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Abstract—Future generation cellular networks consider Power
Consumption (PC) as a key concern in designing and operating
wireless communication systems. In this context, 3GPP has
proposed several techniques to reduce User Equipment (UE) PC,
such as Connected-mode Discontinuous Reception (C-DRX), with
a new set of parameters introduced by 5G New Radio (NR) and
BandWidth Part (BWP) adaptation. However, they did not spec-
ify how to derive the C-DRX parameters and BWP configuration
that reduce the PC while avoiding latency overflow. To address
this shortcoming, we propose a novel solution to jointly derive
the C-DRX parameters and the BWP configuration to find a
trade-off between low PC and low latency. Given the inherent
dynamics and uncertainty in wireless network environments, our
solution relies on Deep Reinforcement Learning (DRL) to learn
from the dynamic traffic pattern and derive the best C-DRX
and BWP configuration that minimizes PC while achieving low
latency. Simulation results demonstrate the effectiveness of the
proposed methodology in reducing the PC (i.e., 50-95% power
gain) while avoiding latency overflow for a different number of
connected UEs (i.e., 1 to 20 UEs).

I. INTRODUCTION

Next-generation cellular networks should accommodate the
explosive growth in mobile data traffic and support different
heterogeneous services to empower industry verticals and en-
able new business models. To achieve this goal, 5G New Radio
(NR) has introduced several features to increase throughput
and decrease latency, mainly numerology, massive Multiple
Input and Multiple Output (mMIMO) and higher bandwidths.
These features increase Power Consumption (PC) for both
the network infrastructure and the User Equipment (UE). The
latter, which are typically powered by a limited battery, can
suffer from poor Quality of Experience (QoE) [1] due to the
rapid discharge of the battery. The communications industry
should therefore develop strategies to optimize the energy
efficiency of 5G networks without compromising Quality of
Service (QoS) [2]. Leading wireless equipment vendors have
begun studying UE power-saving schemes in 5G NR [3]. They
have investigated several techniques to reduce PC, such as
Connected-mode Discontinuous Reception (C-DRX) with a
new set of parameters introduced by 5G NR and BandWidth
Part (BWP) adaptation. C-DRX allows UEs to periodically
enter a sleep state during which the physical layer functions
of UEs become inactive, and thus PC is reduced. However,
the latency may increase as UEs may be in the sleep state
when the data arrives at the gNodeB. On the other hand, BWP

adaptation consists in reducing the BWP size based on the
demand of UEs, which decreases the PC when UEs do not
ask for high data rates. The 3GPP study, conducted in [3],
shows the impact of C-DRX parameters and BWP adaptation
on network performance, mainly on latency and power gain.
However, the 5G NR standard does not provide solutions to
derive the C-DRX parameters and the BWP configuration
dynamically. To address this shortcoming, we introduce a
Deep Reinforcement Learning (DRL)-based solution, called
DRL-based Latency and Power optimizer (DRL-LP), to jointly
derive the C-DRX parameters and the BWP configuration. The
proposed solution is designed to be scalable in terms of the
number of UEs and traffic patterns. Indeed, The DRL agent
observes UEs’ history of: (i) the experienced latency; (ii) the
buffer status; and (iii) the number of scheduled UEs; during a
time window. Then, for each UE, the DRL agent sets the C-
DRX parameters and the BWP size for the next time window.
To the best of our knowledge, no prior work has combined
C-DRX and BWP adaptation to freduce the PC further while
ensuring low latency.
The main contributions of this work are manifolds:

e« We model the problem and the objective function to
minimize the PC and the latency considering the C-DRX
parameters and BWP adaptation.

o We introduce a DRL-based solution to jointly derive the
C-DRX and BWP configuration and find a compromise
between low PC and low latency. The C-DRX configura-
tion includes new parameters introduced by 5G NR that
help decrease the latency such as the C-DRX slot offset.

o The proposed DRL solution is designed to support multi-
ple UEs, and different traffic patterns, i.e., the DRL agent
is trained only once and then deployed regardless of the
number of UEs and their traffic patterns.

« We evaluate the solution on periodic and aperiodic traffic
for different numbers of UEs. The periodic traffic is
characterized by random inter-arrival periods, and the
aperiodic traffic follows the Poisson distribution with
random parameters.

The rest of the paper is organized as follows: Section II de-
scribes the background on C-DRX and BWPs, and summarizes
the related works on reducing the PC. Section III introduces
the problem formulation. Our proposed solution is presented



in Section IV and evaluated in Section V. Finally, we conclude
the paper in Section VI.

II. BACKGROUND
A. C-DRX

Without C-DRX in 5G NR, a UE stays awake all the time
to decode the downlink data. This consumes a large amount
of the UE’s power. The gNB configures the UE with a set
of C-DRX parameters. These C-DRX parameters are selected
based on the type of application to minimize PC. However,
they may increase the latency because the UE may be in a
C-DRX sleep state when the data arrives at the gNB, and the
latter should wait for the UE to become active. When C-DRX
is activated, the time is divided into cycles, which can be long
or short. Each cycle consists of an ON period and an OFF
period. The ON period, defined in terms of milliseconds, is
the period during which the UE remains awake and decodes
the downlink data. We consider the C-DRX parameters in 5G
NR, depicted in Figure 1, to be (i) the cycle length; (ii) the
duration of the ON period; (iii) the offset between the start
of the cycle and the start of the ON period. The latter is a
new parameter introduced by the 5G NR standard in order to
shift the ON period since the arrival of the data is not always
aligned with the cycle length, i.e., the data may arrive in the
middle or at the end of the cycle. The ON period can be shifted
to the middle or end of the cycle instead of leaving the UE
active for the entire cycle, thus reducing latency while saving
maximum power.
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Figure 1: C-DRX parameters and BWP
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B. BWP Adaptation

Higher bandwidths have a direct impact on peak data rates
and QoE, but UEs do not always demand high data rates.
Using high bandwidth can result in higher PC. In this regard,
BWP was introduced by 5G NR to allow UEs to operate in
bandwidths lower than the configured bandwidth, making NR
an energy-efficient solution despite supporting the broadband
operation. BWPs are contiguous subsets of PRBs allocated for
a UE, meaning that the UE expects to use resources only in a
specific portion of the bandwidth. The UE can be configured

with up to 4 BWPs and can only use one at a time. Thus,
adapting the size of the BWPs to the needs of the UE can
help reduce PC.

C. Related work

In [4], a logic controller-based C-DRX system was proposed
to adaptively adjust the C-DRX parameters by learning the
information of historical delay time and the packet arrival rate.
However, the authors only considered the C-DRX cycle length
parameter and did not consider multiple UE scenarios that can
impact the latency. Authors of [5] proposed using a DRL-based
actor-critic algorithm to choose the C-DRX cycles based on
traffic statistics and to use symmetric sampling to accelerate
online learning. However, they only (i) considered C-DRX
cycle length parameter; (ii) evaluated two scenarios (i.e. the
traffic follows two Poisson distributions with fixed mean
arrival rates). Authors of [6] presented a novel Contextual
Bandit-based approach to optimize the C-DRX configuration
of UEs in 5G NR. However, they did not consider the latency
factor, which is strongly impacted by C-DRX. In [7], the
authors leveraged channel capacity predictions to minimize
the energy usage of UEs and create longer sleep opportunities
while preventing video interruptions. However, authors only
considered the C-DRX cycle length parameter without op-
timization for low-latency services. Authors of [8] designed
a control policy to adjust the ON duration period parameter
in order to satisfy eXtended Reality (XR) requirements and
minimize PC. Authors of [9] developed a model to evaluate the
impact of the BWP adaptation on power gains. However, they
did not consider multiple UE scenarios since the scheduling
opportunities in a BWP are limited per slot.

To the best of our knowledge, no prior work has combined
C-DRX and BWP adaptation to reduce PC further. The choice
of this combination (i.e., combining C-DRX and BWP) is
motivated by the possibility of reducing PC by using the
same narrow BWP for more UEs by shifting C-DRX cycles
(i.e., making the UEs ON duration period not cross) and thus
reduce their PC. In addition, most of the work on C-DRX has
considered only one parameter to be optimized to make the
problem easy to solve.

III. NETWORK MODEL AND PROBLEM FORMULATION

We consider a network consisting of a set of UEs denoted
K and sharing bandwidth of size W. Let A, &, T" and 2
be the sets of cycle length, ON periods, offsets and BWP
sizes, respectively. Each UE i € K may use a different C-
DRX configuration and a different BWP during a set of S time
slots. Let A7, ®/, 47, and w] be Boolean decision variables
that indicate whether the UE ¢ uses a cycle length of f(j),
an ON period of g(j) an offset of h(j), and a BWP of size
(), respectively; f(z), g(x), h(z), and I(z) are functions
that return the z'* element of A, ®, T, Q, respectively. Let
Pi+ be a variable that measures the PC of UE i at time slot
t € S. P™ is a constant that defines the maximum PC of
a given UE in all time slots of S. Let £;; a variable that
measures the delay of the data arrived at slot ¢ for UE i. If no



data has arrived for UE ¢ at slot ¢, then £;; = —1. £I"*" is a
constant that defines the maximum latency allowed for UE 3.
Note that the latency is the waiting time between data arrival
and transmission. Hence, £;; is influenced by the C-DRX
parameters (i.e., data arrives during the sleep period and thus
latency increases), the BWP size (i.e., the BWP size does not
allow all data to be sent in one transmission and thus latency
increases), and the packet arrival slot.
We can formulate the objective function as follows:

K| |S] B, % Py
min a X 1—a)x 22— 1
2D o g (1m0) x Tt
S.t.
Viek,VvteS: Ly >—-1,P;+>0 2)

Where « is a given constant (0 < « < 1) that defines
the priority between latency and PC. If o = 1, then we are
only interested in optimizing latency, whereas, if a = 0, then
we are only interested in optimizing PC. According to the
energy model introduced by the 3GPP specification in [3], the
relationship between the PC and the BWP size is linear and
the scaling factor f3; is given by equation 3.
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Equation 4 ensures that each UE 7 has only one C-DRX
configuration and one BWP during S.
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Equation 5 ensures that the sum of the BWP sizes does not
exceed the available bandwidth VW when the UEs ON periods
cross. Let 3/, be a Boolean system variable that indicates
whether UE i is active (i.e., during the ON period) and uses
a BWP of size [(j) at time slot ¢.
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Each BWP has a limited amount of scheduling opportunities
(i.e. Downlink Control Information (DCI)) per slot. Let IC;”‘”
a constant that defines the maximum number of UEs allowed
per slot for the BWP j. Equation 6 ensures that for each BWP,
the number of UEs scheduled per slot does not exceed the
maximum number of DCIs per slot, in each BWP.
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Equation 7 ensures that P;; = 0 when UE i is in sleep
mode at slot ¢. Otherwise P, ; takes a positive value, since
we minimize the sum of P;.. It is sufficient to set P;; =
1 when UE ¢ is awake at slot ¢. In addition, the equation

7 allows us to define the system Boolean variable Bf , used
in equations 5 and 6. Let N denotes a subset of integers in
range 0 to the maximum number of cycles in the system (i.e.

|S| = miny f(5)).
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Unfortunately, we cannot use the optimization problem
mentioned above, mainly because the arrival of traffic is
unknown and it is difficult to predict it and hence the variable
L;; is difficult, if not impossible, to compute. Here the
problem can be transformed into a linear problem, but since
we can not solve it, it is not worthy doingso.

IV. DEEP REINFORCEMENT LEARNING-BASED LATENCY
AND POWER OPTIMIZER (DRL-LP)

As aforementioned, it is hard to solve the optimization
problem efficiently and without prior knowledge of the traffic
patterns. For this reason, we propose the DRL-LP framework
that leverages DRL. The DRL hides the complexity and the
stochastic nature of the environment. It also helps the DRL-
LP framework to make efficient and quick decisions that adapt
according to the traffic patterns. Moreover, DRL-LP gains the
ability to learn with time and adapts to different and unseen
situations. In the balance of this section, we will present DRL
and DRL-LP overview followed by a detailed description of
DRL-LP.

A. DRL Overview

Machine Learning (ML) plays an important role in 5G
Networks and Beyond. Particularly DRL, a ML technique
that can be used without the need for data sets. DRL can be
leveraged to derive configurations or management decisions in
real-time [10] (i.e., less than 1ms) in a stochastic environment,
which makes it suitable for the Radio Access Networks (RAN)
domain. DRL can provide self-configure and self-optimized
network functions, such as radio resource allocation [11]. A
DRL framework has two actors: An agent and an environment.
The agent observes a state .S; from the environment, applies
an action ay, gets a reward 7441, and hence the environment
moves to the next state S;1. The agent can be in two modes:
i) exploration mode, where the agent explores and builds



the knowledge about the environment, and i) exploitation
mode, where the agent exploits the acquired knowledge by
following the optimal policy . that gives for each state Sy the
optimal action a;. Accordingly, the ability of DRL to derive
good decisions quickly, deal with unseen environments, and
be scalable make it suitable for solving the joint latency and
PC minimization problem in 5G NR.

B. DRL-LP Overview

DRL-LP periodically loops over the UEs in K. For each
UE ¢, DRL-LP captures an observation, then applies a config-
uration (i.e., C-DRX parameters and BWP size ) and finally
gets a reward after applying the configuration during S slots.
We have designed the DRL-LP agent to ensure generality and
then work in an unseen environment. The DRL-LP agent has
been designed to work independently from the number of UEs
and the traffic pattern. In what follows, we define the elements
of the DRL-LP agent, including the state, the reward, and the
action.

i) State: The DRL-LP agent captures an observation, per
UE 4, composed of four parts: {£;, B;, C;, U }. The first three
parts are specific for UE ¢, while the fourth part is common
between all UEs. £, is the history of latency L; ; experienced
by UE ¢ during the past |S| slots. For each slot ¢, if arrived
data £;, represents the time delay between t and the data
transmission, else if no data arrived in slot ¢ then £, ; = —1.
B, is the history of buffer status of UE ¢ during the past S
slots. C; summarizes the action applied to the environment
(i.e., both the C-DRX parameters and the BWP size). Each
element C; ; of C; equals to the BWP size if UE i is awake at
slot ¢, else it equals to 0. I/ is an array of I{; that represents
the number of scheduled UEs for each slot ¢.

ii) Action: The DRL-LP agent has 4 discrete actions: (d;,
®i, Vi» wi). For each UE 4, §; is the C-DRX cycle length, ¢,
is the ON period, ~; is the offset between the start of the ON
period and the start of the cycle, and w; is the size of the BWP
to configure. Accordingly, The C-DRX configuration (§;, ¢;,
v;) is applied for UE ¢ and BWP of size w; is configured for
UE «.

iii) Reward: We have adapted an episodic approach,
whereby each episode runs for fixed number of steps. For
each episode, a randomly selected traffic pattern is applied.
The reward r; has been defined as follows:
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Where max; £; ; is the maximum latency for UE ¢ during
the past time window and P; is the number of slots in which
UE ¢ was awake. £™%* is the maximum latency in the system.
« is a given constant (0 < o < 1) that defines the priority
between latency and PC. The agent gets a higher reward

whenever the maximum latency gets smaller or the sleep
period is larger while using a smaller BWP.

C. DRL-LP detailed description

DRL-LP leverages the Deep Q-Network (DQN) algorithm
with local and target networks, which is one of the most
efficient DRL algorithms for continuous state space and dis-
crete actions. We have tried the A2C [12] and the Actor-
Critic using Kronecker-Factored Trust Region (ACKTR) [13]
algorithms but the exploration phase was not efficient for
DRL-LP environment as the agent was not able to converge.
DRL-LP executes two steps: decision-making and updating the
Q-Networks. We used two networks: a local Q-Network and a
target Q-Network. The target network is the same as the local
network, except that its parameters are updated every 7! step.
They are combined to help the convergence and stabilization
of the learning.

1) Decision making: DRL-LP agent observes a state and
feeds it to the local Q-Network to get a discrete action
distribution. Then, an e-greedy approach is applied to choose
an action from each distribution, which means DRL-LP agent
will choose a random action over the possible actions with
€ probability and the best action over the action distribution
with a 1-e probability. ¢ will decrease over time during the
learning pushing the agent to explore the environment at the
beginning of the training and driving it to exploitation over
time.

2) Updating the Q-Networks: At each step, the current
state, the action, the next state, and the reward are stored in
a buffer known as the replay buffer. The local Q-Network is
updated using a random sample from the replay buffer, which
reduces the correlation between the agent’s experiences and
increases the stability of the learning. Using Mean Square
Error (MSE) and ADAM optimizer [14], the parameters of the
local Q-Network are optimized at every step by considering
the local and target values. In contrast, the parameters of the
target Q-Network are updated every 7! step to stabilize the
algorithm’s convergence.

V. PERFORMANCE EVALUATION

In the balance of this section, we will introduce the sim-
ulation environment and parameters used for training DRL-
LP agent. Then, we will evaluate the trained agent in a 5G
simulated environment.

A. Simulation parameters and training phase

We have trained the DRL-LP agent using 3000 indepen-
dent episodes. In each episode, the traffic pattern is se-
lected randomly among two traffic pattern categories with
different parameters: (i) periodic arrival rate with a period
Ap € {10,20, 50,100,200} (ii) aperiodic traffic that follows
a Poisson distribution with the mean arrival rate )\, €
{1/10,1/20,1/50,1/100}. For the periodic traffic, we add
an initial offset 0;,; selected randomly, such as o0;,;, a
positive integer smaller than the period. The goal behind 0;,,;;
is avoiding data arrivals aligned with C-DRX cycles, which



makes the simulation more realistic. The data size distribution
is selected randomly among (i) a fixed data size; (ii) a Poisson
distribution data size. For both distributions, the mean data
size is selected randomly among € {10%,10°} Bytes in each
episode. The number of steps in each episode is equal to 100
steps. In each step, the simulation runs for 100 slots. We used
numerology 0 wherein 1 slot is 1 ms. We have trained the agent
using 12 UEs. The set of cycle lengths is {10, 20, 50, 100}.
The set of ON periods is {3,5,10}. The set of offsets is
{0,0.5 x T¢.}, such as T, is the cycle length. The set of BWPs
is {20,50}. Each BWP has a limited amount of scheduling
opportunities (i.e., DCI). We assume an aggregation level of 2,
meaning that the maximum number of scheduled UEs per slot
is 4 and 10 for the 20 MHz and 50 MHz BWP, respectively.

Table I: DRL-LP parameters

Parameter Value
« 0.5
Lmaer 3 ms
Number of hidden layers 2
Hidden layer size 128 nodes
Discount factor y 0.99
Batch size 256
Learning rate 5% 1072
Replay buffer size 107
Soft update coefficient 7 0.001
Optimizer ADAM [14]
e-start 1
e-decay 0.998
e-end 0.01
Number of training episodes 3000

The considered parameters of the DRL-LP agent are pre-
sented in Table I. To evaluate DRL-LP in a 5G environment,
we extended the 5G system level simulator developed in
[15] to support C-DRX operations. We have implemented our
simulation environment using Python and Pytorch library. We
have used a machine with 32 CPUs, an Intel(R) Xeon(R)
Silver 4216 CPU @ 2.10GHz (2.7 GHz with Turbo Boost
technology), and 128 GB of RAM.

Figure 2 depicts the convergence evaluation of the DRL-
LP agent during training. The x-axis represents the episodes,
while y-axis represents the score (sum of rewards during an
episode) averaged every 100 episodes. We observe that the
DRL-LP agent converges after 2000 episodes since the curve
tangents tend toward 0.

B. Inference phase

We evaluated the DRL-LP framework in terms of: i) La-
tency; i) PC; 4i7) Number of UEs. We ran the simulation
for 4000 slots. We compared DRL-LP with static C-DRX
configurations and without C-DRX. We used the same traffic
pattern selection mechanism as the training phase. Configu-
ration A and configuration B denote the static configuration
(cycle length: 10ms, ON period: b5ms, offset: Oms and BWP:
50 MHz) and (cycle length: 100ms, ON period: 10ms, offset:
Oms and BWP: 20 MHz) respectively.

In Figure 3, the x-axis represents the latency (in ms), which
is measured by t{ — t¢, where t¢ is the arrival time of a ¢
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Figure 2: Convergence evaluation of DRL-LP agent during the
training mode

data block and t7 is the transmission time of the last part
of the ¢ data block. The y-axis represents the cumulative
distribution function (CDF) of the latency collected by running
the simulations for 4000 ms. We observe that without C-DRX,
the latency is less than 2 ms because the UE is always on, and
the data is scheduled directly on arrival. In configuration A,
the latency is less than 5 ms because the maximum sleep time
of a UE is 5 ms, and in the 50 MHz BWP up to 10 UE can be
scheduled per slot. While for configuration B, more than 50%
of the samples have latency greater than 50 ms, and 10% have
latency greater than 150 ms because the sleep time is higher
(up to 90 ms) and the BWP does not allow more than 4 UEs
to be scheduled per slot. We note that for DRL-LP, 78% of
the samples have latency less than 5 ms, which is better than
configuration A, and 90% less than 25 ms, which is better than
configuration B. We conclude that DRL-LP is able to avoid
latency overflow while dynamically changing the configuration
of C-DRX and BWP.
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Figure 3: CDF of the Latency during inference mode

In figure 4, the x-axis represents the PC of a UE, calculated
using the energy model in [3]. The y-axis represents the CDF
of the PC collected at the same time as the latency in Figure 3.
We observe that without C-DRX, the PC is the highest because
the UEs are awake all the time. While in configuration A, we
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Figure 4: CDF of the PC during inference mode

observe that all UEs achieve a gain of about 50% because all
UEs are sleeping for half of the cycle. In Configuration B, the
power gain is higher ( 90%) because the UEs sleep for 90%
of the time. We note that 20% of the DRL-LP samples have a
lower PC than Configuration B, which means a power gain of
over 90%. In addition, all DRL-LP samples achieve a lower
PC than configuration A (i.e., a power gain of more than 50%).
We conclude that DRL-LP achieves a good balance between
PC and latency (i.e., it achieves more than 50% power gain
while maintaining less than 5 ms latency).
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== NO DRX + NO BWP adaptation

801

o
=3
!

Latency D8
3

N
o
!

yyyyyyyyyyyyyyyyyyyy
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of UEs

Figure 5: The 8th Decile of Latency during inference mode

In Figure 5, the x-axis represents the number of UEs and the
y-axis represents the 8th decile (i.e., 80% of the samples have a
value less than this) of the samples collected during the 4000
slots. We observe that DRL-LP is able to keep the latency
below 25ms. We note that DRL-LP achieves better latency
(i.e., less than 20ms) when run on more than 8 UEs. We justify
this by the nature of DRL, which consists of approximating
continuous states using neural networks, making it more biased
to the observed states, and by the fact that the agent was trained
on 12 UEs, which makes it more biased for larger number of
UEs.

CONCLUSION

This paper introduced DRL-LP, a Deep Learning Reinforce-
ment (DRL)-based solution to balance Power Consumption
(PC) and latency in 5G NR. DRL-LP will be used by the 5G
base station to derive the C-DRX and BWP configuration per
UE. The simulation results clearly showed that DRL-LP is able
to find a trade-off between latency (i.e., achieve latency less
than 5ms) and PC (i.e., achieve power gain more than 50%).
Our future goal is to implement DRL-LP on OpenAirInterface
(OAI) 5G platform to validate real use cases.
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