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Abstract—In this paper, we investigate the channel estimation
for massive multi-input multi-output orthogonal frequency divi-
sion multiplexing (MIMO-OFDM) systems. Using the sampled
steering vectors in the space and frequency domains, we first
establish a space-frequency (SF) beam based statistical channel
model. Based on the channel model, the channel estimation is
formulated as obtaining the a posteriori information of the
beam domain channel. We solve this problem by calculating an
approximation of the a posteriori distribution’s marginals within
the information geometry framework. Specifically, by viewing
the set of Gaussian distributions and the set of the marginals
as a manifold and its submanifold, respectively, we turn the
calculation of the marginals into an iterative projection process
between submanifolds with different constraints. We derive the
information geometry approach (IGA) for channel estimation by
calculating the solutions of projections. We prove that the mean
of the approximate marginals at the fixed point of IGA is equal
to that of the a posteriori distribution. Simulations demonstrate
that the proposed IGA can accurately estimate the beam domain
channel within limited iterations.

Index Terms—Massive MIMO, channel estimation, informa-
tion geometry

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) [1]–[3] is
known as one of the key techniques of the fifth generation
(5G) cellular systems. In a massive MIMO system, the base
station (BS) equipped with a large number of antennas can
serve tens of users on the same time and frequency resource
simultaneously, which provides tremendous capacity gains
potentially and increases the energy efficiency significantly.
Orthogonal frequency division multiplexing (OFDM) [4] is
a multicarrier modulation technique, which can reduce the
severe effects of frequency selective fading for wideband
wireless communications. Massive MIMO-OFDM plays an
essential role in 5G systems and receives increasing attention
for the future sixth generation (6G) systems.

In massive MIMO-OFDM systems, channel estimation
plays a vital role since the system performance is highly
dependent on the quality of the estimated channel. In realistic
systems, pilot-aided channel estimation, i.e., the transmitter
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periodically sends the pilot signals, and the receiver obtains
channel state information (CSI) based on the received pilot
signals, is the common channel estimation approach [5]. Given
the received pilot signals, channel estimation is to obtain the
a posteriori information of the channel parameters. When
the prior distribution of channel parameters is Gaussian, the
a posteriori distribution of them is also Gaussian, of which
the a posteriori information is given by the mean and covari-
ance matrix. Nevertheless, calculating the a posteriori mean
and covariance is challenging due to the large dimension of the
channel in massive MIMO-OFDM systems. The calculation of
the conventional estimators, such as MMSE estimator, is not
affordable since a large dimension matrix inverse is usually
required.

The space defined by the parameters of the a posteriori
PDF can be regarded as a differentiable manifold with a
Riemannian structure. Hence, the definitions and tools of
differential geometry can be well applied. This is exactly one
of the subjects of information geometry [6]–[8]. Thus, it is
appropriate to apply information geometry into the channel
estimation. The main idea of information geometry is to
investigate the intrinsic geometrical structures of the specific
sets of PDFs by regarding the parametric space of them
as differentiable manifolds. It has been recently applied in
multisensor estimation fusion [9], false alarm rate detection
[10] and generalized Bayesian prediction [11].

In this paper, we propose an information geometry approach
for channel estimation for massive MIMO-OFDM systems.
We first derive a space-frequency (SF) beam based statistical
channel model by using the sampled steering vectors in the
space and frequency domains. The channel estimation is then
formulated as obtaining the a posteriori information of the
beam domain channel. We solve this problem by calculating
an approximation of the a posteriori distribution’s marginals
within the information geometry framework. By viewing the
set of Gaussian distributions and the set of the marginals
as a manifold and its submanifold, respectively, we turn the
calculation of the marginals into an iterative projection process
between submanifolds with different constraints. By calculat-
ing the solution of m-projections, we derive the information
geometry approach (IGA) for the channel estimation. At last,
it is shown that the mean of the approximate a posteriori



marginals at the fixed point of IGA is equal to that of the
a posteriori distribution.

II. CHANNEL MODEL AND PROBLEM FORMULATION

In this section, we derive the SF beam based statistical
channel model for massive MIMO-OFDM systems by using
sampled steering vectors in the space and frequency domains.
Then, the problem of the channel estimation is formulated.

A. System Model

Consider a typical massive MIMO-OFDM system working
in time division duplexing (TDD) mode, where the base station
(BS) equipped with UPA of Nr = Nr,v × Nr,h antennas
communicates with K single-antenna users within a cell, and
Nr,v and Nr,h are the numbers of the antennas at each vertical
column and horizontal row, respectively. In TDD mode, due
to the channel reciprocity, channel state information (CSI) can
be obtained from uplink (UL) training and then used for UL
signal detection and DL precoding. Hence, we focus on the
uplink channel estimation. The standard OFDM modulation
with Nc subcarriers is applied. The system sampling interval
and the length of the cyclic prefix (CP) are denoted as Ts
and Ng, respectively. The set of the training subcarriers is
denoted as N t = {N1, N1 + 1, . . . , N2}. Then, the number of
training subcarriers is Np ≜ |N t|, and Np ≤ Nc, where |N t|
denotes the cardinality of set N t. We assume the channel is
quasi-static. Thus, we only consider the UL training within one
OFDM symbol. Then, during each symbol, the received signal
on the n-th subcarrier at the BS, denoted as yn ∈ CNr×1, can
be expressed as [12]

yn =
K∑

k=1

gn,kxk [n] + zn, n ∈ N t, (1)

where gn,k ∈ CNr×1 is the space-domain channel on the
n-th subcarrier between the user k and BS, xk [n] is the
training sequence transmitted by user k and zn ∈ CNr×1 is the
circularly symmetric Gaussian noise with E

{
znz

H
n

}
= σ2

zI.
Denote the channel of user k over all training subcarriers as

Gk = [gN1,k · · · gN2,k] ∈ CNr×Np , (2)

which is referred as the SF domain channel coefficient matrix
of user k. Then, let Y = [yN1

· · · yN2
] ∈ CNr×Np , Xk =

diag (xk) ∈ CNp×Np with xk = [xk [N1] , . . . , xk [N2]]
T and

Z = [zN1 · · · zN2 ] ∈ CNr×Np , and we can obtain

Y =
K∑

k=1

GkXk + Z. (3)

B. SF Beam Based Statistical Channel Model

Assumed that the antennas of UPA on the BS are sepa-
rated by one-half wavelength. Then, the space steering vector
v (u, v) ∈ CNr×1 can be expressed as v (u, v) ≜ vv (u) ⊗
vh (v) [13], where

vv (u) ≜ [p (1) p (2) · · · p (Nr,v)]
T ∈ CNr,v×1, (4a)

vh (v) = [q (1) q (2) · · · q (Nr,h)]
T ∈ CNr,h×1, (4b)

p (n) = exp {−ȷ̄π (n−1)u} and q (n) = exp {−ȷ̄π (n−1) v}.
u and v above are the directional cosines, i.e., u = sin θ,
v = cos θ sinϕ, where θ, ϕ ∈ [−π/2, π/2] are the vertical and
the horizontal angles of arrival at BS, respectively. Then, the
space-domain channel gn,k in (1) can be expressed as [12],
[14]

gn,k =

Pk∑
p=1

αp,k exp {−ȷ̄2πτp,k (fc + n∆f )}v (up,k, vp,k) ,

(5)
where Pk is the number of paths between user k and BS, αp,k

is the complex-valued channel gain of the p-th path of user
k, τp,k is the delay of path p between user k and the first
antenna of UPA, fc is the carrier frequency, ∆f = 1

NcTs
is

the subcarrier interval, and up,k and vp,k are the directional
cosines of path p between user k and BS. We define the
frequency steering vector as

u (τ) ≜ [r (N1) · · · r (N2)]
T ∈ CNp×1, (6)

where r (n) = exp {−ȷ̄2π∆fnτ}. Then, the SF domain
channel coefficient matrix Gk (2) can be expressed as

Gk =

Pk∑
p=1

hp,kv (up,k, vp,k)u
T (τp,k) , (7)

where hp,k = αp,k exp (−ȷ̄2πfcτp,k). We derive the
SF beam based statistical channel model of the
massive MIMO systems by discretizing the directional
cosines u, v and the delay τ . Define hk (u, v, τ) ≜∑Pk

p=1 hp,kδ (u− up,k) δ (v − vp,k) δ (τ − τp,k), where the
parameters up,k, vp,k and τp,k are the same as before. We
then define the sampled directional cosines and delays as

ui =
2 (i− 1)−Nv

Nv
, i ∈ Z+

Nv
(8a)

vj =
2 (j − 1)−Nh

Nh
, j ∈ Z+

Nh
(8b)

τℓ =
(ℓ− 1)Nf

NτNp∆f
, ℓ ∈ Z+

Nτ
, (8c)

respectively, where Nf = ⌈NpNg/Nc⌉ and Z+
N =

{1, 2, . . . , N}. Nv ≜ FvNr,v , Nh ≜ FhNr,h and Nτ ≜ FτNf ,
where Fv , Fh ,and Fτ are the fine factors (FFs). When Nv ,Nh

and Nτ are sufficiently large, the SF domain channel matrix
(7) can be well approximated as

Gk ≈
∑
i,j,ℓ

h̃k (ui, vj , τℓ)v (ui, vj)u
T (τℓ) , (9)

where

h̃k (ui, vj , τℓ) =

∫∫∫
u∈Bu,i,v∈
Bv,j ,τ∈Bτ,ℓ

hk (u, v, τ) dudvdτ, (10)

Bu,i = [ui, ui+1) , i ∈ Z+
Nv

, Bv,j = [vj , vj+1) , j ∈ Z+
Nh

and Bτ,ℓ = [τℓ, τℓ+1) , ℓ ∈ Z+
Nτ

. Let V ∈ CNr×NvNh =
Vv ⊗ Vh and F = [u (τ1) . . . u (τNτ )] ∈ CNp×Nτ , where



Vv = [vv (u1) · · · vv (uNv
)] ∈ CNr,v×Nv and Vh =

[vh (v1) · · · vh (vNh
)] ∈ CNr,h×Nh . Then, the SF domain

channel matrix Gk can be expressed as,

Gk = VHkF
T , (11)

where Hk ∈ CNvNh×Nτ and [Hk]m,n = h̃k (ui, vj , τn) with
i = ⌊m−1

Nh
+ 1⌋ and j = m − (i− 1)Nh. With the assump-

tion of wide-sense stationary uncorrelated scattering Rayleigh
fading channel, the elements in Hk follow the independent
complex Gaussian distributions with zero mean and possibly
different variances, and we define the beam domain channel
power matrix as:

Ωk = E
{
Hk ⊙Hk

}
. (12)

Due to the channel sparsity, most of the elements in Ωk are
close to zero [12]. Therefore, there are sufficient resources to
acquire Ωk,∀k. For instance, the authors of [13] propose a
method that can obtain the estimate of Ωk. Thus, we assume
that Ωk of all users are known at the BS in the rest of the
paper.

C. Problem Formulation

During the UL training, the task of channel estimation is to
obtain the a posteriori information of the SF domain channel
matrix Gk,∀k. From (11), the a posteriori information of
Gk can be calculated from that of the beam domain channel
matrix Hk. Thus, we focus on the estimation of Hk,∀k. By
substituting (11) into the UL received signal model (3), we
have

Y = VHaM+ Z, (13)

where Ha = [H1 H2 · · · HK ] ∈ CNvNh×KNτ and M =
[X1F X2F · · · XKF]

T ∈ CKNτ×Np . After the vectorization
of (13) and removing the elements in vec (Ha) with zero
variance, denoted as h, and the corresponding columns in
MT ⊗V, we have,

y = Ah+ z, (14)

where A ∈ CN×M is a deterministic matrix extracted from
MT ⊗V, N = NrNp, M is the number of elements in Ha

with non-zero variance, y and z are the vectorizations of Y
and Z, respectively, h ∼ CN (0,D) with positive definite
and diagonal D, and z ∼ CN

(
0, σ2

zI
)
. h and z are assumed

to be independent with each other. Then, the a posteriori

distribution is also Gaussian, i.e., p (h|y) = pG

(
h; µ̃, Σ̃

)
,

where pG (h;µ,Σ) denotes the PDF of a complex Gaussian
distribution CN (µ,Σ). The a posteriori mean µ̃ and covari-
ance Σ̃ are given by [15]

µ̃ = D
(
AHAD+ σ2

zI
)−1

AHy, (15a)

Σ̃ =

(
D−1 +

1

σ2
z

AHA

)−1

. (15b)

The computational complexity of the a posteriori information
in (15) is O

(
M3 +M2N

)
. Note that when the number of

users is relatively large, e.g., tens, M can be comparable to
N even though channel sparsity exists. In this case, it may be
unaffordable to apply (15) in practice when both N and M
are large.

III. INFORMATION GEOMETRY APPROACH FOR CHANNEL
ESTIMATION

This section applies information geometry into the beam
domain channel estimation. We propose the information ge-
ometry approach (IGA) for channel estimation, and show that
at the fixed point of IGA, the approximate a posteriori mean
obtained by IGA is equal to the a posteriori mean (15a).

Recalling the received signal model (14), with prior distri-
butions of h and z being independent Gaussian distributions,
i.e., h ∼ CN (0,D) with positive definite and diagonal D,
and z ∼ CN

(
0, σ2

zI
)
, the a posteriori distribution is also

Gaussian with its PDF

p (h|y) = C
M∏
i=1

pi (hi)
N∏

n=1

pn (yn|h)

= C ′ exp
{
−hHD−1h

} N∏
n=1

exp

{
−
∣∣yn − γH

n h
∣∣2

σ2
z

}

= exp

{
dh ◦ th +

N∑
n=1

cn (h)− ψq

}
,

(16)

where yn is the n-th element of y, dh = f
(
0,−D−1

)
, th =

f
(
h, I⊙

(
hhH

))
, C, C ′ and ψq are the normalization factors

and cn (h) is given by

cn (h) = −hH γnγ
H
n

σ2
z

h+ hH γnyn
σ2
z

+
yHn γH

n

σ2
z

h, (17a)

γn =
[
AH

]
:,n

= [an1 · · · anM ]
T ∈ CM×1. (17b)

f (a,A) above is defined as f (a,A) =
[
aT , vecT (A)

]T ∈
C(P+Q2)×1 with a ∈ CP×1 and A ∈ CQ×Q. It can be
shown that f (a1,A1) ◦ f (a2,A2) = a1 ◦ a2 +A1 ◦A2. Note
that th above only contains the statistics of single random
variables, i.e., hi as well as |hi|2, and no interactions terms
of hi, i = 1, 2, . . . ,M . All the interactions, i.e., wi,jhihj are
in the

∑M
n=1 cn (h). If we can somehow approximate

∑
cn

as ϑ0 ◦ th, where ϑ0 = f (θ0,Θ0) with θ0 ∈ CM×1 and
Θ0 ∈ DM , and DM is the set of M×M real diagonal matrices,
then we can obtain

p (h|y) ≈ p0 ((dh + ϑ0) ◦ th − ψ0) , (18)

where ψ0 is the normalization factor. The marginals of p0
can be obtained easily since it contains no interactions. Based
on the observation above, we define two sets of Gaussian
distributions, which are called the objective manifold M0

(OBM) and the auxiliary manifolds Mn (AMs), respectively,

M0 = {p0 (h;ϑ0)} , (19a)

p0 (h;ϑ0) = exp {dh ◦ th + ϑ0 ◦ th − ψ0 (ϑ0)} , (19b)



Mn = {pn (h;ϑn)} , n ∈ Z+
N , (20a)

pn (h;ϑn) = exp {(dh+ϑn)◦ th+cn (h)−ψn (ϑn)} ,
(20b)

where ϑn = f (θn,Θn) is the parameter of pn, θn ∈ CM×1,
Θn ∈ DM is a diagonal parameter matrix of pn, ψn (ϑn) is
the free energy, the subscript n ∈ ZN , ZN ≜ {0, 1, . . . , N},
and dh, th as well as cn (h) are the same as before. Observing
pn (h;ϑn) in (20), we can find that only one interaction item
cn (h) is maintained, and all others, i.e.,

∑
n′ ̸=n cn′ (h) are

replaced with ϑn ◦ th. Assume that the parameter ϑn of
pn, n ∈ Z+

N , is given, then, the approximation of cn (h)
can be calculated through the m-projection of pn on M0. To
be specific, the m-projection of pn on M0 is calculated by
minimizing the following Kullback-Leibler (K-L) divergence,

ϑ0n = argmin
ϑ0

DKL {pn (x;ϑn) : p0 (x;ϑ0)} , (21)

where

DKL {pn (x;ϑn) : p0 (x;ϑ0)} = Epn

{
ln
pn (x;ϑn)

p0 (x;ϑ0)

}
.

(22)
After some calculations, ϑ0n = f (θ0n,Θ0n) is given by (23).
To calculate the approximation of cn (h), we express the m-
projection p0 (h;ϑ0n) as

p0 (h;ϑ0n) = exp {(dh + ϑ0n) ◦ th − ψ0 (ϑ0n)}
= exp {(dh + ϑn + ξn) ◦ th − ψ0} ,

(24)

where ϑ0n is regarded as the sum of the parameter of pn
and the parameter of the approximation of cn (h) since the
difference between pn (h;ϑn) and p0 (h;ϑ0n) is that cn (h)
in pn (h;ϑn) is replaced by ξn ◦ th in p0 (h;ϑ0n). Thus, we
approximate cn (h) as ξn ◦ th, and the ξn is given by

ξn = ϑ0n − ϑn, n ∈ Z+
N . (25)

Then, ϑ0 is calculated as ϑ0 =
∑N

n=1 ξn since our ultimate
goal is to approximate

∑N
n=1 cn as ϑ0 ◦ th and each cn is

approximated as ξn ◦th. It should be also noted that the com-
plete algorithm is an iterative procedure. Specifically, we first
initialize ϑn with any value. Then, calculate the m-projection
ϑ0n and the approximation item ξn. The parameter of pn in
Mn, n ∈ Z+

N , is then updated as ϑn =
∑

n′ ̸=n ξn′ since
ϑn ◦ th replaces

∑
n′ ̸=n cn′ (xh) in pn and each interaction

item cn (xh) is approximated as ξn◦th. Then, the parameter of
p0 (h;ϑ0) in M0 is updated as ϑ0 =

∑N
n=1 ξn. Repeat the m-

projections, calculate the approximation items and the updates
until convergence. In practice, to improve the convergence of
IGA, we can also use the following damped updating:

ϑt+1
n = α

∑
n′ ̸=n

ξtn′ + (1− α)ϑt
n, n ∈ Z+

N , (26a)

ϑt+1
0 = α

N∑
n=1

ξtn + (1− α)ϑt
0, (26b)

where 0 < α ≤ 1 is the damping. We summarize the IGA
in Algorithm 1. The computational complexity of the IGA is
O (TNM), where T is the number of the iterations, N =
NrNp is the product of the number of antennas at the BS and
the number of transmitting subcarriers, and M is the number of
variables to be estimated for the beam domain channel. Then,
at the fixed point of IGA, we have the following theorem.

Theorem 1. When converged, the mean of p0 (h;ϑ∗
0) obtained

by IGA is equal to that of the a posteriori distribution p (h|y).

The proof is omitted due to space limitations. Note that the
above relationship holds for arbitrary matrix A. For the most
popular AMP algorithms, the same conclusion can be obtained
when A is a zero-mean i.i.d. sub-Gaussian matrix satisfying
the large-system limit, and the fixed point (equilibrium) of
AMP is unique [16].

Algorithm 1: IGA for Channel Estimation
Input: The covariance D of the priori distribution

p (h), the received signal y, the noise power
σ2
z and the maximal iteration number tmax.

Initialization: set t = 0, set α, initialize the
parameters of pn (h;ϑn (t)) , n = 0, 1, . . . , N ;

repeat
Calculate the m-projection as (23);
Update the parameters of AMs and OBM as (26a)
and (26b), respectively;
t = t+ 1;

until Convergence or t > tmax;
Output: The mean and variance of the approximate

marginal, p (hi|y) , i = 1, 2, . . . ,M, are given
by the i-th component of µ0 and diag (Σ0),
respectively, where µ0 and Σ0 of
p0 (h;ϑ0 (t)) are given by (27)

IV. SIMULATION RESULTS

This section provides some simulation results to illus-
trate the performance of the proposed information geom-
etry approach for massive MIMO-OFDM channel estima-
tion. We adopt the widely used QuaDRiGa channel model
[17]. The main parameters for the simulations are sum-
marized in Table I. The simulation scenario is set to
"3GPP_38.901_UMa_NLOS". The layout of the massive

TABLE I
PARAMETER SETTINGS OF THE QUADRIGA

Parameter Value
Number of BS antenna Nr,v ×Nr,h 8× 16

UT number K 48
Center frequency fc 4.8GHz

Number of training subcarriers Np 360
Subcarrier spacing ∆f 15kHz

Number of subcarriers Nc 2048
CP length Ng 144

Fine factors Fh, Fv , Fτ 1, 2 or 4

MIMO-OFDM system is plotted in Fig. 1. The BS is located at



θ0n =

(
I−

(
D−1 −Θn

)−1
I⊙

(
γnγ

H
n

)
σ2
z + γH

n (D−1 −Θn)
−1

γn

)−1(
2yn − γH

n

(
D−1 −Θn

)−1
θn

σ2
z + γH

n (D−1 −Θn)
−1

γn

γn + θn

)
(23a)

Θ0n = D−1 −

(D−1 −Θn

)−1 −

((
D−1 −Θn

)−1
)2

I⊙
(
γnγ

H
n

)
σ2
z + γH

n (D−1 −Θn)
−1

γn


−1

, n ∈ Z+
N (23b)

µ0 =
1

2

(
D−1 −Θ0

)−1
θ0, Σ0 =

(
D−1 −Θ0

)−1
(27)

(0, 0, 25). The users are randomly generated in a 120◦ sector
with radius r = 200m around (0, 0, 1.5). We normalize the
channel as E

{
∥Gk∥2F

}
= NrNp. We adopt the adjustable

phase shift pilots [12] as the training signal. The transmit
power of the training signal for each user is set to 1. It should
be noted that any other training signal can be applied. The
SNR is set as SNR = 1/σ2

z . Furthermore, we use the algorithm
proposed in [13] to obtain the channel power matrices Ωk,∀k.
The normalized mean-squared error (NMSE) is used as the
performance metric for the channel estimation,

NMSE =
1

KNsam

K∑
k=1

Nsam∑
n=1

∥G(n)
k − Ĝ

(n)
k ∥2F

∥G(n)
k ∥2F

, (28)

where Nsam is the number of the channel samples, G(n)
k is

the n-th channel sample of user k, Ĝ
(n)
k is the estimate of

the G
(n)
k and ∥·∥F is the F-norm. We set Nsam = 200 in our

simulations. We compare the proposed IGA with the following
algorithms.
GAMP: Generalized approximate message passing algorithm
proposed in [18].
VEP: A low-complexity variant of the EP algorithm proposed
in [19].
MMSE: The MMSE estimation of the beam domain channels
based on (15a). Fig. 2 shows the NMSE performance of IGA

Fig. 1. The layout of the massive MIMO-OFDM system.

channel estimation compared with GAMP, VEP and MMSE
with Fv = Fh = Fτ = 2. The maximal iteration number of
IGA, GAMP and VEP is set as 100. It can be found that the
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Fig. 2. NMSE performance of IGA channel estimation compared with GAMP,
VEP and MMSE.
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Fig. 3. Convergence performance of IGA channel estimation compared with
GAMP and VEP at SNR = 10 dB.

IGA can obtain almost the same NMSE performance as the
MMSE estimation at all SNRs. The SNR gain of the IGA
compared to GAMP and VEP is about 5dB when the NMSE
performance is −29dB.

Fig. 3 and Fig. 4 shows the convergence performance of
IGA channel estimation compared with GAMP and VEP,
where the SNR is set as 10dB and 20dB respectively, and Fv =
Fh = Fτ = 2. We can find that in the case with SNR = 10dB,
IGA requires about 150 iterations to converge and achieves
the optimal solution as that by the MMSE estimation, while
the GAMP and VEP converge in more than 450 iterations.
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Fig. 4. Convergence performance of IGA channel estimation compared with
GAMP and VEP at SNR = 20 dB.

In the case with SNR = 20dB, IGA converge in about 200
iterations, while GAMP and VEP take more than 550 iterations
to converge. We can also find that VEP and GAMP show
almost identical convergence behavior in all the simulations.
This might be caused by the similarity in the processes of VEP
and GAMP. The key difference between VEP and GAMP lies
in the computation of one set of intermediate variables, which
is denoted as {τ̃m,n} in [19]. Other than that, they are nearly
identical to each other [19]. Apart from the simulations in this
work, VEP and GAMP also show almost identical convergence
behavior in the simulations of [19], see, e.g., Fig. 3 (b) therein.
Compared with GAMP and VEP, IGA has a faster convergence
rate. The proposed IGA is derived based on the structure of
the a posteriori distribution p (h|y) within the information
geometry framework. The geometrical perspective provides an
intuitive understanding of the statistical model, and thus allows
to solve the statistical inference problem from an intrinsic
and general standpoint. This might be a key reason for the
improved convergence behavior of IGA compared with GAMP
and VEP in massive MIMO channel estimation.

V. CONCLUSION

We have proposed an information geometry approach for
channel estimation in massive MIMO-OFDM systems. We first
derive the SF beam based statistical channel model for massive
MIMO-OFDM systems by using sampled steering vectors in
space and frequency domain. The accuracy of the beam based
channel model is guaranteed by sufficiently large number
of sampled steering vectors. With the established channel
model, the channel estimation is formulated as calculating the
a posteriori information of the beam domain channel. We cal-
culate approximate marginals of the a posteriori distribution
within the information geometry framework. Specifically, the
calculation of the marginals is formulated as an iterative m-
projection process. We derive the IGA for channel estimation
by finding the solution of the m-projection. We show that
the mean of the obtained marginals at the IGA’s equilibrium
equals the a posteriori mean. Simulation results verify that
the proposed IGA can obtain high channel estimation accu-
racy with much less number of iterations compared with the

existing approaches. This demonstrates the superiority of our
proposed channel estimation approach for massive MIMO-
OFDM systems.
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