
Scaling Logical Density of DNA storage with

Enzymatically-Ligated Composite Motifs

Yiqing Yan1, Nimesh Pinnamaneni2, Sachin
Chalapati2, Conor Crosbie2 and Raja Appuswamy1*

1*Data Science Department, EURECOM, Biot, France.
2Helixworks Technologies, Cork, Ireland.

*Corresponding author(s). E-mail(s):
raja.appuswamy@eurecom.fr;

Contributing authors: yiqing.yan@eurecom.fr;
nimesh@helix.works; sachin@helix.works; conor@helix.works;

Abstract

DNA is a promising candidate for long-term data storage due to its high
density and endurance. The key challenge in DNA storage today is the
cost of synthesis. In this work, we propose composite motifs, a frame-
work that uses a mixture of prefabricated motifs as building blocks to
reduce synthesis cost by scaling logical density. To write data, we intro-
duce Bridge Oligonucleotide Assembly, an enzymatic ligation technique
for synthesizing oligos based on composite motifs. To sequence data, we
introduce Direct Oligonucleotide Sequencing, a nanopore-based tech-
nique to sequence oligos without assembly and amplification. To decode
data, we introduce Motif-Search, a novel consensus caller that provides
accurate reconstruction despite synthesis and sequencing errors. Using
the proposed methods, we present an end-to-end experiment where we
store the text “HelloWorld” at a logical density of 84 bits/cycle (14–42×
improvement over state-of-the-art).

Keywords: logical density, composite motifs, Bridge Oligonucleotide
Assembly, Direct Oligonucleotide Sequencing, Motif-Search

1



2 ARTICLE

1 Introduction

The growing adoption of Big Data Analytics and Artificial Intelligence has
led to an explosion in the rate of data generation. A recent survey by the
International Data Corporation reports that the digital datasphere is forecast
to grow to 125 zettabytes by 2025 [1] and is anticipated to exceed silicon
supply in 2040 [2]. As traditional storage media is unable to keep pace with
the rate of data growth [3], synthetic DNA has become an attractive archival
storage medium due to its high density, longevity, and absence of technical
obsolescence compared with electronic media [4–8].

In most prior work on DNA-based digital storage [5, 7, 9, 10], DNA syn-
thesis is based on phosphoramidite chemistry [11], a technology that has
been optimized over several decades to perform highly-accurate, base-by-base
synthesis of short DNA strands by making phosphodiester bonds between
nucleotides. There are three Key Performance Indicators (KPIs) that can be
used to evaluate the efficiency of DNA synthesis: (i) bits written per cycle
(also called logical density [12, 13]), (ii) bits written per oligo, and (iii) cou-
pling reactions per oligo. The efficiency of writing data to DNA depends on
the number of synthesis cycles (x) to grow the strand and available repeating
units (m) for addition at each cycle. The information capacity of the oligo (N
bits) can be derived as

N(bits) = x× log2m (1)

While base-by-base synthesis methods can perform 200 or more coupling
cycles(x), the number of available subunits to add at each cycle is four
(nucleotides), thereby limiting bits per synthesis cycle to two, and the infor-
mation capacity of an oligo to a few hundred bits. While the quality, quantity,
cost, and rate of DNA synthesis provided by base-by-base chemistry is suitable
for biological research, it is far from ideal for the DNA storage use case. This
has resulted in synthesis emerging as a major bottleneck in DNA storage.

In this work, we introduce the composite motifs framework to scale logical
density well beyond the limit of 2 bits per synthesis cycle. Composite motifs
are inspired by recent advances in motif-based approaches to DNA data stor-
age [14, 15] that use short oligonucleotide sequences, also referred to as motifs,
that are drawn from a fixed library as building blocks for assembling longer
oligos. Using a motif library of M motifs, one can scale logical density by stor-
ing log2(M) data bits per synthesis cycle. The use of a fixed library of motifs
similar to a typesetting press can also simplify miniaturization and automa-
tion. The composite motif framework builds on the benefits of motif-based
DNA storage, and further improves logical density by exploiting sequencing
multiplicity inherent in DNA synthesis by encoding data using a combination
of motifs rather than individual motifs.

In this work, we show that a DNA storage system based on composite
motifs can provide an order of magnitude improvement in logical density over
state-of-the-art systems by implementing an end-to-end prototype system. In
doing so, we develop new encoding and enzymatic motif ligation techniques
that can scale DNA synthesis in the DNA write pipeline, and assembly-free,



ARTICLE 3

Nanopore-based motif read out and alignment-based motif decoding techniques
that can scale DNA sequencing in the DNA read pipeline.

2 Results

2.1 Composite Motifs as Building Blocks for DNA
Storage

Fig. 1 Composite-motif-based data write and read pipeline.

A composite motif is a representation of a position in an oligo sequence
that uses a combination of motifs drawn from a fixed motif library to encode
data. For example, assuming a library of 32 motifs, and a combination factor
of four, there are C(32, 4) = 35960 possible unique combinations with which
we can encode 15 (log235960) bits of data per composite motif. Composite
motifs increase logical density by expanding the motif library using combina-
tions of motifs without increasing the volume of motifs. As current synthesis
platforms already use a high degree of sequence multiplicity (multiple copies
of DNA molecules are synthesized per oligo), composite motifs can also be
integrated into current platforms without any extra cost as they can exploit
sequence multiplicity to scale logical density. Higher logical density also leads
to a reduction in the length of DNA required to store the same amount of
data, alleviating issues related to long oligo synthesis.

In order to demonstrate the feasibility of using composite motifs, we devel-
oped a DNA storage system that uses composite motifs as building blocks.
Fig 1 presents the read/write pipeline of our system. On the writing side,
digital data is encoded into oligos containing composite motifs using a motif
encoder. Writing a composite motif at any given position of an oligo sequence
is done by mixing multiple motifs during the synthesis procedure to synthesize
multiple DNAmolecules that contain the corresponding combinations of motifs



4 ARTICLE

Fig. 2 Composite motifs increases the logical density in DNA-based storage. (a) A block of
binary data is encoded to a sequence comprising a set of oligos with same address payload
motifs. The composite of payload motifs from the same vertical position represents the
binary data together. (b) Composite motifs can be generated by mixing the motifs during
each synthesis cycle. A: address motif, P: payload motif.

using Bridged Oligonucleotide Assembly (BOA) (Sec.2.2). On the reading side
(Fig 1), we read composite motifs by amplification-free sequencing of multi-
ple DNA molecules using Direct Oligonucleotide Sequencing (DOS) (Sec.2.3),
and then decode the data using our new motif-based consensus caller called
Motif-Search(Sec.2.5).

2.2 Bridged Assembly of Composite Motifs

Encoding. In order to demonstrate the feasibility of composite motifs, we
stored the text “HelloWorld” using our composite-motif-based DNA storage
system. The sequence design rules for base motifs that are used to derive
composite motifs are similar to those of DNA barcode design. Thus, we started
with DNA sequences designed in prior work [16] to select 96 25nt base motifs.
Using a combination factor of 32, we developed a composite motif set of 3×1025

composite motifs (C(96, 32)). Thus, each composite motif, and hence, each
synthesis cycle, can store 84-bits of data (log2C(96, 32)). As our input text is
10 bytes, it can be stored using a single DNA sequence with one composite
motif. However, in order to test precision and recall of methods in the read
pipeline, we stored the same data eight times using eight sequences. We index
each sequence using eight unique 24nt address motifs that are separate from the
96 payload motifs. While we designed our encoding to match our experimental
needs, it naturally extends to a general purpose encoder(Fig 2.a).

Bridge Oligonucleotide Assembly. Each of the eight encoded sequences
is then used to synthesize 32 oligos producing a total of 256 oligos. The address
motif is repeated in each molecule, while the composite motif is expanded to
generate a variant combination using 32 payload motifs. Oligos are synthesized
using template-directed ligation. This method utilises single-strand sequences,
referred to as bridge oligos, to facilitate the ligation of payload motifs to address



ARTICLE 5

Fig. 3 Bridged oligonucleotide assembly. (a) The general oligo structure design. (b) The
experimental oligo structure design. A: address motif, A’: reverse complement of A, P:
payload motif, S: spacer, B: bridge, O: overhang.

motifs. In the general case, an oligo would contain one or more address and
payload motifs as shown in Fig 2. As any motif can be ligated with any other,
designing bridge oligos for each possibility is suboptimal and not scalable.
We solve this problem by using a spacer motif. When the motif library is
designed, each 25nt motif is extended on both 5’ and 3’ ends with 12nt and
13nt nucleotides from the 3’ and 5’ ends of the spacer motif (Fig 3.a). While
this increases the length of each synthesized motif from 25nt to 50nt, it does
not affect the number of motifs, and more importantly, it makes it possible to
design the bridge oligo to be complementary to a single spacer. By doing so,
the bridge oligos can hybridise to the spacer portions at the 3’ and 5’ ends of
two payload motifs while the enzyme ligates them.

For the purpose of our experiment, as we have only 2 motifs per oligo, we
modified this by (i) prepending the entire spacer sequence to the 5’ end of
each payload motif, and (ii) designing eight (instead of one) bridge oligos, each
of which is complementary to both the spacer sequence and one of the eight
address sequences (Fig 3.b). By doing so, the eight bridge motifs also double
in role as adapters during sequencing. The spacer-extended 32 payload motifs,
eight address motifs, and eight bridge oligos were all synthesized base-by-
base by Integrated DNA Technologies (IDT). The oligos were synthesized by
selecting, annealing and ligating together the corresponding address–payload
motif pairs. The inputs to the reaction comprise all motif oligos, bridge oligos,
enzymes and ligation buffer. These reactions proceeded to produce ligated
oligos through programmed temperature incubation and cycling, where each
bridge oligo facilitates the ligation of a specific address motif with a payload
motif via complementary annealing. We use the resulting oligo pool to test
the feasibility of decoding the identity of motifs from an enzymatically-ligated,
Nanopore-basecalled readout.

2.3 Direct Nanopore Sequencing & Error
Characterization

A key aspect of a DNA storage system, along with DNA writing perfor-
mance, is the cost of DNA sequencing and time taken to read data from DNA
molecules. Nanopore sequencing enables single molecule sensing capabilities



6 ARTICLE

and has the potential to create a low-cost, high-speed DNA storage read head.
The yield of a Nanopore (ONT) flowcell is dependent on the size of the DNA
to be sequenced. Small oligos result in a higher number of unoccupied pores
over time. ONT estimates that the minimum DNA size to load in a R9.4
flowcell is 200 bases. Thus, prior work on DNA storage with Nanopore has
relied on additional sample preparation steps for short oligos that are man-
ual and time consuming [17]. In particular, DNA assembly methods were used
to concatenate five or more DNA storage oligos into a longer fragment, and
PCR amplification is used to sufficiently increase sequencing throughput and
coverage for decoding.

We developed a method to enable direct sequencing of composite-motif-
based oligos without amplification or second-strand synthesis. As mentioned
earlier, our oligos have only two motifs concatenated by a spacer. Thus, we
designed our eight bridge oligos to double in role as adapters that will include
an adenosine overhang after annealing to address(A0) and payload(P0) oligos
(Fig 3.b). The address motifs are 5’ phosphorylated which results in all oligos
in our pool having their 5’ end analogous to end-prepared dsDNA. Thus, these
oligos can readily ligate with the AMX sequencing adapters from ONT’s liga-
tion sequencing kit (LSK-109). The AMX adapters were attached to the oligos
in a 10 minute reaction. Sequencing was performed on a R9.4.1 flow cell for
4 hours. Basecalling was performed with both Guppy and Bonito basecallers.
The sequencing run generated 27,198 reads with an N50 of 192bp.

Despite having several reads, we found that the reads were low quality.
From the read length distribution in Fig 4.a and Fig 4.b, we see that the median
read length with Guppy and Bonito is 166nt and 110nt. Thus, more than
half reads are 48% longer than original oligos as several reads were observed
to contain multiple oligos in a single read. On further analysis, we identified
wrong event detection by MinKNOW to be the root cause of the problem.
When sequencing oligonucleotides on an ONT R9.4 flowcell, the movement of
bases through the pore leads to a continual change in current, known as the
“squiggle”, that is recorded by MinKNOW. MinKNOW processes the squiggle
into reads in real-time, and each read is supposed to correspond to a single
strand of DNA. However, as our oligos were below 200 bases, we observed that
sequencing our oligos generated low quality reads due to incorrect segmenta-
tion by MinKNOW which would earmark empty signals as valid reads, and
created reads with merged squiggles for more than one strand of DNA.

Due to the presence of multiple oligos per read, we cannot directly align
the reads to the reference oligos. So we did reverse alignment to study error
characteristics and coverage distributions. We regard each read as a “reference”
and build an index per read. Then, we treat each oligo like a “read”, and
align it to each reference. Thus, for each read, we get an alignment file that
contains one record per oligo. To identify and retain only good alignments,
we filter the alignments using the following criteria: (i) MAPQ > 10 (90%
alignment confidence), ii) all alignments in a read should correspond to one
orientation (no mixed forward and reverse alignments), and iii) there should



ARTICLE 7

0 100 200 300 400 500
Length of reads (nt)

0

50

100

150

200

250

300

Nu
m

be
r o

f r
ea

ds
a

0 100 200 300
Length of reads (nt)

0

50

100

150

200

250

300
b

0 50 100 150 200
Length of reads (nt)

0

1000

2000

3000

4000

5000

c

0 25 50 75
Position

0.0001

0.0010

0.0100

0.1000

1.0000

Er
ro

r p
ro

ba
bi

lit
y

d

Substitution Insertion Deletion0.0001

0.0010

0.0100

0.1000 e
Substitution
Insertion
Deletion
Soft-clipping
Goldman et al.
Grass et al.
Erlich & Zielinski
Organick et al.
Antkowiak et al.
This Work

Fig. 4 Analysis about the sequenced reads. (a) Read length distribution with Guppy base-
caller. (b) Read length distribution with Bonito basecaller. (c) Read length distribution
with Bonito basecaller post-processed with SaberSplit . (d) The substitution, insertion, dele-
tion and soft-clipping rate per position of Guppy reads. (e) Comparison of errors rate with
previous work.

not be any overlap when multiple oligos are mapped in a single read; only
the alignment with the highest alignment score is kept if several alignments
overlap each other. With this approach, we get the set of oligos that we can
identify assuming we have full knowledge of the original oligos.

Using Minimap2 [18] for reverse alignment, we computed the substitution,
insertion, deletion and soft-clipping rate per position (Fig 4.d). As can be seen,
the rate of soft clipping is very high at the extremities (especially 3’ end)due
to the very high error rate caused by BOA and DOS. In the middle portion of
the read, the rates of error types vary, with no one error type being dominant
over others. These results are in sharp contrast to error statistics published in
prior work on DNA storage [5, 7, 10, 19, 20], where substitution errors have
been shown to be more likely than indel errors, and overall error rates are at
least 10× lower (Fig 4.e and Supplementary Table 1). The only exception is
work on photolithographic synthesis [21], where the error rates reported were
also high.

2.4 Correcting Event Misdetection with SaberSplit

In the real DNA storage scenario, the original reference oligos must be inferred
from erroneous reads automatically. Current read clustering and consensus
callers used for this purpose assume that a read covers only a single oligo.
To be able to use them, we developed SaberSplit (Supplementary Note 1),
a tool that reduces the errors caused by incorrect segmentation by splicing
squiggles to separate out reads belonging to different oligos. With SaberSplit,



8 ARTICLE

the original reads are chopped to 102,221 shorter reads of median length 25nt
as shown in Fig 4.c. Then, we tried to use state-of-the-art clustering programs
and position-wise consensus callers [22, 23] to infer the original oligos from
both raw Bonito/Guppy reads, and SaberSplit processed reads. However, due
to the high error rate, no oligos could be inferred in all cases.

To study SaberSplit further, we aligned the chopped reads to reference
oligos with Minimap2. We compared the alignment statistics for raw Guppy,
Bonito and Sabersplit processed reads (Supplementary Table 2). Guppy reads
produced the highest number of alignments, with 102% more reads being
aligned than Bonito. This could be explained by the fact Bonito is optimized
to work better with longer reads, making it less suitable for short ones. Sur-
prisingly, SaberSplit performed the worst with 9.5% fewer reads than even
Bonito. This showed us that splitting reads amplifies the error rate and makes
the case for a consensus caller that can directly work with raw reads covering
multiple oligos.

2.5 Inference and Consensus with Motif Search

To reconstruct the original data from noisy reads, we developed a new recon-
struction algorithm called Motif-Search that meets two requirements: (i)
guarantee successful recovery despite high error rate, and (ii) directly work
with raw, basecalled, Nanopore reads that might contain multiple oligos per
read. Motif-Search differs from prior consensus callers that it is structure
aware—while other callers view an oligo as a random collection of nucleotides,
Motif-Search exploits the fact that our oligos are a collection of payload motifs
separated by spacer motifs, with all motifs being drawn from a predefined,
finite library. A detailed description of the Motif-Search algorithm is presented
in Section 4.3. Here, we present our analysis results that demonstrate the
ability of Motif-Search to accurately infer original oligos.

Fig 5 shows the true positive (TP) count (number of inferred oligos that
are in the original set) of Motif-Search and Minimap2-based reverse alignment
method at various coverage levels (lower sequencing coverage simulated via
subsampling reads). It is important to note that Minimap2 needs the original
oligos which would not be available in the real DNA storage use case. Thus,
Minimap2 results are used as a baseline for comparison rather than a real
decoding solution. First, Motif-Search is able to fully recover all oligos at 20×
coverage. Reverse alignment misses one oligo even with 34× coverage. Second,
Motif-Search reconstructs more oligos than reverse alignment at all coverage
levels. The under-performance of reverse alignment relative to Motif-Search is
because all the reads covering the missing oligo had a very poor alignment and
were filtered out.

Table 1 shows the execution time of Motif-Search and reverse alignment.
Both support multi-threaded operation. On a 12-core Intel(R) Core(TM) i9-
10920X CPU clocked at 3.50GHz, 128GB RAM with a 1TB SATA SSD, Motif-
Search is 190–250× faster than Minimap2 due to the fact that Minimap2
needs to build an index for each read and align each oligo to each read while



ARTICLE 9

6 13 20 27 34

Coverage

225

230

235

240

245

250

255

260

265

Nb
. o

f o
lig

os

233

253
256 256 256

228

250

255 255 255

Motif Search
Minimap2

Fig. 5 Number of oligos correctly reconstructed. Motif-Search fully recovers all oligos at
20× or higher coverage. Minimap2 misses one oligo even with 34× coverage.

Table 1 Processing time (in second) for real dataset with 12 CPUs

6× 13× 20× 27× 34×

Motif search exec. time 0.15 0.24 0.38 0.49 0.64
Reverse alignment exec. time 29 60 91 122 152

Motif-Search is custom-designed for the motif-based oligo reconstruction use
case.

In order to investigate false positive (FP) behavior of Motif-Search and
reverse alignment, we increase the motif library size. For a given set of address
and payload motifs, we create oligos containing all possible combinations of
motifs. For instance, if the motif set size is 64(address) × 256(payload), we
generate 16,384 possible oligos. We then use Minimap2 to align each oligo to
each read. We use the same reads as before which were sequenced from 256
original oligos. As the motif set is expanded, Motif-Search can now report an
inferred oligo which is not in the original set but from the expanded set, which
would be labelled a FP.

Fig 6 shows the TP and FP counts for various expanded motif sets. First,
note that Motif-Search is able to reconstruct all original oligos when sequence
coverage reaches 27× for all motif set sizes. When the sequence coverage is
low, Motif-Search is able to reconstruct more true positive oligos than reverse
alignment even though it is unaware of the reference oligos. Second, as the
motif set size increases, the number of FP for both approaches rise. Since the
sequences are error-prone, both approaches make errors identifying the correct
references from reads. However, the FP rate of Motif-Search is still lower than
reverse alignment. While missing TP is an issue as it can lead to data loss,



10 ARTICLE

TP

FP64
32
0

32
64
96

128
160
192
224
256

a.
 8

*3
2

b.
 1

6*
64

c.
 3

2*
12

8

d.
 6

4*
25

6

e.
 1

28
*5

12

f. 
25

6*
10

24

f. 
51

2*
20

48

h.
 1

02
4*

40
96

6 cov

N
b.

 o
f o

lig
os

64
32
0

32
64
96

128
160
192
224
256

a.
 8

*3
2

b.
 1

6*
64

c.
 3

2*
12

8

d.
 6

4*
25

6

e.
 1

28
*5

12

f. 
25

6*
10

24

f. 
51

2*
20

48

h.
 1

02
4*

40
96

13 cov
N

b.
 o

f o
lig

os

64
32

0
32
64
96

128
160
192
224
256

a.
 8

*3
2

b.
 1

6*
64

c.
 3

2*
12

8

d.
 6

4*
25

6

e.
 1

28
*5

12

f. 
25

6*
10

24

f. 
51

2*
20

48

h.
 1

02
4*

40
96

20 cov

N
b.

 o
f o

lig
os

128
96
64
32
0

32
64
96

128
160
192
224
256

a.
 8

*3
2

b.
 1

6*
64

c.
 3

2*
12

8

d.
 6

4*
25

6

e.
 1

28
*5

12

f. 
25

6*
10

24

f. 
51

2*
20

48

h.
 1

02
4*

40
96

27 cov

N
b.

 o
f o

lig
os

160
128

96
64
32
0

32
64
96

128
160
192
224
256

a.
 8

*3
2

b.
 1

6*
64

c.
 3

2*
12

8

d.
 6

4*
25

6

e.
 1

28
*5

12

f. 
25

6*
10

24

f. 
51

2*
20

48

h.
 1

02
4*

40
96

34 cov

N
b.

 o
f o

lig
os

Minimap2

Motif Search

Fig. 6 The number of true positive and false positive oligos reconstructed by Motif-Search
and Minimap2 for different sequence coverages with expanded motif sets. i) Motif-Search
reconstructs more true positive oligos than reverse alignment even without the knowledge of
reference oligos. ii) False positive rises for both approaches when the motif set size increases.

extra FP is not a problem as it can easily be discarded by using auxiliary
metadata and/or error-control coding.

These results clearly demonstrate that (i) our motif-based, BOA method
can successfully encode information in DNA, and (ii) with sufficient cover-
age, Motif-Search is capable of reconstructing all original oligos, and thereby
ensuring successful decoding, despite errors introduced by enzymatic BOA and
DOS.

2.6 Read–Write Cost Comparison

The cost of storing data on DNA comes from two aspects, namely, the cost of
sequencing for reading data and the cost of synthesis for writing data. Com-
posite motifs has the potential to reduce the synthesis cost, thanks to the
increase in logical density. For example, each synthesis cycle encodes 84 bits
(log2C(96, 32)) in our composite motif experiment. A native motif-by-motif
approach, in contrast, can only encode 6 bits per cycle with the same 96 motifs,
and the traditional phosphoramidite approach can encode 2–3.37 bits per cycle
depending on whether standard or degenerate bases are used for encoding.
This 14–42× increase in logical density will lead to a proportionate reduction
in synthesis cost over conventional synthesis approaches, as fewer synthesis
cycles and fewer oligos are required to encode the same digital data. Since cur-
rent motif-based synthesis techniques already use a high degree of sequence



ARTICLE 11

An
tk

ow
ia

k 
et

 a
l.

Bl
aw

at
 e

t a
l.

Er
lic

h 
an

d 
Zi

el
in

sk
i

Go
ld

m
an

 e
t a

l.

Gr
as

s e
t a

l.

Or
ga

ni
ck

 e
t a

l.

th
is 

wo
rk

0

20

40

60

80

100

120

Co
st

 fo
r r

ea
di

ng
 1

M
B 

($
)

Fig. 7 The cost of DNA sequencing to read 1 megabyte data. Our work increases read cost
compared to prior work except Antowiak et al [21].

multiplicity, composite motifs can be easily integrated by generating a vari-
ant motif mixture pool without much added costs. The physical density of our
approach is 3.36bits/nt, which is also higher than the physical density of con-
ventional base-by-base DNA storage solutions (2 bits/nt) and comparable to
degenerate base approaches (3.37 bits/nt[12, 13]).

While our solution improves logical density and synthesis costs, it does so at
the expense of higher read costs. Fig 7 presents a comparison of the cost to read
1MB of data stored in DNA of our approach and other related work[5, 7, 10, 19,
21, 24] based on the cost of DNA sequencing (0.006$ per megabase) reported
by National Human Genome Research Institute (NHGRI) in August 2021 [25].
The detailed calculation is included in Supplementary Note 2. Clearly, our
work increases read cost compared to prior work except Antowiak et al. This
is expected, as these prior approaches to DNA storage are able to fully recover
the data at much lower sequencing coverages of 5× and 10× due to (i) the
use of low-error rate array synthesis and high-throughput sequencing with
extensive library preparation, and (ii) the use of error-control coding. Our
current work, in contrast, focuses on (i) tolerance to errors introduced by
enzymatic ligation and direct sequencing without any library preparation ,
and (ii) complete recovery without additional error correction. As synthesis is
approximately 80,000 times more expensive than sequencing [7] and the read
cost continues to drop due to rapid advances in sequencing, we believe that it
is more important to focus on reducing the write cost, which is a bottleneck
today in DNA data storage.

3 Discussion

In this work, we demonstrated the feasibility of using composite motifs to scale
the logical density of DNA storage by an order of magnitude. We developed
synthesis (BOA) and sequencing (DOS) methods customized for writing and



12 ARTICLE

reading oligos that regard composite motifs as building blocks, and showed
that the error characteristics of these methods are different compared to state-
of-the-art techniques. We developed a new motif-based consensus calling and
oligo inference method (Motif-Search) that is able to recover all data at cover-
age as low as 20×. Our future work aims to scale up the methods presented in
this paper on several fronts. First, to simplify the task of motif design, we built
on an existing library of 25nt primers leading to a physical density of 3.36bit-
s/nt. Future work will improve this further by optimizing the motif library.
Second, we are working on reducing sequencing costs by adding error-control
coding optimized to our DNA storage channel to enable data recovery at a
lower sequencing coverage. Third, the short size of motif library, the library-
preparation-free sequencing provided by DOS, and the error-tolerant nature
of Motif-Search all simplify end-to-end automation. Thus, we are developing
a fully automated DNA storage solution that can scale both oligo length and
number of oligos beyond what was presented in this work.

4 Methods

4.1 DNA Assembly

Oligo with a format of A0–P0 (Fig 3.b) was realised with (i) a set of 8 ssDNA
oligo sequences of 24-bases in length, representing A0; and (ii) a set of 32
ssDNA oligo sequences of 50-bases in length, representing the common spacer
motif and each P0 motif. The sequences of motifs in these oligos were selected
from 25mer DNA barcodes. A set of 8 ssDNA oligo sequences of 50-bases in
length were designed to function as (i) a bridge between A0 and P0 for ligation;
and (ii) an adenosine overhang on the 3’ end to facilitate AMX sequencing
adaptor ligation.

4.1.1 Phosphorylation

A pool of 32 oligos, representing the common spacer motif and each P0 motif,
were 5’ phosphorylated using T4 PNK at a pool concentration of 300 pmol and
reaction scale of 50 uL, as per the vendor guidelines at 37°C for 40 minutes. A
denaturation step was performed to stop the phosphorylation at 65°C for 20
minutes.

4.1.2 Assembly

The 8 A0 oligos and 8 Bridge oligos are pooled at equimolar concentrations
and diluted to 25 uM final pool concentration. DNA assembly reaction was
carried out by taking (1) 2 ul of the P0 phosphorylation mix, (2) 0.5 ul of the
A0 and bridge pool (12 pmol) and ligated using (3) Blunt/TA master mix as
per vendor guidelines. The P0 phosphorylation mix is composed of (1) 5 ul T4
PNK Rx Buffer, (2) 5 ul ATP (10 mM), (3) 1 ul T4 PNK, (4) 36 ul NFW, (5)
3 ul P0 (300 pmol). The above reaction is incubated at 95°C for 3 minutes and
gradually cooled to room temperature.



ARTICLE 13

4.2 Nanopore Sequencing

Sequencing sample preparation was carried out using LSK-109 kit. AMX
sequencing adaptors were ligated by mixing 2.5 ul of the assembly mix with 5
ul AMX and 5 ul Blunt/TA mastermix from NEB and incubated for 10 min-
utes. The sample was then loaded into a R9.4.1 MinIon flowcell and sequenced
for 90 minutes. Basecalling was performed on the Guppy (v4.0.15).

4.3 Motif-Search Algorithm

Motif-Search works in two stages, inference and consensus calling. In the infer-
ence stage, it maps each read to an inferred oligo. During consensus calling, it
uses all inferred oligos to produce a consensus set of inferred reference oligos.

4.3.1 Inference

The first task performed by Motif-Search is to extract one or more oligos from
each read. Recall that an oligo is a set of motifs concatenated by spacers. Motif-
Search infers oligos by first locating the spacer positions and then mapping the
portions of the read between two spacers to the reference motifs to determine
the payload and address motifs. Inference works in three steps: i) segmentation
to locate spacer positions, ii) mapping to identify reference motifs between
spacers, iii) overlap check to extract only oligos that do not overlap with each
other.
Segmentation. Segmentation determines the spacer positions. Since all spac-
ers are identical, their candidate positions can be located by k-mer seeding.
We convert A, T, C and G into a two-bit equivalent representation and build
the index of the spacer by extracting all k-mers of length four (found to be
optimal experimentally). To process each read, we extract all 4-mers in the
read, lookup the index, and collect positions with an index hit. The positions
are adjusted by the offset of the k-mer to get normalized positions.

To eliminate candidate positions with low confidence, we filter out the posi-
tions having less than spacer length/k k-mer votes. As reads are error prone,
indels can cause candidate positions that should be identical to differ slightly
by a few nucleotides. This could result in candidates receiving fewer votes and
failing the filter. Hence, we merge neighboring positions and represent them
by a centroid with a combined count. At the end of this stage, we have all
candidate positions for all spacers in a read.

In our experiment, each oligo has only one spacer. But in the general case,
each oligo can contain multiple spacers. From the structure of the oligo, we
know that each oligo with M motifs has M−1 spacers, with each spacer being
spaced apart by a distance d equal to the sum of the motif length and spacer
length. In order to accommodate synthesis and sequencing errors, these inter-
spacer gaps can be slightly more or less than the motif length depending on
indel errors. Thus, we identify all possible chains of M − 1 positions which are
within an expected distance threshold from each other.



14 ARTICLE

As mentioned earlier, the candidate positions in these chains are approx-
imate, as indel errors can result in observed starting position differing from
actual starting position by a few nucleotides. We rectify and refine these posi-
tions to tolerate indel errors by using randomized embedding—a technique
which has been demonstrated to be a scalable approach for mapping reads to
references in genomic sequence alignment[26]. More specifically, for each can-
didate position, we extract a spacer-length portion of the read at that position
and at several positions around that position. We embed each extracted read
fragment using a randomized algorithm and compare with the embedded ver-
sion of the original spacer motif using hamming distance. We select the shifted
position with least embed distance as the final candidate position. As the num-
ber of candidate positions can be large, the use of embedding helps us to avoid
expensive edit distance computations between the read and spacer motif, and
use hamming distance between their embedded versions to rectify candidate
positions.
Mapping. Given a chain of refined candidate positions, we can extract the
potion of each read between two neighboring spacers. These portions corre-
spond to address and payload motifs. The next step is to identify the original
motif for each observed motif in the read. This can be translated to a sequence
mapping problem by considering the original motif library as the reference and
the observed motif in the read as the query. Therefore, we use the ksw-lib([27])
to select the optimal original motif with the highest mapping score for each
observed motif. After this step, we have multiple chains of mapped motifs.
Overlap check. As we consider all possible chains, some chains might overlap
each other. However, while each read can cover multiple oligos due to DOS,
each nucleotide in a read should map to only one motif/oligo. Thus, the final
step in the inference stage is to identify the optimal set of chains that do
not overlap with each other. To do this, we traverse the chains to identify
overlapping sets. For each overlapping set, we pick a chain with the highest
mapping score such that no chain appears in two sets.

4.3.2 Consensus Calling

Each original encoded oligo can be synthesized with duplication. Library
preparation steps, like PCR, also amplify the pool of oligos by creating multi-
ple copies of each oligo to ensure successful sequencing. Thus, an original oligo
can be covered by multiple reads. For each read, the inference stage identifies
the optimal set of non-overlapping chains. As the final step, we apply con-
sensus calling to group similar motif chains inferred from the inference stage,
and obtain consensus to achieve higher confidence. We do this by first clus-
tering the inferred oligos using their address motifs. Then, we select the most
frequent motifs at each position as the final consensus motif as shown in Fig 8.



ARTICLE 15

Fig. 8 Example showing consensus calling with seven inferred oligos with the same address
motif A0 . The payload motifs are decoded as P00, P01 at the first position, P11, P12 at the
second position and P20, P22 at the third position which are the topN (N is the number of
oligos in each sequence) frequent motifs in each column position.

Declarations

Data availability

The oligo sequences are available via https://drive.google.com/file/
d/1kf1XmU7cP3GNb1 obdZravhFEPaZdu2A/view?usp=share link.
The reads with Guppy basecalled, Bonito basecalled and Bonito
basecalled post-processed by SaberSplit are available via https:
//1drv.ms/u/s!AuZMWsmSlzpWqvYSb 43qImGaJ4haA?e=FhoZuz, https:
//1drv.ms/u/s!AuZMWsmSlzpWqvYVM3S6gaZR33FRwA?e=Te6naa and
https://1drv.ms/u/s!AuZMWsmSlzpWqvYO1I7upDWuujWaiQ?e=53Fgv3.

Code availability

The Motif-Search algorithm implementation is available via https://gitlab.
eurecom.fr/yan1/motif-search under MIT license. SaberSplit is available via
https://github.com/helixworks-technologies/sabersplit.

Funding

This work was funded by the European Union’s Horizon research and inno-
vation programme, project OligoArchive under Grant agreement No. 863320
and project Molecular Storage System (MoSS) under Grant agreement No.
101058035.

Author contributions

N.P., S.C., and C.C. developed and performed the wet lab experiments. Y.Y.
and R.A. performed algorithm design, software implementation and simula-
tions. R.A., Y.Y. and N.P. analyzed the experiments and wrote the paper. All
authors read and approve the final manuscript.

Competing interests

The authors declare no competing interests.

https://drive.google.com/file/d/1kf1XmU7cP3GNb1_obdZravhFEPaZdu2A/view?usp=share_link
https://drive.google.com/file/d/1kf1XmU7cP3GNb1_obdZravhFEPaZdu2A/view?usp=share_link
https://1drv.ms/u/s!AuZMWsmSlzpWqvYSb_43qImGaJ4haA?e=FhoZuz
https://1drv.ms/u/s!AuZMWsmSlzpWqvYSb_43qImGaJ4haA?e=FhoZuz
https://1drv.ms/u/s!AuZMWsmSlzpWqvYVM3S6gaZR33FRwA?e=Te6naa
https://1drv.ms/u/s!AuZMWsmSlzpWqvYVM3S6gaZR33FRwA?e=Te6naa
https://1drv.ms/u/s!AuZMWsmSlzpWqvYO1I7upDWuujWaiQ?e=53Fgv3
https://gitlab.eurecom.fr/yan1/motif-search
https://gitlab.eurecom.fr/yan1/motif-search
https://github.com/helixworks-technologies/sabersplit


16 ARTICLE

Additional information

The supplementary information is attached.

References

[1] Reinsel, D., Gantz, J., Rydning, J.: Data age 2025: The evolution of data
to life-critical. Don’t Focus on Big Data 2 (2017)

[2] Zhirnov, V., Zadegan, R.M., Sandhu, G.S., Church, G.M., Hughes, W.L.:
Nucleic acid memory. Nature materials 15(4), 366–370 (2016)

[3] Appuswamy, R., Barbry, P., Antonini, M., Madderson, O., Freemont, P.,
Heinis, T.: Oligoarchive: Using dna in the dbms storage hierarchy.

[4] Bornholt, J., Lopez, R., Carmean, D.M., Ceze, L., Seelig, G., Strauss,
K.: A dna-based archival storage system. In: Proceedings of the Twenty-
First International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 637–649 (2016)

[5] Goldman, N., Bertone, P., Chen, S., Dessimoz, C., LeProust, E.M.,
Sipos, B., Birney, E.: Towards practical, high-capacity, low-maintenance
information storage in synthesized dna. nature 494(7435), 77–80 (2013)

[6] Tabatabaei Yazdi, S., Yuan, Y., Ma, J., Zhao, H., Milenkovic, O.: A
rewritable, random-access dna-based storage system. Scientific reports
5(1), 1–10 (2015)

[7] Erlich, Y., Zielinski, D.: Dna fountain enables a robust and efficient
storage architecture. science 355(6328), 950–954 (2017)

[8] Lee, H.H., Kalhor, R., Goela, N., Bolot, J., Church, G.M.: Terminator-
free template-independent enzymatic dna synthesis for digital information
storage. Nature communications 10(1), 1–12 (2019)

[9] Church, G.M., Gao, Y., Kosuri, S.: Next-generation digital information
storage in dna. Science 337(6102), 1628–1628 (2012)

[10] Organick, L., Ang, S.D., Chen, Y.-J., Lopez, R., Yekhanin, S.,
Makarychev, K., Racz, M.Z., Kamath, G., Gopalan, P., Nguyen, B., et
al.: Random access in large-scale dna data storage. Nature biotechnology
36(3), 242–248 (2018)

[11] Beaucage, S., Caruthers, M.: Deoxynucleoside phosphoramidites—a new
class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron
letters 22(20), 1859–1862 (1981)

[12] Anavy, L., Vaknin, I., Atar, O., Amit, R., Yakhini, Z.: Data storage



ARTICLE 17

in dna with fewer synthesis cycles using composite dna letters. Nature
biotechnology 37(10), 1229–1236 (2019)

[13] Choi, Y., Ryu, T., Lee, A.C., Choi, H., Lee, H., Park, J., Song, S.-H.,
Kim, S., Kim, H., Park, W., et al.: High information capacity dna-based
data storage with augmented encoding characters using degenerate bases.
Scientific reports 9(1), 1–7 (2019)

[14] Marinelli, E., Yan, Y., Magnone, V., Dumargne, M.-C., Barbry, P., Heinis,
T., Appuswamy, R.: Oligoarchive-dsm: Columnar design for error-tolerant
database archival using synthetic dna. bioRxiv (2022)

[15] Roquet, N., Bhatia, S.P., Flickinger, S.A., Mihm, S., Norsworthy, M.W.,
Leake, D., Park, H.: Dna-based data storage via combinatorial assembly.
bioRxiv (2021)

[16] Chalapati, S., Crosbie, C.A., Limbachiya, D., Pinnamaneni, N.: Direct
oligonucleotide sequencing with nanopores. Open Research Europe 1(47),
47 (2021)

[17] Lopez, R., Chen, Y.-J., Dumas Ang, S., Yekhanin, S., Makarychev, K.,
Racz, M.Z., Seelig, G., Strauss, K., Ceze, L.: Dna assembly for nanopore
data storage readout. Nature communications 10(1), 1–9 (2019)

[18] Li, H.: Minimap2: pairwise alignment for nucleotide sequences. Bioinfor-
matics 34(18), 3094–3100 (2018)

[19] Grass, R.N., Heckel, R., Puddu, M., Paunescu, D., Stark, W.J.: Robust
chemical preservation of digital information on dna in silica with error-
correcting codes. Angewandte Chemie International Edition 54(8), 2552–
2555 (2015)

[20] Heckel, R., Mikutis, G., Grass, R.N.: A characterization of the dna data
storage channel. Scientific reports 9(1), 1–12 (2019)

[21] Antkowiak, P.L., Lietard, J., Darestani, M.Z., Somoza, M.M., Stark, W.J.,
Heckel, R., Grass, R.N.: Low cost dna data storage using photolitho-
graphic synthesis and advanced information reconstruction and error
correction. Nature communications 11(1), 1–10 (2020)

[22] Marinelli, E., Appuswamy, R.: Onejoin: Cross-architecture, scalable edit
similarity join for dna data storage using oneapi. In: ADMS (2021)

[23] Marinelli, E., Ghabach, E., Yan, Y., Bolbroe, T., Sella, O., Heinis, T.,
Appuswamy, R.: Digital Preservation with Synthetic DNA, (2022)

[24] Blawat, M., Gaedke, K., Huetter, I., Chen, X.-M., Turczyk, B., Inverso,



18 ARTICLE

S., Pruitt, B.W., Church, G.M.: Forward error correction for dna data
storage. Procedia Computer Science 80, 1011–1022 (2016)

[25] Wetterstrand, K.A.: DNA Sequencing Costs: Data from the NHGRI
Genome Sequencing Program (GSP). https://www.genome.gov/
about-genomics/fact-sheets/DNA-Sequencing-Costs-Data. Accessed:
2022-10-12

[26] Yan, Y., Chaturvedi, N., Appuswamy, R.: Accel-align: a fast sequence
mapper and aligner based on the seed–embed–extend method. BMC
bioinformatics 22(1), 1–20 (2021)

[27] Suzuki, H., Kasahara, M.: Introducing difference recurrence relations
for faster semi-global alignment of long sequences. BMC bioinformatics
19(45) (2018)

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data


SUPPLEMENTARY INFORMATION

Supplementary Table 1. The substitution (SUB), insertion (INS) and deletion (DEL)
rate of SOTA work. Data for Goldman et al. [1], Grass et al. [2], Erlich Zielinski [3],
Organick et al. [4] and Antkowiak et al. [5] was taken from Antkowiak et al. [5].

Goldman et al. Grass et al. Erlich et Zielinski Organick et al. Antkowiak et al. This Work

SUB 0.00088 0.005850 0.003870 0.005400 0.026000 0.011411
INS 0.00036 0.000230 0.000211 0.004500 0.057000 0.007817
DEL 0.00036 0.000230 0.000211 0.001500 0.062000 0.007485

Supplementary Table 2. Statistics of the reads.

Nb. reads Nb. aligned reads Median read length

Guppy 27198 9960 166
Bonito 27198 4901 110

SaberSplit 102221 4434 25

Supplementary Note 1. Sequencing data and SaberSplit.

The generated sequences via the BOA method were sequenced via DOS for 4 hours
to generate 27,198 reads with an N50 of 192bp. The reads were basecalled using guppy
basecaller (v4.0.14) in high accuracy mode. We suspected that some of the reads would
not be split properly by the MinION instrument as observed in prior research. To split
the concatenated reads and to improve basecalling, we developed a nodejs script called
SaberSplit to correctly identify the adapter regions of the reads, which has an unique
pA (picoamperage) signature that can be identified from the events data of the fast5 file.

SaberSplit is a node.js based tool to process the .TSV files generated from the Squig-
glePull program of the SquiggleKit(https://github.com/Psy-Fer/SquiggleKit).
SquigglePull TSV files contain the read-IDs and their event level data in the follow-
ing format. SaberSplit extracts the event data from the TSV files and stores them in
an array. It calculates the median and MAD (Median Absolute Deviation) of the event
data. It calculates (Datai-Median)/MAD for each of the data points and if the (Datai-
Median)/MAD > 5. It takes that data point for further processing.

SaberSplit extracts the events on the right-hand and left-hand side of the triggered
event if they have (Datai-Median)/MAD > 3. If the total number of extracted events
that are on the left and right along with the triggered event is less than 12 events. The
event is classified as a spike and the read is split. SaberSplit processed 27,198 reads,
generating 237,327 new split reads. Many of the split reads are short and have not
passed the threshold for basecalling with bonito. A total of 102,222 were successfully

1

https://github.com/Psy-Fer/SquiggleKit


basecalled from the SaberSplit reads. Guppy generated an extremely low number of
successful basecalled reads from the SaberSplit reads.

Supplementary Note 2. Sequencing cost projection.

• The sequencing cost to read 1 Megabyte is simulated as the Equation 1.

reading_cost = oligo_length∗nb_reads∗sequencing_cost_per_nt/stored_data_size
(1)

• The oligo_length includes the length of primers.

• The sequencing_cost_per_nt takes the value 0.006$ per megabase reported by
National Human Genome Research Institute (NHGRI) in August 2021.

• Data for Goldmann et al. [1], Grass et al. [2], Erlich et al. [3] and Organick et
al. [4] was taken from Organick et al. [4].

Table 1: Sequencing cost projection
oligo length nb of reads data size sequence cost ($/MB)

Antkowiak et al. 60 30000000 99103bit 108
this work 74 640 80 bit 29.8

Grass et al. 159 1858027 679000 bit 21.9
Goldman et al. 183 7960000 5200000 bit 14.1
Blawat et al. 230 144475005 22MB 9.06

Erlich and Zielinski 200 750000 2.11 MB 0.43
Organick et al. 150 67241860 200MB 0.3

2



References

[1] Nick Goldman, Paul Bertone, Siyuan Chen, Christophe Dessimoz, Emily M LeP-
roust, Botond Sipos, and Ewan Birney. Towards practical, high-capacity, low-
maintenance information storage in synthesized dna. nature, 494(7435):77–80,
2013.

[2] Robert N Grass, Reinhard Heckel, Michela Puddu, Daniela Paunescu, and Wen-
delin J Stark. Robust chemical preservation of digital information on dna in
silica with error-correcting codes. Angewandte Chemie International Edition,
54(8):2552–2555, 2015.

[3] Yaniv Erlich and Dina Zielinski. Dna fountain enables a robust and efficient storage
architecture. science, 355(6328):950–954, 2017.

[4] Lee Organick, Siena Dumas Ang, Yuan-Jyue Chen, Randolph Lopez, Sergey
Yekhanin, Konstantin Makarychev, Miklos Z Racz, Govinda Kamath, Parikshit
Gopalan, Bichlien Nguyen, et al. Random access in large-scale dna data storage.
Nature biotechnology, 36(3):242–248, 2018.

[5] Philipp L Antkowiak, Jory Lietard, Mohammad Zalbagi Darestani, Mark M So-
moza, Wendelin J Stark, Reinhard Heckel, and Robert N Grass. Low cost dna data
storage using photolithographic synthesis and advanced information reconstruction
and error correction. Nature communications, 11(1):1–10, 2020.

3


	Introduction
	Results
	Composite Motifs as Building Blocks for DNA Storage
	Bridged Assembly of Composite Motifs
	Direct Nanopore Sequencing & Error Characterization
	Correcting Event Misdetection with SaberSplit
	Inference and Consensus with Motif Search
	Read–Write Cost Comparison

	Discussion
	Methods
	DNA Assembly
	Phosphorylation
	Assembly

	Nanopore Sequencing
	Motif-Search Algorithm
	Inference
	Consensus Calling



