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Quid pro Quo in Streaming Services:
Algorithms for Cooperative Recommendations

Dimitra Tsigkari, George Iosifidis, and Thrasyvoulos Spyropoulos

Abstract—Recommendations are employed by Content Providers (CPs) of streaming services in order to boost user engagement and
their revenues. Recent works suggest that nudging recommendations towards cached items can reduce operational costs in the
caching networks, e.g., Content Delivery Networks (CDNs) or edge cache providers in future wireless networks. However,
cache-friendly recommendations could deviate from users’ tastes, and potentially affect the CP’s revenues. Motivated by real-world
business models, this work identifies the misalignment of the financial goals of the CP and the caching network provider, and presents
a network-economic framework for recommendations. We propose a cooperation mechanism leveraging the Nash bargaining solution
that allows the two entities to jointly design the recommendation policy. We consider different problem instances that vary on the extent
these entities are willing to share their cost and revenue models, and propose two cooperative policies, CCR and DCR, that allow them
to make decisions in a centralized or distributed way. In both cases, our solution guarantees reaching a fair and Pareto optimal
allocation of the cooperation gains. Moreover, we discuss the extension of our framework towards caching decisions. A wealth of
numerical experiments in realistic scenarios show the policies lead to significant gains for both entities.

Index Terms—recommendations, caching, on-demand streaming services, network economics
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1 INTRODUCTION

1.1 Background and Motivation
Recommender systems (RSs) permeate today’s on-demand
streaming services such as Netflix, Disney+, etc.; and are
affecting substantially the content requests issued by their
subscribers. In Netflix, for example, it is estimated that 80%
of the requests stem from the recommendations that are
offered to its users [2]. Indeed, by proposing contents that
are relevant to their users’ interests, Content Providers (CPs)
can increase the viewing activity in their platforms, reduce
the user churn, and eventually boost their revenues [2].
Therefore, it is not surprising that CPs comprehend the
business value of these systems and invest research and
financial resources to improve their accuracy.

At the same time, recommendations can be leveraged
by content caching networks to steer user requests towards
nearby-cached contents. These caching networks are either
today’s traditional Content Delivery Networks (CDNs) or
edge cache providers in future wireless architectures (we
will use, hereafter, the term CDN to imply any such
caching network provider). The recently-coined terms of
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cache/network-friendly recommendations capture exactly
this idea: recommendations aiming to reduce the CDNs’
routing expenses without deviating irreparably from the
users’ viewing preferences. This is a promising area of
research with recent works proposing cache-aware recom-
mendation policies, e.g., [3], [4], and the joint optimization
of caching and recommendation decisions, e.g., [5]–[7]. This
idea not only can reduce the operating and retrieval costs of
CDNs but also can improve the service quality for the users
by achieving smaller viewing start-up delays and/or higher
bitrates of the streamed content [6].

Clearly, RSs have already become a powerful tool af-
fecting all key stakeholders in the content distribution
ecosystem. And, as their influence increases further, it is
imperative to ensure they will foster synergies instead of
creating misaligned incentives. Specifically, a hitherto un-
explored aspect in this context is the tension between CPs
and CDNs when it comes to recommendations: the cache-
friendly recommendations of CDNs may deviate from the
users’ interests and thus affect negatively the CPs’ revenues;
while the CPs’ recommendations might induce costly data
transfers for the CDNs. This problem is more pronounced in
the case where Over-The-Top (OTT) CPs lease CDN infras-
tructure to deliver their services, but appears also in content
streaming platforms with self-owned caching infrastructure.

The goal of this work is to investigate this new prob-
lem by: 1) understanding and modeling the root causes of
the CP’s and CDN’s potential conflicts when it comes to
recommendations; 2) proposing a cooperation framework
to enable their agreement; and 3) designing algorithms for
realizing this coordination based on the information the two
entities want to disclose. The core of our proposal is the
following simple and practical idea: the CDN charges lower
content delivery fees to the CP when the latter agrees to
tune its recommendations towards cached contents. This
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Fig. 1. The CP and CDN cooperate by agreeing on the recommenda-
tions the users receive. The incentives of the cooperation are provided
by the reduced price the CP is charged for the content delivery and the
resulting increase in the number of cache hits that leads to lower retrieval
costs for the CDN.

discount will balance the CP’s expected viewing gains with
the CDN’s induced savings on retrieval costs. Devising
these cooperative recommendations is a new and highly non-
trivial problem whose nature and complexity cannot be
properly handled by existing approaches for cache-friendly
recommendations. Such incentive-compatible recommenda-
tion policies have the potential to revolutionize streaming
platforms, in the same way that the collaboration of ISPs and
CDNs changed the scenery of content distribution, see [8]
and references cited therein.

1.2 Methodology and Contributions
Our proposal relies on a rigorous game-theoretic framework
where we model the CP-CDN cooperation as a bargaining
problem [9]. Our starting point and baseline will be a
scenario where the CP recommends contents based on its
expected revenue (and/or the users’ interests) and the CDN
makes caching decisions without any prior knowledge of
the recommendations and how they shape content requests.
On this basis, the CDN proposes to the CP a price discount
for delivering its contents, in exchange for tweaking the
recommendations towards already-cached items (see Fig. 1).
In contrast to state-of-the-art cache-friendly recommenda-
tions or joint caching-recommendation schemes, this price
discount provides a concrete incentive for the CP to adjust
the recommendations the users receive. This bargaining
problem is formulated in a way that it leads to a Pareto
optimal and proportionally fair split of the cooperation
gains, which is also incentive-compatible based on the Nash
bargaining axioms.

To the best of our knowledge, this is the first work
proposing the cooperation of the CP and CDN on the
grounds of recommendations. In summary, the contribu-
tions of this work are the following:
• It identifies and models the new problem of misaligned

incentives among the CP and CDN regarding the recom-
mendations offered to users. The employed system model

is motivated by real-world business cases regarding the
two entities’ decision mechanisms and revenue models.

• It formulates a rigorous bargaining problem for address-
ing the trade-off between recommendation-induced rev-
enues for the CP and retrieval costs for CDN in streaming
services. The problem solution will allow them to devise
the cooperative recommendations while splitting fairly
the gains.

• It proposes the Centralized Cooperative Recommenda-
tions (CCR) algorithm for the scenario where the two
entities share the necessary information regarding their
cost/revenue functions with a third party that solves the
bargaining problem in a centralized fashion.

• It proposes the Distributed Cooperative Recommenda-
tions (DCR) algorithm for the scenario where the CP and
CDN have undisclosed private information. This leads to
a distributed bargaining solution where the CP and CDN
solve their own problem instances while being oblivious
to each other’s private information. The two entities co-
ordinate through lightweight signaling that drives them
eventually to the bargaining equilibrium.

• It discusses how the presented framework can be ex-
tended to cooperative caching policies and it analyses its
difficulty. This problem of cooperative recommendations
and caching turns out to be hard to solve but has the
potential to further increase the cooperation gains.

• Through a number of numerical evaluations using a real
dataset and realistic system parameters, it verifies the
efficacy and operation of the bargaining framework and
explores the impact of key system parameters on the
equilibrium properties. This provides rich insights on the
potential economic benefits of our proposal and market
design guidelines.

2 PROBLEM SETUP

2.1 Recommendations, Content Requests and Caching
In this work, we present a cooperation scheme between
the CP and CDN on the basis of the recommendations the
former offers to its users. Following the current business
models for the two entities, we model their utility functions
that represent their profit from the OTT market.

Content Recommendation Model: The CP owns a con-
tent catalog K that is accessible to a set U of users through
the CP’s OTT service. In this work, we focus on catalogs of
contents that are static, and thus cacheable. We will use the
terms OTT or streaming services interchangeably to describe
on-demand streaming services. A (personalized) list of Nu

items are recommended to each user u ∈ U . The recommen-
dations are based on the predicted relevance of each content
to the user’s tastes, viewing history, context, etc. These rel-
evances (sometimes also called “scores” or “rankings”) are
calculated by today’s state-of-the-art RSs (that are employed
by the CP) using techniques such as collaborative filtering,
deep neural networks, reinforcement learning, etc. [2], [10].
We denote by rui ∈ [0, 1] these relevances. Typically, the
CP would select the Nu items with the highest rui or the
highest expected revenue to feature the recommendations
list of user u [2], [11]. In this work, the recommendation
decisions (i.e., deciding which contents will appear in the
user’s recommendations list) are made not only based on the
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utilities rui but also on the cooperation terms. Our problem
considers two sets of recommendations:
• (Input) Baseline Recommendations: Y b = (ybui ∈ {0, 1}, u ∈
U , i ∈ K), where ybui = 1 if content i is recommended
to user u. These are decided by the CP before any
cooperation and are input parameters for our problem.
For example, these could be the top Nu most relevant
contents (to each user), as mentioned above.

• Cooperative Recommendation Variables: Y = (yui ∈
[0, 1], u ∈ U , i ∈ K), which are the probabilistic recommen-
dation variables optimized jointly by the CP and CDN.
These are the control variables of our problem.

Using continuous variables for the cooperative recommen-
dations allows the CP to provide some variety to the rec-
ommendations it offers to the same user from session to
session.

Content Request Model: Each user u makes content
requests according to the following model [5], [6]:
• follows the recommendations with probability αu; where,

w.l.o.g. each of the Nu items is considered equally likely
to be requested1. Hence, each recommended content is
requested by the user with probability αu/Nu.

• with probability (1−αu), the user ignores the recommen-
dations and requests a content i ∈ K of the catalog with
probability2 pi.

Content Caching Model: A CP subscribes to a CDN
provider through a Service Level Agreement (SLA) for the
delivery of the contents to the users. The CDN manages a
set of C caches with capacity Cj , j = 1, . . . , C . Moreover,
there is a root cache C0 that stores all the contents. We
denote by σi the size (in Gb) of the content i and we assume
that Cj ≪ ∑

i∈K σi, as is common in most caching setups,
e.g., [12]. The CDN optimizes the caching decisions based
on performance (e.g., latency, cache hits) and cost criteria
(routing costs). These decisions are described as follows:

(Input) Baseline caching: Xb = (xbi ∈ {0, 1}, i ∈ K, j =
1, . . . , C) where xbij = 1 if content i is fully stored in cache
j. These are determined by the CDN before any cooperation
and are input parameters.

To better focus on the mechanics of the cooperation, we
will develop our framework in the context of cache-friendly
recommendations, i.e., assuming that the caching policy is
decided at a different timescale than the recommendations
and is fixed during the cooperation. We revisit caching
variables, and how these could potentially also be designed
jointly with recommendations later, in Sec. 4.

2.2 Revenue/Cost Model and Utility Functions

We will now consider the various sources of revenues and
costs for the CP and CDN in order to define their utility
functions. While these sources can, of course, be highly
nuanced from scenario to scenario, we propose a model that
tries to capture key elements while staying tractable.

1. The quantity αu captures the percentage of time the user u tends to
follow the recommendations and can be based on user’s past behavior.

2. The value of pi captures the probability that any user would
request the content i outside of recommendations (e.g., through the
search bar), and could relate to the aggregate interest in this content by
users.

TABLE 1
Important notation

Content Requests and Recommendations
K catalog of contents
U set of users in the network
Nu number of recommended contents for the user u
αu probability that user u follows the recommendations

pi
probability that a user requests content i while not
following the recommendations

Revenues and Costs
λ price per Gb requested that the CP pays to the CDN
σi size of content i (in Gb)
ρ discount on the delivery price λ, ρ ∈ (0, 1)
Rui CP’s revenue (expected) from user u for content i
rui relevance (predicted) of content i to user u
Kui CDN’s cost of delivering content i to user u

U, Ũ
CP’s and CDN’s utility (profit) functions respectively,
Ub, Ũb for baseline scheme (pre-cooperation)

Input Parameters
ybui (input) baseline recomm., before any cooperation
xbij (input) caching allocation, before any cooperation

Variables

yui
cooperative recomm. variable corresponding to
user u and content i for the centralized solution

ψui, ψ̃ui
cooperative recomm. variables for the distributed
algorithm, as decided by the CP and the CDN resp.

CP revenues: When a user u requests a content i, this
content is associated with an expected revenue Rui that de-
pends on the CP’s revenue model (ad-based, subscription-
based, transaction-based, etc. [13]) and the associated costs
related to the purchase of contents (through licensing or
production). This information is estimated by the CP in
order to decide its pricing strategy and is used as input for
our model . For example, in the case of an ad-based revenue
model, Rui can be estimated as a result of ad impressions
that appear during content i. Furthermore, this expected
revenue depends on the content relevances rui in a non-
trivial way. For this reason, we capture this relation by a
fairly generic model:

Rui = ϕui(rui), (1)

where ϕui can be any nondecreasing function of rui that de-
scribes the impact of user’s (predicted) interest in a content
on the CP’s revenues3. For example, ϕui could be related to
the probability of a user abandoning the viewing session as
a function of rui.

CP costs/CDN revenues: The delivery of a requested
content is made by the CDN that charges the CP on a basis
of the amount of transferred data (as is the case in today’s
CDNs [14]). We remind the reader that these charges apply
to CPs without an in-house CDN, which is still the case for
a large number of CPs, e.g., Disney+, Hulu. We assume that
the CP has to pay λ currency units per Gb requested4.

CDN costs: The main source of expenditures for the
CDN is the cost related to the delivery of a requested content
to the user. We let C(u) be the subset of caches that a user
u has access to including the root cache (which is accessible

3. These functions are built by the CPs using historical data; and are
typically concave capturing diminishing returns on the relevances rui.

4. In order to capture different pricing schemes where the CDN
charges the CP per Gb delivered (and not only requested), the price
λ could be multiplied by the probability of abandonment by the user.



4

by every user). A request for content i by user u may be
served by at least one of the small caches in C(u) where i is
stored. If the content is not cached, it will be served by the
root cache C0.

We assume that every link between user u and the caches
in the set C(u) is characterized by a delivery (retrieval)
cost (for the CDN). We let kuj denote this cost per Gb for
user u by the cache j. The value of kuj can be estimated
as a result of transit fees the CDN pays to transit networks
or Internet Service Providers (ISPs) to retrieve the content
from the origin servers of the CPs and make it available to
the users. Moreover, they can include maintenance-related
costs, e.g., related to storage capacity, hardware, estate,
energy, etc [15]. The delivery cost from the root cache
C0 to user u is ku0 (per Gb), where ku0 > kuj for all
j = 1, . . . , C . The CDN serves each request through the
lowest-cost cache that has the requested item, as is common
in most caching setups [12], [16]. Adopting the notation
in [12], we denote the sequence of increasing user-cache
costs by ku(1), ku(2), . . . , k|C(u)|. Then, based on the caching
decisions Xb, the delivery cost for content i by user u is:

Kui(X
b) =

|C(u)|∑
j=1

[
σiku(j)x

b
i(j)

j−1∏
l=1

(
1− xbi(l)

)]
. (2)

According to the formula above, xbi(j)
∏j−1

l=1

(
1− xbi(l)

)
will

be equal to 1 when the requested content i is retrieved by
the cache (j), i.e., the cache with the j-th lowest user-cache
cost, at cost ku(j), for lack of any other cache with lower
cost (xbi(l) = 0, l < j). If i is not cached in any cache, it will
be retrieved from the root cache C0, which is ranked last,
resulting in high cost.

CP’s and CDN’s utilities before cooperation: Based
on the above problem setup and revenue models, we can
now derive the total utility (revenues minus costs) each of
the two parties enjoys before cooperating. We define the
baseline (initial) utility of the CP before any cooperation as
the expected revenue minus the expected price it has to pay
to the CDN:

U b =
∑
u∈U

∑
i∈K

αu

Nu
ybui(Rui − λσi). (3)

We do not account for the revenue that comes from the con-
tent requests that are not a result of recommendations, i.e.,
when, with probability 1−αu, the user does not follow any
of the recommendations. It is easy to see that these requests
do not affect the cooperation (whose control variables are
the recommendations). Moreover, note that the definition of
U b is generic and does not depend on how the CP devises
the standard recommendations (i.e., the values ybui).

Given the caching and recommendation decisions before
the CP-CDN cooperation, the baseline utility of the CDN
is expressed as the expected revenue (from the delivery
contract) minus the expected delivery (or retrieval) costs:

Ũ b =
∑
u∈U

∑
i∈K

αu

Nu
ybui

(
λσi −Kui

)
. (4)

2.3 Towards Cooperative Decisions
The goal of our cooperative framework is to improve the
aforementioned utilities of both parties. We are specifically

interested to maximize the gains and ensure they are “fairly”
shared5. As explained earlier, such gains can result by mo-
tivating the CP to modify some of its original recommenda-
tions towards lower cost items (e.g., cached ones). To ensure
that the CP will not lose revenue from these modifications
(we remind the reader that this revenue relates to how
related the recommended contents are for users, see (1)) we
assume the CDN offers a discount on the content delivery
fees of such “lower cost” content. In particular, we let ρ
denote this normalized discount factor6 on the price λ,
where 0 < ρ < 1. The value of ρ is either set by the CDN
or by a regulatory authority (who acts as a mediator for
their cooperation). We will discuss in Sec. 5 how the value
of ρ could be chosen in practice. Then, the new price the CP
would have to pay to the CDN is

Λui = λ[1 + ρ(ybui − 1)]. (5)

Specifically, if a content i is recommended now but it was
not before the cooperation (i.e., yui > 0 and ybui = 0),
then the discount ρ applies. If, on the contrary, the content
continues to be recommended (even partially) as before (i.e.,
yui > 0 and ybui = 1), no discount applies. Our problem
formulation, to follow, is applicable to either scenario, so
w.l.o.g. we will focus on the former. We note that the
requests that do not come through recommendations are
not subject to any discount. Then, the new utility functions
for the CP and CDN are:

U=
∑
u∈U

∑
i∈K

αu

Nu
yui(Rui − Λuiσi), (6)

Ũ=
∑
u∈U

∑
i∈K

αu

Nu
yui

(
Λuiσi −Kui

)
. (7)

Remark 1. In line with related work on caching and rec-
ommendations policies, the proposed cooperation frame-
work makes proactive decisions (on the recommendation
variables). Although the presented framework deals with
contents and not chunks of various qualities/bitrates, under
small modifications, it can also treat files that correspond
to pairs (content chunk, quality). Since online Adaptive
Bitrate (ABR) policies operate at a different timescale, i.e.,
during playback, we assume that they act in a complemen-
tary way on top of the proactive cooperation decisions.

2.4 Toy Example
To better understand the cooperation model and the trade-
offs involved, we present a toy example depicted in Fig. 2.
We consider a scenario with two users, a catalog of four
equal-sized contents (of 1Gb size) and a single cache with
capacity 2Gb. Upon request, a content is served by the cache,
if it is cached there. Otherwise, it will be served by the root
cache. For simplicity, we assume that the users will receive
a single recommendation that will follow with probability

5. For now, we use the words “fair” and “unfair” in an intuitive
way: an entity that considers a solution (i.e., the allocation of the gains)
unfair believes that this solution was achieved at the cost of this entity’s
own benefit. We will formally define and elaborate on the fairness
framework in Sec. 3.1.

6. This ρ can be alternatively seen as a percentage discount on the
price λ. So, for example, when ρ = 0.5 or 50%, the CP would pay half
the delivery price to the CDN for any modified recommendation.
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1. The CP pays to the CDN $0.5 per Gb (outside of any
cooperation) while the CDN offers to the CP a discount of
30% on the delivery fees if they cooperate and the CP mod-
ifies its recommendations. The CP’s revenues per requested
content and the CDN’s costs related to the delivery of the
contents are depicted in the table on the top right of the
figure. The revenues Rui could be calculated, for example,
as a result of ad impressions appearing during playback.
We assume here that these revenues reflect how relevant a
content is to a user (accounting for predicted abandonment
rates), e.g., Movie A is the most relevant content to User 1,
while Movies C and D are a bit less relevant for this user.

On the bottom of Fig. 2, we see the recommendation
decisions made in different scenarios, as well as the resulting
utilities (profits) of the two entities. In particular, outside of
any cooperation (baseline scheme), the CP would recom-
mend the contents that will bring the highest revenue, i.e.,
Movie A to User 1 and Movie B to User 2, while the CDN
would cache some contents without knowledge of the rec-
ommendations and how they shape the requests. We assume
that Movies C and D are cached based on the aggregate pop-
ularity observed in a period of time prior to the cooperation.
Therefore, the requests for the recommended contents will
lead to cache misses and extra retrieval costs (for the CDN).

Baseline scheme (pre-cooperation):
Recomm. (𝑌𝑏): Movie A → User 1, B→ User 2
• CP’s util. (𝑈𝑏): 2*(1-0.5)= $ 1
• CDN’s util. ( 𝑈𝑏): 2*(0.5-0.22)=$0.56

Cache-Friendly Recommendations:
Recomm. : Movie C → User 1 & User 2
• CP’s util.: 2*(0.95-0.5)=$ 0.9        
• CDN’s util.: 2*(0.5-0.01)=$ 0.98 

For U=2 (two users), 𝑁𝑢=1 (single recomm.), 𝛼𝑢=1, and caching allocation(𝑋𝑏): Movie C & Movie D 

Cooperation:

CP CDN

$ 0.5 per Gb

offers 30% off (ρ=0.3)

CP’s revenue per content
(𝑅𝑢𝑖)

CDN’s delivery cost  
(𝐾𝑢𝑖 (𝑋

𝑏))

Movie A Movie B Movie C Movie D

•  $0.01 if cached
• $0.22 if not cachedUser 1 $1 $0.2 $0.95 $0.94

User 2 $0.1 $1 $0.95 $0.3

CACHED by the CDN

(new notation), TMC revision

Proposed Cooperation (with discount on delivery fees):
Coop. Recomm. (𝑌):  Movie C → User 1 & User 2
• CP’s util. (𝑈): 2*(0.95-0.35)=$ 1.2        
• CDN’s util. ( 𝑈): 2*(0.35-0.01)=$ 0.68

loss: –10% 
gain: +75%

gain: +20%
gain: +21%

Fig. 2. Toy example presented in Sec. 2.4. In this example, the CP-
CDN cooperation leads to financial gains of 20% and 21% respectively.
These gains derive from the discount on the delivery fees (for the CP)
and the fetching/retrieval savings (for the CDN). In contrast, a typical
cache-friendly recommendations approach (without any discount on the
delivery fees) would lead to a loss in profit for the CP, and a gain in profit
for the CDN (that might be perceived as “unfair” by the CP).

On one hand, a typical cache-friendly or cache-aware
recommendations policy, such as the ones in [3], [4], would
recommend cached items that are still relevant to the users’
tastes aiming for more cache hits. In our example, that
would be recommending Movie C to both users. However,
this would lead to a loss in profit for the CP (−10% when
compared to the baseline scheme) and a large gain for
the CDN (+75%). Hence, the CP does not have concrete
incentives in adjusting the recommendation towards cached
items. Moreover, issues of trust, privacy, and coordination
between the two entities could arise. We remind the reader
that related works on the co-design of caching and recom-
mendations [3]–[7] trivially assume that both decisions are
made by the same entity (as is the case for only a small
number of OTT services, such as Netflix) and they do not
explore the financial aspects of the recommendations.

On the other hand, if the two entities cooperate, incen-
tives are provided to the CP (under the form of a discount

on the delivery fees) and the resulting gains are split in
a way that is not perceived as “unfair” by any party.
The cooperative recommendations would suggest Movie C
to both users, as it was the case with the cache-friendly
recommendations. However, here, the CP will pay reduced
delivery fees that will compensate for the loss in its profit. At
the same time, this cooperation is still profitable for the CDN
who will avoid the extra delivery costs when compared
to the baseline scheme. We see that, already in this toy
example, the cooperation leads to gains of at least 20% for
each entity. Note that any other solution, e.g., recommending
Movie D to both users, would result in worse gains for at
least one entity, and thus in an “unfair” allocation of the
cooperation gains.

In this example, it is easy to guess how to find the co-
operative recommendation policy that boosts both entities’
profits. However, this task becomes significantly harder for
bigger scenarios (large content catalogs, multiple recom-
mendations per user, etc.). Moreover, one might wonder:
would the CP and CDN be willing to exchange information
on their utility functions in order to find the solution (since
these functions constitute sensitive business information)?
And how the cooperative recommendations can impact the
users? To this end, in the next section, we formulate a
cooperation mechanism while addressing these concerns.

3 PROBLEM FORMULATION AND ALGORITHMS

The toy example above illustrated that the CP-CDN co-
operation should provide incentives for both entities. This
means that the cooperative recommendation policy should
satisfy: U ≥ U b and Ũ ≥ Ũ b. As explained earlier, the
CDN will propose a discount on the delivery fees in order
to incentivize the CP to tune its recommendations towards
cached contents. Given this discount, the two parties (or
players, in game theory parlance) will try to benefit as
follows:

• CDN: it increases cache hits (through cache-friendly
recommendations) and thus it reduces the delivery
costs (term Kui in (7)). These cost savings will com-
pensate the lower delivery fees (term Λui in (7)).

• CP: it modifies the recommendations only if the cooper-
ative ones lead to minor loses in expected revenue Rui,
that can be amortized by the applied fee reduction.

Moreover, both parties have the following concrete goals:
1) benefit as much as possible (hence the need for an
optimization framework), and 2) reach an agreement that is
perceived as fair by both parties.

3.1 Modeling the CP-CDN cooperation as a Nash Bar-
gaining Solution

Having these desired properties as guideline, we model
the cooperative recommendations problem as a Nash Bar-
gaining Solution (NBS) [9], [17] from the cooperative game
theory. The NBS is defined as the maximization of the
product of payoffs (i.e., the utility gains) of the two entities
subject to individual rationality constraints, or equivalently
the maximization of the logarithm of this product where the
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constraints are implicit in the domain of the logarithms [17].
Therefore, the NBS would be

max
Y

[
log(U(Y )− U b) + log(Ũ(Y )− Ũ b)

]
, (8)

where U(Y ) − U b and Ũ(Y ) − Ũ b represent the gains in
utility of the CP and the CDN from a potential cooperation.

By formulating our problem in this way, the solution
uniquely satisfies the Nash’s axioms [9], [17]. First, the
solution is Pareto optimal, that is, there is no other solution
that would benefit one party more without deteriorating the
other party’s gains. We also provide the formal definition
of Pareto optimality below. For this, we use the following
notation: for two vectors (a1, a2) ∈ R2 and (b1, b2) ∈ R2, the
notation (a1, a2) ≥ (b1, b2) implies that ai ≥ bi for i = 1, 2.

Definition 1 (Pareto optimality, from [18]). A point A in
the feasible set F (of recommendation policies) is Pareto
optimal (or strongly Pareto efficient) if there is no other
point B in F such that (U(B), Ũ(B)) ≥ (U(A), Ũ(A)) and
(U(B), Ũ(B)) ̸= (U(A), Ũ(A)).

Imagine, for example, that there are only two feasible
recommendation policies A and B where A leads to gains
of 25% for the CP and 30% for the CDN, while B leads to
gains of of 10% and 30% respectively. Then, for this problem
instance, the NBS would yield as solution the policy A,
which is Pareto optimal.

Another property that is guaranteed by the NBS is pro-
portional fairness. In other words, the solution of the NBS
is such that, when compared to any other feasible allocation
of gains, the aggregate proportional change in utilities is
less than or equal to zero. We provide below the formal
definition:

Definition 2 (Proportional Fairness, from [18]). A point
A in the feasible set F (of recommendation policies) is
proportional fair if for any other point B in F the following
is true:

U(B)− U(A)

U(A)
+
Ũ(B)− Ũ(A)

Ũ(A)
≤ 0.

In our setting, a (cooperative) recommendation policy is
considered proportional fair if any other policy would lead
to a percentage decrease in utility of one entity that is larger
than the percentage increase of the other entity. Imagine, for
example, that the CP-CDN cooperation would yield only
two possible recommendation policies A and B where A
leads to gains of 25% for the CP and 30% for the CDN,
whileB leads to gains of of 50% and 25% respectively. Then,
for this problem instance, policy B is the proportional fair
solution. We refer the reader to [18] for a broad discussion
on fairness.

Furthermore, due to the implicit domain constraints
deriving from (8), i.e., U − U b ≥ 0 and Ũ − Ũ b ≥ 0,
the payoff of every entity is no worse than the payoff it
would get outside of any cooperation, i.e., (U b, Ũ b). In fact,
(U b, Ũ b) is the “disagreement point” of the cooperation [9]:
if U < U b or Ũ < Ũ b, there will be no feasible solution and,
thus, no agreement on cooperation. Therefore, both parties
have an incentive to cooperate. Moreover, if the positions
of the two entities (in terms of utility functions and the

disagreement point) are symmetric, then the solution treats
them symmetrically.

In Sec. 3.2, we formulate in detail the problem that
would allow the CP and the CDN to devise the coopera-
tive recommendations policy in a centralized way, where
the two entities share all the necessary information for its
solution. In Sec. 3.3, we formulate the problem where the
two entities exchange minimal information and we propose
a decentralized algorithm that allows them to decide on the
cooperative recommendations.

3.2 Centralized Cooperative Recommendations
We will first formulate and study the centralized problem
where the two entities share their cost/revenue functions.

CCR: Centralized Cooperative Recommendations.

min
Y

[
− log

(∑
u,i

αu

Nu
yui(Rui − Λuiσi)− U b

)

− log

(∑
u,i

αu

Nu
yui(Λuiσi −Kui)− Ũ b

)]
(9)

s.t.
∑
i∈K

yui = Nu, ∀u ∈ U , (10)

yui ∈ [0, 1], ∀u ∈ U , i ∈ K, (11)

where the baseline utilities U b and Ũ b are defined in (3)
and (4). The constraints in (10) suggest that each user
receives Nu recommendations7.

Moreover, we note that the inequalities U − U b =∑
u,i

αu

Nu
yui(Rui − Λui) − U b ≥ 0 and Ũ − Ũ b =∑

u,i
αu

Nu
yui(Λui −Kui)− Ũ b ≥ 0 are implicit constraints as

the domain of the logarithms must be non-negative. Since
(U b, Ũ b) is the disagreement point, if U < U b or Ũ < Ũ b,
there will be no agreement on cooperation, by definition.
Then the CP will keep its baseline recommendations Y b

while the CDN will not provide a price discount. The next
lemma shows that the CCR problem is tractable.

Lemma 1. The CCR Problem is (strictly) convex.

Proof. The objective function is (strictly) convex since the
logarithm is a concave function and the arguments of the
logarithms are linear functions of Y . Moreover, the prob-
lem’s constraints are linear.

As a result of Lemma 1, standard interior-point or dual
methods would efficiently give the unique optimal solution.
We summarize below the algorithm to devise the coopera-
tive recommendations in a centralized manner.

The CCR Algorithm. The CP communicates the values αu,
Nu, Y b, U b and its utility function U . The CDN communi-
cates the discount ρ, the value of Ũ b, and its utility function
Ũ . Then, the CCR Problem is solved through standard
dual or interior-point methods. It returns Y ∗, the optimal
cooperative recommendation policy.

The process described above could be managed either by
a trusted third party (cooperation mediator) that collects the

7. If the solution Y ∗ contains more than Nu positive values (due to
the probabilistic model) we can easily select exactly Nu following the
technique in [19] and being compatible with Y ∗ on expectation.
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necessary information or by the two entities together. Given
that today’s major CDNs update/fill their caches during
off-peak hours, as is the case with Netflix’s CDN [20], the
algorithm could run at any time after the fill window, and
it could concern the expected requests in the period of time
until the next cache update or in a period of a few hours.

Remark 2. The proliferation of encrypted user-cache commu-
nication through HTTPS/TLS requests is considered an ob-
stacle for efficient content caching (and, thus, cache-friendly
recommendations) within the OTT services. However, there
are protocols proposed in literature that can ensure that the
CDN’s caches are blind to the cached contents (e.g., [21]).
Similar protocols could be embedded in our framework
since the CDN needs only to estimate the retrieval cost of
the cached items (that could be encrypted). Designing such
a protocol is an interesting direction for future work but it
goes beyond the scope of this manuscript.

3.3 Distributed Cooperative Recommendations with
Minimal Information Sharing

As explained earlier, in order to solve the CCR Problem the
two entities need to share their utility functions. However,
in the highly competitive ecosystem of streaming services
and content distribution, these functions constitute sensitive
information. Withholding such information might prevent
the two parties from cooperating. Therefore, there is need
for a cooperation mechanism that can assure privacy. Estab-
lishing such a mechanism is not trivial since fairness (along
with the other properties of NBS) needs to be guaranteed,
as in the centralized solution. We remind the reader that
the NBS framework requires that both utility functions are
taken into account in the same objective (see (8)).

We overcome this challenge by applying the Alternating
Direction Method of Multipliers (ADMM) [22] to solve the
problem in a distributed way. The idea behind ADMM is
to split the problem into two subproblems, where each sub-
problem contains only one entity’s utility function. Then, the
cooperative recommendation problem is solved iteratively:
each entity solves the subproblem that contains only its
utility function and finds its local solution. Through coor-
dination and after a sufficient number of iterations, the sub-
problems’ solutions coincide. The coordination preserves
the entities’ private information and is carried out by a
cooperation mediator, which is either a trusted third party or
the two entities together. In order to define this distributed
algorithm, in what follows: 1) we reformulate the CCR
Problem into an equivalent problem (DCR Problem) that
can be split into two subproblems, 2) based on the theory
on ADMM, we propose the distributed DCR algorithm, and
3) we prove that the resulting cooperation gains converge to
the ones of the centralized problem.

Instead of the recommendation variables Y , we intro-
duce here the local recommendation variables Ψ = (ψui ∈
[0, 1]) and Ψ̃ = (ψ̃ui ∈ [0, 1]) that are the variables in the
CP’s and CDN’s subproblems respectively. We reformulate
the CCR Problem into the following equivalent problem:

COOPERATION
MEDIATOR

updates dual variables:

CP CDNlocal solution

𝛹(𝑘+1)
local solution

 𝛹(𝑘+1)

COOP. RECOMM. TO USERS

𝛹= 𝛹
(convergence) 

𝘡(𝑘) = 𝘡(𝑘−1) + 𝑞 (𝛹(𝑘) -  𝛹(𝑘)) 
Solves

min
𝛹

𝐿𝑞(𝛹,  𝛹
𝑘 , 𝘡 𝑘 )

(does not share its utility 
function)

Solves

min
 𝛹

𝐿𝑞(𝛹
(𝑘+1),  𝛹, 𝘡 𝑘 )

(does not share its utility 
function)

𝘡 𝑘 ,𝛹(𝑘+1)𝘡 𝑘 ,  𝛹 𝑘

Fig. 3. Illustration of the DCR algorithm’s steps. Each entity solves its
subproblem (without sharing its utility function) based on the other’s local
solution and the dual variables. They communicate their local solutions
to the cooperation mediator that updates and communicates the dual
variables.

DCR: Distributed Cooperative Recommendations.

min
Ψ,Ψ̃

[
− log

(∑
u,i

αu

Nu
ψui(Rui − Λuiσi)− U b

)

− log

(∑
u,i

αu

Nu
ψ̃ui(Λuiσi −Kui)− Ũ b

)]
(12)

s.t. ψui = ψ̃ui, ∀u ∈ U , i ∈ K, (13)∑
i∈K

ψui = Nu, ∀u ∈ U , (14)∑
i∈K

ψ̃ui = Nu, ∀u ∈ U , (15)

ψui, ψ̃ui ∈ [0, 1], ∀u ∈ U , i ∈ K, (16)

where ψui and ψ̃ui are the local recommendation variables
as decided by the CP and the CDN respectively. The con-
straints in (13) are the consistency constraints that require all
local recommendation variables to agree.

The augmented Lagrangian for the DCR problem is:

Lq(Ψ, Ψ̃, Z)=− log
(
U(Ψ)− U b

)
− log

(
Ũ(Ψ̃)− Ũ

)
+
∑
u,i

zui(ψui − ψ̃ui) +
q

2

∣∣∣∣Ψ− Ψ̃
∣∣∣∣2
F
, (17)

where Z = (zui) are the dual variables, q is the penalty
parameter, and || · ||F the Frobenius norm. We remind the
reader that the Frobenious norm of a matrix is defined as the
square root of the sum of the squares of the matrix’s entries.
Moreover, the dual function is

d(Z) = inf
(Ψ,Ψ̃)

s.t. (14)-(16)

Lq(Ψ, Ψ̃, Z) (18)

The ADMM for the DCR Problem is described below (see
also Fig. 3):

The DCR algorithm. The CP communicates αu, Nu , Y b

and the value of U b. The CDN communicates ρ and the
value of Ũ b. Then, at every iteration k + 1:

• The CP solves its subproblem and communicates its
local solution:

Ψ(k+1) := argmin
Ψ

s.t. (14), (16)

Lq

(
Ψ, Ψ̃(k), Z(k)

)
. (19)
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• The CDN solves its subproblem and communicates its
local solution:

Ψ̃(k+1) := argmin
Ψ̃

s.t. (15),(16)

Lq

(
Ψ(k+1), Ψ̃, Z(k)

)
. (20)

• The cooperation mediator updates and communicates
the dual variables:

Z(k+1) := Z(k) + q
(
Ψ(k+1) − Ψ̃(k+1)

)
. (21)

We highlight here that each entity keeps private its utility
function from the other entity and the mediator. The two
entities reveal only their local solutions (Ψ(k+1) and Ψ̃(k+1))
at every iteration. These matrices are often sparse leading
to a low communication overhead at every iteration. This
coordination until convergence (that could involve only a
few iterations) will occur at the beginning of the cooperation
window. Concerning the practicalities of the DCR algorithm,
its iterations will terminate according to standard residual
criteria (see [22]). We note that ADMM tolerates inexact
minimization for the subproblems under the condition that
the relative errors are summable [23]. Moreover, when the
subproblems are solved in an iterative way, the warm-
start technique can speed up the process. The following
lemma guarantees that the DCR algorithm converges (after
a sufficient number of iterations) to the centralized objective
function value and solution.

Lemma 2. If p∗ is the optimal value of the CCR Problem, and
DO(k) is the DCR Problem’s objective function value at iteration
k, i.e., DO(k) = − log

(
U(Ψ(k))−U b

)
− log

(
Ũ(Ψ̃(k))− Ũ b

)
,

then DO(k) → p∗, as k → ∞. Moreover, if Y ∗ is the (unique)
solution of the CCR Problem, then Ψ(k), Ψ̃(k) → Y ∗, as k → ∞.

Proof. According to the results in [22], we need to prove
two conditions: 1) the extended-real-valued functions
− log(U(Ψ)−U b) and − log(Ũ(Ψ̃)− Ũ b) are closed, proper,
and convex, and 2) the unaugmented Lagrangian L0 has a
saddle point. The two functions are indeed convex (in fact
strictly convex) and closed. The corresponding extended-
real-valued functions are proper since they are not identi-
cally equal to +∞. We will now prove that strong duality
holds. When a feasible primal solution Ψ∗ = Ψ̃∗ exists
such that U(Ψ∗) − U b > 0 and Ũ(Ψ∗) − U b > 0, then
strong duality holds by Slater’s condition (which reduces to
feasibility when the problem constraints are linear). There-
fore, by feasibility and by strong duality, it follows that the
unaugmented Lagrangian L0 has a saddle point [24].

Since we proved objective convergence, then the local
solutions will converge to the unique centralized solution
Y ∗ since the DCR’s objective function is strictly convex. This
means that there is at most one global minimizer.

Essentially, Lemma 2 implies that the properties of the
centralized solution inherited by the NBS framework (Nash
axioms, see Sec. 3.2) hold also for the DCR’s solution. This
is important since it guarantees that the cooperation gains
and the fair split of these gains will not be compromised
when the two entities apply the DCR algorithm (instead of
the CCR). Finally, in Sec. 5, we will see in practice how the
convergence to the solution of the CCR problem is achieved
as a function of the number of iterations, and how the two
entities’ gains are affected from iteration to iteration.

3.4 Recommendations of high quality for the users
One might argue that the cooperative recommendations
could have potentially an impact on the users by degrading
the recommendations they receive. Note that the user’s
interest in the content is one of the factors that determine
the user’s overall experience in OTT services, as shown
in experiments [25]. However, the CP can limit a potential
recommendation degradation by adding extra constraints in
the problem. For example, adding in the CCR Problem the
constraints ∑

i

yuirui
Nu

≥ Tu, for every user u, (22)

forces the average relevance of the cooperative recommen-
dations to the user u to be at least equal to a threshold
Tu ∈ (0, 1]. Adding these constraints does not have an im-
pact on the problem analysis (since they are linear with re-
spect to the variables Y ). In the (distributed) DCR Problem,
the same constraints (with the local variables ψui instead of
yui) can be applied when the CP solves its subproblem (with
no need of communicating these constraints to the CDN).

There is a common misconception that cache-friendly
recommendations concern only a few (very) popular con-
tents. Although it has been shown that there exist a popu-
larity bias in the core of RSs (see [26], [27]), related work
on cache-friendly recommendations imposes constraints
similar to (22) in order to better match the users’ tastes
beyond the universally popular contents. Going one step
further, joint caching and recommendation policies have
been shown to outperform naive policies that would cache
and recommend the most popular contents (contents with
highest aggregate popularity) [6]. In fact, the joint approach
yields a more efficient caching allocation and higher quality
of recommendations since it makes decisions based on the
diverse users’ tastes and similarity between contents (in
terms of relevance to the users). For this reason, in the next
section, we extend the cooperation to the caching decisions.

4 EXTENSION TO CACHING DECISIONS

So far, we have focused our framework on scenarios where
the recommendations are the only variables that can be re-
designed by the CP and CDN, in the timescale of interest.
A natural question that arises is whether also modifying
the caching decisions in parallel, could yield even better
profits: recommendations could concern contents that are
cached in the cache that is closest to the user while they
still bring high revenue to the CP. This is particularly useful
in today’s and future wireless architectures where caches
are small while the CP’s catalog is constantly growing.
This is also in line with recent works proposing the joint
optimization of caching and recommendation decisions, e.g.,
[5], [6]. Nevertheless, none of these works either explores the
financial aspects of the caching-recommendation interplay,
nor is it straightforward how to include these into our
problem formulation and solution methodology.

A complete treatment of this topic goes beyond the
scope of this manuscript, due to the additional complexity
it introduces in the solution methodology, and is subject
to future work. Nevertheless, we will show here how to
include such variables into our model, and provide some
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preliminary analysis and a heuristic for this extended prob-
lem. We complement this analysis with related validation
results in Sec. 5 that already show the proposed method can
further increase the cooperation gains for both parties.

Caching Setup and Variables. In this section, we con-
sider, for simplicity, a scenario where the CDN manages
only one small cache whose capacity is C1. Moreover, there
is a root cache C0 that stores all the contents. We employ
the prevalent continuous caching model that is valid either
when coded caching is used [12] or when the files can
be divided in equally-sized chunks and stored indepen-
dently [19], [28]. Therefore, for simplicity, in this section,
we assume that the contents are equal-sized (divided in
chunks)8. In addition to the variables and input values that
were introduced in Sec. 2, we define the cooperative caching
variables:

Cooperative caching variables: X = (xi ∈ [0, 1], i ∈ K),
where xi is the portion of content i that is stored at the cache
or the probability that the content i is cached. These (to-
gether with the recommendation variables yui) constitute
control variables.

We optimize proactive caching decisions, which consti-
tute a key element of CDN’s operations today, as explained
before. Therefore, as is common in related work [12], we as-
sume that the CDN proactively stores contents in its caches
and this allocation stays fixed during the period between
two updates/fills and between two CP-CDN cooperation
instances.

Similar to (2), the retrieval cost for the CDN in a single
cache (and the root cache C0) is:

Kui(X) = ku0 + xi(ku1 − ku0), (23)

i.e., the cost will be ku1 if the content i is entirely cached in
the (small) cache (xi = 1), ku0 if it is not cached (xi = 0),
and a sum of the portions of these two costs otherwise. In
contrast to the definition of the utility functions in Sec. 2, we
redefine here the CDN’s utility function in order to include
the profit that comes from requests out of recommenda-
tions (note that now this term contains the control variables
xi). The CDN’s baseline utility (before cooperation) and the
utility for cooperation are defined as:

V b=Ũ b +
∑
u,i

(1− αu)pi
(
λ− ku0 − xbi (ku1 − ku0)

)
(24)

V=
∑
u,i

[ αu

Nu
yui (Λui − ku0 − xi(ku1 − ku0))

+(1− αu)pi (λ− ku0 − xi (ku1 − ku0))
]
. (25)

In the second summand of V , the delivery fees are λ since
the discount does not apply to requests out of recommenda-
tions. We stress here that, for the CP, the corresponding term
does not contain any of the control variables and it cancels
out in the difference U − U b. We can now formulate the
optimization problem that can allow us to devise coopera-

8. This assumption could be removed while our analysis and solution
method could still be applied. However, in the case where contents are
of heterogeneous sizes and xi is interpreted as caching probability, the
cache capacity constraint (that we will formulate in what follows) will
be satisfied in expectation.

tive recommendation and caching policies in a centralized9

manner (with information sharing between the two entities).

CCRCache: Centralized Cooperative Recommendations &
Caching.

min
X,Y

[
− log

(
U(Y )− U b

)
− log

(
V (X,Y )− V b

)]
(26)

s.t.
∑
i∈K

yui = Nu, ∀u ∈ U , (27)∑
i∈K

xi ≤ C, (28)

xi, yui ∈ [0, 1], ∀u ∈ U , i ∈ K, (29)

where U b and V b are in defined in (3) and (24). According
to (24) and (25), the CDN’s gain in utility is:

V (X,Y )− V b =
∑
u,i

[ αu

Nu
yui

(
Λui − ku0 − xi(ku1 − ku0)

)
−(1− αu)pi(xi − xb

i )(ku1 − ku0)
]
− Ũb. (30)

The inequality in (28) is the cache capacity constraint and,
as expressed in (29), the control variables are continuous.
Finally, the inequalities U(Y )−U b ≥ 0 and V (Y,X)−V b ≥
0 are implicit domain constraints.

Lemma 3. The CCRCache Problem is bi-convex.

Proof. The objective function is bi-convex, i.e., convex with
respect to Y for every fixed X and convex with respect
to X for every fixed Y , since the logarithm is a concave
function, the utility function U is linear with respect to Y ,
and the function V is bilinear in X and Y (since it contains
the products yuixi, see (30)). Furthermore, all the problem’s
constraints are linear.

An approach to tackle a bi-convex optimization problem
would be to transform it into an equivalent problem that
is instead convex in (X,Y ). However, such transformations
leading to convex equivalent problems are the exception,
rather the rule. Standard transformation “tricks” include re-
placing the products yuixi by new variables or discretizing
one of the variables involved in the product [29]. The former
option is not possible in our problem (since the variables yui
and xi appear also outside of this product), and the latter
could lead to a problem with a large number of new vari-
ables. Another approach includes the GOP (global optimiza-
tion) algorithm that guarantees convergence to the global
optimum [30], [31]. Unfortunately, this algorithm comes at
the cost of high complexity that could be prohibitive in real-
world systems with vast catalogs and multiple users.

Moving away from “exact” methods that attempt to
find global optima, Alternate Convex Search [32], and more
recently ADMM methods [22], have been popular heuris-
tics for bi-convex problems. Although there are problem
instances whose structure permits such algorithms to (prov-
ably) converge to global optima (e.g., the well-known matrix
factorization problem), they (at best) guarantee convergence
to stationary points. We saw in Sec. 3.3 how ADMM can
be applied in order to provide a distributed solution. The
same method can be applied for bi-convex problems since

9. Due to space constraints, we only present the centralized problem
here. In fact, the presented framework could be also implemented in a
distributed way.
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its core idea consists of splitting the main problem into sub-
problems. Here, the CCRCache Problem can be broken into
a subproblem that contains the recommendation variables
and another that contains the caching variables. In order to
apply ADMM, we reformulate the CCRCache Problem into
an equivalent problem by introducing new variables and
adding bilinear constraints:

CCRCache′ Problem.

min
X,Y,Z

[
− log

(
U(Y )− U b

)
− log

(
G(X,Y, Z)− V b

)]
(31)

s.t. (27), (28),
zui = xiyui, ∀u ∈ U , i ∈ K, (32)
xi, yui, zui ∈ [0, 1], (33)

where the Z = (zui ∈ [0, 1]) are auxiliary variables that
replace the products xiyui and G(X,Y, Z) is defined as
follows:

G(X,Y, Z)=
∑
u,i

[ αu

Nu
(yui(Λui − ku0)− zui(ku1 − ku0))

+(1− αu)pi(λ− ku0 − xi(ku1 − ku0))
]
. (34)

It is important to note that the objective of the
CCRCache′ Problem is convex in (X,Y, Z) while the bi-
linear constraints in (32) couple all variables together. We
describe below how ADMM [22, Sec. 9.2] can be applied in
the CCRCache′ Problem. Even though ADMM for bi-convex
problems has no guarantee of convergence, it is expected to
have better convergence properties (faster convergence to a
local or global optimum or better objective function value)
than other local heuristics [22].

The CCRCache algorithm. The CP and the CDN exchange
the following information: αu, Nu, Y b, U , U b, ρ, G, and V b.
Then, the two entities together (or through a mediator) solve
iteratively the CCRCache′ problem. At every iteration k+ 1
and for penalty parameter q, the following steps take place:

• Solving the (Y,Z)-subproblem:(
Y (k+1), Z(k+1)

)
= argmin

s.t. (27),(33)

[
− log

(
U(Y )− Ub

)
− log

(
G(X(k), Y, Z)− V b

)
+
q

2

∣∣∣∣∣∣Z −
(
diag(X(k))Y

)T
+H(k)

∣∣∣∣∣∣2
F

]
. (35)

• Solving the X-subproblem:

X(k+1)=argmin
s.t. (28),(33)

[
− log

(
G(X,Y (k+1), Z(k+1))− V b

)
+
q

2

∣∣∣∣∣∣Z(k+1) −
(
diag(X)Y (k+1)

)T
+H(k)

∣∣∣∣∣∣2
F

]
. (36)

• Updating the dual variables denoted by H :

H(k+1)=H(k) +

(
Z(k+1) −

(
diag(X(k+1))Y (k+1)

)T
)
. (37)

Essentially, the CCRCache algorithm splits the CCRCache′

problem into (Y,Z)- and X-subproblems that do not con-
tain any coupling constraints. Both subproblems are con-
vex (in fact strongly convex) and can be solved efficiently
through standard interior-point or dual methods. The last
terms of (35) and (36) ensure that the coupling constraints in

(32) are not violated. Such violations are further controlled
through the updates of the dual variables (during the third
step). The iterations can terminate according to standard
residual criteria, i.e., when the differences zui − xiyyi are
sufficiently small. As a final remark, we stress here that we
do not claim that this is necessarily the best method for
this problem, and other techniques could further enhance
the method’s performance [33]. Our sole goal is to apply a
reasonably tested method for such problems, and evaluate
if the control over the caching variables can reap additional
benefits (see Sec. 5).

5 PERFORMANCE EVALUATION

In this section, we evaluate numerically the payoffs that
can be achieved through the proposed cooperation scheme.
We will study two scenarios: Scenario I will focus on the
evaluatation of the CCR and DCR algorithms in terms of
cooperative gains and their impact on the quality of rec-
ommendations, while investigating the role of key problem
parameters; Scenario II will focus on exploring the benefits
of the CCRCache algorithm. First, we present the default
input parameters that, unless otherwise stated, will be used
across the simulations.

Catalog and Recommendations: Our scenario consists of
100 users who have access to a catalog of 6000 contents10,
e.g., movies. Without loss of generality, we consider equal-
sized contents of 1Gb11. Every user receives Nu = 5 recom-
mendations and the probability of following the recommen-
dations varies in [0.6, 1), as in Netflix, where the average
is equal to 0.8 [2]. For the matrix of content relevances
rui, a subset of the Movielens dataset [35] containing 5-star
ratings of movies was used. The ratings were mapped in
the interval [0, 1] and we performed matrix completion to
obtain the missing ratings (as in [6]). Finally, the baseline
recommendations (before any cooperation) for a user u, i.e.,
ybui, are the Nu contents that bring the highest revenue (Rui)
to the CP.

Caching Topology: We consider a network of 9 caches
whose capacity will be specified in what follows and a root
cache containing all contents. Every user has access to 2
of the caches (chosen randomly) and to the root cache. We
assume that the (baseline) caching allocation, i.e., Xb, as
decided by the CDN, is based on a popularity distribution
over the catalog as observed by every cache in a time period
that precedes the cooperation. For this, we set the content
popularities observed by cache j to be the normalized
content utilities rui aggregated over the connected users,
i.e., rui/

∑
u∈Cj

rui, where Cj is the set of connected users
to the cache j.

Revenues and Costs: Based on the subscription prices of
a major streaming platform in U.S.A. [36], the average time
a user spends on the platform [37], and the average length
of movies [38], we estimate that a user pays an approximate
price of $0.36 per movie. Taking into account licensing or
production costs, we estimate that Rui (CP’s revenue per

10. According to [34], in 2019, the total number of titles (movies and
TV shows) available on Netflix in the USA was equal to 5848.

11. Our performance evaluation results are similar in case of contents
of heterogeneous sizes since the CP’s revenues and the CDN’s costs
related to each content vary in a wide range.
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content) varies from $0.15 to $0.24 per movie12. The values
of Rui were derived through an equation that depends on
the content relevances (see Sec. 2.2), and, unless otherwise
stated, this equation will be: Rui = 0.15 + 0.09rui (in $).
This could, for example, capture an ad-based revenue model
where rui can be interpreted as the user retention rate
and, thus, the quantity 0.09rui is the portion of ad-based
revenue. Alternatively, this could also reflect a subscription-
based revenue model where the licensing costs depend on
the watched portion of the movie. Therefore, the baseline
recommendations Y b are the ones with the highest rele-
vances rui per user. Finally, it is worth noting that, in [1],
our numerical evaluations were performed for Rui being a
concave function of rui that could similarly capture an ad-
based, subscription-based, or hybrid revenue model. Under
this assumption, we obtained similar performance results as
the ones presented here.

The CDN charges the CP $0.11 per Gb (according to [14]
for the delivery). Concerning the CDN’s retrieval costs, they
have been chosen randomly from the range [0.0005, 0.02]($)
for the connected caches, while the cost for the root cache is
fixed at $0.055. These values are in line with the simulation
parameters used in related work on CDN’s economics [15],
where retrieval costs (from caches nearby or origin server)
vary in a wide range between 0.1% and 50% of the delivery
fees the CDN charges.

5.1 Scenario I
For the default parameters that were described above, for
cache sizes varying (randomly) from 1 − 4% of the content
catalog, and for different values of the discount ρ, we
evaluate the proposed cooperation in Fig. 4.

The first subplot (top) depicts the relative gains in utility
for the two entities, i.e., the quantities 100 · (U − U b)/U b

and 100 · (Ũ − Ũ b)/Ũ b, as given by the CCR algorithm.
We observe that, for low discount, the CDN benefits from
the cooperation more than the CP. This is because the CDN
saves on routing costs without its revenue from the delivery
fees decreasing significantly. On the other hand, we see that
the CP benefits the most for high discount as its savings on
the delivery fees become important. However, for very high
discount, close to 50%, the cooperation becomes unprof-
itable for the CDN and, therefore, the cooperation would
cease, and the recommendations would revert back to the
baseline ones. It is important to highlight here that these
points are Pareto optimal points. As explained in Sec. 3,
this means there is no other solution that is better than the
solution for one entity and not worse than the solution for
the other entity. In the second subplot (of Fig. 4), we plot the
total relative gains achieved from the cooperation, i.e., the
quantity (U − U b + Ũ − Ũ b)/(U b + Ũ b).

Observation 1. The proposed cooperation can lead to sig-
nificant gains, up to 32% for the CDN and up to 20% for the
CP in our scenario. The total cooperative gains can reach up
to 15% when compared to the total baseline utilities.

12. The licensing and production costs we considered are realistic
and are based on estimations for a movie of Netflix production. In
particular, according to publicly available data on views count [39]
and on production budget [40], the Netflix’s film “Bird Box” had an
approximate production cost of $0.2 per view, as per 2020.
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Fig. 4. Scenario I: Relative increase in utility for the CP and the
CDN, total cooperative gains, cache hit rate for recommendations,
and quality of recommendations achieved through the proposed co-
operation scheme (CCR algorithm) for different values of the discount
ρ ∈ [0.05, 0.5].

It is worth noting that even gains of 3% or 6% (i.e.,
CP’s gains for ρ = 5% and 10% respectively) already
correspond to very large absolute monetary sums saved (if
one extrapolates to a much larger pool of users and requests,
as in practice). Especially when referring to large CPs, like
Netflix, that report annual profits of more than 2 billion US
dollars [41].

Even though each pair of points in the top subplot
corresponding to a value of ρ is Pareto optimal, we see
that ρ affects the gains of each entity. Obviously, the CDN
would rather offer only a small discount, while the CP
would prefer the largest discount possible. One could argue
that the “best” ρ is between 25% and 30%, i.e., where the
two lines meet, since it does not give advantage to any
entity. Defining what is the “best” ρ and devising a method
to find it is an interesting direction for future work. For
example, one could model it as a game with alternating
offers, or simply determine ρ through exhaustive search
from this plot. Besides, this plot reveals the effect of possible
regulatory interventions that, e.g., could set bounds on such
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discounts in order to foster new business models, protect
users’ interests and so on.

In the third subplot (of Fig. 4), we depict the
cache hit rate for the small caches generated by
the cooperative recommendations, i.e., the quantity∑

u,i

∑
j∈C(u)\C0

αu/Nuyuixij , where C(u) \ C0 is the set
of small caches that user u is connected to. Note that αu/Nu

is the probability the user will click on a specific recom-
mendation. We also plot the cache hit rate of the baseline
recommendations Y b. We see that, before cooperation, only
42% of the recommendations were generating a cache hit at
the CDN’s caches while this percentage can go up to 100%
for the cooperative recommendations. We remind the reader
that, in our scenario, every user is connected to two small
caches, and, therefore, we count a cache hit when the content
in question is cached in at least one of the two caches. In
fact, the cache hit rate could be smaller in scenarios where
every user is connected to a single cache, or where the
baseline caching allocation contains less popular/relevant
contents. More importantly, even if the CDN can serve from
its small caches a big portion of the requests that come from
recommendations, there is still room for improvement: these
cache hits are not necessarily at the caches closest to each
user. We will elaborate on that in Sec. 5.2 (Scenario II). We
stress here that high cache hit rate is also beneficial for the
user since it implies small start-up delays.

In the forth subplot (of Fig. 4), we investigate the impact
of cooperative recommendations on the users’ perception
of the recommender. For that, we measure the quality of
recommendations (QoR) as defined in [6]. In particular, QoR
for user u measures the sum of relevance of the received
recommendations:

∑
i ruiyui. The forth subplot shows the

aggregate QoR (summed over the users) achieved by the
cooperative and the baseline recommendations. The y-axis
is regularized with respect to the highest existing relevances.
The errorbars show the minimum and maximum QoR ob-
served for individual users for every instance.

Observation 2. As the cooperative recommendations favor
cached items and significantly increase the cache hit rate, the
users’ aggregate QoR is barely compromised (≥ 96%) in our
scenario. The user’s QoR is at least 83%, where 100% stands
for the most relevant recommendations and the baseline
here.

Next, we perform a sensitivity analysis with respect
to two key problem parameters: the capacity of CDN’s
caches and the CP’s revenuesRui. For the default simulation
parameters, Fig. 5 depicts the relative increases in utility, as
obtained by the CCR algorithm, for different relative cache
sizes and different values of discount ρ.

Observation 3. As the relative cache size decreases, we
notice the highest utility gains for both the CP and the CDN.

The observation above is particularly promising for to-
day’s and future wireless architectures where base stations
are equipped with caches of small capacity. As the cache
size increases (10 − 30% of the catalog), the utility gains
decrease. Note that when the cache capacity is large, the
baseline recommendations (Y b) are likely to be already
cached. Therefore, fewer (when compared to the case of
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Fig. 6. Scenario I: Relative increase in utility for different ranges of
Rui (CP’s revenues per content) as obtained by the CCR algorithm.

small cache capacity) recommendations need to be adjusted
to favor cached items.

Next, we fix the discount at 30% and the cache size at
1 − 4%. In Fig. 6, we see how the CP’s revenue values Rui

affect the payoffs of the cooperation. We have plotted the
relative increase in utility for both entities for 5 different
revenue ranges from [0.1, 0.2) to [0.1, 1)($). We observe that,
for the range [0.1, 0.2), the CP could have an increase of 22%
of its utility. Then, as the range widens, the payoff for the
CP decreases. In fact, when the CP’s average revenue Rui

is much larger than the delivery fee, a reduction on the fee
will not have a significant impact on the CP’s utility. On the
other hand, the CDN’s payoff is not affected as much as the
range changes since its utility function does not contain the
parameters Rui.

Observation 4. When the range ofRui is narrow, the CP can
enjoy an increase in its utility of 22%, for discount ρ = 30%.
As the range widens, the CP would need a higher discount
in order to keep the gains at the same level.

In the remainder of this subsection, we will focus on
the proposed distributed algorithm (DCR). For the same
problem parameters as in Fig. 4 and the discount fixed
at 30%, we will evaluate the convergence of the DCR
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algorithm and its impact on the cooperation payoffs. The
top subplot of Fig. 7 depicts the primal residual obtained
within 50 iterations for two different values of the penalty
parameter q (see eq. (21) in Sec. 3.3). Note that the primal
residual at iteration k is equal to ||Ψ(k) − Ψ̃(k)||F and it
measures how different the CP’s and CDN’s local solutions
are. In the bottom subplot, we plot the suboptimality gap in
percentage, i.e., |DO(k) − p∗|/|p∗|, at iteration k, where p∗ is
the optimal objective function value that is obtained by the
CCR algorithm. This gap measures how far the distributed
objective value is from the centralized one and, according
to Lemma 2, tends to zero for a sufficiently large number of
iterations. Note that, as p∗ is in principle unknown, only the
primal and dual residuals are used as stopping criteria.

As we know from the theory on ADMM [22], the higher
the penalty parameter is, the lower the primal residuals are.
In fact, for q = 0.01, we observe a residual’s value of less
than 4 · 10−3 and suboptimality gap of 0.14%. On the other
hand, when q = 0.003, the residual and the suboptimality
gap are equal to 6 ·10−3 and 0.03% respectively. These num-
bers show a rather fast convergence for the size of our sce-
nario. However, this performance can be further enhanced
by applying techniques that, although do not guarantee
faster convergence, can work well in practice (see [22] for
a review on such techniques).

Observation 5. Within only 3 iterations, the (distributed)
DCR algorithm can reach a suboptimality gap of less than
1% when compared to the optimal objective function value
achieved by the (centralized) CCR algorithm. Within 20
iterations, the suboptimality gap is less than 0.1%.

Finally, Table 2 shows the CP’s and CDN’s relative gains
that result from the DCR algorithm (with q = 0.003) for
different number of iterations and from the CCR algorithm.

Observation 6. Within only a few iterations, the relative
increases in utility obtained by the the DCR algorithm
approach the Pareto optimal points obtained by the CCR
algorithm.

TABLE 2
Relative gains obtained by DCR∗ and CCR

DCR DCR DCR CCR
k = 2 k = 15 k = 30

CP’s gains (%) 17.67 16.79 16.81 16.84
CDN’s gains (%) 11.65 11.63 11.63 11.63
∗
k stands for number of iterations of the DCR algorithm

5.2 Scenario II

As we saw in Fig. 4, the cooperative recommendations can
lead to a high cache hit rate at the CDN’s caches. Although
this rate implies significant savings for the CDN, the cache
hits do not necessarily happen at the cache that generates
the lowest retrieval cost (when delivered to each user). What
is more, if the CDN could cache another content, that is
potentially more related to the ones in the baseline recom-
mendations, then the CP could further increase its benefits,
without actually increasing the cache hit rate, per se. For
this reason, we will evaluate now the potential benefits
of extending the cooperation towards caching decisions, as
we discussed in Sec. 4, where we proposed the CCRCache
algorithm.
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Fig. 8. Scenario II: Relative gains in utility (for the two entities) and
optimal objective function values achieved by the CCRCache and the
CCR algorithm for different values of discount ρ ∈ [0.05, 0.4].

For the default parameters that were described in the
beginning of Sec. 5, for capacity of caches equal to 5%
of the content catalog, and for different values of the dis-
count ρ, we compare the CCR and CCRCache algorithms in
Fig. 8. More specifically, we apply the CCR algorithm for
every problem instance where only the recommendations
are the cooperation variables and we apply the CCRCache
algorithm for the same instance where caching is also a
cooperation variable. The top subplot depicts the relative
gains in utility for the two entities, while the bottom subplot
shows the objective function values obtained. We notice
that CCRCache leads to larger gains (for at least the CDN)
and smaller (better) objective functions values than the ones
obtained by the CCR algorithm.
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Observation 7. When caching becomes a cooperation vari-
able, the CP-CDN cooperation, through the CCRCache al-
gorithm, can boost CDN’s utility up to 42%. At the same
time, the CP’s utility gains are at least as high as when rec-
ommendations are the only cooperation variables (through
the CCR algorithm).

Finally, we compare the CCRCache scheme with the
related work on the joint optimization of caching and
recommendations, e.g., [5]–[7]. In contrast to our network-
economical approach, the aforementioned works focus on
maximizing network-related measures, such as cache hit
rate. For this reason, we adapt these schemes towards profit
maximization. Therefore, the state-of-the-art schemes could
be formulated as the problem of maximizing the aggregate
profit, i.e.,

max
Y,X

U(Y ) + V (X,Y ) (38)

s.t. (27), (28), and (29),

where U(Y ) + V (X,Y ) =
∑

u,i[
αu

Nu
yui(Rui − Kui(X)) +

(1 − αu)pi(λ − Kui(X))]. We stress here that this formu-
lation (different to the NBS formulation we employed in
the CCR and CCRCache problems) does not contain the
baseline utilities. Furthermore, for the requests coming for
recommendations, the term of the CP’s costs and the term
of the CDN’s revenues are canceled out in the sum of the
two entities’ utility functions and, for the requests outside
of recommendations, the term Λui in CDN’s revenues is
replaced by λ since no discount on the delivery fees applies
for the CP, as is the case in related work.

Table 3 shows the relative gains/losses in utility when
solving the problem in (38) (which represents a profit-
oriented joint caching and recommendation schemes like
the ones in the literature) and when applying the proposed
CCRCache algorithm for ρ = 20%. We see that the former
leads to a loss in profit for the CP (−2%) and a gain in
profit for the CDN (+53%), as it was also the case in the
toy example in Sec. 2.4. The CP’s loss in profit is a result of
recommending cached contents whose aggregate popularity
is high, but they are not necessarily the most relevant to each
user. We remind the reader that no discount on the delivery
fees applies in the problem in (38). On the other hand, our
scheme provides incentives to the CP, it leads to gains in
profit for both stakeholders (+12% and +28% respectively),
and a proportional fair allocation of the gains (as guaranteed
by the NBS formulation).

TABLE 3
Proposed Cooperation versus Related Work:

relative gains/losses in utility

CP CDN

Joint Caching and −2% +53%Recommendations Scheme∗
Our Cooperation Scheme

+12% +28%CCRCache for ρ = 20%
∗Adaptation of related work, e.g., [5], [6],

towards aggregate profit maximization

Observation 8. In contrast to the state-of-the-art schemes
for joint caching and recommendation, the proposed co-

operation scheme (CCRCache) provides concrete incentives
to the CP to cooperate with the CDN so that they design
together the caching and recommendation decisions.

6 RELATED WORK

Several works in literature focus on the cache-friendly
recommendations or the joint caching-recommendation
paradigm. In [3], the authors propose a reordering of the
videos appearing in YouTube’s related videos section by
“pushing” on top of the list the cached items. Similar in
spirit, [4] presents a method of replacing or reordering
contents in the related videos section taking into account
network-related costs or QoS metrics. A decomposition al-
gorithm for the joint caching and recommendation problem
is proposed in [5]. Targeting cache hit rate maximization,
their policy first decides on caching, accounting for the im-
pact of recommendations, and then adjusts the recommen-
dations in order to favor cached items. In [6], the authors
formulate the joint problem as a maximization of a user-
centric metric consisting of expected QoS and quality of
recommendations. The authors propose an algorithm with
approximation guarantees for this joint problem. Finally,
in [42], the authors employ machine learning techniques
to devise caching and recommendation policies taking into
account the fetching cost of the content requests. Since most
of the works above assume that the same entity decides
on caching and recommendations, they do not explore the
financial aspects of the recommendations from the point of
view of both the CP and the CDN. More importantly, none
of the existing algorithms guarantee a fair split of the finan-
cial gains that come from cache-friendly recommendations.

The theoretical framework of the NBS that we em-
ploy in this work was introduced by John Nash in 1950
in [9]. The NBS is a cooperation mechanism that has been
employed, among others, in problems of spectrum access
coordination [43], bandwidth allocation [44], and content
caching [45]. More specifically, in [45], caches that belong to
a network collaborate with each other in order to decide on
the caching allocation. Moreover, in [46], the authors model
a CDN-ISP collaboration as a NBS problem.

Game theory has also been employed by works that
study the dynamics between CPs and edge caching
providers and propose cooperations or coalitions. For ex-
ample, [47] and [48] model a coalitional game between
a last-mile ISP and CPs. The authors in [49] suggest that
the caching network providers should give incentives to
the CP in a form of a subsidy (that is paid in proportion
to the savings that come from caching). Nevertheless, these
works focus on the caching allocation or deployment with-
out exploiting the impact of recommendations on content
requests.

This paper extends our earlier work [1] by providing in-
depth insights on the proposed cooperation scheme, extend-
ing the cooperation mechanism to a distributed algorithm
and presenting a comprehensive evaluation of the proposed
algorithms in a variety of scenarios and for different input
parameters. Finally, the current work discusses a possible
extension of the presented problem towards the CDN’s
caching decisions.
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7 CONCLUSIONS AND FUTURE WORK

In this work, we proposed a novel cooperation framework
in which the CP and the CDN jointly decide on the rec-
ommendations in order to favor cached contents. The opti-
mization problem of the cooperation was formulated in such
a way that the cooperative recommendations lead to a fair
and efficient allocation of financial gains between the two
entities. We also developed a distributed algorithm when
the two entities are not willing to share private information
on their revenue/cost functions. Furthermore, we explored
how this cooperation framework could be extended towards
the CDN’s caching decisions. Although this problem is
harder to solve, it has the potential to further increase the
cooperation gains. Our numerical evaluations show that, in
realistic scenarios, the two entities can benefit of an increase
in their expected net revenue of up to 37% and up to 42%
when caching is a cooperation variable.

The cooperation model presented in this work could
be extended in several directions. For example, as we dis-
cussed in Sec. 5, one could add the discount parameter ρ
as a control variable in the cooperation problem. Another
direction would be to include the users as players that
could potentially enjoy lower subscription fees when they
receive cooperative recommendations that diverge from
their tastes. Finally, it would be interesting to design a
mechanism (on top of the proposed cooperation) that can
address trust/security issues that could occur, e.g., misre-
ported gains or misinformation between the stakeholders.

REFERENCES

[1] D. Tsigkari, G. Iosifidis, and T. Spyropoulos, “Split the cash from
cache-friendly recommendations,” in Proc. IEEE GLOBECOM,
2021, pp. 1–6.

[2] C. A. Gomez-Uribe and N. Hunt, “The Netflix recommender
system: Algorithms, business value, and innovation,” ACM Trans-
actions on Management Information Systems (TMIS), vol. 6, no. 4,
p. 13, 2016.

[3] D. K. Krishnappa, M. Zink, C. Griwodz, and P. Halvorsen, “Cache-
centric video recommendation: an approach to improve the effi-
ciency of YouTube caches,” ACM Trans. on Multimedia Comput.,
Comm., and Applications (TOMM), vol. 11, no. 4, p. 48, 2015.

[4] S. Kastanakis, P. Sermpezis, V. Kotronis, D. S. Menasche, and
T. Spyropoulos, “Network-aware recommendations in the wild:
Methodology, realistic evaluations, experiments,” IEEE Trans. Mob.
Comput., 2020.

[5] L. E. Chatzieleftheriou, M. Karaliopoulos, and I. Koutsopoulos,
“Jointly optimizing content caching and recommendations in
small cell networks,” IEEE Trans. Mob. Comput., vol. 18, no. 1, pp.
125–138, 2019.

[6] D. Tsigkari and T. Spyropoulos, “An approximation algorithm
for joint caching and recommendations in cache networks,” IEEE
Trans. on Network and Service Management, vol. 19, no. 2, pp. 1826–
1841, 2022.

[7] K. Qi, B. Chen, C. Yang, and S. Han, “Optimizing caching and
recommendation towards user satisfaction,” in Proc. IEEE WCSP,
2018, pp. 1–7.

[8] I. Poese, F. Benjamin, A. Bernhard, G. Smaragdakis, S. Uhlig, and
A. Feldmann, “Improving Content Delivery with PaDIS,” IEEE
Internet Comput., vol. 16, no. 3, pp. 46–52, 2012.

[9] J. F. Nash Jr, “The bargaining problem,” Econometrica: Journal of the
econometric society, pp. 155–162, 1950.

[10] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi,
S. Gupta, Y. He, M. Lambert, B. Livingston et al., “The YouTube
video recommendation system,” in Proc. ACM RecSys, 2010.

[11] Z. Tufekci, “Youtube, the great radicalizer,” The New York Times,
2018. [Online]. Available: https://www.nytimes.com/2018/03/
10/opinion/sunday/youtube-politics-radical.html

[12] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless content delivery through dis-
tributed caching helpers,” IEEE Transactions on Information Theory,
vol. 59, no. 12, pp. 8402–8413, 2013.

[13] Maz Systems. (2020) OTT business models. [Online]. Available:
https://www.mazsystems.com/types-of-ott-business-models/

[14] Amazon CloudFront. (2020) Pricing. [Online]. Available: https:
//aws.amazon.com/cloudfront/pricing/
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