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Abstract—Personalization in federated learning (FL) functions
as a coordinator for clients with high variance in data or behavior.
Ensuring the convergence of these clients’ models relies on how
closely users collaborate with those with similar patterns or
preferences. However, it is generally challenging to quantify
similarity under limited knowledge about other users’ models
given to users in a decentralized network. To cope with this issue,
we propose a personalized and fully decentralized FL algorithm,
leveraging knowledge distillation techniques to empower each
device so as to discern statistical distances between local models.
Each client device can enhance its performance without sharing
local data by estimating the similarity between two intermediate
outputs from feeding local samples as in knowledge distillation.
Our empirical studies demonstrate that the proposed algorithm
improves the test accuracy of clients in fewer iterations under
highly non-independent and identically distributed (non-i.i.d.)
data distributions and is beneficial to agents with small datasets,
even without the need for a central server.

Index Terms—decentralized federated learning, personaliza-
tion, knowledge distillation

I. INTRODUCTION

Since the appearance of federated learning (FL) [1] as a
promising and efficient solution for distributed learning with
collaborative clients, numerous research studies have inves-
tigated this paradigm in distributed networks of users under
various hindrance factors, such as limited local storage [2],
information leakage [3], biases across user experiences [4],
and transmission impairments [5]. The main objective of FL
and of many of its decentralized variants is generally to acquire
a global model across all devices. Nevertheless, a single com-
mon model deduced from all participants may not satisfy the
clients whose tasks or data distributions significantly deviate
from the rest. On this account, personalized FL [6]–[12] has
been considered as a means to provide a customized solution to
users with statistical heterogeneity. A widely used procedure
for personalized FL first constructs a global model using a
central aggregator as a draft, and then customizes it under each
agent’s control. [10]–[12] On the other hand, personalized FL
is particularly commensurate with serverless networks as each
agent executes the training process autonomously, thereby
enabling asynchronous learning [13]–[19].

Despite its practical relevance, there are several issues
and technical challenges associated to personalized federated
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learning, which we briefly discuss below. First, among users
with diverse characteristics, each agent has to find sufficiently
similar peers since putting more weights on received model
parameters with higher similarity during superposition im-
proves its performance [19]. Unfortunately, choosing the right
distance measurement, which can capture the actual similarity,
is challenging. Moreover, the system has to encounter a
tradeoff between model complexity and metric complexity.
If the exchanged information has a more complex structure,
participants have no choice but to use simpler metrics [20].
Second, FL fundamentally requires ensuring privacy within
each agent, which commonly implies but is not limited to
maintaining data samples private. For instance, the information
on possessed class labels for classification tasks should also
be kept private [21]. However, because of their omniscient
viewpoint, most existing personalized and decentralized learn-
ing schemes do not thoroughly preserve inter-device privacy.
Occasionally, the agents take a constant for local training,
which is derived from public knowledge, e.g., the number
of others’ training samples [13]. Even though the variables
used for training are perfectly separated, a decentralized
collaborative learning scheme introduced in [15] assumes the
presence of a proxy dataset accessible to anyone. In [6], [14],
the selected agents request to exchange hypotheses represented
as a weighted sum of base data distributions. These identify
the direct information of which class labels one possesses from
its neighbors.

To address the aforementioned challenges, we propose KD-
PDFL, a personalized decentralized FL scheme that provides
a completely enclosed service. With KD-PDFL, each client
can individually update all parameters from their first-person
perspective, including the connectivity graph, the local model,
and the local dataset. In this approach, each user receives only
model copies from its neighbors and determines their optimal
combination. This property differentiates our algorithm from
prior works, which either ask users to seek additional external
information or rely on isolated personalization methods like
local fine-tuning.

As a powerful tool that enhances inference capability of
clients with simple models, we introduce knowledge distilla-
tion into our proposed scheme, where agents evaluate simi-
larity with co-distillation based on local validation datasets.
Thanks to embracing the characteristic of distillation, agents



are also free from the need for model homogeneity since
distillation enables cooperation across models with different
layer structures as long as the models have a common layer
with the same dimension. Our experimental results show that
KD-PDFL achieves higher test accuracy within smaller global
iterations compared to other personalized decentralized FL
schemes, given that the amount of exchanged information
is the same. We also provide a guideline for tuning the
hyperparameters used in implementing our experiments.

II. PRELIMINARIES

In this section, prior to introducing our work, we provide
a brief overview of the two major ingredients of our pro-
posed solution: (i) personalized decentralized learning, which
describes the overall protocol of how users exchange informa-
tion; (ii) knowledge distillation, which elaborates on how they
draw relevance from others.

A. Personalized decentralized learning

In contrast to distributed networks with a central server, a
fully decentralized network implies that no node has authority
or accessibility to construct a global consensus model at any
instant of learning process. Thus, personalized and decentral-
ized FL naturally exclude building a common model before lo-
cal customization. We consider a decentralized learning system
that assigns different central entities for each global iteration.
In this network, a randomly selected node wakes up to serve
as a temporary center node, which is also called a “star node”.
First, this star node collects gradient parameters from its neigh-
bors. Subsequently, it calculates inferences from all received
gradients, which are used to measure the similarities among
the learning objectives thereafter. Users manage the traits of
these similarities by selecting and focusing on communicating
with neighbors that have the highest similarities. In literature,
these semantic traits are modeled using a collaboration graph,
which can be a property of communication links between
nodes or a target variable to optimize mixing weights. A
collaboration graph is a weighted graph whose edge weights
represent quantified relevance between learning tasks. (See
also Fig. 1)

Once the star node finishes the calculation described above,
it updates the weights of the collaboration graph according to
the similarity variables. Meanwhile, it also updates its model
using a weighted sum of all received parameters, where the
weights are those obtained from the collaboration graph.

B. Knowledge Distillation (KD) and co-distillation (CD)

KD [22] is a knowledge transfer method in which multiple
clients can compare the outputs from a common dataset to
absorb the inferred knowledge of the others. They quantify
the similarity between the logits. In CD [23], all clients are in
an equal position to learn from the other as everyone works as
a student. KD and CD have the advantage of allowing the users
to transfer knowledge between models with heterogeneous
structures. Yet, the system must have a public/common dataset
in order to let the participants compare each logit one by
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Fig. 1. A general schematic of personalized decentralized federated learning.

one with identical batches. This conflicts with the vanilla
FL approach that guarantees the data maintenance attribute
without transmission of data samples.

III. PROBLEM SETTING

We consider a joint minimization problem across M users.
Each user indicated as i ∈ [M ] = {1, 2, · · · ,M} has access to
a training set Xi and its goal is to minimize its loss function
Li : RnX → R+ where nX is the dimension of the input
features. The objective of the whole system is to minimize
the total local loss and the jointly calculated dissimilarity.

We adapt the idea of a collaboration graph W to represent
the connectivity between any two nodes in the network. A col-
laboration graph W = [w1, w2, . . . , wM ] is a matrix of stacked
connectivity vectors of each client. Each column vector of W ,
denoted as wi = [wi1, . . . , wiM ]T , is a connectivity vector of
client i whose elements are the edge weights. In this work, the
term “connectivity” implies relevance across two nodes, thus
wij ≥ 0 is proportional to the degree of recognition of node
i for how relevant node j’s task is to its own task.

Objective function: The main target of our system is to
learn the personalized models Θ = {θ1, ..., θM} and the
collaboration graph W ∈ RM2

that minimize the following
joint optimization problem

min
Θ,W

J(Θ,W ) =

M∑
i=1

Li (θi;Xi)

+
µ1

2

∑
i,j∈[M ]

wijd(i, j) + µ2g(w) (1)

where Li(·; ·) is a local loss function and d(i, j) is the mea-
sured distance (dissimilarity) between the model estimations
of two clients i and j. The second term allows assessing task



Fig. 2. Above: communication protocol during exchange intervals. Below: model and collaboration vector update elaborated. The figure illustrates the process
executed only in the star node.

relevance by penalizing the links between any two nodes with
large statistical distances. The third term g(w) is a regulariza-
tion term that strongly encourages the users to participate in
collaboration by giving a high penalty when a user tries only
local training. µ1 and µ2 are hyperparameters for adjusting the
influence of each term above, respectively.

IV. PERSONALIZED DECENTRALIZED LEARNING WITH
KNOWLEDGE DISTILLATION

We consider a fully decentralized network where agents do
not implement strict synchronization and cooperate through
peer-to-peer communication. Particularly, our definition of
decentralization imparts autonomy in determining the col-
laboration graph. In other words, each user evaluates the
collaborative weights independently and privately instead of
accessing a row of a connectivity matrix shared in public. The
clients follow a cross-silo setting where each client performs
all steps of the learning process, i.e., has datasets locally
distributed for training, validation, and test purposes. In this
section, we focus on the method to extract relevant information
across the nodes in a serverless fashion. In every exchange
interval Tex, the agents follow the step-by-step instructions
below (see also Fig. 2):

1) A node assigned as a star node, say user i, wakes up
to ask for transmission from a group of its neighbors at
time t, N (t)

i . The peers send their local model updates
to the star node i. At the end of the transmission, i has
|N (t)

i |-copies of model parameters of its neighbors if no
packet loss has occurred.

2) From i’s local training dataset Xi, i packs training
samples in a batch Bi. The batch Bi is fed to model
parameters of all j ∈ N (t)

i in order to get intermediate
outputs (e.g., logits), denoted as zij .

3) Node i measures the statistical distance dW (i, j) for all
j ∈ N (t)

i , then updates wi of which the gradient function
∇hi(w) is the partial derivative of eq. (1) with respect
to the computation entity i. Based on this gradient, node
i updates a collaboration weight of j from the viewpoint
of i, which is always bounded to a nonnegative value.
The following equation illustrates the policy of updating
the connectivity vector of i:

∇hi(w
(t)
i ) = µ1dW,i + µ2∇gi(w

(t)
i )

η(t) = 1./|∇hi(w
(t)
i )|

w
(t+1)
ij = max(0, w

(t)
ij − η(t)∇hi(w

(t)
i ))

(2)

where dW,i = [dW (i, 1), · · · , dW (i,M)] indicates the
statistical distance vector of node i.

4) i updates its connectivity vector using dW (i, j). To
quantify the distance between two logits that are formed
as probability distributions, the given user calculates the
batched mean of the Wasserstein distance between the
two variables. In particular, under classification tasks
where the probability distribution is discrete and the
number of possible classes is known, a user can compute
the arithmetic mean of all Wasserstein distances from
each single data sample of the batch. With ni local
batch samples and nL possible classification labels, the



Wasserstein distance of two logits with (ni × nL) size
is computed as follows:

dW (i, j) =
1

ni

ni∑
x=1

nL∑
l=1

∥p(x)i,l − p
(x)
j,l ∥

2
2 (3)

where p
(x)
i,l indicates the logit for class label l that

goes through user i’s model from an input data point
with index x. Note that the importance of i from the
viewpoint of j may differ from that of j from the
viewpoint of i due to differences in model complexity
or the number of trainable samples. Thus, W is not
symmetric, and agents do not need to share updated
connectivity weights.

5) A new model for i is a weighted sum of all footprints
it has at that time, where the weights are the elements
of the connectivity vector.

6) In the broadcast phase at the next time slot, node i

broadcasts θ
(t)
i to the peer group of the previous time

slot, N (t−1)
i .

7) Other than the exchanging iterations, each agent per-
forms only local learning.

One cannot find its own weight wii of the connectivity
vector since having statistical distance with itself does not
make sense. For that, we adopt a widely used concept named
confidence to indicate the weight of local model updates. A
confidence of node i at time t, denoted as ci, is defined as a
time-varying term dependent on the size of its local training
set:

c
(t)
i = min

(
|Xi|
cbase

,
1

|N (t)
i |+ 1

)
(4)

where cbase is a constant for a base confidence that is neither
induced from shared information across the devices nor to be
shared with others. The algorithmic description of KD-PDFL
can be found in Appendix A.

V. EXPERIMENTS

In this section, we evaluate the performance of KD-
PDFL in terms of per-client test accuracy. We compare the
proposed scheme with three related baseline scenarios for
decentralized networks: (i) standalone case where all users
perform local training only; (ii) conventional federated aver-
aging (FedAvg [24]), which returns the arithmetic mean of
received model parameters; and (iii) FedAvg followed by fine-
tuning, which switches the algorithm into Reptile [25]. (Fe-
dAvg+ [11]) Note that in our evaluations, FedAvg corresponds
to a decentralized learning scheme but with non-personalized
service, i.e., it aims to build a single global model for all
clients.

We carry out the experiments with two types of datasets.
The first one we consider is a set of smart users practicing
classification tasks using web traffic information from IoT
devices. The data samples have 296 input features and the
output dimension of the dataset is 9.1 Each user contains 15 to

1https://www.kaggle.com/datasets/fanbyprinciple/iot-device-identification
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Fig. 3. Learning progress of standalone and collaborative users in different
collaboration methods over iterations (M = 40).

Dataset Methods M=10 M=20 M=40

IoT
devices

Local learning 0.210±0.089
FedAvg 0.759±0.650 0.643±0.107 0.610±0.493
FedAvg+ 0.802±0.028 0.726±0.630 0.697±0.117
KD-PDFL (ours) 0.816±0.032 0.739±0.040 0.716±0.101

EMNIST

Local learning 0.697±0.209
FedAvg 0.764±0.119 0.784±0.108 0.824±0.142
FedAvg+ 0.771±0.104 0.806±0.123 0.841±0.136
KD-PDFL (ours) 0.787±0.108 0.835±0.116 0.870±0.082

TABLE I
SUMMARY OF PER-CLIENT TEST ACCURACY UNDER IOT DEVICES

(Tex = 20) AND EMNIST DATASETS (Tex = 5).

100 training samples with non-i.i.d. distribution and 100 local
test samples, which follows the same distribution with the local
training set. We split the IoT devices training dataset into data
points of which the class labels follow a symmetric Dirichlet
distribution with parameter 0.1. This data split is the same as
in a benchmark in [26] but is more biased due to the smaller
parameter, allocating one to four class labels per each user with
uneven number of data samples per label. A neural network
model in every user includes one batch normalization layer,
one rectified linear unit (ReLU) layer, and two linear layers.
Each model has 39, 769 trainable parameters in total. The
other set is for classification tasks using the EMNIST dataset,
which is composed of 28 × 28 pixel images of handwritten
Roman alphabets and letters. In our experiments, a total of 47
class labels are included under balanced split settings. Each
user has a convolutional neural network (CNN) made of two
convolutional layers, two max pooling layers, and two fully
connected linear layers, which in total has 970, 847 trainable
parameters. For both datasets, 10 to 40 users participate per
experiment. The channel gain between each pair of participants
follows Rayleigh fading, resulting in 5 neighbors reachable on
average for each exchanging interval.

Fig. 3 shows that equal averaging over all participants,
as provided in FedAvg, achieves the poorest performance as
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the environment is significantly non-i.i.d. [27]. Meanwhile,
FedAvg+ compensates for the overfitting loss from FedAvg.
The fine-tuning process began to adjust the hyperparameters
from the moment the iteration reached t = 2000 in case of
experiments with IoT devices dataset and t = 150 in case
of EMNIST, which led to temporal deterioration, higher per-
client test accuracies and lower training losses at the end.

Table I shows that KD-PDFL enables the clients to extend
the upper bound of their estimated test accuracy without col-
laboration. Notably, users with small local training sets benefit
from increased test accuracy from 21.0% to 81.6% on average.
These weak users with small training sets also undergo a more
challenging similarity decision. Since the lack of training set
incurs blurry distance divergence across intermediate outputs
that they calculate, estimating connectivity weights becomes
more difficult.

Figuring out the relative importance becomes more man-

ageable when a client can search over a lot of peers at
once. Nonetheless, as M increases, settling down on the most
effective collaborative graph is more challenging. Fig. 4 shows
the trend in test accuracy with respect to the number of com-
municable peers per collaboration. Putting many neighbors
into simultaneous consideration ends up walking on the same
track with FedAvg, resulting in a prolonged “getting to know”
session and slower model convergence. On this account, it
is recommended to set an upper limit on the number of
neighbors accessing per exchange interval, even though the
channel conditions are good enough to cover many neighbors
at once.

Fig. 5 visualizes the impact of coefficients of penalty and
regularization terms on collaboration graphs. µ1 is a multiplier
on the personalization term of the joint loss function that
controls the sensitivity to the statistic distances of the system.
µ1 ≃ 0 turns off the effect of statistic distances on the training
loss. Meanwhile, µ2 adjusts the regularization to the weight
values; thus, µ2 ≃ 0 may let some participants abandon
cooperation and run only local training. A situation in which
µ1 = µ2 = 0 is equivalent to federated learning that aims to
construct a global model.

VI. CONCLUDING REMARKS

We introduced a distillation-based algorithm for person-
alized federated learning over fully decentralized networks,
leveraging the privacy preservation and the convenience of
measuring the statistical distance across clients using logits
generated from local storage. Our experimental results showed
that the proposed KD-PDFL is a promising decentralized
approach compared to other personalized FL methods, with
each device having full autonomy in computing, including
updating a collaboration graph.

In future work, distillation-based personalization can be
extended to unsupervised learning tasks since the distance
measurement part does not require class labels as long as the
local loss function does not include target labels in its metric.
An interesting problem that arises by connecting topologies
and connectivity graphs regarding physical distances among
edge devices [28] is how to choose a subset of neighbors of a
personalized and decentralized FL system in a communication-
efficient way. A crossover with multi-task learning [29] also
remains a potential direction of this work.

APPENDIX

A. Algorithm of KD-PDFL

The function Midgetter in Alg. (1) extracts outputs
from the intermediate layers of two neural networks. The
intermediate layer can be either the output layer or one of the
hidden layers depending on whether the agents transmit the
entire models or only the base layers. Feeding the identical
batch of client i’s training samples, θi and θj returns the
logits zi@i and zj@i, respectively. The expression a@b refers
to an output of client a’s model under control of client b, i.e.,
the distillation is conducted at user b’s device while using b’s
computation resources without sharing.



Algorithm 1: KD-PDFL: Distillation-based personal-
ized decentralized FL

Input: θ(0)i = 0 ∈ Rni ,
wii = 0 ∀i ∈ [M ] = {1, 2, ...,M},
wij = 1/M ∀j ∈ [M ] \ i

Output: Θ(T ), W (T )

1 for t in (0, T ] do
2 if t ≡ 0 (mod Tex) then
3 Random user i wakes up & draw a subset N (t)

i

4 for each neighbor j ∈ N (t)
i do in parallel

5 Receive θ̃
(t−1)
j from each j

6 (zi@i, zj@i) = MidGetter(θi, θ̃j , Xi)
// find intermediate outputs

7 dW (i, j) = Wasserstein2D(zi@i, zj@i)
// find statistic distances

8 end for
9 ConnVectorUpdate(i, j) as in Equation (2)

10 Update θ
(t+1)
i =∑

j∈[M ]\{i} w
(t+1)
ij θ̃

(t−1)
j + ciw

(t+1)
ii θ

(t)
i

11 else if t ≡ 1 (mod Tex) then
12 for each neighbor j ∈ N (t−1)

i do
13 Receive θ̃

(t−1)
i from i

14 Update θ
(t+1)
j = θ̃

(t)
i

15 end for
16 else
17 θ

(t+1)
i = θ

(t)
i − η∇fi(θ

(t)
i ) // Local

Update
18 end if
19 end for
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[1] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
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M. Takáč, and A. Gasnik, “Decentralized personalized federated min-
max problems,” in Workshop on New Frontiers in Federated Learning
(in Conjunction with NeurIPS 2021), 2021.

[18] A. Sadiev, E. Borodich, A. Beznosikov, D. Dvinskikh, S. Chezhegov,
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