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Abstract

We introduce Functional Diffusion Processes (FDPs), which generalize score-
based diffusion models to infinite-dimensional function spaces. FDPs require a
new mathematical framework to describe the forward and backward dynamics, and
several extensions to derive practical training objectives. These include infinite-
dimensional versions of Girsanov theorem, in order to be able to compute an ELBO,
and of the sampling theorem, in order to guarantee that functional evaluations in
a countable set of points are equivalent to infinite-dimensional functions. We use
FDPs to build a new breed of generative models in function spaces, which do
not require specialized network architectures, and that can work with any kind
of continuous data. Our results on real data show that FDPs achieve high-quality
image generation, using a simple MLP architecture with orders of magnitude fewer
parameters than existing diffusion models. Code available here.

1 Introduction

Diffusion models have recently gained a lot of attention both from academia and industry. The seminal
work on denoising diffusion (Sohl-Dickstein et al., 2015) has spurred interest in the understanding of
such models from several perspectives, ranging from denoising autoencoders (Vincent, 2011) with
multiple noise levels (Ho et al., 2020), variational interpretations (Kingma et al., 2021), annealed
(Song & Ermon, 2019) and continuous-time score matching (Song & Ermon, 2020; Song et al., 2021).
Several recent extensions of the theory underpinning diffusion models tackle alternatives to Gaussian
noise (Bansal et al., 2022; Rissanen et al., 2022), second order dynamics (Dockhorn et al., 2022), and
improved training and sampling (Xiao et al., 2022; Kim et al., 2022b; Franzese et al., 2022).

Diffusion models have rapidly become the go-to approach for generative modeling, surpassing GANs
(Dhariwal & Nichol, 2021) for image generation, and have recently been applied to various modalities
such as audio (Kong et al., 2021; Liu et al., 2022), video (Ho et al., 2022; He et al., 2022), molecular
structures and general 3D shapes (Trippe et al., 2022; Hoogeboom et al., 2022; Luo & Hu, 2021;
Zeng et al., 2022). Recently, the generation of diverse and realistic data modalities (images, videos,
sound) from open-ended text prompts (Ramesh et al., 2022; Saharia et al., 2022; Rombach et al.,
2022) has projected practitioners into a whole new paradigm for content creation.

A common trait of diffusion models is the need to understand their design space (Karras et al., 2022),
and tailor the inner working parts to the chosen application and data domain. Diffusion models
require specialization, ranging from architectural choices of neural networks used to approximate the
score (Dhariwal & Nichol, 2021; Karras et al., 2022), to fine-grained details such as an appropriate
definition of a noise schedule (Dhariwal & Nichol, 2021; Salimans & Ho, 2022), and mechanisms to
deal with resolution and scale (Ho et al., 2021). Clearly, the data domain impacts profoundly such
design choices. As a consequence, a growing body of work has focused on the projection of data
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modalities into a latent space (Rombach et al., 2022), either by using auxiliary models such as a
VAEs (Vahdat et al., 2021), or by using a functional data representation (Dupont et al., 2022a). These
approaches lead to increased efficiency, because they operate on smaller dimensional spaces, and
constitute a step toward broadening the applicability of diffusion models to general data.

The idea of modelling data with continuous functions has several advantages (Dupont et al., 2022a):
it allows working with data at arbitrary resolutions, it enjoys improved memory-efficiency, and
it allows simple architectures to represent a variety of data modalities. However, a theoretically
grounded understanding of how diffusion models can operate directly on continuous functions has
been elusive so far. Preliminary studies apply established diffusion algorithms on a discretization of
functional data by conditioning on point-wise values (Dutordoir et al., 2022; Zhuang et al., 2023). A
line of work that is closely related to ours include approaches such as Kerrigan et al. (2022), who
consider a Gaussian noise corruption process in Hilbert space and derive a loss function formulated
on infinite-dimensional measures to approximate the conditional mean of the reverse process. Within
this line of works, Mittal et al. (2022) consider diffusion of Gaussian processes. We are aware of
other concurrent works that study diffusion process in Hilbert spaces (Lim et al., 2023; Pidstrigach
et al., 2023; Hagemann et al., 2023). However, differently from us, these works do not formally
prove that the score matching optimization is a proper evidence lower bound (ELBO), but simply
propose it as an heuristic. None of these prior works discuss the limits of discretization, resulting in
the failure of identifying which subset of functions can be reconstructed through sampling. Finally,
the parametrization we present in our work merges how functions and score are approximated using a
single, simple model.

The main goal of our work is to deepen our understanding of diffusion models in function space. We
present a new mathematical framework to lift diffusion models from finite-dimensional inputs to
function spaces, contributing to a general method for data represented by continuous functions.

In § 2, we present Functional Diffusion Processs (FDPs), which generalize diffusion processes
to infinite-dimensional functional spaces. We define forward (§ 2.1) and backward (§ 2.2) FDPs,
and consider generic functional perturbations, including noising and Laplacian blurring. Using an
extension of Girsanov theorem, we derive in § 2.3 an ELBO, which allows defining a parametric
model to approximate the score of the functional density of FDPs. Given a FDP and the associated
ELBO, we are one-step closer to the definition of a loss function to learn the parametric score.
However, our formulation still resides in an abstract, infinite-dimensional Hilbert space.

Then, for practical reasons, in § 3, we specify for which subclass of functions we can perfectly
reconstruct the original function given only its evaluation in a countable set of points. This is an
extension of the sampling theorem, which we use to move from the infinite-dimensional domain of
functions to a finite-dimensional domain of discrete mappings.

In § 4, we discuss various options to implement such discrete mappings. In this work, we explore in
particular the usage of implicit neural representations (INRs) (Sitzmann et al., 2020) and Transformers
Vaswani et al. (2017) to jointly model both the sampled version of infinite-dimensional functions, and
the score network, which is central to the training of FDPs, and is required to simulate the backward
process. Our training procedure, discussed in § 5, involves approximate, finite-dimensional Stochastic
Differential Equations (SDEs) for the forward and backward processes, as well as for the ELBO.

We complement our theory with a series of experiments to illustrate the viability of FDPs, in § 6.
In our experiments, the score network is a simple multilayer perceptron (MLP), with several orders
of magnitude fewer parameters than any existing score-based diffusion model. To the best of our
knowledge, we are the first to show that a functional-space diffusion model can generate realistic
image data, beyond simple data-sets and toy models.

2 Functional Diffusion Processes (FDPs)

We begin by defining diffusion processes in Hilbert Spaces, which we call functional diffusion
processes (FDPs). While the study of diffusion processes in Hilbert spaces is not new (Föllmer &
Wakolbinger, 1986; Millet et al., 1989; Da Prato & Zabczyk, 2014), our objectives depart from prior
work, and call for an appropriate treatment of the intricacies of FDPs, when used in the context of
generative modeling. In § 2.1 we introduce a generic class of diffusion processes in Hilbert spaces.
The key object is Equation (1), together with its associated path measure Q and the time varying
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measure ρt, where ρ0 represents the starting (data) measure. In § 2.2 we derive the reverse FDP
with the associated path-reversed measure Q̂, and in § 2.3 we use an extension of Girsanov theorem
for infinite-dimensional SDEs to compute the ELBO. The ELBO is a training objective involving a
generalization of the score function (Song et al., 2021).

2.1 The forward diffusion process

We consider H to be a real, separable Hilbert space with inner product ⟨·, ·⟩, norm ∥·∥H , and countable
orthonormal basis {ek}∞k=1. Let L(H) be the set of bounded linear operators on H , B(H) be its
Borel σ−algebra, Bb(H) be the set of bounded B(H)−measurable functions H → R, and P (H) be
the set of probability measures on (H,B(H)). Consider the following H-valued SDE:{

dXt = (AXt + f(Xt, t)) dt+ dWt,

X0 ∼ ρ0 ∈ P (H),
(1)

where t ∈ [0, T ], Wt is a R−Wiener process on H defined on the quadruplet (Ω,F , (Ft)t≥0,Q),
and Ω,F are the sample space and canonical filtration, respectively. The domain of f is D(f) ∈
B([0, T ] × H), where f : D(f) ⊂ [0, T ] × H → H is a measurable map. The operator A :
D(A) ⊂ H → H is the infinitesimal generator of a C0− semigroup exp(tA) in H (t ≥ 0), and ρ0
is a probability measure in H . We consider Ω to be C1([0, T ]), that is the space of all continuous
mappings [0, T ] → H , and Xt(ω) = ω(t), ω ∈ Ω to be the canonical process. The requirements
on the terms A, f that ensure existence of solutions to Equation (1) depend on the type of noise —
trace-class (Tr{R} < ∞) or cylindrical (R = I) — used in the FDP (Da Prato & Zabczyk (2014),
Hypothesis 7.1 or Hypothesis 7.2 for trace-class and cylindrical noise, respectively).

The measure associated with Equation (1) is indicated with Q. The law induced at time τ ∈ [0, T ]
by the canonical process on the measure Q is indicated with ρτ ∈ P (H), where ρτ (S) = Q({ω ∈
Ω : Xτ (ω) ∈ S}), and S is any element of F . Notice, that in infinite dimensional spaces there is
not an equivalent of the Lebesgue measure to get densities from measures. In our case we consider
however, when it exists, the single dimensional density ρ

(d)
τ (xi|xj ̸=i), defined implicitly through

dρτ (x
i|xj ̸=i) = ρ

(d)
τ (xi|xj ̸=i)dxi, being dxi the Lebesgue measure. To avoid cluttering the notation,

in this work we simply shorten ρ
(d)
τ (xi|xj ̸=i) with ρ

(d)
τ (x) whenever unambiguous. In Appendix B

we provide additional details on the time-varying measure ρt(dx)dt. Before proceeding, it is useful
to notice that Equation (1) can also be expressed as an (infinite) system of stochastic differential
equations in terms of Xk

t = ⟨Xt, e
k⟩ as:

dXk
t = bk(Xt, t)dt+ dW k

t , k = 1, . . . ,∞, (2)

where we introduced the projection bk(Xt, t) = ⟨AXt+f(Xt, t), e
k⟩. Moreover, dW k

t = ⟨dWt, e
k⟩

with covariance given by E[W k
t W

j
s ] = δ(k − j)rk min(s, t), δ in Kroenecker sense, and rk is the

projection on the base of R.

2.2 The reverse diffusion process

We now derive the reverse time dynamics for FDPs of the form defined in Equation (1). We require
that the time reversal of the canonical process, X̂t = XT−t, is again a diffusion process, with
distribution given by the path-reversed measure Q̂(ω), along with the reversed filtration F̂ . Note that
the time reversal of an infinite dimensional process is more involved than for the finite dimensional
case (Anderson, 1982; Föllmer, 1985). There are two major approaches to guarantee the existence
of the reverse diffusion process. The first approach (Föllmer & Wakolbinger, 1986) is applicable
only when R = I (the case of cylindrical Wiener processes) and it relies on a finite local entropy
condition. The second approach, which is valid in the case of trace class noise Tr{R} < ∞, is based
on stochastic calculus of variations (Millet et al., 1989). The full technical analysis of the necessary
assumptions for the two approaches is involved, and we postpone formal details to Appendix A.

Theorem 1. Consider Equation (1). If R = I , suppose Assumption 1 in Appendix A.1 holds; else,
(R ̸= I) suppose Assumption 5 annd Assumption 6 in Appendix A.2 hold. Then X̂t, corresponding to
the path measure Q̂(ω), has the following SDE representation:
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{
dX̂t =

(
−AX̂t − f(X̂t, T − t) +RDx log ρ

(d)
T−t(X̂t)

)
dt+ dŴt,

X̂0 ∼ ρT ,
(3)

where Ŵ is a Q̂R−Wiener process, and the notation Dx log ρ
(d)
t (x) stands for the mapping H → H

that, when projected, satisfies ⟨Dx log ρ
(d)
t (x), ek⟩ = ∂

∂xk log
(
ρ
(d)
t (xk |xi ̸=k)

)
.

By projecting onto the eigenbasis, we have an infinite system of SDEs:

dX̂k
t =

(
−bk(X̂t, T − t) + rk

∂

∂xk
log
(
ρ
(d)
T−t(X̂t)

))
dt+ dŴ k

t , k = 1, . . . ,∞. (4)

The methodology proposed in this work requires to operate on proper Wiener processes, with
Tr{R} < ∞, which implies, intuitively, that the considered noise has finite variance. We now discuss
a Corollary, in which Assumption 5 is replaced by stricter conditions, that we use to check the validity
of the practical implementation of FDPs.
Corollary 1. Suppose Assumption 6 from Appendix A.2 holds. Assume that i) Tr{R} =

∑
i r

i < ∞,
ii) bi(x, t) = bixi,∀i, i.e. the drift term is linear and only depends on x through its projection onto
the corresponding basis and iii) the drift is bounded, such that ∃K > 0 : −K < bi < 0,∀i. Then,
the reverse process evolves according to Equation (4).

Theorem 1 stipulates that, given some conditions, the reverse time dynamics for FDPs of the form
defined in Equation (1) exist. Our analysis provides theoretical grounding to the observations in
concurrent work (Lim et al., 2023) where, empirically, it is observed that the cylindrical class of
noise is not suitable. We argue that, when R = I , the difficulty stems from designing the coefficients
bi of the SDEs such that the forward (see requirement (5.3) in Da Prato & Zabczyk (2014)) as
well as the backward processes Assumption 1 exist. The work by Bond-Taylor & Willcocks (2023)
uses cylindrical (white) noise, but we are not aware of any theoretical justification, since the model
architecture is only partially suited for the functional domain.

As an addendum, we note that the advantages of projecting the forward and backward processes on
the eignenbasis of the Hilbert space H , as in Equation (2) and Equation (4), become evident when
discussing about the implementation of FDPs, specifically when we derive practical expressions for
training and the simulation of the backward process, as discussed in § 5, and in a fully expanded toy
example in Appendix D.

2.3 A Girsanov formula for the ELBO

Direct simulation of the backward FDP described by Equation (3) is not possible. Indeed, we have
no access to the true score of the density ρ

(d)
τ induced at time τ ∈ [0, T ]. To solve the problem, we

introduce a parametric score function sθ : H × [0, T ]× Rm → H . We consider the dynamics:{
dX̂t =

(
−AX̂t − f(X̂t, T − t) +Rsθ(X̂t, T − t)

)
dt+ dW̃t,

X̂0 ∼ χT ∈ P (H),
(5)

with path measure P̂χT , and dW̃t being a P̂χT R−Wiener process. To emphasize the connection
between Equation (3) and Equation (5), we define initial conditions with the subscript T , instead of 0.
In principle, we should have χT = ρT , as it will be evident from the ELBO in Equation (8). However,
ρT has a simple and easy-to-sample-from distribution only for T → ∞, which is not compatible
with a realistic implementation. The analysis of the discrepancy when T is finite is outside of the
scope of this work, and the interested reader can refer to Franzese et al. (2022) for an analysis on
standard diffusion models. The final measure of the new process at time T is indicated by χ0, i.e.
χ0(S) = P̂χT ({ω ∈ Ω : X̂T (ω) ∈ S}).
Next, we quantify the discrepancy between χ0 and the true data measure ρ0 through an ELBO.
Thanks to an extension of Girsanov theorem to infinite dimensional SDEs (Da Prato & Zabczyk,
2014), it is possible to relate the path measures (Q̂ and P̂χT , respectively) of the process X̂t induced
by different drift terms in Equation (3) and different initial conditions.
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Starting from the score function sθ, we define:

γθ(x, t) = R
(
sθ(x, T − t)−Dx log ρ

(d)
T−t(x)

)
. (6)

Under loose regularity assumptions (see Condition 2 in Appendix A.4) W̃t = Ŵt −
t∫
0

γθ(Xs, s)ds is

a P̂ρT R−Wiener process (Theorem 10.14 in Da Prato & Zabczyk (2014)), where Girsanov Theorem
also tells us that the measure P̂ρT satisfies the Radon-Nikodym derivative:

dP̂ρT

dQ̂
= exp

 T∫
0

⟨γθ(X̂t, t),dŴt⟩
R

1
2 H

− 1

2

T∫
0

∥∥∥γθ(X̂t, t)
∥∥∥2
R

1
2 H

dt

 . (7)

By virtue of the disintegration theorem, dQ̂ = dQ̂0dρT and similarly dP̂ρT = dP̂0dρT , being
Q̂0, P̂0 the measures of the processes when considering a particular initial value. Then, P̂χT satisfies
dP̂χT = dP̂dχT

dρT
, for any measure χT ∈ P (H). Consequently, the canonical process X̂t has an SDE

representation according to Equation (5), under the new path measure P̂χT . Then (see Appendix A.5
for the derivation) we obtain the ELBO:

KL [ρ0 ∥ χ0] ≤
1

2
EQ

 T∫
0

∥γθ(Xt, t)∥2
R

1
2 H

dt

+ KL [ρT ∥ χT ] . (8)

Provided that the required assumptions in Theorem 1 are met, the validity of Equation (8) is general.
Our goal, however, is to set the stage for a practical implementation of FDPs, which calls for design
choices that easily enable satisfying the required assumptions for the theory to hold. Then, for the
remainder of the paper, we consider the particular case where f = 0 in Equation (1). This simplifies
the dynamics as follows:

dXt = AXtdt+ dWt, X0 ∼ ρ0 ∈ P (H) (9)

dX̂t =
(
−AX̂t +Rsθ(X̂t, T − t)

)
dt+ dW̃t, X̂0 ∼ χT ∈ P (H) (10)

Since the only drift component in Equation (9) is the linear term A, the projection bj will be linear
as well. Such a design choice, although not necessary from a theoretical point of view, carries
several advantages. The design of a drift term satisfying the conditions of Corollary 1 becomes
straightforward, where such conditions naturally aligns with the requirements of the existence of
the forward process (Chapter 5 of Da Prato & Zabczyk (2014)). Moreover, the forward process
conditioned on given initial conditions admits known solutions, which means that simulation of
SDE paths is cheap and straightforward, without the need for performing full numerical integration.
Finally, it is possible to claim existence of the true score function and even provide its analytic
expression (full derivation in Appendix A.7) as:

Dx log ρ
(d)
t (x) = −S(t)−1 (x− exp(tA)E [X0 |Xt = x]) , (11)

where S(t) =

(
t∫

s=0

exp((t− s)A)R exp
(
(t− s)A†)ds). This last aspect is particularly useful

when considering the conditional version of Equation (6), through ⟨Dx log ρ
(d)
t (x |x0), e

k⟩ =
∂

∂xk log
(
ρ
(d)
t (xk |xi ̸=k, x0)

)
, as:

γ̃θ(x, x0, t) = R
(
sθ(x, T − t)−Dx log ρ

(d)
T−t(x |x0)

)
, (12)

where, similarly to the unconditional case, we have Dx log ρ
(d)
t (x |x0) = −S(t)−1 (x− exp(tA)x0).

Then, Equation (12) can be used to rewrite Equation (8):

EQ

 T∫
0

∥γθ(Xt, t)∥2
R

1
2 H

dt

 = EQ

 T∫
0

∥γ̃θ(Xt, X0, t)∥2
R

1
2 H

dt

+ I, (13)

where I is a quantity independent of θ. Knowledge of the conditional true score Dx log ρ
(d)
t (x |x0)

and cheap simulation of the forward dynamics, allows for easier numerical optimization than the
more general case of f ̸= 0.
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3 Sampling theorem for FDPs

The theory of FDPs developed so far is valid for real, separable Hilbert spaces. Our goal now is to
specify for which subclass of functions it is possible to perfectly reconstruct the original function
given only its evaluation in a countable set of points. We present a generalization of the sampling
theorem (Shannon, 1949), which allows us to move from generic Hilbert spaces to a domain which
is amenable to a practical implementation of FDPs, and their application to common functional
representation of data such as images, data on manifolds, and more. We model these functions as
objects belonging to the set of square integrable functions over C∞ homogeneous manifolds M (such
as RN ,SN , etc...), i.e., the Hilbert space H = L2(M). Then, exact reconstruction implies that all the
relevant information about the considered functions is contained in the set of sampled points.

First, we define functions that are band-limited:
Definition 1. A function x in H = L2(M) is a spectral entire function of exponential type ν (SE-ν)
if |∆ k

2 x| ≤ νk|x|, k ∈ N. Informally, the “Fourier Transform” of x is contained in the interval [0, ν]
(Pesenson, 2000).

Second, we define grids that cover the manifold with balls, without too much overlap. Those grids
will be used to collect the function samples. Their formal definition is as follows:
Definition 2. Y (r, λ) denotes the set of all sets of points Z = {pi} such that: i) infj ̸=i dist(pj , pi) >
0 and ii) balls B(pi, λ) form a cover of M with multiplicity < r.

Combining the two definitions, we can state the key result of this Section. As long as the sampled
function is band-limited, if the samples grid is sufficiently fine, exact reconstruction is possible:
Theorem 2. For any set Z ∈ Y (r, λ), any SE-ν function x is uniquely determined by its set of values
in Z (i.e. {x[pi]}) as long as λ < d, that is

x =
∑
pi∈Z

x[pi]mpi , (14)

where mpi
: M → H are known polynomials2, and the notation x[p] indicates that the function x is

evaluated at point p.

A precise definition of the value of the constant d and its interpretation is outside the goal of this work,
and we refer the interested reader to Pesenson (2000) for additional details. For our purposes, it is
sufficient to interpret the condition in Theorem 2 as a generalization of the classical Shannon-Nyquist
sampling theorem (Shannon, 1949). Under this light, Theorem 2 has practical relevance, because it
gives the conditions for which the sampled version of functions contains all the information of the
original functions. Indeed, given the set of points pi on which function x is evaluated, it is possible to
reconstruct exactly x[p] for arbitrary p.

The uncertainty principle. It is not always possible to define Hilbert spaces of square integrable
functions that are simultaneously homogeneous and separable, for all the manifolds M of interest. In
other words, it is difficult in practice to satisfy both the requirements for FDPs to exist, and for the
sampling theorem to be valid (see an example in Appendix C). Nevertheless, it is possible to quantify
the reconstruction error, and realize that practical applications of FDPs are viable. Indeed, given a
compactly supported function x, and a set of points Z with finite cardinality, we can upper-bound the
reconstruction error

∥∥∥∑pi∈Z x[pi]mpi
− x
∥∥∥
H

with:∥∥∥∥∥∥
∑
pi∈Z

(x[pi]− xν [pi])mpi

∥∥∥∥∥∥
H︸ ︷︷ ︸

ϵ1

+

∥∥∥∥∥∥
∑
pi∈Z

xν [pi]mpi − xν

∥∥∥∥∥∥
H︸ ︷︷ ︸

ϵ2

+ ∥xν − x∥H︸ ︷︷ ︸
ϵ3

= ϵ, (15)

where xν is the SE-ν bandlimited version of x, obtained by filtering out – in the frequency domain –
any component larger than ν. The error ϵ1 is due to x ̸= xν . The term ϵ2 is the reconstruction error

2Precisely, they are the limits of spline polynomials that form a Riesz basis for the Hilbert space of
polyharmonic functions with singularities in Z (Pesenson, 2000).
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due to finiteness of |Z|: the sampling theorem applies to xν , but the corresponding sampling grid has
infinite cardinality. Finally, the term ϵ3 quantifies the energy omitted by filtering out the frequency
components of xν larger than ν. This (loose) upper bound allows us to understand quantitatively the
degree to which the sampling theorem does not apply for the cases of interest. Although deriving
tighter bounds is possible, this is outside the scope of this work. What suffices is that in many
practical cases, when functions are obtained from natural sources, it has been observed that functions
are nearly time and bandwidth limited (Slepian, 1983). Consequently, as long as the sampling grid is
sufficiently fine, the reconstruction error ϵ is negligible.

We now hold all the ingredients to formulate generative functional diffusion models using the Hilbert
space formalism and implement them using a finite grid of points, which is what we do next.

4 Score Network Architectural Implementations

We are now equipped with the ELBO (Equation (8)) and a score function sθ that implements the
mapping H × [0, T ]×Rm → H . We could then train the score by optimizing the ELBO and produce
samples arbitrary close to the true data measure ρ0. However, since the domain of the score function
is the infinite-dimensional Hilbert space, such a mapping cannot be implemented in practice. Indeed,
having access to samples of functions on finite grid of points is, in general, not sufficient. However,
when the conditions for Theorem 2 hold, we can substitute – with no information loss – x ∈ H with
its collection of samples {x[pi], pi}. This allows considering score network architectures that receive
as input a collection of points, and not abstract functions. Such architectures should be flexible
enough to work with an arbitrary number of input samples at arbitrary grid points, and produce as
outputs functions in H .

4.1 Implicit Neural Representation

The first approach we consider in this work is based on the idea of Implicit Neural Representations
(INRs) (Sitzmann et al., 2020). These architectures can receive as inputs functions sampled at arbitrary,
possibly irregular points, and produce output functions evaluated at any desired point. Unfortunately,
the encoding of the inputs is not as straightforward as in the Neural Fourier Operator (NFO) case,
and some form of autoencoding is necessary. Note, however, that in traditional score-based diffusion
models (Song et al., 2021), the parametric score function can be thought of as a denoising autoencoder.
This is a valid interpretation also in our case, as it is evident by observing the term E [X0 |Xt = x]
of the true score function in Equation (11). Since INRs are powerful denoisers (Kim et al., 2022a),
combined with their simple design and small number of parameters, in this Section we discuss how
to implement the score network of FDPs using INRs.

We define a valid INR as a parametric family (ψ, t,θ) of functions in H , i.e., mappings Rm× [0, T ]×
Rm → H . A valid INR is the central building block for the implementation of the parametric score
function, and it relies on two sets of parameters: θ, which are the parameters of the score function
that we optimize according to Equation (8), and ψ, which serve the purpose of building a mapping
from H into a finite dimensional space. More formally:
Definition 3. Given a manifold M , a valid Implicit Neural Representation (INR) is an element of
H defined by a family of parametric mappings n(ψ, t,θ), with t ∈ [0, T ],θ,ψ ∈ Rm. That is, for
p ∈ M , we have n(ψ, t,θ)[p] ∈ R. Moreover, we require n(ψ, t,θ) ∈ L2(M).

A valid INR as defined in Definition 3 is not sufficiently flexible to implement the parametric
score function sθ, as it cannot accept input elements from the infinite-dimensional Hilbert space
H: indeed, the score function is defined as a mapping over H × [0, T ] × Rm → H , whereas the
valid INR is a mapping defined over Rm × [0, T ] × Rm → H . Then, we use the second set of
parameters ψ to condensate all the information of a generic x ∈ H into a finite-dimensional vector.
When the conditions for Theorem 2 hold, we can substitute — with no information loss — x ∈ H
with its collection of samples {x[pi], pi}. Then, we can construct an implicitly defined mapping
g : H × [0, T ]× Rm → Rm as:

g({x[pi], pi}, t,θ) = argmin
ψ

∑
pi

(n(ψ, t,θ)[pi]− x[pi])
2
. (16)

In this work, we consider the modulation approach to INRs. The set of parameters ψ are
obtained by minimizing Equation (16) using few steps of gradient descent on the objective
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∑
pi
(n(ψ, t,θ)[pi]− x[pi])

2, starting from the zero initialization of ψ. This approach, also ex-
plored by Dupont et al. (2022b), is based on the concept of meta-learning (Finn et al., 2017). In
summary, our method constructs mappings H × [0, T ]×Rm → H , where the same INR is used first
to encode x into ψ, and subsequently to output the value functions for any desired input point p, thus
implementing the following score network:

sθ(x, t) = −(S(t))−1 (x− exp(tA)n(g({x[pi], pi}, t,θ), t,θ)) . (17)

4.2 Transformers

As an alternative approach, we consider implementing the score function sθ using transformer
architectures Vaswani et al. (2017), by interpreting them as mappings between Hilbert spaces (Cao,
2021). We briefly summarize here such a perspective, focusing on a single attention layer for
simplicity, and adapt the notation used throughout the paper accordingly.

Consider the space L2(M), with the usual collection of samples {x[pi], pi}. As a first step, both
the “features” {x[pi]} and positions {pi} are embedded into some higher dimensional space and
summed together, to obtain a sequence of vectors {yi}. Then, three different (learnable) matrices
θ(Q), θ(K), θ(V ) are used to construct the linear transformations of the vector sequence {yi} as
Ŷ (Q) = {ŷi(Q) = θ(Q)yi}, Ŷ (K) = {ŷi(K) = θ(K)yi}, Ŷ (V ) = {ŷi(V ) = θ(V )yi}. Finally, the
three matrices Ŷ (Q,K,V ) are multiplied together, according to any variant of the attention mechanism.
Indeed, different choices for the order of multiplication and normalization schemes in the products
and in the matrices correspond to different attention layers Vaswani et al. (2017). In practical
implementations, these operations can be repeated multiple times (multiple attention layers) and can
be done in parallel according to multiple projection matrices (multiple heads).

The perspective explored in (Cao, 2021) is that it is possible to interpret the sequences ŷi(Q,K,V ) as
learnable basis functions in some underlying latent Hilbert space, evaluated at the set of coordinates
{pi}. Furthermore, depending on the type of attention mechanism selected, the operation can
be interpreted as a different mapping between Hilbert spaces, such as Fredholm equations of the
second-kind or Petrov–Galerkin-type projections (Cao (2021) Eqs. 9 and 14).

While a complete treatment of such an interpretation is outside the scope of this work, what suffices is
that it is possible to claim that transformer architectures are a viable candidate for the implementation
of the desired mapping H × [0, T ]× Rm → H , a possibility that we explore experimentally in this
work. It is worth noticing that, compared to the approach based on INRs, resolution invariance is
only learned, and not guaranteed, and that the number of parameters is generally higher compared
to an INR. Nevertheless, learning the parameters of transformer architectures does not require
meta-learning, which is a practical pain-point of INRs used in our context. Additional details for the
transformer-based implementation of the score network are available in Appendix E.

Finally, for completeness, it is worth mentioning that a related class of architectures, the Neural
Operators and NFOs (Kovachki et al., 2021; Li et al., 2020), are also valid alternatives. However, such
architectures require the input grid to be regularly spaced (Li et al., 2020), and their output function
is available only at the same points pi of the input, which would reduce the flexibility of FDPs.

5 Training and sampling of FDPs

Given the parametric score function sθ from Equation (17), by simulating the reverse FDP, we
generate samples whose statistical measure χ0 is close in KL sense to ρ0. Next, we explain how to
numerically compute of the quantities in Equation (13), which is part of the ELBO in Equation (8),
and how to generate new samples from the trained FDP (simulation of Equation (10)).

ELBO Computation. Equation (8) involves Equation (13), which requires the computation of the
Hilbert space norm. The grid of points x[pi] is interpolated in H as

∑
i x[pi]ξ

i. Then, the norm of
interest can be computed as:∥∥∥∥∥∑

i

x[pi]ξ
i

∥∥∥∥∥
2

R
1
2 H

= ⟨R− 1
2

∑
i

x[pi]ξ
i, R− 1

2

∑
i

x[pi]ξ
i⟩H =

∞∑
k=1

(rk)−1

(〈
N∑
i=1

x[pi]ξ
i, ek

〉)2

.

(18)
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Depending on the choice of ξi, ei, the sum w.r.t the index k is either naturally truncated or it needs to
be further approximated by selecting a cutoff index value. Finally, training can then be performed by
minimizing:

EQ

 T∫
0

∥γ̃θ(Xt, t)∥2
R

1
2 H

dt

 ≃ E∼(20)

 T∫
0

∞∑
k=1

(rk)−1

(〈
N∑
i=1

(
γ̃θ(
∑
i

Xt[pi]ξ
i, t)[pi]

)
ξi, ek

〉)2

dt

 .

(19)

Numerical integration. Simulation of infinite dimensional SDEs is a well studied domain (Debuss-
che, 2011), including finite difference schemes (Gyöngy, 1998, 1999; Yoo, 2000), finite element
methods and/or Galerkin schemes (Hausenblas, 2003a,b; Shardlow, 1999). In this work, we adopt
a finite element approximate scheme, and introduce the interpolation operator, from R|Z| to H , i.e.∑

i x[pi]ξ
i (Hausenblas, 2003b). Notice that, in general, the functions ξi differ from the basis ei.

In addition, the projection operator maps functions from H into RL, as ⟨x, ζj⟩, ζj ∈ H . Usually,
L = |Z|. When ζi = ξi the scheme is referred to as the Galerkin scheme. We consider instead a
point matching scheme (Hausenblas, 2003b), in which ζi = δ[p − pi] with δ in Dirac sense, and
consequently ⟨x, ζi⟩ = x[pi]. Then, the infinite dimensional SDE of the forward process from
Equation (9) is approximated by the finite (|Z|) dimensional SDE:

dXt[pk] =

(〈
A
∑
i

Xt[pi]ξ
i, ζk

〉)
dt+ dWt[pk], k = 1, . . . , |Z|. (20)

Similarly, the reverse process described by Equation (10) corresponds to the following SDE:

dX̂t[pk] =

(
−

〈
A
∑
i

X̂t[pi]ξ
i, ζk

〉
+

〈
Rsθ(

∑
i

X̂t [pi] ξ
i, T − t), ζk

〉)
dt+ dŴt[pk], (21)

k = 1, . . . , |Z|.

Equation (21) is a finite dimensional SDE, and consequently we can use any known numerical
integrator to simulate its paths. In Appendix D we provide a complete toy example to illustrate our
approach in a simple scenario, where we emphasize practical choices.

6 Experiments

Despite a rather involved theoretical treatment, the implementation of FDPs is simple. We imple-
mented our approach in JAX (Bradbury et al., 2018), and use WANDB (Biewald, 2020) for our
experimental protocol. Additional details on implementation, and experimental setup, as well as
more experiments are available in Appendix E.

We evaluate our approach on image data, using the CELEBA 64× 64 (Liu et al., 2015) dataset. Our
comparative analysis with the state-of-the-art includes generative quality, using the FID score (Heusel
et al., 2017), and parameter count for the score network. We also discuss (informally) the complexity
of the network architecture, as a measure of the engineering effort in exploring the design space of
the score network. We compare against vanilla Score Based Diffusion (SBD) (Song et al., 2021),
From Data To Functa (FD2F) (Dupont et al., 2022a) which diffuses latent variables obtained from
an INR, Infinite Diffusion (∞-DIFF) (Bond-Taylor & Willcocks, 2023), which is a recent approach
that is only partially suited for the functional domain, as it relies on the combination of Fourier
Neural Operators and a classical convolutional U-NET backbone. Our FDP method is implemented
using either MLP or Transformers. In the first case, we consider a score network implemented as
a simple MLP with 15 layers and 256 neurons in each layer. The activation function is a Gabor
wavelet activation function (Saragadam et al., 2023). In the latter case, our approach is built upon the
UViT backbone as detailed by Bao et al. (2022). The architecture comprises 7 layers, with each layer
composed of a self-attention mechanism with 8 attention heads and a feedforward layer.

We present quantitative results in Table 1, showing that our method FDP(MLP) achieves an impres-
sively low FID score, given the extremely low parameter count, and the simplicity of the architecture.
FD2F obtains a worse (larger) FID score, while having many more parameters, due to the complex
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parametrization of their score network. As a reference we report the results of SBD, where the price to
be pay to achieve an extremely low FID is to have many more parameters and a much more intricate
architecture. Finally, the very recent ∞-DIFF method, has low FID-CLIP score (Kynkäänniemi
et al., 2022), but requires a very complex architecture and more than 2 orders of magnitude more
parameters than our approach. Showcasing the flexibility of the proposed methodology, we consider a
more complex architecture based on Vision Transformers (FDP(UViT)). These corresponding results
indicate improvements in terms of image quality (FID score=11) and do not require meta-learning
steps, but require more parameters (O(20M)) than the INR variant. To the best of our knowledge,
none of related work in the purely functional domain (Lim et al., 2023; Hagemann et al., 2023;
Dutordoir et al., 2022; Kerrigan et al., 2022) provides results going beyond simple data-sets. Finally,
we present some qualitative results in Figures 1 and 2 clearly showing that the proposed methodology
is capable of producing diverse and detailed images.

Methods FID (↓) FID-CLIP (↓) Params
FDP(MLP) 35.00 12.44 O(1 M)
FDP(UViT) 11.00 6.55 O(20 M)

FD2F 40.40 - O(10 M)
SBD 3.30 - O(100 M)

∞-DIFF - 4.57 O(100 M)

Table 1: Quantitative results, CELEBA data-set. (FID-CLIP (Kynkäänniemi et al., 2022))

Figure 1: Qualitative results with MLP. Figure 2: Qualitative results with UViT.

7 Conclusion, Limitations and Broader Impact

We presented a theoretical framework to define functional diffusion processes for generative modeling.
FDPs generalize traditional score-based diffusion models to infinite-dimensional function spaces, and
in this context we were the first to provide a full characterization of forward and backward dynamics,
together with a formal derivation of an ELBO that allowed the estimation of the parametric score
function driving the reverse dynamics.

To use FDPs in practice, we carefully studied for which subset of functions it was possible to operate
on a countable set of samples without losing information. We then proceeded to introduce a series of
methods to jointly model – using only a simple INR or a Transformer – an approximate functional
representation of data on discrete grids, and an approximate score function. Additionally, we detailed
practical training procedures of FDPs, and integration schemes to generate new samples.

The implementation of FDPs for generative modeling was simple. We validated the viability of FDPs
through a series of experiments on real images, where we show, while only using a simple MLP for
learning the score network, extremely promising results in terms of generation quality.

Like other works in the literature, the proposed method can have both positive (e.g., synthesizing new
data automatically) and negative (e.g., deep fakes) impacts on society depending on the application.
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imagenet classes in fréchet inception distance. arXiv preprint arXiv:2203.06026, 2022.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895, 2020.

Jae Hyun Lim, Nikola B Kovachki, Ricardo Baptista, Christopher Beckham, Kamyar Azizzadenesheli,
Jean Kossaifi, Vikram Voleti, Jiaming Song, Karsten Kreis, Jan Kautz, et al. Score-based diffusion
models in function space. arXiv preprint arXiv:2302.07400, 2023.

Jinglin Liu, Chengxi Li, Yi Ren, Feiyang Chen, and Zhou Zhao. Diffsinger: Singing voice synthesis
via shallow diffusion mechanism. Proceedings of the AAAI Conference on Artificial Intelligence,
36(10):11020–11028, Jun. 2022.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Shitong Luo and Wei Hu. Diffusion probabilistic models for 3d point cloud generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2837–2845,
June 2021.

Annie Millet, David Nualart, and Marta Sanz. Time reversal for infinite-dimensional diffusions.
Probability theory and related fields, 82(3):315–347, 1989.

Sarthak Mittal, Guillaume Lajoie, Stefan Bauer, and Arash Mehrjou. From points to functions:
Infinite-dimensional representations in diffusion models. In ICLR Workshop on Deep Generative
Models for Highly Structured Data, 2022.

Isaac Pesenson. A sampling theorem on homogeneous manifolds. Transactions of the American
Mathematical Society, 352(9):4257–4269, 2000.

Angus Phillips, Thomas Seror, Michael Hutchinson, Valentin De Bortoli, Arnaud Doucet, and Emile
Mathieu. Spectral diffusion processes. arXiv preprint arXiv:2209.14125, 2022.

Jakiw Pidstrigach, Youssef Marzouk, Sebastian Reich, and Sven Wang. Infinite-dimensional diffusion
models for function spaces. arXiv preprint arXiv: 2302.10130, 2023.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents, 2022. URL https://arxiv.org/abs/2204.
06125.

13

https://openreview.net/forum?id=2LdBqxc1Yv
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2204.06125


Severi Rissanen, Markus Heinonen, and Arno Solin. Generative modelling with inverse heat dissipa-
tion. arXiv preprint arXiv:2206.13397, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, June 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kam-
yar Seyed Ghasemipour, Raphael Gontijo-Lopes, Burcu Karagol Ayan, Tim Salimans, Jonathan
Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion models with
deep language understanding. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho (eds.), Advances in Neural Information Processing Systems, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations, 2022.

Vishwanath Saragadam, Daniel LeJeune, Jasper Tan, Guha Balakrishnan, Ashok Veeraragha-
van, and Richard G Baraniuk. Wire: Wavelet implicit neural representations. arXiv preprint
arXiv:2301.05187, 2023.

C.E. Shannon. Communication in the presence of noise. Proceedings of the IRE, 37(1):10–21, 1949.

Tony Shardlow. Numerical methods for stochastic parabolic pdes. Numerical functional analysis and
optimization, 20(1-2):121–145, 1999.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Implicit
neural representations with periodic activation functions. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 7462–7473. Curran Associates, Inc., 2020.

David Slepian. Some comments on fourier analysis, uncertainty and modeling. SIAM review, 25(3):
379–393, 1983.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Francis Bach and David Blei (eds.), Proceedings
of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pp. 2256–2265, Lille, France, 07–09 Jul 2015. PMLR.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett (eds.),
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Supplementary Material: Continuous-Time Functional Diffusion Processes

A Reverse Functional Diffusion Processes

In this Section, we review the mathematical details to obtain the backward FDP discussed in Theo-
rem 1. Depending on the considered class of noise, different approaches are needed. First, we present
in Appendix A.1 the conditions to ensure existence of the backward process , which we use if the C
operator is an identity matrix, C = I . Then we move to a different approach in Appendix A.2 for the
case C ̸= I .

A.1 Follmer Formulation

The work in Föllmer (1986) is based on a finite entropy condition, which we report here as Condition 1.
One simple way to ensure that the condition is satisfied is to assume:
Condition 1. For a given k, define Q(k) to be the path measure corresponding to the (infinite) system{

dXi
t = bi(Xt, t)dt+ dW i

t , i ̸= k

dXi
t = dW k

t , i = k.
(22)

We say that Q satisfies the finite local entropy condition if KL
[
Q ∥ Q(k)

]
< ∞,∀k.

Define F (i)
t = σ(Xi

0, X
j
s , 0 ≤ s ≤ t, j ̸= i).

Assumption 1.∫ T

0

bi(Xt, t)
2dt+

∑
j ̸=i

E[
∫ T

0

(
bj(Xt, t)− E

[
bj(Xt, t) | F (i)

t

])2
dt] < ∞,Q(i)a.s. (23)

Notice that if Assumption 1 is true, then Condition 1 holds (Föllmer (1986), Thm. 2.23)

Theorem 3. If KL
[
Q ∥ Q(k)

]
< ∞, then KL

[
Q̂ ∥ Q̂(k)

]
< ∞.

Proof. The proof can be obtained by adapting the result of Lemma 3.6 of Föllmer & Wakolbinger
(1986).

This Theorem states that if the forward FDP path measure Q satisfies the finite local entropy condition,
then also the reverse FDP path measure Q̂ satisfies the finite local entropy condition.
Theorem 4. Let Q be a finite entropy measure. Then:{

dXk
t = bk(Xt, t)dt+ dW k

t , under Q
dX̂k

t = b̂k(X̂t, t)dt+ dŴ k
t , under Q̂

(24)

where:
∂ log

(
ρ
(d)
t (xk |xj , j ̸= k)

)
∂xk

= b̂k(x, T − t) + bk(x, t) (25)

Proof. For the proof, we refer to Theorem 3.14 of Föllmer & Wakolbinger (1986).

A.2 Millet Formulation

Let L2(R) = {x ∈ H :
∑

ri(xi)2 < ∞}. For simplicity, we overload the notation of the letter K,
and use it for generic constants, that might be different on a case by case basis.
Assumption 2.

∀x ∈ L2(R), sup
t
{
∑

ri(bi(x, t))2}+
∑

(ri)2 ≤ K(1 +
∑

ri(xi)2)

∀x, y ∈ L2(R), sup
t
{
∑

ri(bi(x, t)− bi(y, t))2} ≤ K
∑

ri(xi − yi)2
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This assumption is simply the translation of H1 from Millet et al. (1989) to our notation.

Assumption 3. There exists an increasing sequence of finite subsets J(n), n ∈ N,∪nJ(n) = N such
that ∀n ∈ N,M > 0 there exists a constant K(M,n) such that the following holds:

sup
t

 sup
i∈J(n)

(sup
x

|bi(x, t)| : sup
j∈J(n)

|xj | ≤ M

)
+
∑
j

rj

 ≤ K(M,n).

Again, this assumption is simply the translation of H5 from Millet et al. (1989) to our notation.

Assumption 4. Either i):

∀x, y ∈ L2(R), sup
t
{
∑

ri(bi(x, t)− bi(y, t))2} ≤ K
∑

(ri)2(xi − yi)2,

or ii): ∀i, bi(x) is a function of x for at most M coordinates and

∀x, y ∈ L2(R), sup
t
{
∑

(ri)2(bi(x, t)− bi(y, t))2} ≤ K
∑

(ri)2(xi − yi)2.

This corresponds to satisfying either H3 or jointly H2 and H4 of Millet et al. (1989). For simplicity,
we can combine together the different assumptions into

Assumption 5. Let Assumption 2, Assumption 3, and Assumption 4 hold.

Finally, we state required assumptions about the density:

Assumption 6. Suppose that the initial condition is X0 ∈ L2(R).

• Assume that the conditional law of xi given xj , j ̸= i has density ρ
(d)
t (xi |xj , j ̸= i) w.r.t

Lebesgue measure on R.

• Assume that
∫ 1

t0

∫
DJ

|ri d
dxi (ρ

(d)
t (xi |xj , j ̸= i))|dxiρt(dx

j ̸=i)dt < ∞, for fixed subset
J ⊂ N,t0 > 0 and DJ = {(

∏
j∈J Kj)× (

∏
j /∈J R),Kj compact in R} ∩ L2(R).

We reported in our notation the content of Theorem 4.3 of Millet et al. (1989). This can be used to
prove the existence of the backward process.

A.3 Proof of Theorem 1

If R = I , then we assume Assumption 1. Consequently, Q is a finite entropy measure. Then
Theorem 4 holds, from which the desired result. If, instead R ̸= I , then we require Assumption 5,As-
sumption 6. Application of Thm 4.3 of Millet et al. (1989) allows to prove the validity of Theorem 1
also in this case.

A.3.1 Proof of Corollary 1

Assumption 5 is required directly. We need to show that with the considered restrictions Assumption 6
is valid.

Since
∑

i r
i < ∞, then

∑
i(r

i)2 = Ka < ∞. Moreover, (bi(xi, t))2 < K2
b (x

i)2. Then,
∀x ∈ L2(R), the following holds supt{

∑
ri(bi(x, t))2} +

∑
(ri)2 ≤

∑
riK2

b (x
i)2 + Ka ≤

max(Ka,K
2
b )
(
1 +

∑
ri(xi)2

)
. Similarly, ∀x, y ∈ L2(R) we have supt{

∑
ri(bi(x, t) −

bi(y, t))2} ≤
∑

riK2
b (x

i − yi)2. Thus Assumption 2 is satisfied.

Since bi(x, t) is bounded and independent on t, Assumption 3 is satisfied, as explicitly discussed in
Millet et al. (1989).

Finally, since bi(x) is a function of x for M = 1 coordinate, and supt{
∑

(ri)2(bi(x, t) −
bi(y, t))2} ≤

∑
(ri)2K2

b (x
i − yi)2, Assumption 4 is satisfied.

Then, combined toghether Assumption 5 holds.
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A.4 Girsanov Regularity

Condition 2. Assume that γθ(x, t) is an F̂ measurable process and that either:

EQ̂

exp
1

2

T∫
0

∥∥∥γθ(X̂t, t)
∥∥∥2
R

1
2 H

dt

 = EQ

exp
1

2

T∫
0

∥γθ(Xt, t)∥2
R

1
2 H

dt

 < ∞, (26)

or

∃δ > 0 : EQ̂

[
exp

(
1

2

∥∥∥γθ(X̂δ, δ)
∥∥∥
R

1
2 H

dt

)]
< ∞. (27)

This is equivalent to the regularity condition in eq. 10.23 of Da Prato & Zabczyk (2014) or Proposition
10.17 in Da Prato & Zabczyk (2014).

A.5 Proof of KL divergence expression

We leverage Equation (7) to express the Kullback-Leibler divergence as:

KL
[
Q̂ ∥ P̂χT

]
= EQ̂

[
log

dQ̂0

dP̂0

+ log
dρT
dχT

]
= EQ̂

[
log

dQ̂0

dP̂0

]
+ KL [ρT ∥ χT ] =

EQ̂

− T∫
0

⟨γθ(X̂t, t),dŴt⟩
R

1
2 H

+
1

2

T∫
0

∥∥∥γθ(X̂t, t)
∥∥∥2
R

1
2 H

dt

+ KL [ρT ∥ χT ] =

1

2
EQ̂

 T∫
0

∥∥∥γθ(X̂t, t)
∥∥∥2
R

1
2 H

dt

+ KL [ρT ∥ χT ] =
1

2
EQ

 T∫
0

∥γθ(Xt, t)∥2
R

1
2 H

dt

+ KL [ρT ∥ χT ] .

Moreover, since

KL
[
Q̂ ∥ P̂χT

]
= EQ

[
log

dQ̂T

dP̂χT

T

+ log
dρ0
dχ0

]
≥ KL [ρ0 ∥ χ0] ,

we can combine the two results and obtain Equation (8)

A.6 Conditional score matching

In this subsection we prove the equality in Equation (13):

EQ

 T∫
0

∥γθ(Xt, t)∥2
R

1
2 H

dt

 =

T∫
0

∫
H

∥γθ(x, t)∥2
R

1
2 H

dtdρt(x) =

T∫
0

∫
H

∥∥∥Dx log ρ
(d)
T−t(x)− sθ(x, T − t)

∥∥∥2
R

1
2 H

dtdρt(x) =

T∫
0

∫
H×H

∥∥∥Dx log ρ
(d)
t (x)− sθ(x, t)

∥∥∥2
R

1
2 H

dtdρt(x, x0) =

T∫
0

∫
H×H

∥∥∥Dx log ρ
(d)
t (x)−Dx log ρ

(d)
t (x |x0) +Dx log ρ

(d)
t (x |x0)− sθ(x, t)

∥∥∥2
R

1
2 H

dtdρt(x, x0) =

T∫
0

∫
H×H

∥∥∥Dx log ρ
(d)
t (x)−Dx log ρ

(d)
t (x |x0)

∥∥∥2
R

1
2 H

+
∥∥∥Dx log ρ

(d)
t (x |x0)− sθ(x, t)

∥∥∥2
R

1
2 H

+

2
〈
Dx log ρ

(d)
t (x)−Dx log ρ

(d)
t (x |x0), Dx log ρ

(d)
t (x |x0)− sθ(x, t)

〉
dtdρt(x, x0).
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To simplify the equality, we need to notice that:

ρ
(d)
t (xi|xj ̸=i)dxi = dρt(x

i|xj ̸=i) =

∫
x0

dρt(x0|x)dρt(xi|xj ̸=i) =

∫
x0

dρt(x
i, x0|xj ̸=i) =∫

x0

dρt(x
i|x0, x

j ̸=i)dρt(x0|xj ̸=i) = dxi

∫
x0

ρ
(d)
t (xi|x0, x

j ̸=i)dρt(x0|xj ̸=i).

Then, computing

∫
x0

d

dxi
log ρ(d)(xi|xj ̸=i, x0)dρt(x, x0) =

∫
x0

d
dxi ρ

(d)(xi|xj ̸=i, x0)

ρ(d)(xi|xj ̸=i, x0)
dρt(x, x0) =∫

x0

d
dxi ρ

(d)(xi|xj ̸=i, x0)

ρ(d)(xi|xj ̸=i, x0)
dρt(x

i|xj ̸=i, x0)dρt(x0, x
j ̸=i) =

∫
x0

d

dxi
ρ(d)(xi|xj ̸=i, x0)dx

idρt(x0, x
j ̸=i) =∫

x0

d

dxi
ρ(d)(xi|xj ̸=i, x0)dx

idρt(x0|xj ̸=i)dρt(x
j ̸=i) =

d

dxi

(∫
x0

ρ(d)(xi|xj ̸=i, x0)dρt(x0|xj ̸=i)

)
dxidρt(x

j ̸=i) =

d

dxi
ρ
(d)
t (xi|xj ̸=i)dxidρt(x

j ̸=i) =
d log ρ

(d)
t (xi|xj ̸=i)

dxi
ρ
(d)
t (xi|xj ̸=i)dxidρt(x

j ̸=i) =
d log ρ

(d)
t (xi|xj ̸=i)

dxi
dρt(x)

Consequently:

∫
H×H

〈
Dx log ρ

(d)
t (x)−Dx log ρ

(d)
t (x |x0), sθ(x, t)

〉
dρt(x, x0) = 0.

Combining together and rearranging the terms, we get the desired Equation (13).

A.7 Explicit expression of score function

As mentioned in the text, we consider the case f = 0. In this case, there exists a weak solution to
Equation (1) as:

Xt = exp(tA)X0 +

t∫
0

exp((t− s)A)dWs. (28)

Consequently, the true score function has expression:
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d

dxi
log ρ

(d)
t (xi|xj ̸=i) =

d
dxi ρ

(d)
t (xi|xj ̸=i)

ρ
(d)
t (xi|xj ̸=i)

=
d

dxi

∫
x0

ρ
(d)
t (xi|x0, x

j ̸=i)dρt(x0|xj ̸=i)

ρ
(d)
t (xi|xj ̸=i)

=

−
∫
x0
(si)−1

(
xi − exp

(
tbi
)
xi
0

)
ρ
(d)
t (xi|x0, x

j ̸=i)dρt(x0|xj ̸=i)

ρ
(d)
t (xi|xj ̸=i)

=

−(si)−1
(
xiρ

(d)
t (xi|xj ̸=i)−

∫
x0

exp
(
tbi
)
xi
0ρ

(d)
t (xi|x0, x

j ̸=i)dρt(x0|xj ̸=i)
)

ρ
(d)
t (xi|xj ̸=i)

=

−(si)−1
(
xiρ

(d)
t (xi|xj ̸=i)−

∫
x0

exp
(
tbi
)
xi
0ρ

(d)
t (xi|x0, x

j ̸=i)dρt(x0|xj ̸=i)
)

ρ
(d)
t (xi|xj ̸=i)

=

−(si)−1
(
xiρ

(d)
t (xi|xj ̸=i)−

∫
xi
0
exp
(
tbi
)
xi
0ρ

(d)
t (xi|xi

0, x
j ̸=i)dρt(x

i
0|xj ̸=i)

)
ρ
(d)
t (xi|xj ̸=i)

=

−(si)−1
(
xiρ

(d)
t (xi|xj ̸=i)−

∫
xi
0
exp
(
tbi
)
xi
0ρ

(d)
t (xi|xi

0, x
j ̸=i)ρ(d)(xi

0|xj ̸=i)dxi
0

)
ρ
(d)
t (xi|xj ̸=i)

=

−(si)−1
(
xiρ

(d)
t (xi|xj ̸=i)−

∫
xi
0
exp
(
tbi
)
xi
0ρ

(d)
t (xi, xi

0|xj ̸=i)dxi
0

)
ρ
(d)
t (xi|xj ̸=i)

=

−(si)−1
(
xiρ

(d)
t (xi|xj ̸=i)−

∫
xi
0
exp
(
tbi
)
xi
0ρ

(d)
t (xi

0|x)dxi
0

)
ρ
(d)
t (xi|xj ̸=i))

ρ
(d)
t (xi|xj ̸=i)

=

− (si)−1

(
xi −

∫
xi
0

exp
(
tbi
)
xi
0ρ

(d)
t (xi

0|x)dxi
0

)

where si = ri
exp(2bit)−1

2bi . This is exactly the desired Equation (11). Similar calculations allow to
prove Dx log ρ

(d)
t (x |x0) = −S(t)−1 (x− exp(tA)x0).

B Fokker Planck equation

In this Section we discuss the infinite dimensional generalization of the classical Fokker Planck
equation. We can associate to Eq. (1) the differential operator:

L0u(x, t) = Dtu(x, t) +
1

2
Tr
{
RD2

xu(x, t)
}
+ ⟨Ax+ f(x, t), Dxu(x, t)⟩︸ ︷︷ ︸
Lu(x,t)

, x ∈ H, t ∈ [0, T ],

(29)
where Dt is the time derivative, Dx, D

2
x are first and second order Fréchet derivatives in space.

The domain of the operator L0 is D(L0), the linear span of real parts of functions uϕ,h =
ϕ(t) exp(i⟨x, h(t)⟩), x ∈ H, t ∈ [0, T ] where ϕ ∈ C1([0, T ]), ϕ(T ) = 0, h ∈ C1([0, T ];D(A†)),
where † indicates adjoint. Provided appropriate conditions are satisfied, see for example Bogachev
et al. (2009, 2011), the time varying measure ρt(dx)dt exists, is unique, and solves the Fokker-Planck
equation L†

0ρt = 0.

C Uncertainty principle

We here clarify that Hilbert spaces of square integrable functions that are not, in general, simultane-
ously homogeneous and separable. For example, while R is homogeneous, the set of square integrable
functions over R is not separable, since the basis is the uncountable set cos(2πνp), sin(2πνp), ν ∈ R.
Then, FDP requirements are not met, as we need a countable basis. Moreover, we would need in
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general an infinite number of samples (grid over the whole R) to reconstruct the functions. Conversely,
a set like the interval I = [0, 1] ⊂ R has countable basis cos(2πtp), sin(2πtp), t ∈ Z (and thus
is separable) and, considering x to be band-limited, a sampling grid with finite cardinality would
allow to reconstruct of the function. However, I is not homogeneous as no isometry group exists.
Consequently, Theorem 2 is not applicable. To fix the issue, one could naively think of extending any
function defined over I to the whole R by considering x̄[p] = x[p], p ∈ I and x̄[p] = 0, p /∈ I . Obvi-
ously, if x ∈ L2(I) then x̄ ∈ L2(R). However, since x̄ has finite support, it cannot be bandlimited,
making such an approach not a viable solution. In classical signal processing literature, the problem
is usually referred to as the uncertainty principle (Slepian, 1983).

D A complete example

We present an example in which we cast Equation (20) for square integrable functions over the
interval I = [0, 1], L2(I). In this case, one natural selection for the basis is the Fourier basis3

ek = {. . . , exp(−j2π2p), exp(−j2πp), 1, exp(j2πp), exp(j2π2p), . . . }. Assume the operator A
to be a pseudo-differantial operator, such that ⟨Ax, ek⟩ = bkxk. Also, assume that bk, rk are selected
such that conditions of Corollary 1 are met, and consequently the backward process exists. Since
we are working with samples collected on the grid x [i/N] we first map the samples to the frequency
domain, and then build a Fourier-like representation with a finite set of sinusoids. We then define the
mapping F(zi)k

def
=
∑N−1

i=0 zi exp
(
−j2πk i

N

)
and its inverse I(zi)k def

= N−1
∑N−1

i=0 zi exp
(
j2πk i

N

)
.

This suggests to consider the following expression for the interpolating functions:

ξi =
1

N

N−1∑
k=0

ek exp

(
−j2πk

i

N

)
=

1

N

N−1∑
k=0

exp

(
j2πk(p− i

N
)

)
.

Those functions are indeed nothing but a frequency truncated version of the sinc function, which is
the classical reconstruction function of the sampling theorem on 1-D signals. Moreover ⟨ξi, ζk⟩ =
δ(i− k). We are now ready to show i) the expression of the forward process, ii) the expression of the
parametric score function sθ and γθ , iii) the computation of the ELBO and finally iv) the expression
for the backward process.

The forward process defined in Equation (20) has expression:

dXt [k/N] = I
(
blF(Xt[i/N])

l
)k

dt+ dW t [k/N] , k = 1, . . . , |Z|, (30)

where dW t [k/N] ≃ F(dW i
t )

k. Simple calculations show that Xt [k/N] is equivalent in distribution to

Xt [k/N] = I
(
exp
(
blt
)
F(X0[i/N])

l +
√
slϵl
)k

, (31)

where sl =
〈
S(t), el

〉
= rl

exp(2blt)−1

2bl
and ϵl ∼ N (0, 1), allowing simulation of the forward process

in a single step. The parametric score function can be approximated as:

sθ

(∑
i

Xt [i/N] ξ
i, t

)
[i/N] = (32)

− I

(
F (Xt [i/N])

k − exp
(
bkt
)
F (n(g(Xt [l/N]), t,θ) [l/N])

sk

)i

.

Similarly:

γ̃θ

(∑
i

Xt [i/N] ξ
i,
∑
i

X0 [i/N] ξ
i, t

)
[i/N] = (33)

− I

(
exp
(
bkt
)

sk

(
F (n(g(Xt [l/N]), t,θ) [l/N]−X0[l/N])

k
))i

.

3We stress that although we should consider a real Hilbert space, we select the complex exponential to avoid
cluttering the notation. It is possible to select {cos(2πp), sin(2πp), cos(2π2p), sin(2π2p), . . . } as a basis, and
redoing the calculations in this Section we can obtain a functionally equivalent scheme as the one with the real
basis.
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Combining Equation (31) and Equation (33) we can fully characterize the training objective defined in
Equation (19). Then, it is possible to optimize the value of the parameters θ with any gradient-based
optimizer.

Finally, the backward process approximation is expressed as:

dX̂t [k/N] = −I
(
blF(X̂t[i/N])

l
)k

+ I

rlF

(
sθ(
∑
i

X̂t [i/N] ξ
i, T − t) [i/N]

)l
 dt+ dW t [k/N]

(34)
k = 1, . . . , |Z|,

from which new samples can be generated.

D.1 Proofs

We start by proving Equation (30). Starting from the drift term of Equation (20), we have the
following chain of equalities:〈

A
N−1∑
i=0

Xt[i/N]ξ
i, ζk

〉
=

〈
N−1∑
i=0

Xt[i/N]A
1

N

N−1∑
l=0

el exp

(
−j2πl

i

N

)
, ζk

〉
=〈

N−1∑
i=0

Xt[i/N]
1

N

N−1∑
l=0

blel exp

(
−j2πl

i
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The noise term dW t [k/N] is approximated as:
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where we are truncating the sum. The score term has expression:
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where the approximation is due to the substitution of explicit scalar product with the discretized
version trough F. When evaluated on the grid of interest:

sθ
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)
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sk

)
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The value of γ̃θ, Equation (33) and the expression of the backward process, Equation (34), are
obtained similarly, considering the above results.

E Implementation Details and Additional Experiments

In all experiments we use the the complex Fourier basis for the Hilbert spaces, indexed by k. This
extends to the 2-dimensional case what we described in Appendix D.1. As stated in the main paper,
our practical implementation sets f = 0: then, we only need to specify the value for the parameters
bk, rk. In our implementation we consider an extended class of SDEs that include time-varying
multiplying coefficients in front of the drift and diffusion terms, as done for example in the Variance
Preserving SDE originally described by Song & Ermon (2020). This can be simply interpreted as the
time-rescaled version of autonomous SDEs.

E.1 Architectural details

INR-based score network. In our implementation, we use the original INR architecture (Sitzmann
et al., 2020). For the specific denoising task we consider in our model, we extend the input of the
network architecture to include the corrupted version of the input sample and the diffusion time t, in
addition to the spatial coordinates. We emphasize that our architectural design is simple, and does not
require self-attention mechanisms (Song & Ermon, 2020). The non-linearity we use in our network is
a Gabor wavelet activation function (Saragadam et al., 2023). Furthermore, we found beneficial the
inclusion of skip connections.

As stated in the main paper, we consider the modulation approach to INRs. In particular, we
implement the meta-learning scheme described by Dupont et al. (2022b); Finn et al. (2017). The
outer loop is dedicated to learning the base parameters of the model, while the inner loop focuses
on refining the base parameters for each input sample. In the outer loop, the optimization algorithm
is AdaBelief (Zhuang et al., 2020), sweeping the learning rate over 1e-4, 1e-5, 1e-6. We found the
use of a cosine warm-up schedule to be beneficial for avoiding training instabilities and convergence
to sub-optimal solutions. The inner loop is implemented by using three steps of stochastic gradient
descent (SGD).

Transformer-based score network. In our experiments with the Transformer architecture for score
modeling, we employed the UViT backbone Bao et al. (2022). This backbone processes all inputs,
be they temporal or noisy image patches, as tokens. Rather than utilizing UViT’s default learned
positional embeddings, we adapted it to integrate 2D sinusoidal positional encodings. For the noisy
input images, patch embeddings transform them into a sequence of tokens. Notably, we chose a patch
size of 1 to fully harness the functional properties of our framework. Time embeddings are computed
based on the time and then concatenated with the image tokens.

Our chosen transformer architecture comprises 7 layers, with each layer composed of a self-attention
mechanism with 8 attention heads and a feedforward layer. Furthermore, we use long skip connections
between the shallower and deeper layers, as outlined by Bao et al. (2022).

For optimization during our training, we utilized the AdamWLoshchilov & Hutter (2017) algorithm
with a weight decay of 0.03. We employed a cosine warm-up schedule for the learning rate, which
ends at a value of 2e-4.
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Figure 3: Left: real (red) and generated samples (blue). Center and Right: Samples diffused for times 0.2 and
1.0 respectively.

E.2 Additional results

E.2.1 A Toy example.

We here present some qualitative examples on a synthetic data-set of functions ∈ L([−1, 1]), and
therefore consider the settings described in Appendix D. The Quadratic data is generated as in
(Phillips et al., 2022), i.e. X0[p] = qp2 + ϵ, where ϵ ∼ N (0, 0.1) and q is a binary random variable
that take values {−1, 1} with equal probability. Concerning the design of the forward SDE, we
select bk = min(

√
k, 10) and rk = k−2 (thus satisfying Corollary 1). The real data is generated

considering a grid of 100 equally spaced points. We can see in Figure 3 some qualitative results. On
the left real (red) and generated through FDP (blue) samples show good agreement. Center and right
plots depict some example of diffused samples for times 0.2 and 1.0 respectively.

E.2.2 MNIST data-set

We evaluate our approach on a simple data-set, using MNIST 32× 32 (LeCun et al., 2010). In this
experiment, we compare our method against the baseline score-based diffusion models from Song
et al. (2021), which we take from the official code repository https://github.com/yang-song/
score_sde. The baseline implements the score network using a U-NET with self-attention and skip
connections, as indicated by current best practices, which amounts to O(108) parameters.

Instead, our method uses a score-network/INR implemented as a simple MLP with 8 layers and 128
neurons in each layer. The activation function is a sinusoidal non-linearity (Sitzmann et al., 2020).
Our model counts O(105) parameters. We consider an SDE with parameters rk,m = 176

k2+m2+2 , 4 and

bk,m = min((k2 +m2 + 0.3)−1 +
(

rk,m

33

) 1
4

, 3.6). These values have been determined empirically
by observing the power spectral density of the data-set, to ensure a well-behaved Signal to Noise
ratio evolution throughout the diffusion process for all frequency components.

4Strictly speaking, the sum of the series rk,m is not convergent. We experimented changing the decay to
ensure convergence, but we observed no numerical difference with the settings we the setting we used. It is an
interesting avenue for future work to study if this approximation has an impact for higher-resolution data-sets.
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Figure 6: Example of super-resolution of Mnist images. From left to right: initial (training) resolution to higher
resolutions.

Figure 4: MNIST samples generated according to
our proposed FDPs.

Figure 5: Top right: MNIST real samples. Top Left:
Each sample is diffused for a given random time. Bot-
tom: output of INR for corresponding input noisy im-
age.

In Figure 4 we report un-curated samples generated according to our FDP. In Figure 5 we present
instead various “intermediate” noisy versions of the training data, to illustrate the kind of noise we
use to train the score network, and the output of the denoising INR. We also report the Fréchet
Inception Distance (FID) score computed using 16k samples (lower is better). For the baseline we
obtain FID=0.05, whereas for the proposed method we obtain FID=0.43. Although the FID score is in
favor of the baseline, we believe that our results – obtained with a simple MLP – are very promising,
as further corroborated by experiments on a more complex dataset, which we show next.

Super resolution. We demonstrate how an INR trained at a 32x32 resolution on MNIST can
be seamlessly applied to increase the resolution of the generated data points. Given that the INR
establishes a mapping between a grid and its corresponding value, we initiated the diffusion process
from a grid at a 32x32 resolution. The diffusion process continued until the final step, where we used
the last learned parameters to extrapolate outputs at a higher resolution. A significant advantage of
using INRs is the ability to conduct the resource-intensive sampling at a lower resolution and then
effortlessly transition between resolutions with just a single forward call to the model. Figure 6,
shows our results at different resolutions.

E.2.3 CELEBA data-set

For the CELEBA data-set we considered the same SDE as for the MNIST experiment. Results
reported in the main paper have been obtained using a numerical integration scheme of a variant of
the predictor-corrector scheme of (Song & Ermon, 2020), which we adapted to the SDEs we consider
in our work. In Figure 8 and Figure 9 we report additional un-curated samples obtained with the INR
and Transformer respectively. We proceed to describe further experiments in the following section.

Conditional generation. In the following, we consider three use-cases for conditional generation:
in-painting, de-blurring, and colorization, which we describe next. All these additional experiments
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were completed using the same architecture and configuration of the unconditional generation
described above.

In-painting. We perform in-painting experiments by adopting the same approach described by Song
& Ermon (2020), and report results in Figure 10. Original images (left-column of Figure 10) are
masked (center-column of Figure 10), where we set the value corresponding to the missing pixels to
0. The right column of Figure 10 shows the results of the in-painting scheme where, qualitatively, it
is possible to observe that the conditional generation is able to fill the missing portion of the images
while maintaining good semantic coherence.

De-blurring. Our FDPs are naturally suited for the de-blurring use-case, as shown in Figure 12. In
this experiment, we take the original images (left column of Figure 12) and filter them with a low
pass filter (center column of Figure 12). The de-blurring scheme is implemented as the in-painting
approach described by Song & Ermon (2020), where the only difference is that the masking at each
update is applied in the frequency domain. The right column of Figure 12 shows that our technique
gracefully recovers missing details and is capable of producing high quality images conditioned on
the distorted inputs.

Colorization. In this use-case, we adapt the approach from (Song & Ermon, 2020) to our setting.
Figure 11 depicts qualitative results of the colorization experiment, confirming the flexibility of the
proposed scheme.

E.2.4 SPOKEN DIGIT data-set

To demonstrate the versatility of our framework, we conducted preliminary experiments on an audio
dataset, specifically the Spoken Digit Dataset. This dataset comprises recordings of spoken digits,
stored as wav files at an 8kHz sampling rate, with each recording trimmed to minimize silence at
the beginning and end. The dataset features five speakers who have contributed to a total of 2,500
recordings, providing 50 recordings of each digit per speaker. The dataset is publicly available
on the TensorFlow Dataset Catalog. As preprocessing, each sample was either padded with zeros
or truncated to a maximum duration of one second. Subsequently, the data was normalized using
the effects.normalize function from the pydub library, and each sample was scaled to a range of
[-1, +1] by dividing it by the dataset’s maximum intensity. For the audio experiments, we fed the
raw audio data directly into the transformer model, without converting it to log mel spectrograms,
which is a common practice in audio processing tasks. The transformer model was configured with
a patch size of 2, an embedding size of 512, 13 layers, and 8 heads. We employed the AdamW
optimizer with a weight decay of 0.03 and a cosine warmup schedule that decays at a value of 1e-5.
The preliminary examination of the audio generated by our model reveals its ability to effectively
generate spoken digits. Upon listening to the model’s generated samples, we were able to recognize
the digits accurately, showcasing the model’s potential in audio generation tasks. Figure 7 provides
a comparative analysis of the waveforms generated by our model against real examples from the
dataset.

(a) Real samples from dataset (b) Generated samples

Figure 7: Comparison of real and generated waveforms.
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Figure 8: Uncurated CELEBA samples generated by the INR.
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Figure 9: Uncurated CELEBA samples generated by the Transformer.
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Figure 10: In-painting experiment using INR. Left: real samples, Center: Masked samples, Right: Reconstructed
samples.
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Figure 11: Colorization experiment using INR. Left: real samples, Center: Gray-scale samples, Right: Recon-
structed samples.
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Figure 12: De-blurring experiment using INR. Left: real samples, Center: blurred samples, Right: Reconstructed
samples.
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