recently, the Stabilized FTF (SFTF) algorithm,
a numerically stable version of the FTF algorithm, was derived which shows a computational
complexity of 8N [5]. Here, we extend the FSU FTF idea to the Stabilized FTF (SFTF)
algorithm. The starting point is still an interpretation of the SFTF algorithm as a rotation
applied to the vectors of filter coefficients. The key ingredient is the derivation of the Schur-
SFTF procedure that allows the computation of the successive rotation matrices of the SFTF
algorithm. The SUS turns out to be especially applicable in the case of very long filters such as
occur in the acoustic echo cancellation problem. The computational gain it offers is obtained
in exchange for some processing delay, as is typical of block processing.

In order to formulate the RLS adaptive filtering problem and to fix notation, we shall first
recall the RLS algorithm.

2 The RLS Algorithm

An adaptive transversal filter Wy x forms a linear combination of N consecutive input samples
{z(i-n),n =0,...,N—1} to approximate (the negative of) the desired-response signal d(i).

desired-response d(2)

data sequence

/

. Adaptive
input z(1) ' ;
—_ Transversal Wik
data sequence Filter

Figure 2: The adaptive FIR filtering scheme.

The resulting error signal is given by (see Fig. 2)

(GlF) = d(i) + Wavs Xuli) = (i) + 3 Wi a(i—n) | (1)
n=0
H :
where Xn(z2) = {mH(i) eH(i—1)- --J'H(i—_N—H)] is the input data vector and superscript

T denotes Hermitian (complex conjugate) transpose. In the RLS algorithm, the set of N
transversal filter coefficients Wy x = [I/V‘,{,A,\ I/VA’] are adapted so as to minimize recursively
the following LS criterion

k) .
En(k) = %m{z A= d(E) + Wy Xn(D))° + M p HWN—WUHL}
v L=t ‘ (2)
ke) P/
= SN len(ilR)P + M| Wk — Wolly

t=1

where A € (0,1] is the exponential weighting factor, u > 0, Ay = dia‘g{)\"\‘"l....,)\.l}.
vz = vAvf, ||| = ||.ll;- The second term in the LS criterion represents a priori information.
For instance, prior to measuring the signals, we may assume that Wy is distributed as Wy ~
N (H 0, By) Ro = pAAy. The particular choice for Ry will become clear in the discussion of
the initialization of the FSU SFTF algorithm. Minimization of the LS criterion leads to the
following minimizer
I’:{’i’\?’k = _R’{J{k}gx&k) (.%)
where
I%N,k - Z/\A zAr X—H() e ’\k+1,UfAN
=)\Rv\/k {=F XN(I‘\]XH(A,) RN,O = Fy= ;t/\;’\N
Pyi = Z/\“ Xn()dE(GE) — Mt AW

= NPysr+ Xn(b)d (k). Pyo = —RoW{

- Sy mm

L

A NN AN S VO D A

——

mm— e te—

1 3 THE SFTF ALGORITHM

are the sample second order statistics. Substituting the time recursions for Ry and Pn s
from (4) into (3) and using the matrix inversion lemma [4, pg 656] for Ry',, we obtain the

RLS algorithm:

Cne = —XN(R)AT'RY._, (5)
W k) = 1=CniXn(k) (6)
RBye = ARyl — CHan(k)Cna (7)
(k) = en(klk—1) = d(k) + Wi x_1 Xn (k) (8)
en(k) = en(klk) = e (k) (k) (9)
Why = Wyper +en(k)Cni (10)

where €},(k) and ey(k) are the a priori and a posteriori error signals (resp. predicted and
filtered errors in the Kalman filtering terminology) and one can verify (or see [1]) that they
are related by the likelihood variable yy (k) as in (9).

RLS algorithm shows a computational complexity of O(N?) operations per sample. This is
too much demanding when N is relatively large and with actual technology real-time imple-
mentation is not possible. Fast versions of RLS algorithms have been derived using a certain
shift invariance property of the adaptive FIR filtering problem. These fast versions constitutes
two major families of RLS algorithms. One family uses transversal filters while the other uses
treillis filters. Each family shows a computational complexity of O(N) but the transversal
family is the most popular because of its lower complexity. In particular, the SFTF algorithm
shows a computational complexity of 8.

3 The SFTF Algorithm

In what follows we shall consider the single-channel case. However the generalization to the
multichannel case can easily be done. The SFTF algorithm can be described in the following
way, which emphasizes its rotational structure:

[[Cni0]] [[0Cnpt]]
ANk AN k-1
BN.k BN,}c—l
| [Ww0] | | [Wixe1 0] |
6%("7) == AN‘k—1XN+1”U)
en(k) = e?’v(k)vw(k—{)
(k) = ' (k=1) = CRpy s (k)
(k) = Ansa(k) + CN R (K) (11)
rv(k) = —Mn(k—-1)CNE,
"'"i{("l‘) = Bnji-1Xn41(k)
k)

= X'y (k—1)=CH, %1 (F)CS 1

;Fp
f('."\",]_n.k
[—

» [Wyi-1 0]

6?\",[,..&7
> AN k-L s

XN41,Lk

of
"'N,Lk
>

> Biti-—1

=~ 1IN, L.k
0 Bnps| p—=

Figure 3: Filtering operations in the FSU SFTF algorithm.

and eh (k—L+1)/Xan(k—L) , that are elements of the rotation matrix @x_z41. In order to ob-
tain the rest of the elements that defines 6x_p,41 , we must compute 7y (k—L+1) (this allows the
computation of -r'ff\i)(k—L—!—l)) and (j,"w\;,‘k_fﬁl. Since riy (k—L+1) = —/\Jr':i'N(A:—!J)(T'.:\\.-:+]‘A__,l+,
(see 11), we just need to compute C'NV+1,A-_L+1 in order to obtain the rotation matrix 0x_p41. [n
the SUS. our aim is to compute the successive rotation matrices over an interval of L samples.
To do this. we need the different E‘j&:+_|!A__L_+_j- for j = 1,..., L. In fact, it turns out that these
quantities can be obtained in an efficient manner by carrying out the SFTTF recursions on the
last L — j entries of the SFTF prediction part filters

For j=1,0u.,L
m = N—L+

K = k—L+j

~rmeN — ~rm—1:N—1 -1 -1 r p H N Am:N
Chiaxg = CNka1 — AlaT (K-1) ey (K) An k-
~miN—1 AN SN 41 m:N
¢ N, K 0 == (":‘\“+1.I\' = ("NJ{ N,K-1
m+1:N m+1:N) N s N—1
ANK = ANkI +en(K) CrNix

m+1:N m+1:N 1)/ qr ~m41:N—1
By K = BN,A‘ﬂ +ry () (-'N,K 0

- .

I

—d

'

|

i

I

St e | AP RN - PR L o

—_—

8 3 FAST COMPUTATION USING THE FFT

rv(K) = —ABn(K-1)CNE . . (20)

Counting only the most significant term as we often do, the computational complexity of these
recursions is 2L%. So with the quantities in F, (k) ur,1, some recursions in (11) and the order
down-date recursions (20), it is possible to construct the successive o T A o (T
Now we rotate both expressions for Fy,(k) in (15) with Ok-r41 to obtain ©;_z ., Fy (k) which
equals

eI ¥ nﬁ,L—l,k *

CNk-L+1 0]

H
;4le-‘_L+1 o eN(k_L+1) 6%,[1—1,’\‘
XNy1Lk = : (21)

% n ri(k=L+1) Rt

| [Whk-£410] | ” =
—dy (k—L+1) —dﬁf-u

One can see from (21) that quantities in boxes are the four rows of Fr_1(k). This can be
written more compactly as

S (Ok-pp Fi(k)) = Fyoa(k) (22)

where the operator S(M) stands for: shift the first row of the matrix M one position to the
right and drop the first column of the matrix thus obtained. Now this process can be repeated
until we get Fy(k) which is a matrix with no dimensions. So the same rotations that apply
to the filters at times k—L+j, j = 1,..., L, also apply to the set of filtering error vectors
Fi_j(k) over the same time span. With this prcedure, the one step ahead output errors
e¢x(k—L+j) are computed during this time span without updating the estimate filter. Inner
products (filtering operations) are needed for the computation of Fy (k). This is the Schur-
SFTF algorithm, which contrasts with the Levinson-style SFTF algorithm in (11). Taking
into account the fact that a rotation matrix in factored form as in (13) only contains five
non-trivial entries, this takes 2.5L? operations per L samples. The innner products need 4N
operations, so the successive rotation matrices can be obtained via the Schur-SFTF algorithm
with a computational complexity of 4.5L? + 4N operations per L samples. The amount of
operations needed for the inner products can be further reduced by using the FFT as is
explained in the next section.

5 Fast computation using the FFT

It is possible to reduce the computational complexity of the Schur-SFTF procedure by in-
troducing FFT techniques as explained in [8]. In what follows, we shall often assume for
simplicity that L is a power of two and that Ny, = (N+1)/L is an integer. To get Fy(k) in
(15), we need to compute products of the form vy, X§+1,L,k where vy 41 is a row vector
of N+1 elements.

Consider a partitioning of vn 414 in Ny subvectors of length L:

i I M ‘
UNSLE= | Upppr g ¢ 'UN+1,k] J (23)

9

and a partitioning of Xny41.rx in Ny, submatrices of order (L x L):

Xyrerok =L Xpoe Xoza-L ~ XL Ek—NypL-1], (24)
then
N
o H = ayd - H 95
N4k XN Lk = D UNA1LAXLLE-(-1)L - (25)
i=1

In other words, we have essentially Ny times the product of a a vector of length L with a
(L % L) Toeplitz matrix. Such a product can be efficiently computed in basically two different
ways [8]. One way is to use fast convolution algorithms , which are interesting for moderate
values of L. Another way is to use the overlap-save method. We can embed the L x L Toeplitz
matrix Xz into a 2L x 2L circulant matrix, viz.

H
oy o XE,Lk L
Vs _— - 5
Xy ris = =C (lzL,k) (26)
rH
XDLk ¥

where C(c") is a right shift circulant matrix with ¢ as first row. Then we get for the vector-
matrix product

_ H i H I, 5%
UN 414X L, L k- (i-1)L = [O1xL UN41.k] C (-lzL,k-U-UL) [0 } (27)
LxL
Now consider the Discrete Fourier Transform (DFT) Vi, x of v
VfV-i-l,k = U?’V+1,k FL ’ (2:)
. ; . . . o (p=1)g=1) .
Iy, is the L x L DFT matrix whose generic element is (f7), , = € e
The inverse of FJ, is %Fff. It defines the inverse DFT transformation (IDFT)
‘ 1 i
ad . H ‘
UN41k = VN+1k EIL . (29)

The product of a row vector v with a circulant matrix C(cf) where v and ¢ are of length m
can be computed efficiently as follows. Using the property that a circulant matrix can be
diagonalized via a similarity transformation with a DF'T matrix, we get

il (30)

v C(cf) = v F, diag (CH Fm) FH — [(va) diag ((’.‘H Fm)] -

1 1

m " m
where diag(w) is a diagonal matrix with the elements of the vector w as diagonal elements. So
the computation of the vector in (27) requires the padding of v with L zeros, the DF'T of the
resulting vector, the DFT of #37, x—(j—1), the product of the two DFTs, and the (scaled) IDFT
of this product. When the FFT is used to perform the DFTs, this leads to a computationally
more efficient procedure than the straightforward matrix-vector product which would require
L? multiplications. Note that at time k, only the FFT of zor needs to be computed; the
FETsof Bai i = Lo o oy M —1 have been computed at previous time instants. This reduces
the 4N computations per sample that are needed for the initialization of the schur-FNTF
procedure to

(31)

Iz T L

computations per sample (FFT(L) signifies the computational complexity associated with a
FFT of length L) or basically O (N 10_%@) operations.

FFT(2L) 2] BFFTY:
4N[(2L)]Jrof* (2L)

= i)

=

boe L. RS .]

]

L

10

6 The FSU SFTF Algorithm

6 THE FSU SFTF ALGORITHM

Once we have computed the L consecutive rotation matrices with the Schur-SFTF algorithm,
we want to apply them all at once to obtain the filters at time k from the filters at time k—7,.
Due to the shift of the Kalman gain in (11), we need to work in the z-transform domain. S0
we shall associate polynomials with the filter coefficients as follows

AN

By i

 [Gne0]]

| [Wre0] | [2V |

Hence (11) can be written in the z-transform domain as

[Ci (2)

N
LS
—_

[
—

Let’s introduce the following polynomial matrix

Ok (2) = O

=1

1

k-1(2) |

(34)

Now, in order to adapt the filters at time k from the ones at time k— L, we get straightforwardly

where

O, (z) = Ok (

ék (Z)]

F @it z)]
Ap_p(2)
= O (2)
Bi_1(2)
| Wi-1(2) |
2)Or_1(2) - Op_r41 (2)

11
Now also remark that O, (2) has the following structure
[% % % 0 W
¥ * *x 0
Orr(z) = (37)
*# * x 0
| * * * 1 i

where the stars stand for polynomials in z™' of degree at most L. The accumulation of the
successive rotation matrices is done as follows

for 3 =20musls
I = k—L+y

0,(z) = O 6} 0] Or_1,-1(2) . (38)

The computation of @y (z) takes 7.5L% operations. As a result of the structure displayed
in (37), the product in (35) represents 12 convolutions of a polynomial of order L with a
polynomial of order N. These convolutions can be done using fast convolution techniques.
In the case we consider, in which the orders of the polynomials are relatively large, we will
implement the convolutions using the FFT technique. Consider one of those convolution
products: it has the form Py, *® 414 where Py, is one of the 12 L order vectors that appear in
the accumulated rotation matrix and ®p 1% is one of the four SFTF filters. As in section(5),
the product is splitted in Ny, parts

Pr*®nyrk = PL* [Brgpe (I)I]:'ril,k} - [pb * Qe Pr *‘I’}t:im] ’ (39)

every subproduct in (39) is done using the Overlap-Save method. Note that at this stage, we
do not need to compute the FFTs of the filters A s, By k, C’N!k and Wy i because they were
already used when computing Fy(k) in the Schur-SFTF procedure. The update of each filter
need 3 times such product. Taking in particular the update of the estimate filter, we have

Wi(z) = (Ok,(2)),, Cr-r.(2) + (©,L(2))4 5 Ar-1(2) + (Ok,L(2))y 3 Be-(2) + Wi-r(2) , (40)

each product in (40) is done as explained before. The additons are done in the frequency
domain, reducing hence the number of needed IDFTs. The complexity associated with the
update of the estimate filter is ﬁg—l +3)FFT (2L) + 6 (N + 1) operations per L samples. The
resulting FSU SFTF algorithm is summarized in Table I.

The initialization of the algorithm is done with the soft constraint initialization technique [1].
The additon of the soft constraint to the LS cost function as shown in (2) can be interpreted
as the result of an unconstrained LS problem where the input signal is equal to \/p at time

-

o

12 7 CONCLUDING REMARKS

k = —N and zero at all other time instants before time k = 0. Hence the FSU FTF algorithm
departs from the following initial conditions

Wno = Wy
Ano = [10--:0], an(0) =y
Byo = [0---01], An(0)=p

Cno = [0--0], w(0)=1.

With this initialization at k = 0, the corresponding initial sample covariance matrix is indeed

Ry = pAAn.

7 Concluding Remarks

The complexity of the FSU SFTF is O((825£ +17)ZE2CL) 1 39N 1 191) operations per sample.
This can be very interesting for long filters. For example, when (N, L) = (4095, 256), (8191, 256)
and the FF'T is done via the split radix (FFT(2m) = mlogy(2m) real multiplications for real
signals) the multiplicative complexity is respectively 1.2N and 0.8 N per sample. This should
be compared to 8N for the SFTF algorithm, the currently fastest stable RLS algorithm, and
2N for the LMS algorithm. The number of additions is somewhat higher. The cost we pay is
a processing delay which is of the order of L samples. We have simulated the algorithm and
have verified that it works. In [6], we have introduced the FSU RLS algorithm, an alternative
algorithm with a very similar computational complexity, but a very different internal struc-
ture. These developments leads us to conjecture that perhaps a lower bound on computational
complexity has been reached for RLS algorithms when the subsampled updating strategy is
applied and when the filters to be adapted are relatively long.

13

Table I: the FSU SFTF Algorithm W
Computation Cost per L samples
= - - . -
NIk [0Cnx-L }
p H
€N,Lk AN j-L : :
1 = X (5 4+ 4 FFT(2L) + 8N
N Dk BN k-1
I ~d5 T L (W k-1 0]
. - 1
2 | SFTF-Schur Algorithm:
[nput: IN,Lks EN Lk "’R{.L,k- _Jf@,L,k
Output: Or_i(z) , i=L-1,---,0 4.5L%
I-1
3 Orr(2) = [[9k-i(z2) 7.5
.'=D
[A [1
Ci (2) Cr-1 (2)
Ax (2) Ax_r (2) ,
1 = O (2) (12 + 4 FFT(2L) + 24N
B,L(’J) BAT_L(.Z)
Wi (2) I Wi_r(2)
Total cost per sample (17 + [’NLH)&rﬂ(z_l_) 4 32% + sz

|

I

]

- .

CH.

e o 1 l___._i

i ———

References

(1]

2]

J.M. Cioffi and T. Kailath. “Fast, recursive least squares transversal filters for adaptive
filtering”. IEEE Trans. on ASSP, ASSP-32(2):304-337, April 1984.

E. Eleftheriou and D. Falconer, “Tracking properties and steady state performance of
RLS adaptive filter algorithms”. IEEE Trans. on ASSP, ASSP-34(5):821-823, July 1987.

S. Haykin. Adaptive Filter Theory. Prentice-Hall, Englewood Cliffs, NJ, 1991. second
edition.

T. Kailath. Linear Systems. Prentice-Hall, Englewood Cliffs, NJ, 1980.

D.T.M. Slock and T. Kailath. “Numerically Stable Fast Transversal Filters for Recursive
Least-Squares Adaptive Filtering”. IEEE Trans. Signal Proc., ASSP-39(1):92-114, Jan.
1991.

D.T.M. Slock and K. Maouche. “The Fast Subsampled-Updating Recursive Least-Squares
(FSU RLS) for Adaptive Filtering Based on Displacement Structure and the FFT”. Signal
Processing, Vol. 40, No. 1, Oct. 1994, pp. 5-20.

D.T.M. Slock and K. Maouche. “The fast subsampled-updating fast transversal filter
(FSU FTF) RLS Algorithm” Annals of telecommunications, Vol. 49, No. 7-8, 1994, pp-
407-413.

M. Vetterli. “Fast Algorithms for Signal Processing”. In M. Kunt, editor, Techniques
modernes de traitement numérique des stgnauz. Presses Polytechniques et Universitaires
Romandes, Lausanne, Switzerland, 1991. ISBN 2-88074-207-2.

B. Widrow et al., “Stationary and nonstationary learning charactristics of the LMS
adaptive filter”, Proc. IEEFE, vol. 64, No. 8. August 1976, pp. 1151-1162.

14

