
Almost Tightly-Secure Re-Randomizable and
Replayable CCA-secure Public Key Encryption

Antonio Faonio1 , Dennis Hofheinz2, and Luigi Russo1

1 EURECOM, Sophia Antipolis, France {faonio, russol}@eurecom.fr
2 ETH Zurich, Switzerland hofheinz@inf.ethz.ch

Abstract. Re-randomizable Replayable CCA-secure public key encryp-
tion (Rand-RCCA PKE) schemes guarantee security against chosen-
ciphertext attacks while ensuring the useful property of re-randomizable
ciphertexts. We introduce the notion of multi-user and multi-ciphertext
Rand-RCCA PKE and we give the first construction of such a PKE
scheme with an almost tight security reduction to a standard assump-
tion. Our construction is structure preserving and can be instantiated
over Type-1 pairing groups. Technically, our work borrows ideas from
the state-of-the-art Rand-RCCA PKE scheme of Faonio et al. (ASI-
ACRYPT’19) and the adaptive partitioning technique of Hofheinz (EU-
ROCRYPT’17). Additionally, we show (1) how to turn our scheme into
a publicly verifiable (pv) Rand-RCCA scheme and (2) that plugging
our pv-Rand-RCCA PKE scheme into the MixNet protocol of Faonio
et al. we can obtain the first almost tightly-secure MixNet protocol.

1 Introduction

Security against chosen-ciphertext attacks (CCA) is considered to be the stan-
dard notion of security for PKE schemes. This security definition, formulated by
Rackoff and Simon [33], is elegant and easy to understand, and it has shown, by
any means, to withstand the test of time.

Replayable and Re-Randomizable CCA security. Canetti, Krawczyk and
Nielsen [7] pointed out that CCA security is not necessary for implementing
secure channels. They showed that “replayable chosen-ciphertext” (RCCA) se-
curity suffices for secure channels, and might in fact allow for more efficient in-
stantiations. Subsequently, Groth [20] showed that RCCA PKE schemes (called
Rand-RCCA secure) can have re-randomizable ciphertexts. Specifically, Groth
constructed a scheme with a ciphertext re-randomization procedure that, given
a ciphertext as input, produces a fresh and unlinkable ciphertext that decrypts
to the same message. Such a re-randomization procedure opens the door for
applications that require secure communication and anonymity. For instance,
Rand-RCCA secure PKE schemes enable anonymous and secure message trans-
missions (see Prabhakaran and Rosulek [32]), Mix-Nets (see Faonio et al. [13]
and Pereira and Rivest [31]), Controlled Functional Encryption (see Naveed et
al. [30]), and one-round message-transmission protocols with reverse firewalls
(see Dodis, Mironov and Stephens-Davidowitz [10]).

https://orcid.org/0000-0002-7152-6478
https://orcid.org/0000-0001-9869-786X

Tight Security. Yet another criticism of the original definition of CCA security
is that while the definition postulates that the message underlying one single
ciphertext remains protected even under CCA attacks, in the real world, a PKE
scheme is used to protect a large number of ciphertexts from possibly many users.
Now, it is well-known that security for one single ciphertext implies, through a
hybrid argument, security for many ciphertexts and many users. However, it
is unclear how much concrete security a PKE scheme really offers when it is
used in the wild. This question, initially posed by Bellare, Boldyreva and Micali
[4] created a fruitful area of research that investigates how tight the security
of an encryption scheme translates to the trust that we have with respect to
the cryptographic assumption that it relies on. In more detail, a tight security
reduction ensures that for any attack on the PKE scheme, there exists an attack
on the assumption that is similar both in terms of complexity (i.e. the running
time, the space required, etc.) and success probability. Thus, in the setting of
tight security reductions, the number of ciphertexts considered by the security
definition matters.

By now, many CCA-PKE schemes have been proven to have tight security
in the multi-ciphertext and multi-user setting: some notable examples are the
works of [17,18,21,22,25,26]. However, tight security in the context of Rand-
RCCA security has not been studied.

1.1 Our Contributions

We initiate the study of tight security for Rand-RCCA secure PKE schemes in
the multi-ciphertext and multi-user setting. Our main contributions are a new
security definition for RCCA security in multi-ciphertext and multi-user setting
(hereafter, mRCCA security), and a Rand-mRCCA PKE scheme whose mRCCA
security (almost3) tightly reduces to the Dd-MDDH assumption in symmetric
(a.k.a. type-1) pairing groups.

Moreover, as an application, we revise the protocol for universally composable
MixNet based on Rand-RCCA PKE from [13]. In the following paragraphs, we
elaborate more about each of the contributions.

Multi-user Multi-ciphertext RCCA security. In the security experiment
of the (single-ciphertext) RCCA security notion, the decryption oracle, called
“guarded decryption oracle”, can be queried on any ciphertext, including the
challenge ciphertext. However, when decryption leads to one of the challenge
messages (M0, M1), the oracle answers with a special symbol ⋄ (meaning “same”).
As a warm-up, consider a trivial extension to the case of (single-user) multi-
ciphertext RCCA security where the attacker is given:

– an encryption oracle that, on input a pair of messages M0, M1, returns some
valid encryption of Mb where b is the challenge bit,

3 As most of the tightly-secure schemes, the security reduction suffers from a small
multiplicative loss that is however independent of the number of uses of the scheme.

2

– and a guarded decryption oracle that, on input a ciphertext C, returns a
message M, or the special indexed symbol ⋄j if C corresponds to an encryption
of a message that was given as input to the encryption oracle as j-th query.

We notice that this trivial extension of RCCA security to multiple ciphertexts
is impossible to achieve. Namely, consider the following generic attacker A that
makes three queries to the encryption oracle: (i) A sends (M1, M2), and receives
back CA; (ii) sends (M2, M3), and receives back CB ; (iii) sends (M3, M1), and receives
back CC . A now queries the decryption oracle with CC . If the bit b is 0, the
decryption oracle returns ⋄2; if b is 1, the decryption oracle returns ⋄1.

Yet another natural extension of the single-ciphertext RCCA security notion
to the multi-ciphertext setting is to consider a guarded decryption oracle that
upon input a ciphertext C either returns a message or the special symbol ⋄, but
without notifying the adversary of which index j triggered the special symbol.
Even if this definition avoids the attack described above, it is not as convenient as
we would like it to be. Roughly speaking, the guarded decryption oracle reveals
to the adversary that the queried ciphertext is a replay attack, but it doesn’t
tell which ciphertext was replayed; therefore, the larger the number of challenge
ciphertexts, the less informative the output of the guarded decryption oracle will
be. In particular, this definition is not sufficient for our MixNet application.

“In medio stat virtus”, as the saying goes: the definition we propose is weaker
than the first attempted (yet impossible to achieve) definition, but stronger
than the above-mentioned definition. To build some intuition, in an equivalent
version of the single-ciphertext RCCA security definition, the guarded decryption
oracle would output the minimal set of messages that the queried ciphertext
could decrypt to and such that such set does not trivially break the RCCA
security definition: namely, if the ciphertext is a replay attack then the oracle
replies with the set of challenge messages {M0, M1}, otherwise with a message
M′ ̸∈ {M0, M1}. We take a similar approach in our (multi-user) multi-ciphertext
RCCA definition. The guarded decryption oracle outputs the minimal set of
messages that the ciphertext could decrypt to without trivially breaking security.
This set of messages includes all the pairs of challenge messages for which at least
one of them is equal to the decryption of the queried ciphertext. To support the
claim that our definition is indeed the most natural extension of RCCA to the
multi-ciphertext setting, we prove that the simulation-based notion for RCCA
security from [7] is tightly implied by our mRCCA security notion.

A Tightly-Secure Rand-mRCCA PKE scheme. Our starting points are
the recent work of Faonio et al. [13] (hereafter FFHR19), which is the state of art
for Rand-RCCA PKE scheme, and the tightly-secure CCA PKE schemes based
on the adaptive partitioning techniques of Hofheinz [22] and Gay et al. [19].

Very briefly, the main idea of our construction is to encrypt the message sim-
ilarly to FFHR19, and append a non-interactive proof of consistency for (part of)
the ciphertext; the latter proof needs to have a (weak) form of simulation sound-
ness property that can be obtained information-theoretically. Namely, using the
notation of [22], we append to the ciphertext a benign proof for the consistency
of part of the ciphertext (which lies in a linear language) of a proof system that

3

is statistically sound even when the adversary has oracle access to simulated
proofs for a larger language that includes the disjunction of two linear spaces.

Some technical details. To go from the rough idea described above to the
actual scheme, we need to overcome two technical problems. The first problem
is that our benign proof system needs to be re-randomizable (or, to better say,
“malleable” as it needs to be able to re-randomize proofs of re-randomized state-
ments), as we are aiming to construct a Rand-PKE scheme. We notice that none
of the benign proof systems or affine notions we are aware of (such as [2,18,19,22])
are re-randomizable. To solve this problem, we introduce a new malleable proof
system based on the work of Abdalla, Benhamouda and Pointcheval [1].

The second (and more challenging) technical problem is that we need to
reconcile the adaptive partitioning technique with the Rand-RCCA technique
of [13]. In particular, at the core of the adaptive partitioning technique there
is a complex argument that shows that the decryption oracle can safely reject
ill-formed ciphertexts even when the adversary can observe (many) ill-formed
challenge ciphertexts. In some sense, these challenge ciphertexts are the only ill-
formed ciphertexts that correctly decrypt, while all other ill-formed ciphertexts
produced by the adversary do not. However, in our security proof the adversary
can easily produce ill-formed ciphertexts that correctly decrypt, simply by re-
randomizing challenge ciphertexts.

In more detail, the adaptive partitioning technique moves the challenge ci-
phertexts back and forth between two different linear spaces (different from
the linear space of honestly-generated ciphertexts). In our proof, differently
than in previous works, we need to carefully define the relationship between
these different linear spaces. In particular, it is necessary to make sure that
re-randomizations of the challenge ciphertexts still lie in the prescribed linear
space (and thus can be identified by our technique when answering ⋄). More
technically, a ciphertext for our scheme can be parsed as a vector [x] in the
source group (the CPA part of the ciphertext) plus two zero-knowledge proofs
of consistency. The vector [x] for a well-formed ciphertext lies in the affine space
defined by the encrypted message and the span of a matrix [D∗] which is part
of the public key. Re-randomization works by summing up a random vector
from the span of D∗ to x (and updating the proofs accordingly). To apply the
adaptive partitioning techniques, we move the challenge ciphertexts back and
forth from two well-crafted distinct superspaces of D∗. Thanks to this choice,
we can recognize the challenge ciphertexts after re-randomization by multiplying
the decrypted ciphertext by a matrix orthogonal to D∗: this operation could be
roughly interpreted as an “extended decryption” of the ciphertexts (since D∗ en-
codes partial information of the secret key), however, we are not only interested
to identify the encrypted message but also to uniquely link the decrypted (pos-
sibly re-randomized) ciphertext with one of the challenge ciphertexts. Thus, like
previous adaptive partitioning approaches, we separate the randomness space of
the PKE scheme into an honest part (the span of D∗) and a normally unused
part (spanned by the vectors in the mentioned super spaces, independent of D∗)
that is also used to hide the messages. In our view, the main technical insight is

4

that the span of D∗ is used for re-randomization, while the other space is kept
fixed for the challenge ciphertexts. We highlight that in order for the aforemen-
tioned strategy to work smoothly, we preferred to follow a flavor of adaptive
partitioning as in Gay et al. [19], where secret keys are randomized, instead of
the original strategy of Hofheinz [22], where ciphertexts are randomized. Finally,
the original adaptive partitioning strategy relies on the pairwise universality of
a hash proof system [9] that guarantees simpler statements about linear lan-
guages. We adapt this proof system to re-randomizable statements by consider-
ing higher-dimensional languages and refining the “core lemma for Rand-RCCA”
from [13]. We highlight that this lemma was designed for the single-ciphertext
scenario, thus, some extra care is needed in our adaptive partitioning argument,
more in detail, when defining the notion of critical query. In particular, a critical
query is commonly defined as a decryption query for an ill-formed ciphertext
that would decrypt without errors under one of the randomized secret keys;
the usual goal is to show that an adversary cannot make such a query. In our
case, we need to refine this notion by additionally specifying when (allegedly)
re-randomizations of challenge ciphertexts are critical. Since each one of the chal-
lenge ciphertexts is an ill-formed ciphertext that decrypts correctly under one
of the randomized keys, we cannot consider critical a re-randomization of such
a challenge ciphertext when it decrypts correctly under the same randomized
key. Thus, after having recognized a decryption query as a re-randomization, we
make sure that this ciphertext is decrypted only using a specific (a univocally
linked) secret key; on the other hand, other kinds of decryption queries can be
safely decrypted with any of the secret keys. This rule allows eventually to use
the lemma of [13] which provides security even given an interface for decryption
of re-randomizations of one challenge ciphertext under one specific secret key.

Extensions and applications. Following the strategy of [13] we show that our
Rand-mRCCA PKE can be used to instantiate a PKE with the nice property
of publicly verifiable ciphertexts (pv-Rand-mRCCA PKE). We propose two pv-
Rand-mRCCA PKE schemes: one based on the Matrix Diffie-Hellman Assump-
tion (MDDH), and a second more efficient scheme based on a new MDDH-like
assumption (see Section 1.2 for the details) which we prove secure in the generic
group model.

As an application of our framework, we show that we can plug a pv-Rand-
mRCCA scheme into the MixNet protocol of [13]. Instantiating such proto-
col with our schemes, we obtain an (almost) “tightly-secure” MixNet protocol:
namely a protocol, the first of its kind, whose security guarantees depend lin-
early on the number of mixer parties but only logarithmically on the number of
mixed messages. To compare with the state of the art for MixNet protocols, we
notice that the Bayer and Groth [3] proof of shuffle is based on the Fiat-Shamir
transform applied to a multi-round Sigma protocol, thus the security reduction
degrades with the number of rounds of the underlying Sigma protocol, while the
proof of shuffle in the pairing setting of Fauzi et al. [16] relies on new kinds of
Dn-KerMDH assumptions (proved to hold generically in the same paper) where
n is the number of shuffled ciphertexts.

5

1.2 Related Work

Prabhakaran and Rosulek [32] introduced the first Rand-RCCA PKE in the
standard model. Abstracting the scheme of [32], and solving a long-standing open
problem, recently Wang et al. [35] introduced the first receiver-anonymous Rand-
RCCA PKE. Faonio and Fiore [12] introduced a practical Rand-RCCA PKE in
the random oracle model. Considering the state of the art on pairing-based Rand-
RCCA PKE schemes, the most relevant works are the Rand-RCCA PKE scheme
of Chase et al. [8], the recent works of Libert, Peters and Qian [27], and of Faonio
et al. [13]. In Table 1 we offer a comparison, in terms of security properties and
functionalities, of our schemes of Section 5, i.e. PKE1,PKE2 and PKE3, and
the previous schemes. From a technical point of view, our schemes inherit from
the scheme of [13], however, we notice that our schemes are instantiated on
type-1 pairing group, while FFHR19 is instantiated on type-3 pairing group (see
the next section and [14] for more details). On the other hand, our schemes
are the only ones that have (almost) tight-security reductions. In Table 2 we
compare the most efficient Rand-RCCA PKE schemes with ours. In particular,
we instantiate PKE1 and PKE2 under DLIN assumption for type-1 pairing group
(d = 2 and, because of the security of the benign proof system, n = 6) while we
instantiate PKE3 under U9,4-TMDDH assumption. We compare the number of
operations required by the three algorithms (Enc, Rand and Dec) and the size of
the ciphertext. In particular, we have considered the cost of exponentiations in
the source and target groups, and the number of pairings. We give only a rough
estimation of the costs of PKE2 and PKE3 to provide some intuition on the
considerable efficiency gap between them: their cost is derived in terms of group
elements and operations needed to instantiate the proof systems for PKE2 (resp.
PKE3) under D6,2-MDDH (resp. U9,4-TMDDH) assumption from [11] and [13].

We note that PKE2 and PKE3 are far from being considered practical, while
PKE1 is considerably less efficient than [13]. Indeed, our main goal is to prove
feasibility. We view our work as a potential first towards a tightly secure practical
solution. For instance, while the first tightly IND-CCA secure PKE schemes were
highly impractical, state-of-the-art schemes (see [17,18]) have a realistic break-
even point4. We hope for a similar development with Rand-RCCA PKE schemes.

Our benign proof system uses the “OR-Proof” technique from [1]. We notice
that, in the context of tightly-secure reductions, the same technique from [1] has
been used in [21] to instantiate their (Leakage-Resilient) Ardent Quasi-Adaptive
Hash Proof System. We stress that in our work, in contrast with [21], the main
reason to use the technique from [1] is because of its nice linear property that,
in turn, allows for malleable proof system.

1.3 Open Problems

Our Rand-RCCA PKE schemes require type-1 pairing groups, which are less
efficient than type-3. It is natural to ask whether we can instantiate our PKE

4 For the same security parameter, the work of [17,18] outperforms state-of-the-art
non-tightly secure schemes like Kurosawa-Desmedt [24] around 230 ciphertexts.

6

PKE Group Assumption Struc. Pub. Tight

Setting Pres. Ver.

[8] CKLM12, [27] LPQ17 Type-3 SXDH ✓ ✓

[13] FFHR19 Type-3 Dd+1,d-MDDH ✓∗ ✓
PKE1 Type-1 Dn,d-MDDH ✓∗ ✓
PKE2 Type-1 Dn,d-MDDH ✓∗ ✓ ✓
PKE3 Type-1 Un,d-TMDDH ✓∗ ✓ ✓

Table 1. Comparison of the properties of a selection of Rand-RCCA-secure PKE
schemes. The symbol ∗ indicates that the structure-preserving property of the schemes
is not strict since ciphertexts contain some elements in GT .

PKE |C| Enc ≈ Rand Dec

[13] FFHR19 (1) 3G1+2G2+GT 4E1+5E2+2ET +5P 8E1+4E2+4P

PKE1 7G1+2GT 14E1+2ET +14P 48E1+36ET +49P

[27] LPQ17 42G1+20G2 79E1+64E2 1E1+142P

[13] FFHR19 (2) 14G1+15G2+4GT 36E1+45E2+6ET +5P 2E1+50P

PKE2 380G1+330GT ≈ 180E1+110ET +38P ≈ 6E1+400P

PKE3 105G1+9GT ≈ 261E1+9ET +16P ≈ 6E1 + 11P

Table 2. Efficiency comparison among the best Rand-RCCA-secure PKE schemes.
We denote as Ei the cost of 1 exponentiation in Gi, P the cost of computing a bilin-
ear pairing. In the third column, we consider the cost of Enc which is almost always
comparable with the cost of Rand. The first two schemes are privately verifiable, while
the last four are publicly verifiable. We consider the most efficient instantiations for
PKE1,PKE2 (DLIN), for PKE3 (U9,4-TMDDH) and for [13] (SXDH).

schemes from type-3 pairings. Unfortunately, we do not know how to do so,
because it is not clear how to reconcile the adaptive partitioning technique [22]
with a Rand-RCCA construction in settings with type-3 pairings (such as the
one from [13]). We elaborate more on the challenges to overcome for obtaining a
type-3 instantiation in [14] and leave the construction of a tightly-secure type-3
Rand-RCCA PKE scheme as an interesting open problem.

Our approach is semi-generic, as we work with pairing-based cryptography.
We leave as open problem to provide a generic framework to instantiate (al-
most) tightly-secure Rand-RCCA-secure PKE. Possible starting points are the
HPS-based frameworks of [35] for Rand-RCCA schemes and [21] for tightly-
secure (LR-)CCA-secure schemes. Recently, Faonio and Russo [15] improved
over the mix-net protocol of [13], giving a more efficient instantiation based on
non publicly-verifiable Rand-RCCA PKE schemes; however, their construction
requires a leakage-resilient scheme. We leave as open problem the extension of
our analysis to tightly-secure LR-RCCA PKE schemes to extend their approach.

2 Preliminaries

A function is negligible in λ if it vanishes faster than the inverse of any polynomial
in λ. We write f(λ) ∈ negl(λ) when f is negligible in λ. For any bit string τ ∈
{0, 1}∗, we denote by τ [i] the i-th bit of τ and by τ|i the bit string comprising the

7

first i bits of τ . A symmetric (type-1) bilinear group G is a tuple (q,G1,GT , e,P1),
where G1 and GT are groups of prime order q, the element P1 is a generator
of G1, e : G1 × G1 → GT is an efficiently computable, non-degenerate bilinear
map. Let GGen be a PPT algorithm which on input 1λ, where λ is the security
parameter, returns a description of a symmetric bilinear group G. Elements in
Gi, are denoted in implicit notation as [a]i := aPi, where i ∈ {1, T} and PT :=
e(P1,P1). Every element in Gi can be written as [a]i for some a ∈ Zq, but
note that given [a]i, a ∈ Zq is in general hard to compute (discrete logarithm
problem). Given a, b ∈ Zq we distinguish between [ab]i, namely the group element
whose discrete logarithm base Pi is ab, and [a]i · b, namely the execution of the
multiplication of [a]i and b, and [a]1 · [b]1 = [a · b]T , namely the execution of a
pairing between [a]1 and [b]1. Sometimes, to simplify the notation, we will write
[a] instead of [a]1 for elements in the source group. Vectors and matrices are
denoted in boldface. We extend the pairing operation to vectors and matrices
as e([A]1, [B]1) = [A⊤ · B]T and e([y]1, [A]1) = [y · A]T . Let span(A) denote
the linear span of the columns of A. Dn,d is a matrix distribution if outputs (in
probabilistic polynomial time, with overwhelming probability) matrices in Zn×d

q .

Definition 1 (Matrix Decisional Diffie-Hellman Assumption, [11]).
The Dn,d-MDDH assumption holds if for all non-uniform PPT adversaries A,

|Pr [A(G, [A]1, [Aw]1) = 1]− Pr [A(G, [A]1, [z]1) = 1]| ∈ negl(λ),

where the probability is taken over G = (q,G1,GT , e,P1) ← GGen(1λ), A ←
Dn,d,w← Zd

q , [z]1 ← Gn
1 and the coin tosses of adversary A.

For Q ∈ N, W ←$ Zd×Q
q and U ←$ Zn×Q

q , the Q-fold Dn,d-MDDH assump-
tion states that distinguishing tuples of the form ([A]1, [AW]1) from ([A]1, [U]1)
is hard. That is, a challenge for the Q-fold Dn,d-MDDH assumption consists of
Q independent challenges of the Dn,d-MDDH Assumption (with the same A but
different randomnessw). In [11] it is shown that the two problems are equivalent,
where the reduction loses at most a factor n− d.

Tensor Product. Let a ∈ Zn
q and b ∈ Zn′

q , we define a ⊗ b ∈ Znn′

q to be the
tensor product between the two vectors. We can show the following property:

(A ·R)⊗ (B · S) = (A⊗B) · (R⊗ S) (1)

Lemma for Rand-RCCA security. The main technical tool employed by [13],
to which they refer as their “core lemma”, roughly speaking says that, for any u ∈
Zd+1
q , the projective hash function with hash key f ,F that maps v to (f+Fv)⊤u

is pair-wise independent with respect to the quotient set Zd+2
q /span(E) when

given as side information the matrix FE where E ∈ Zd+2×d
q . We generalize their

result to u ∈ Zn
q and E ∈ Zn′×d

q for any n > d and n′ > d + 1. The proof of
the lemma follows by reduction to the original lemma from [13] and it can be
found in [14]. For the sake of clarity, in this paper we prefer to call this lemma
the “Rand-RCCA lemma”, rather than “core lemma” (for Rand-RCCA) as in
[13], because the core technical parts of our work and theirs are different.

8

Lemma 1 (Rand-RCCA Lemma). Let d be a positive integer. For any ma-
trix D ∈ Zn×d

q , E ∈ Zn′×d
q where n > d and n′ > d + 1, and any (possibly

unbounded) adversary A:

Pr

 u ̸∈ span(D)

(v − v∗) ̸∈ span(E)

z = (f + Fv)⊤u

:
f ←$ Zn

q ,F←$ Zn×n′

q ,

(z,u,v)←$AO·(D,E, f⊤D,F⊤D,FE)

 ≤ n · n′

q
.

where the adversary outputs a single query v∗ to O that returns f + F · v∗.

3 Non-Interactive Proof Systems (NIPS)

Definition 2 (Proof system). Let L = {Lpars} be a family of languages
with Lpars ⊆ Xpars , and with efficiently computable witness relation R. A non-
interactive proof system (NIPS) PS = (PGen,PPrv,PVer,PSim) for L consists
of the following PPT algorithms:

– PGen(1λ, pars) outputs a proving key ppk, a verification key psk.
– PPrv(ppk , x, w), x ∈ L and R(x,w) = 1, outputs a proof π.
– PVer(psk , x, π), x ∈ X and a proof π, outputs a verdict b ∈ {0, 1}.
– PSim(psk , x), x ∈ L, outputs a proof π.

Completeness: For all pars, all (ppk , psk) in the range of PGen(1λ, pars), all
x∈L, and all w with R(pars, x, w)=1, we have PVer(psk , x,PPrv(ppk , x, w))=1.

When ppk ̸= psk we say that the proof system is designated verifier. In the
definition above we let the verification and proving key depend on the parameters
of the relation, namely, the proof systems are quasi-adaptive as defined by Jutla
and Roy [23]. All the NIPSs of this paper are structure-preserving : i.e., all the
public interfaces are vectors in the source groups, all the private material is in
Zq and all the algorithms can be described with pairing-product equations; also,
as in [13] the proof π could lie in the target group.

Benign Proof Systems. All relevant security properties of a benign NIDVPS
are condensed in the following definitions, taken verbatim from [22].

Definition 3 (Benign proof system). Let PS be an NIDVPS for L as in
Definition 2, and let Lsim = {Lsim

pars}, Lver = {Lver
pars}, and Lsnd = {Lsnd

pars} be

families of languages. We say that PS is (Lsim,Lver,Lsnd)-benign if the following
properties hold:

(Perfect) zero-knowledge. For all pars, all (ppk , psk) that lie in the range of
PGen(1λ, pars), and all x ∈ L and w with R(pars, x, w) = 1, we have that
the distribution PPrv(ppk , x, w) is equivalent to PSim(psk , x).

(Statistical) (Lsim,Lver,Lsnd)-soundness. Let Expsnd
A,PS be the game played

by A in Fig. 1. Let Advsnd
PS,A(λ) be the probability that Expsnd

A,PS(λ) = 1.
We require that for all (possibly unbounded) A that only make a polynomial
number of oracle queries, Advsnd

PS,A(λ) is negligible.

9

Non-Interactive Zero-Knowledge Proof Systems. We adapt Definition 2
for the case of publicly verifiable proof systems by requiring the prover key
and the verification key to be identical, and we refer to such key as the common
reference string. (Nontrivial) proof systems with this syntax are commonly called
zero-knowledge proof systems (NIZKs).

Notice that in the syntax of proof system we give in Definition 3 both the
simulator PSim and the verifier PVer receive as input the verification key, while
in the usual definition of NIZK the simulator receives a simulation trapdoor.
This difference is only syntactical. We say that a NIZK PS for L is adaptively
sound if it is statistically (∅,L, ∅)-sound according to Definition 3.

Definition 4. Let PS be a NIPS for L as in Def. 2, we say that PS is (ϵ, T)-
composable zero-knowledge if there exists a PPT algorithm PGen such that:

– For all pars, the distributions induced by the first output of PGen(1λ, pars)
and PGen(1λ, pars) are ϵ-close for any adversary with running time T .

– For all pars, all (ppk , psk) that lie in the range of PGen(1λ, pars), and all x ∈
L and w with R(pars, x, w) = 1, we have that the distribution PPrv(ppk , x, w)
is equivalent to PSim(psk , x).

Malleable NIPS. We use the definitional framework of Chase et al. [8] for
malleable proof systems. For simplicity of the exposition we consider only the
unary case for transformations (see the aforementioned paper for more details).
Moreover, we adapt their definition to the quasi-adaptive setting by having a
transformation that depends on the pars. Let T = (Tel, Twit) be a pair of effi-
ciently computable functions, that we refer to as a transformation.

Definition 5 (Admissible transformation). We say that an efficient rela-
tion R is closed under a transformation T = (Tel, Twit) if for any (pars, x, w) ∈ R
the pair (pars, Tel(pars, x), Twit(w)) ∈ R. If R is closed under T then we say that
T is admissible for R. Let T be a set of transformations, if for every T ∈ T , T
is admissible for R, then T is an allowable set of transformations.

Definition 6 (Malleable NIPS). Let PS be an NIPS for L as in Defini-
tion 2, and let PEvl(ppk , x, π, T) be a PPT algorithm that takes as inputs ppk,
an instance x, a proof π, and a transformation T ∈ T , and it outputs a proof
π′. We say that PS and PEvl form a malleable proof system for L with set T of
allowable transformations for R, if, for all pars, (ppk , psk) that lie in the range
of PGen(1λ, pars), all T ∈ T , and all x, π we have PVer(psk , Tel(pars, x), π

′) = 1
if and only if PVer(psk , x, π) = 1.

Definition 7 (Derivation Privacy). Let PS be a malleable NIPS for L with
relation R and an allowable set of transformations T and corresponding PEvl.
We say that PS is derivation private if for any PPT adversary A:

Advder-priv
A,PS (λ) :=

∣∣∣Pr [Expder-priv
A,PS (λ) = 1

]
− 1

2

∣∣∣ ∈ negl(λ)

10

Experiment Expsnd
A,PS

pars ← A(1λ); b← 0

(ppk , psk)←$ PGen(1λ, pars)

AOsim(·),Over(·,·)(ppk)

return b

Oracle Over(x, π)

if x ∈ Lver
pars : return PVer(psk , x, π)

if x ∈ Xpars \Lsnd
pars ∧ PVer(psk , x, π)

?
= 1 :

b← 1

return ⊥

Oracle Osim(x)

if x ∈ Lsim
pars : return PSim(psk , x) else ⊥

Experiment Expder-priv
A,PS

(ppk , psk)←$ PGen(1λ, pars)

b∗ ←$ {0, 1}
(x,w, π, T)← A(ppk , psk)

if V(ppk , x, π)
?
= 0 ∨R(x,w)

?
= 0 :

b←$ {0, 1}
return b

if b∗
?
= 0 :

π′ ← PPrv(ppk , Tel(pars, x), Twit(w))

else π′ ← PEvl(ppk , x, π, T)

b← A(π′)

return b
?
= b∗

Fig. 1: Security experiments for benign soundness and derivation privacy of NIPS.

where Expder-priv is the game described in Fig. 1. Moreover we say that PS
is perfectly (resp. statistically) derivation private when for any (possibly un-
bounded) adversary the advantage above is 0 (resp. negligible).

Similarly to [13], we require a technical property to show re-randomizability of
our encryption scheme that we call tightness for proofs, which roughly speaking
says that it is hard to find a proof for a valid instance that does not lie in the
set of the proofs created by the prover. For space reasons, we give more details
in [14].

3.1 Our Malleable NIDVPS based on type-1 pairing

Let D ∈ Zn×d
q . We show that the following PS is a NIPS for L = span([D]1):

– PGen(pars) parses pars as prmG, [D]1 ∈ Gn×d
1 where n, d ∈ N, samples k←$

Zn2

q , let In be the identity matrix of dimension n, set:

psk ← k and ppk ← (k⊤[D⊗ In]1,k
⊤[In ⊗D]1,k

⊤[D⊗D]T)

– PPrv(ppk , [u]1, r) computes π ← k⊤[D⊗D]T · (r⊗ r) for [u]1 = [D]1r
– PSim(psk , [u]1) computes π ← k⊤([u]1 ⊗ [u]1)

– PVer(psk , [u]1, π) returns 1 if and only if k⊤([u]1 ⊗ [u]1)
?
= π

The first two vectors in the ppk are necessary to enable for the malleability of the
proof system. While the third element of the public key could be efficiently de-
rived from the previous two, we decide to publish it to speed up re-randomization
and proving time. Consider the set T of admissible transformations for Zn

q :

T = {T : Tel(pars, [u]1) = [u]1 + [D]1r̂; Twit(r) = r+ r̂} (2)

11

We note that any transformation T in the set above is uniquely determined by
the vector r̂, thus, whenever it is clear from the context, we will simply use r̂ to
identify the transformation. Let PEvl(ppk , r̂, [u]1, π) the algorithm that computes

π̂ ← π + k⊤[In ⊗D]1 · [u⊗ r̂]1 + k⊤[D⊗ In]1 · [̂r⊗ u]1 + k⊤[D⊗D]T · r̂⊗ r̂.

We show that PS and PEvl form a malleable proof system for the set of trans-
formation T and the language L.

Theorem 1. Let L = span([D]1) and let Lsnd = Lsim = {[u]1 : [u]1 = [D0]1r ∨
[u]1 = [D1]1r}, and Lver = Zn

q , where Di = D∥D̄i for i ∈ {0, 1}, D ∈ Zn×d
q and

D̄0, D̄1 ∈ Zn×d′

q . PS is a (Lsim,Lver,Lsnd)-benign proof system for L as long as

n2 > 2n · d+ 2d′
2
, moreover, PS and PEvl form a malleable proof system for L

and the set of transformation T defined in Eq. (2).

Proof. In what follows, we prove each of the properties.

Completeness and Malleability. Our benign proof system is complete, as by
Eq. (1) for any u = Dr we have (u⊗ u) = (D⊗D) · (r⊗ r). We prove that our
scheme is malleable (Definition 6) with respect to set of transformation T defined
in Eq. (2), i.e., we prove that for any [u] and any r̂, a proof π for [u] verifies if
and only if the proof π̂ obtained executing PEvl on π and the transformation r̂
verifies for [u+Dr̂]. For the first direction of the implication:

π̂ = π + k⊤ (In ⊗D) · (u⊗ r̂) + k⊤ (D⊗ In) · (r̂⊗ u) + k⊤ (D⊗D) · (r̂⊗ r̂)

= k⊤ (u⊗ u) + k⊤ ((Inu)⊗ (Dr̂)) + k⊤ ((Dr̂)⊗ (Inu)) + k⊤ ((Dr̂)⊗ (Dr̂))

= k⊤(u⊗ u+ u⊗ (Dr̂) + (Dr̂)⊗ u+ (Dr̂)⊗ (Dr̂))

= k⊤ ((u+Dr̂)⊗ (u+Dr̂))

We highlight that the second equation holds because of the definition of π and
(1), while the third equation is obtained by grouping the previous line by k⊤.
The sequence of equations above also proves the other direction; indeed, if π ̸=
k⊤u⊗ u, then π̂ ̸= k⊤(u+Dr̂)⊗ (u+Dr̂).

Soundness. We recall that D ∈ Zn×d
q , D̄i ∈ Zn×d′

q . If we only consider the view
of the adversary given the verification key and the outputs of the simulation ora-
cle we have that the proving key is uniformly distributed over a set of cardinality
qn

2−2nd−2d′2
. Therefore, we require that n2 > 2n · d+ 2d′

2
holds.

To see this, think of k as a formal variable and notice that publishing
k⊤ (D⊗ In) counts for n · d equations; also, k⊤ (In ⊗D) counts for n · d equa-
tions which in total gives us 2n · d equations. Moreover, in order to simulate
proofs for [u]1 ∈ span([Di]) the oracle gives away, at the worst case, the equa-

tions k⊤ (
D̄i ⊗ D̄i

)
which count for d′

2
equations for each i ∈ {0,1} which

sum up to 2d′
2
equations in total. Indeed, expanding k⊤ (Di ⊗Di), we ob-

tain k⊤ (
D⊗D|D̄i ⊗D|D⊗ D̄i|D̄i ⊗ D̄i

)
. Now k⊤ (

D̄i ⊗D
)
and k⊤ (

D⊗ D̄i

)
can be computed given the proving key and D0,D1. In fact, when we compute

12

k⊤ (D⊗ I)
(
I⊗ D̄i

)
, we obtain k⊤ (

DI⊗ ID̄i

)
= k⊤ (

D⊗ D̄i

)
. And in a simi-

lar way, we can compute k⊤ (
D̄i ⊗D

)
. In total, we are giving up 2n · d + 2d′

2

equations and the length of our key k is n2.
Notice that the adversary can gather additional information about the prov-

ing key k through the verification oracle. Indeed, whenever it sends a query
([u]1, π) with [u]1 ∈ Lver \Lsnd either it wins the security game or the adversary
learns that π ̸= k⊤[u]1 ⊗ [u]1.

Consider the hybrid experiment Hj where the first j-th queries ([u]1, π) to
the verification oracle with [u]1 ̸∈ Lsnd are answered with 0, in particular, the bit
b is left unmodified, while the remaining queries are handled as in the soundness
experiment. Clearly, H0 is the original experiment, while HQ where Q is an
upper bound on the number of verification oracle queries made by the adversary
is a trivial experiment where the adversary cannot win (since the bit b will
never be set to 1), thus Pr [HQ = 1] = 0. The distinguishing event between
two consecutive hybrids is the event that the adversary wins the soundness
experiment at the j-th query, which happens with probability 1/qn

2−2nd+2d′2 ≤
1/q, as it is the same as the event of guessing a uniformly random vector from a

subspace of dimension n2−2nd+2d′2 of Zn2

q , thus Pr [Hj = 1] ≤ Pr [Hj+1 = 1]+
1/q. Finally, by the triangular equation and noticing that Q is polynomial in the
security parameter we can conclude our proof of soundness.

Derivation Privacy and Zero-Knowledge. The scheme is perfectly deriva-
tion private and zero-knowledge. For the former, notice that, for any r̂, we have
that PPrv(ppk , [u+Dr̂]1, r+r̂) = k⊤[D⊗D]T ·((r+r̂)⊗(r+r̂)) = PEvl(ppk , π, r̂).
For the latter, given an instance [u]1 such that [u]1 = [D]1r, we have that
PSim(psk , [u]1) = k⊤([u]1 ⊗ [u]1) = k⊤([Dr]1 ⊗ [Dr]1) = PPrv(ppk , [u]1, r).

4 Rand RCCA PKE for multi-users and multi-ciphertexts

A re-randomizable PKE (Rand-PKE) scheme PKE is a tuple of five algorithms:
(i) The algorithm Setup upon input the security parameter 1λ produces pub-
lic parameters prm which include the description of the message and ciphertext
spaceM, C; (ii) The algorithm KGen upon input prm, outputs a key pair (pk, sk);
(iii) The algorithm Enc upon inputs pk and a message M ∈M, outputs a cipher-
text C ∈ C; (iv) The algorithm Dec upon input sk and a ciphertext C, outputs a
message M ∈ M or an error symbol ⊥; (v) The algorithm Rand upon inputs pk
and a ciphertext C, outputs another ciphertext C′.

Definition 8 (multi-user and multi-ciphertext Replayable CCA Secu-
rity). Consider the experiment ExpmRCCA in Fig. 2, with parameters λ, an ad-
versary A, and a PKE scheme PKE. We say that PKE is indistinguishable
secure under replayable chosen-ciphertext attacks in the multi-user and multi-
ciphertext setting (mRCCA-secure) if for any PPT adversary A:

AdvmRCCA
A,PKE(λ) :=

∣∣∣∣Pr [ExpmRCCA
A,PKE(λ) = 1

]
− 1

2

∣∣∣∣ ∈ negl(λ).

13

Experiment ExpmRCCA
A,PKE(λ)

prm← Setup(1λ); b∗ ←$ {0, 1}

b′ ← AOkgen(),Oenc(·,·,·),Odec(·)(prm)

return b′
?
= b∗

Oracle Okgen()

z ← z + 1

Qz ← DisjointSet()

(pkz, skz)← KGen(prm)

return pkz

Oracle Oenc(j, M0, M1)

if j /∈ [z] :

return ⊥
Qj .union({M0, M1})
C←$ Enc(pkj , Mb∗)

return C

Oracle Odec(j, C)

M← Dec(skj , C)

J ← Qj .find(M)

if J ≠ ⊥ :

return ⋄J
return M

Fig. 2: The multi-user and multi-ciphertext RCCA Security Experiment.

In Fig. 2, for each user j we define Qj to be a partition of the set of the challenge
messages sent to the encryption oracle for the user j. To do so we use the
classical “Disjoint-Set” (also called “Union-Find”) data structure from Tarjan
[34]. Whenever two challenge messages are submitted to the encryption oracle,
indeed, we merge the sets to which they belong so that a future call to the
guarded decryption oracle behaves consistently. This allows us to express in Fig. 2
the syntax of the encryption and the guarded decryption oracle in terms of three
operations: DisjointSet() that allows initializing the partition (initially empty),
union(S) that adds to the partition the minimal subset of the challenge messages
that contains the messages in S meanwhile maintaining invariant the partition
property (i.e. a collection of disjoint sets), and find(M) that returns the set in the
partition where M belongs to, or ⊥ if M is not in the set of challenge messages
of the user j. We confirm that our definition is indeed the right multi-user and
multi-ciphertext extension of the IND-RCCA definition of [7] by showing that our
definition tightly implies the UC-RCCA definition of the same paper5. For space
reasons, we recall the definition of the ideal functionality FRPKE which formalizes
the notion of replay security for PKE scheme in the universal composability
model in [14], where we also give the proof of the theorem below.

Theorem 2. Let PKE be a PKE scheme with message space D. There exists
a simulator S such that for any static-corruption environment Z with running
time TZ there exists an adversary B whose running time is O(TZ(λ)) such that:∣∣∣Pr [RealZ,ΠPKE (λ) = 1]− Pr

[
IdealFRPKE

Z,S (λ) = 1
]∣∣∣ ≤ 2Advmumc−RCCA

B,PKE (λ) + TZ
|D|

For space reasons, we only informally introduce the notions of perfect re-random-
izability and public verifiability, and give more details in [14]. For the notion of
perfect re-randomizability, we consider the definition given in [13] which con-
sists of three conditions: (i) the re-randomization of a valid ciphertext and a

5 In [7], the IND-RCCA notion implies the UC-RCCA notion with a loss of security
that is proportional to the running time of the environment.

14

fresh ciphertext (for the same message) are equivalently distributed; (ii) the re-
randomization procedure maintains correctness, i.e., the randomized ciphertext
and the original decrypt to the same value, and in particular, invalid ciphertexts
keep being invalid; (iii) it is hard to find a valid ciphertext that is not in the
support of the encryption scheme. A PKE scheme is publicly verifiable if the
validity of the ciphertexts can be checked only using public material.

5 Our Rand-RCCA PKE Scheme

Setup(1λ)

prmG = (q,G1,GT , e,P1)←$ GGen(1λ)

M← G1; C ← Gn+2
1 ×GT × P

prm← (prmG,M, C)
return prm

KGen(prm)

D←$ Dn,d,a←$ Zn
q

D∗ ← (D⊤, (a⊤D)⊤)⊤

f ←$ Zn
q ,F←$ Zn×n+1

q

pars ← (prmG, [D]1)

ppk , psk ← PGen(pars)

pk← ([D∗]1, [f
⊤D]T , [F

⊤D]1, [FD
∗]1, ppk)

sk← (a, f ,F, psk)

return (pk, sk)

Enc(pk, [M]1)

r←$ Zd
q

[u]1 ← [D]1 · r, π ← PPrv(ppk , [u]1, r)

[p]1 ← [a⊤D]1 · r+ [M]1

[x]1 ← ([u⊤]1, [p]1)
⊤

[y]T ←
(
[f⊤D]T + e([x]⊤1 , [F

⊤D]1)
)
· r

return C := ([x]1, [y]T , π)

Dec(sk, C)

parse C as ([x]1, [y]T , π)

parse [x⊤]1 as ([u⊤]1, [p]1)

[M]1 ← [p]1 − [a⊤u]1

[y′]T ← f⊤e([1]1, [u]1) + e(F[x]1, [u]1)

b1 ← [y′]T
?
= [y]T , b2 ← PVer(psk , [u]1, π)

if b1 ∧ b2 return [M]1else ⊥

Rand(pk, C)

parse C as ([x]1, [y]T , π),parse [x⊤]1 as ([u⊤]1, [p]1)

r̂←$ Zd
q , [x̂]1 ← [x]1 + [D∗]1 · r̂

[ŷ]T ← [y]T + [f⊤D]T · r̂+ e([x]1, [F
⊤D]1 · r̂) + e([FD∗]1 · r̂, [û]1)

π̂ ← PEvl(ppk , [u]1, π, r̂)

return Ĉ := ([x̂]1, [ŷ]T , π̂)

Fig. 3: Rand-RCCA PKE scheme PKE based on the Dn,d-MDDH assumption
in type-1 bilinear groups. P is the support of the proofs for PS.

We present our scheme in Fig. 3. With the goal of improving readability for
developers, all the operations (and in particular the pairing operations) in the fig-
ure are described explicitly using e for the pairing and · for the exponentiations.
The scheme can be summarized as a type-1 pairing group version of the scheme in
[13] where we additionally append a benign proof to prove almost tight-security.
The main technical component from [13] to obtain RCCA security is the consis-

tency check at decryption time which checks that [y]T
?
= f⊤[u]T + [x]⊤1 F

⊤[u]1

15

Perfect Re-randomizability. The proof of perfect re-randomizability follows
from [13] and the derivation privacy of PS. Here we highlight the following
lemma, whose proof is in [14].

Lemma 2. For any [x]1 and r̂, let [x̂]1 = [x]1 + [D∗]1r̂, we have that:

(f⊤ + [x̂]⊤1 F
⊤)[û]1 = (f⊤ + [x]⊤1 F

⊤)[u]1 + [f⊤D]T · r̂
+ e([x]1, [F

⊤D]1 · r̂) + e([FD∗]1 · r̂, [û]1)

The correctness of PKE follows from the lemma above and the fact that PS and
PEvl form a malleable proof system. More details are in [14].

Security. We prove that the security of the scheme reduces to the Dn,d-MDDH
assumption. Below we state the main theorem.

Theorem 3. For every PPT adversary A that makes at most QEnc encryption
and QDec decryption queries, there exist adversaries Bmddh, Bsnd with similar
running time T (Bmddh) ≈ T (Bsnd) ≈ T (A) + (QEnc + QDec) · poly(λ), where
poly(λ) is a polynomial independent of T (A), and such that

AdvRCCA
A,PKE(λ) ≤ O (d logQEnc) ·AdvMDDH

G1,Dn,d,Bmddh(λ)

+ logQEnc ·Advsnd
Bsnd,PS(λ) +O

(
n2QDecQEnc logQEnc

q

)
.

Proof. We give a proof only for the single-user, multi-ciphertext case, i.e. when
the adversary calls the key generation oracle only once. The proof can be easily
generalized6 to the multi-user case almost equivalently to [4,18].

To simplify the notation, since we are in the single-user setting, we omit the
index j (which specifies the user) from both encryption and decryption queries.
We let G0 be the ExpmRCCA

A,PKE experiment, and we denote with ϵi the advantage

of A to win Gi, i.e. ϵi := |Pr [Gi = 1]− 1
2 |.

The games keep track of the number of challenge ciphertexts produced.
Specifically, let ctr be a variable that counts the number of challenge cipher-
texts output by the encryption oracle: ctr is set to 0 at the beginning of the
games and, whenever the adversary calls the encryption oracle, it is increased.

Game G1. This game is identical to the previous one, but the encryption ora-
cle computes the values [y]T and [p] using secret keys (instead of public keys).
Specifically, upon the j-th query to the encryption oracle, the game computes
the ciphertext Cj = ([xj], [yj]T , πj) as described by the encryption procedure,

6 We rely on the self-reducibility of the MDDH assumption: in particular, we can
generate m different matrices Dj (one for each user) from one single challenge of
the (many-fold) MDDH-assumption and adapt accordingly the ciphertexts, namely,
by mapping the ciphertext for the j-th user through the same linear transformation
that maps the MDDH-challenge matrix to the matrix Dj .

16

but where we compute [yj]T ← f⊤[uj]+ [xj]
⊤F⊤[uj] and [pj]← a⊤[uj]+ [Mj,b∗].

By linearity, this game is perfectly equivalent to the previous one, thus ϵ1 = ϵ0.

Game G2. This game is identical to the previous one, but the encryption oracle
simulates the benign proofs π. We rely on the perfect zero-knowledge of the
benign proof system. The reduction is standard, therefore we omit it. Since the
proof system satisfies perfect zero-knowledge we have ϵ2 = ϵ1.

Game G3. At the very beginning, the game additionally samples matrices
D̄b ←$ Zn×d

q for b ∈ {0, 1}, and sets Db ←
(
D|D̄b

)
. The encryption oracle in this

game samples [u] from the span of [D0]. We apply a standard reduction to the
QEnc-fold Dn,d-MDDH assumption, twice, and we prove that no adversary can
distinguish this game from the previous one: we first tightly switch the vectors
in the challenge ciphertexts from the span of [D] to uniformly random vectors of
Gn

1 ; next, we use the QEnc-fold Dn,2d-MDDH assumption to switch these vectors
from random to the span of [D0]. The proof of this step is standard: in [14], we
show how we can build adversaries B, B′ such that

|ϵ3 − ϵ2| ≤ AdvQEnc−MDDH
G1,Dn,d,B(λ) +AdvQEnc−MDDH

G1,Dn,2d,B′(λ)

Game G4. In this experiment, we add an explicit check to the decryption oracle.
First recall that D∗ is defined in Fig. 3 as the matrix whose first n rows are
equal to D and last row is equal to a⊤D. Upon query C := ([x], [y]T , π) to the
decryption oracle, where [x]⊤ := ([u]⊤, [p]), the oracle additionally checks that:

u ∈ span(D) ∨ ∃j : D∗⊥xj = D∗⊥x (3)

where D∗⊥D∗ = 0, and QEnc = {Cj = ([xj], [yj]T , πj) : j ≤ [ctr]} is the set
of challenge ciphertexts. If the condition holds, the decryption oracle proceeds
by running the decryption procedure as usual, otherwise it returns ⊥ to the
adversary. We notice that the new condition can be checked efficiently since we
know D ∈ Zn×d

q and a ∈ Zn
q .

The distinguishing event between G4 and G3 is that the adversary queries
the decryption oracle with a ciphertext that would not decrypt to ⊥ (according
to the original decryption rules of G3), but where Eq. (3) holds. We call such
query to the decryption oracle a “critical query”, i.e. a decryption query where:

– [u] /∈ span([D]) and ∀j : D∗⊥xj ̸= D∗⊥x (the latter implies that [u] is not
the result of an honest rerandomization of a previous challenge ciphertext)

– π is valid, and [y]T = f⊤[u]T + [x]⊤F⊤[u], i.e., the consistency check holds.

For this step, we refer to Lemma 3.

Game G5. This game is equivalent to G4, but we modify the rules of the de-
cryption oracle once again. For any j, let Mj,0 and Mj,1 be the challenge messages
queried by A at the j-th query to the encryption oracle. Upon decryption query
C = ([x], [y]T , π), if ∃j : D∗⊥xj = D∗⊥x where recall QEnc = {([xj], [yj], πj) :
j ≤ ctr}, and both the proof π verifies and the consistency check holds, then the
decryption oracle immediately returns the symbol ⋄J where J ← Q.find(Mj,0).

17

Notice that we can rewrite the decryption procedure as M = (−a⊤, 1)[x].
We observe that the vector (−a⊤, 1) is in the span of D∗⊥, since it holds that
(−a⊤, 1)D∗ = −a⊤D + a⊤D = 0. Thus, at any decryption query, if D∗⊥xj =

D∗⊥xj for some challenge ciphertext Cj then (−a⊤, 1)[xj] = (−a⊤, 1)[x], and
therefore the decryption oracle would compute the message Mj,b∗ and output
the symbol ⋄J , where J = Q.find(Mj,b∗). Moreover, notice that Q.find(Mj,b∗) =
Q.find(Mj,0) by definition of the security experiment. This shows that ϵ5 = ϵ4.

Game G6. In this last step, we encrypt random messages. Formally, at the j-th
encryption query the oracle (on input messages Mj,0, Mj,1) encrypts the message
Mj,b∗ +Rj , where Rj is random. Clearly, it holds that ϵ6 = 0 as in fact, because of
the change introduced in G6, the ciphertexts are independent of the challenge
bit b∗, and, by the changes introduced in G4 and G5, the decryption queries are
independent of the challenge bit. We prove thatG5 andG6 are indistinguishable,
as this step is almost the same as in [18], we defer its proof to [14].

Lemma 3. For any PPT adversary A, we build PPT adversaries B, B′ with
running times similar to A such that:

|ϵ3 − ϵ4| ≤ O(d logQEnc)AdvMDDH
G1,Dn,d,B(λ) + logQEncAdvsnd

B′ (λ)

+O
(

n2QDecQEnc logQEnc

q

)
Proof. We denote the probability that the adversary A wins game Hx by ϵHx

.
In the following, we will bound ϵH0

via a sequence of games.

Hybrid H0. This hybrid is the same as G3 but immediately outputs 1 if the
adversary makes a “critical query”. Specifically, the hybrid executes G3 but the
decryption oracle upon input C parses it as ([x], [y]T , π) and checks that Eq. (3)
holds; if it holds, the decryption oracle continues as before. Otherwise, returns
the message “critical”, and H0 stops the interaction, immediately returning 1.
Since the hybrid outputs 1 when the distinguishing event between G3 and G4

happens, we have that |ϵ3− ϵ4| ≤ ϵH0 . Also notice that the checks in Eq. (3) can
be efficiently performed given the knowledge of D.

Hybrid H1. This hybrid is preparatory for the next one. We inject randomness
into the encryption/decryption keys, adding a vector (zD⊥) to the secret key
f⊤, common to all the encryption queries, where z ∈ Zn−d

q . Specifically, at the

very beginning of the experiment we sample the vector z←$ Zn−d
q , we sample f

and compute the public key material [f⊤D] and moreover:

– The encryption oracle, at the j-th query, computes the values [yj]T as follows:

[yj]T ← (f⊤ +zD⊥)[uj]T + [xj]
⊤F⊤[uj]

– Similarly, the decryption oracle, upon input the ciphertext C = ([x], [y]T , π)
computes the bit b1 (i.e. the bit of the consistency check) by computing the

value [y′]T and checking if [y]T
?
= [y′]T where [y′]T is computed as:

[y′]T ← (f⊤ +zD⊥)[u]T + [x]⊤F⊤[u]

18

These new rules do not change the view of the adversary since both f⊤ and
f⊤ + zD⊥ are uniformly distributed over Z1×n

q given the public key material

[f⊤D]. Thus we obtain ϵH1
= ϵH0

.

Hybrid H2 Let P : {0, 1}∗ → Z1×n−d
q be an uniformly random function. In this

hybrid we use the following rules for encryption and decryption:

– The encryption oracle, at the j-th query, computes the values [yj]T as follows:

[yj]T ← (f⊤ + P (j) D⊥)[uj]T + [xj]
⊤F⊤[uj]

– For each decryption oracle query, we first define a set S over which the
decryption oracle iterates to test the consistency check. The definition of the
set S is carefully crafted to define the behavior of the hybrid experiment in
case of replay attack from the adversary
Recall that ctr counts the number of challenge ciphertexts output by the
encryption oracle and that QEnc = {Cj = ([xj], [yj]T , πj) : j ≤ ctr}. Upon
input the ciphertext C = ([x], [y]T , π), the decryption oracle first sets:

S := {j} if ∃j ≤ ctr : D∗⊥[x] = D∗⊥[xj]

S := {j : j ≤ ctr} otherwise

then it computes the bit b1 (i.e. the bit of the consistency check for C, see
Fig. 3) differently by checking that

∃j ∈ S : [y]T
?
= (f⊤ + P (j) D⊥)[u]T + [x]⊤F⊤[u].

Moving from H1 to H2 requires a series of hybrids H1,i,i′ , i ∈ [log(QEnc)], i
′ ∈ [6].

We give in [14] the formal definitions of all these hybrids, and we highlight their
differences.

Hybrid H1,i,0. Let Pi be a random function that takes in input strings of length
i (for i = 0, we can imagine this as a constant function defined on the empty
string) and returns row vectors of length n− d.

– On input the j-th query, the encryption oracle samples [uj] from the span
of [D0]. The element [yj]T is computed as

[yj]T ← (f + Pi(j|i) D
⊥)[uj] + [xj]

⊤F⊤[uj].

– Upon input the ciphertext C = ([x], [y]T , π), define:

S := {j|i} if ∃j ≤ ctr : D∗⊥[x] = D∗⊥[xj]

S := {j|i : j ≤ ctr} otherwise

it then executes the same code of the previous hybrid.

19

When i = 0, for any value j the string j|0 is equal to the empty string, thus,
in H1,0,0, the random function P0 is always called on input the empty string.

In particular, either when D∗⊥[x] = D∗⊥[xj] holds or when it does not, the
consistency check performed is exactly the same. Thus the difference between
hybrid H1,0,0 and H1 is only syntactical.

Hybrid H1,i,1 This hybrid is equivalent to the previous one, but here the en-
cryption oracle, on input the j-the query, generates [uj] in the span of [Dj[i+1]].
We rely on the MDDH assumption to prove indistinguishability between the two
hybrids. We proceed in two steps:

– We first switch the j-th vector [uj] computed by the encryption oracle to a
vector in the span of [(D|U)], where U is uniform over Zn×d

q , if the (i+1)-th
bit of the binary representation of j is equal to 1. We call this intermediate
hybrid HAi

.
– Finally, we switch the j-th vector [uj] computed by the encryption oracle to

a vector in the span of [(D|D̄1)] = [D1], if the (i + 1)-th bit of the binary
representation of j is equal to 1.

First we show indistinguishability betweenH1,i,0 andHAi . Let BA be an MDDH-
adversary receiving the QEnc-fold Dn,d-MDDH challenge ([D̄0], [h1], . . . , [hQEnc

])
as input. BA can sample a random matrix D ←$ Dn,d, a random matrix D̄1 ∈
Zn×d
q , the secret material a ←$ Zn

q , f ←$ Zd
q ,F ←$ Zn×n+1

q and the secret
material for the benign proof system (since BA knows D, this can be easily
achieved running PGen([D])). Finally, BA samples a challenge bit b and gives the
public key of the scheme to A. BA simulates the encryption oracle as follows.
On input the j-th pair of messages (M0, M1):

– if the (i+1)-th bit of the binary representation of j is equal to 0, the adversary
sets [uj]← [D0]rj ,

– else, samples a random vector r̃ ∈ Zd
q , and computes [uj]← [D]̃r+ [hj].

Note that BA can still simulate the decryption oracle, because of the knowledge
of the secret material a, f ,F and of the matrix D. Since BA knows both the ma-
trix D and the vector a, can always find a matrix D∗⊥ such that D∗⊥D∗ = 0.
This allows BA to catch critical queries. If the tuple is a real MDDH tuple, i.e.
[hj] = [D̄0]rj , the game described is perfectly equivalent to H1,i,0. Otherwise,
if the challenge vectors are uniformly random, the game simulated is equivalent
to HA,i. The next step is to switch the j-th vector [uj] computed by the en-
cryption oracle to a vector in the span of [(D|D̄1)] = [D1] if the (i + 1)-th bit
of the binary representation of j is equal to 1. This transformation is similar
to the previous one, therefore we omit the details. Altogether, combining the
previous adversaries, we obtain an adversary C such that: |ϵH1,i,1 − ϵH1,i,0 | ≤
2(n− d)Advmddh

G1,Dn,d,C(λ) +
2

q−1 .

Hybrid H1,i,2 We add an explicit check to the decryption oracle. Specifically, at
each decryption oracle query the hybrid additionally checks if u ̸∈ span(D0) ∪
span(D1), and if it is the case the decryption oracle returns immediately ⊥ to

20

the adversary. We rely on the soundness of the underlying benign proof system.
In particular, the only condition that would allow to distinguish between this
hybrid and the previous one is to query the decryption oracle with a ciphertext
C = ([x], [y]T , π) where:

– u ̸∈ span(D0) ∪ span(D1)
– the decryption oracle in the hybrid H1,i,1 would not return ⊥.

For such query it holds that PVer(psk , [u], π) = 1. We build an adversary B
against the (Lsim,Lver,Lsnd)-soundness of the proof system. (Recall that Lsnd =
Lsim = span(D0) ∪ span(D1), and Lver = Zn

q .)
The adversary B samples the secret material a, f ,F; then, it queries the

challenger to obtain the public key of the benign proof system, associated with
the matrix D, and finally gives A all the public key material. The adversary
B can easily simulate the encryption oracle since it knows all the necessary
information. To compute the proof πj associated with the j-th encryption oracle
query, it queries the simulation oracle offered by the challenger: it holds that
uj ∈ Lsim, for all j ∈ [QEnc]. When the adversary makes a decryption query, B
needs to verify that the proof π is accepted by PVer; so, it forwards (u, π) to
the challenger. Since Lver is equal to Zn

q , the verification oracle always returns a
verdict bit, and B can proceed in the natural way the simulation of the decryption
oracle. At some point B queries the verification oracle with some ([u], π) such that
u /∈ span(D0) ∪ span(D1), i.e., u /∈ Lsnd, but PVer(psk , [u], π) = 1. This is the
event that lets B win the soundness game. The adversary B runs in time T (B) ≈
T (A)+(QEnc+QDec) ·poly(λ), where poly is a polynomial independent of T (A).
Moreover, notice that when the distinguishing event happens the adversary B
wins the soundness game, thus: |ϵH1,i,2

− ϵH1,i,1
| ≤ Advsnd

B,PS(λ).

Hybrid H1,i,3 In this hybrid, we increase the entropy of the secret keys during
encryption queries.

– The encryption oracle, at the j-th query, computes the values [yj]T as follows:

[yj]T ← (f⊤ + Pi+1(j|i+1) D
⊥)[uj] + [xj]

⊤F⊤[uj].

– The decryption oracle, upon input the ciphertext C = ([x], [y]T , π) addition-
ally checks that ∃d s.t. u ∈ span(Dd) and in such a case it sets:

S := {j|i ∥d } if ∃j ≤ ctr : D∗⊥[x] = D∗⊥[xj]

S := {j|i ∥d : j ≤ ctr} otherwise

and it continues executing the same code as the previous hybrid.

We prove that |ϵH1,i,2
− ϵH1,i,3

| is negligible. We first transit to an intermedi-

ate hybrid H′
i where instead of using the function Pi(·)D⊥, we use the function

P ′
i (·) := P

(0)
i (·)D⊥

0 +P
(1)
i (·)D⊥

1 , where P
(0)
i and P

(1)
i are two uniformly random

functions with domain {0, 1}i. Notice that P ′
i (·) is an uniformly random function

21

that maps strings in {0, 1}i to vectors in rowspan(D⊥
0) + rowspan(D⊥

1) while
Pi(·)D⊥ is an uniformly random function that maps string in {0, 1}i to vectors
in rowspan(D⊥). Thus the distinguishing event between Hi,j,2 and this interme-
diate hybrid is the event that rowspan(D⊥

0) + rowspan(D⊥
1) ̸= rowspan(D⊥).

The latter event happens with probability at most 1/q: in fact, the event hap-
pens if and only if the subspace span(D̄0|D̄1) has dimension strictly less than 2d
and recall that the columns of such matrices are sampled uniformly at random.

Next, we define the function P
(b)
i+1 : {0, 1}i+1 → Z1×(n−2d)

q , ∀b ∈ {0, 1}:

P
(b)
i+1(x) =

{
P

(b)
i (x|i), x[i+ 1] ̸= b

P̃i
(b)

(x|i), else

where Pi, P̃i are two uniformly (and independent) random functions. Notice that

P
(b)
i+1 is an uniformly random function.
We define a second intermediate hybrid H′

i+1 where for the encryption oracle
queries instead of using the random function P ′

i applied to the indexes j|i we
use the function P ′

i+1 applied to the indexes j|i+1, and for the decryption oracle
queries we use P ′

i+1 applied to (j|i∥d), where d is such that uj ∈ span(Dd) (as
described in the H1,i,3). We show that H′

i and H′
i+1 are equivalently distributed.

Indeed, in this second intermediate hybrid, at the j-th encryption oracle query
we compute [yj]T ← (f⊤ + P ′

i+1(j|i+1))[uj] + [xj]
⊤F⊤[uj]. Moreover, we have

that P ′
i+1(j|i+1)uj = P ′

i (j|i)uj , in fact:

P ′
i+1(j|i+1)uj =

(
P

(1−j[i+1])
i (j|i)D

⊥
1−j[i+1] + P̃i

(j[i+1])
(j|i)D

⊥
j[i+1]

)
Dj[i+1]rj

=
(
P

(1−j[i+1])
i (j|i)D

⊥
1−j[i+1]

)
Dj[i+1]rj

=
(
P

(0)
i (j|i)D

⊥
0 + P

(1)
i (j|i)D

⊥
1

)
Dj[i+1]rj

= P ′
i (j|i)Dj[i+1]rj = P ′

i (j|i)uj

In the above derivation, we first applied the definitions of Pi+1 and uj , then

we simplified the second term by noticing that D⊥
j[i+1]Dj[i+1] = 0, then for the

same exact reason we can add the component P
(j[i+1])
j (j|i)Dj[i+1], and finally

we have the definition of P ′
i .

Similarly, for the decryption oracle queries with input C = ([x], [y]T , π) where
∃d : u ∈ span(Dd), we have that P ′

i+1(j|i+1)u = P ′
i (j|i)u. The derivation is

identical to before. Thus the two intermediate hybrids are equivalent.
Finally, we show that the second intermediate hybrid, H′

i+1, is statistically
close to Hi,1,3; in fact, the only difference is that in the latter hybrid we use the

function Pj+1(·)D⊥. Equivalently as before, the two random functions are not
equivalently distributed only when span(D̄0∥D̄1) has rank less then 2d, which
happens with probability at most 1/q. Thus |ϵH1,i,2 − ϵH1,i,3 | ≤ 2

q .

Hybrid H1,i,4 We remove the direct check [u]1 ∈ span([D1]1) ∪ span([D0]1)
introduced in H1,i,2. This removal can only increase the winning probability of
the adversary. Thus ϵH1,i,3

≤ ϵH1,i,4
.

22

Hybrid H1,i,5 To decrypt, we increase the number of keys used by the decryp-
tion oracle to compute the bit b1.

S := {j|i ∥b : b ∈ {0, 1}} if ∃j ≤ ctr : D∗⊥[x] = D∗⊥[xj]

S := {j|i ∥b : b ∈ {0, 1}, j ≤ ctr} otherwise

This change can only increase the winning probability of the adversary since
the set of the strings S used in H1,i,5 contains the set of strings used in H1,i,4.

As for non-critical queries, we need to show that the view of the adversary
does not change: in particular, any non-critical query that decrypts to ⊥ inH1,i,4

should decrypt to ⊥ in H1,i,5 as well. This is easy to prove when the decryption
query has [u] ∈ span([D]): indeed, even if we modify the set S, this change does
not affect the way we decrypt such queries (recall that any key Pi+1(·) is then
multiplied by D⊥.) Also, a non-critical query could be a query for which it holds
that there exists j ∈ [QEnc] such that D∗⊥xj is equal to D∗⊥x. If a query of this
form succesfully decrypts in H1,i,4, the same happens in H1,i,5: again, this is
because S in the latter hybrid is a superset of S in H1,i,4. But, it is still possible
that a query of this form decrypts to ⊥ in H1,i,4, but the ‘augmented’ S in this
new hybrid makes the consistency bit b1 be 1, for some new key: we bound the
probability of a similar event since we know that the only way to learn the image
of the random function Pi+1(·) is via oracle queries to Odec and Oenc. By union
bound, we obtain a statistical distance of O(QEncQDec/q).

ϵH1,i,4
−O(QEncQDec/q) ≤ ϵH1,i,5

.

Hybrid H1,i,6 This hybrid is equivalent to the previous one, but the decryption
oracle computes a different set S, as follows:

S := {j|i+1} if ∃j ≤ ctr : D∗⊥[x] = D∗⊥[xj]

S := {j|i+1 : j ≤ ctr} otherwise

Notice that the set S as defined in H1,i,6 might be a (strict) subset of the set S
as defined in H1,i,5. Thus the distinguishing event is that the consistency check
would pass in H1,i,5 but it would not pass in H1,i,6. In particular, such con-
sistency check passes for an index of the form ji∥1, such that j[i + 1] = 0 and
j ≤ ctr, and by the definition of the distinguishing event the integer representa-
tion of (ji∥1) · 2| logQEnc|−i−1 is bigger than ctr. Thus the key f⊤ + Pi(ji∥1)D⊥

was never used for an encryption query. The only way an adversary can learn
information about one of such keys is via decryption queries. In particular, each
decryption query can at most decrease the set of possibilities (namely a valid y
that matches the consistency check) by one. Moreover, the number of such keys
is (very loosely) upper-bounded by QEnc, thus by union bound over all such keys
and over all the decryption queries we obtain: |ϵH1,i,6

− ϵH1,i,5
| ≤ QEnc·QDec

q−QDec
.

23

Hybrid H1,i+1,0 We then switch back the distribution of [uj] to the span of
[D0]. This transition is the reverse of what we have done to move from H1,i,0 to
H1,i,1. We proceed in two steps:

– We first switch the j-th vector [uj] computed by the encryption oracle to a
vector in the span of [(D|U)], where U is uniform over Zn×d

q , if the (i+1)-th
bit of the binary representation of j is equal to 1.

– Then, we switch the j-th vector [uj] computed by the encryption oracle to
a vector in the span of [D0].

Altogether we obtain and adversary C such that:

|ϵH1,i+1,0
− ϵH1,i,6

| ≤ 2(n− d)Advmddh
G1,Dn,d,C(λ) +

2

q − 1
.

It is easy to see that ϵH2
= ϵH1,⌈log QEnc⌉,6

. Next, we prove that ϵH2
≤ O(n2)QEncQDec

q .

We reduce the adversary A playing in H2 to an (unbounded) adversary B upon
which we can invoke the Lemma 1. We say that B forged a valid tuple if the
output of B matches the event described in the lemma. For any assignments of
the vector a and of the matrix D in the support of Dn,d, we can consider in the
Lemma 1 the matrix E to be set equal to D∗.

Claim. Pr [H2 = 1] ≤ O(n2)QEncQDec

q .

Let (D,D∗,D⊤f ,D⊤F,FD∗) be the tuple received by B from the challenger.

The adversary B samples uniformly random values (f̄ , F̄) such that f̄
⊤
D = f⊤D,

F̄
⊤
D = F⊤D and F̄D∗ = FD∗. We can think of the tuple (f̄ , F̄) as a “fake”

proving key that matches the verification key given by the challenger. Given D
and a, the reduction B can sample all the secret material needed to simulate the
hybrid H2. In particular, it can compute the proving key and verification key of
the proof system PS and sample the challenge bit. The reduction B samples an
index value j∗Enc ∈ [QEnc] and an index j∗Dec ∈ [QDec]. (Recall that QEnc and QDec

denote the number of encryption, resp. decryption queries made by A.) At the
j-th query to the encryption oracle:

– If j ̸= j∗Enc, the reduction B generates xj following the prescribed algorithms.

Then, it computes yj ←
((

f̄ + F̄xj

)⊤
+ P (j)D⊥

)
uj , where we recall that

P (·) is a random function.
– Else, for j = j∗Enc, B computes xj as prescribed, queries its own oracle with

xj and obtains a value v = f +F · xj , then, it uses v+ P (j)D⊥ to compute

the proof y, associated with uj , namely: yj ←
(
v⊤ + P (j)D⊥

)
uj .

At the j-th query to decryption oracle with ciphertext C = ([x], [y]T , π) there are
three possible cases. The easiest case to handle is if u ∈ span(D) or ∃j ̸= j∗Enc
such that D∗⊥xj = D∗⊥x. The reduction B can compute the consistency check
using the keys f̄ , F̄ and the random function P .

24

The second case is when D∗⊥xj∗Enc
= D∗⊥x, in this case let r′ be such that

x− xj∗Enc
= D∗r′ and compute

y′ ← yj∗Enc + f⊤Dr′ + x⊤
j∗Enc

F⊤Dr′ + (FD∗r′)⊤(uj∗Enc
+Dr′)

namely, compute the element [y′]T as if it was computed in the re-randomization
of the ciphertext Cj∗Enc using randomness r′. Notice that, by definition of H2 the
consistency check for [y]T would be computed by checking if

y
?
=

(
(f + Fx)

⊤
+ P (j∗Enc)D

⊥
)
u.

By Lemma 2 and by definition of yj∗Enc , the two checks are equivalent. The last

case is when u ̸∈ span(D) ∧ ∀j : D∗⊥xj ̸= D∗⊥x, i.e., the query might be
“critical”:

– If j < j∗Dec then return ⊥ to the adversary A, in this case we assume that
the query was not critical and that the decryption would fail.

– If j = j∗Dec then output the tuple (y−P (j∗Enc)D
⊥u,u,x) as the forgery of B.

We condition on the event that j∗Dec is the first critical query of A and that,
let the ciphertext sent by A at the j∗Dec query be C = ([x], [y]T , π) we have that

the equation [y]T = (f + P (j∗Enc)D
⊥ + Fx)⊤[u] holds. Let Guess be such event.

Conditioned on such a lucky event, B indeed produces a valid forgery, in fact by
the definition of a critical query (xj∗Enc

− x) ̸∈ span(D∗) and u ̸∈ span(D).
We show that the view provided by B to the adversary A up to the j∗Dec-th

decryption query and conditioned on Guess is equivalent to the view of the ad-
versary up to the j∗Dec-th decryption query in the hybrid game H2. The intuition

is that the values P (j)D⊥, for all j, mask the components of (f ,F) and (f̄ , F̄)
that differ. Indeed, we know that for some row vectors v,w,w′, it holds that
f = Dv+ (wD⊥)⊤ and f̄ = Dv+ (w′D⊥)⊤. Similarly, for some V,W and W′,
F = DV + (WD⊥)⊤, and F̄ = DV + (W′D⊥)⊤.

Let P ′ be a uniformly random function, and consider the following function:

P (j) =

{
P ′(j), j = j∗Enc
P ′(j) +∆j , j ̸= j∗Enc

where ∆j = w−w′ + x⊤
j (W−W′). It is not hard to see that P is a uniformly

random function. Now consider the mental experiment where B runs the same
but using the random function P defined above. Since P is uniformly random,
the probability that B forges a valid tuple in this mental experiment is the same
as the probability that B forges a valid tuple in the real experiment. Also, for
any j ̸= j∗Enc the value y computed at the j-th encryption oracle query is:

y =
((

f̄ + F̄xj

)⊤
+ P (j)D⊥

)
[uj] =

((
f̄ + F̄xj

)⊤
+ (P ′(j) +∆j)D

⊥
)
[uj] =

=

((
f̄ + ((w −w′)D⊥)⊤ + (F̄+ ((W −W′)D⊥)⊤)xj

)⊤
+ P ′(j)D⊥

)
[uj] =

=
(
(f + Fxj)

⊤
+ P ′(j)D⊥

)
[uj].

25

The probability that the reduction B creates a forgery is Pr [H2 = 1 ∧ Guess],
and the two events are independent. Moreover, since Pr [Guess] = (QEncQDec)

−1,

by the Rand-RCCA Lemma in [14] we have that Pr [H2 = 1] ≤ n(n+1)QEncQDec

q .

5.1 Publicly-Verifiable Rand-RCCA PKE

We show two publicly verifiable Rand-RCCA PKE schemes based on the scheme
from Section 5. Following the ideas in [13], we append a malleable NIZK proof
(essentially a Groth-Sahai proof) that [y]T and π are well-formed to the cipher-
texts of PKE from the previous section. The decryption algorithm outputs the
decrypted message only if the NIZK proofs are valid. Public verifiability follows
because the NIZK proofs can be verified using the public parameters.

Let PKE1 = (KGen1,Enc1,Dec1,Rand1) be the scheme of Section 5 instanti-
ated using the benign proof system of Section 3.1, and let PS2 = (PGen2,PPrv2,
PVer2) and PEvl2 form a malleable NIZK system for membership in the relation

R2 =

{
(pk, [x]), ([y]T , π, r) :

y = f⊤u+ x⊤Fu

PPrv1(ppk , [u], r) = π

}
,

and where the allowable set of transformations contains all the transforma-
tions (Tel, Twit) such that it exists r̂ with Tel(pk, [x]) = pk, [x̂], Twit([y]T , π, r) =

[ŷ]T , p̂k, r+ r̂ and ([x̂], [ŷ]T , π̂) = Rand1(pk, ([x], [y]T , π); r̂); each transformation
in the set of allowable transformation is uniquely identified by a vector r̂.

The pv-Rand-PKE scheme PKE2 = (Init,KGen2,Enc2,Dec2,Rand2,Ver) is
identical to PKE1, except that (i) KGen2 additionally samples the common ref-
erence string for PS2, (ii) the encryption procedure computes a ciphertext as
in PKE1 but additionally computes a proof π2 for PS2 and outputs a cipher-
text C = ([x1], π2), (iii) the decryption procedure first checks the proof π2 holds
w.r.t. the instance (pk, [x]) and, if so, it outputs M = (−a⊤, 1)[x] (and ⊥ other-
wise), (iv) the re-randomization procedure randomizes [x] as in PKE1 and uses
PEvl2 for the remaining part of the ciphertext, and (v) Ver2 simply checks π2.

Theorem 4. If PS2 is adaptively sound, (ϵ, O(T))-composable zero-knowledge,
and perfect derivation private, and PKE1 is mRCCA secure then PKE2 is pub-
licly verifiable, perfectly re-randomizable, and mRCCA-secure. Specifically, for
any PPT A making up to QEnc encryption queries and QDec decryption queries
and with running time T exist PPT Brcca making the same number of queries
and adversaries Bsnd,Bzk with similar running times

AdvmRCCA
A,PKE2

(λ) ≤AdvmRCCA
Brcca,PKE1

(λ) +Advsnd
Bsnd,PS2

(λ) + ϵ

The proof follows by inspection of the proof of Theorem 2 in [13]. In more detail,
their proof proceeds in two steps. First, it reduces to the adaptive soundness of
the NIZK proof system to claim that if a publicly-verifiable ciphertext decrypts
correctly then its respective non-publicly verifiable ciphertext should decrypt
correctly too. We notice that this step can be performed tightly relying either

26

on statistical adaptive soundness of the proof system or relying on the com-
putational soundness of the proof system when the language proved is witness
samplable. The reason is that the reduction can check which one of the many
NIZK-proofs from the adversary breaks adaptive soundness before submitting it
as its forgery. The second step uses composable zero-knowledge to first tightly
switch the way the public parameters are generated and then to switch (all
together) the proofs for the ciphertexts from real to simulated.

To instantiate the malleable NIZK, we consider a construction along the
same line of [13]. In more detail, [13] introduced an extension of the Groth-Sahai
proof system that is zero-knowledge even for pairing product equations where
the GT -elements are variables. Their idea is to commit the elements in GT using
a commitment scheme with nice bilinear properties. Groth-Sahai proofs can be
instantiated under anyDk-MDDHAssumption [11] and, given their nice algebraic
properties they are malleable [8]. More details are given in [14].

A more efficient tight-secure pv-Rand-RCCA PKE. To facilitate our
more efficient scheme, we introduce a stronger variant of the MDDH assumption
(cf. Definition 1) in which the adversary gets not only a matrix [A], but also the
tensor product [A⊗A] to distinguish an element from span([A]) and random:

Definition 9 (Tensor Matrix Diffie-Hellman assumption in Gγ). The
Dℓ,k-Tensor-Matrix-Decisional-Diffie-Hellman (TMDDH) assumption in group
Gγ holds if for all non-uniform PPT adversaries A,

|Pr [A(G, [A⊗A]γ , [A]γ , [Aw]γ) = 1]− Pr [A(G, [A⊗A]γ , [A]γ , [z]γ) = 1]|

is negligible, where the probability is taken over G = (q,G1,G2,GT , e,P1,P2)←
GGen(1λ), A← Dℓ,k,w← Zk

q , [z]γ ← Gℓ
γ , and the coin tosses of adversary A.

The TMDDH assumption can be seen as a generalization of the “square-Diffie-
Hellman” assumption [6,29], and as a special case of the “Uber assumption
family” [5]. Since a TMDDH adversary gets quadratic terms [A ⊗ A] “in the
exponent”, it is not clear how this assumption relates to the more standard
MDDH assumption. However, we remark that the TMDDH assumption holds
generically for large enough dimensions, at least for uniformly random A.

Lemma 4 (Generic security of TMDDH). For k ≥ 4, the Uk+1,k-TMDDH
assumption holds against generic adversaries in a symmetric pairing setting.

In [14] we explain what we mean by “holds generically” according to the formu-
lation of Maurer [28] and we sketch a proof of the lemma.

The idea of the second publicly-verifiable PKE scheme is to (1) add in the
public key the values k⊤[D⊗D] and (2) use a malleable proof system PS3 for
membership in the relation

R3 =

{
(pk, [x]), ([y]T , π, r) :

y = f⊤u+ x⊤Fu

k⊤[D⊗D]r⊗ r · [1] = π

}
,

with the same set of allowable transformations as in the previous publicly veri-
fiable PKE scheme. The languages associated with the relation R3 and R2 are
identical, but we can obtain a more efficient NIZK proof for R3.

27

Theorem 5. The pv-Rand-PKE scheme PKE3 is publicly verifiable, perfectly
re-randomizable and RCCA-secure. Specifically:

AdvRCCA
A,PKE(λ) ≤AdvTMDDH

G1,Un,d,B(λ) + O (d logQEnc) ·AdvMDDH
G1,Un,d,B′(λ)

+ logQEnc ·Advsnd
B′′,PS(λ) +O

(
n2QDecQEnc logQEnc

q

)
We only sketch the proof, which is only a slight variation of the proof of Theo-
rem 3. Notice that in the proof of Theorem 3 to move from G3 to G4 we use the
Dn,d-MDDH assumption. This step changes with our modified scheme, since we
add [D ⊗D] to the public key. We thus need to rely on the stronger TMDDH
assumption. Also notice that this is the only step in the proof of Theorem 3
where the assumption over the matrix [D] is used. Finally, observe that we can
prove both composable zero-knowledge and computational adaptive soundness
of the NIZK proof system for R3 using the classical Dk-MDDH assumption.

6 Application: Universally Composable MixNet

We can plug-and-play our pv-Rand-RCCA PKE schemes in the MixNet protocol
of [13] because their protocol works for any pv-Rand RCCA scheme that has the
property of being linear and a property that holds for both PKE2 and PKE3.
For space reasons, we defer the details in [14].

The MixNet ideal functionality interacts with n sender parties and m mixer
parties. The i-th sender sends the message Mi, while the mixer can decide to
mix the messages. At the end, when all the mixer have sent their inputs, the
functionality returns the list of sorted messages. For space reasons, the ideal
functionality is formally defined in [14].

The protocol is divided into 3 phases: (i) at the input phase, the sender parties
send pv-Rand-RCCA ciphertexts of their messages and a simulation-extractable7

NIZK of knowledge; (ii) at the mixing phase, the mixers, one after the other,
shuffle the ciphertexts and compute the so-called check-sum NIZK proofs that
paired with the public-verifiability and the RCCA property are sufficient to
prove the validity of the shuffles; (iii) at the output phase, the ciphertexts are
decrypted. The nice feature of the protocol is that the statements proved by
the check-sum proofs are of constant size, independent of the number of shuffled
ciphertexts.

The NIZK proofs employed in the input-submission phase are needed only
to make sure independence of the inputs. We notice that to obtain our “tightly-
secure” MixNet we need only to make sure that the Rand-mRCCA PKE and the
simulation-extractable NIZK proofs are tightly secure. Let Advsim−ext

A,PS (λ) be the
advantage of an adversary A against the simulation extractability experiment
for PS, we are ready now to state the main contribution of this section.

7 Actually, they need a weaker form of soundness called all-but-one soundness, however
simulation extractability is sufficient.

28

Theorem 6. Let PKE be a linear pv-Rand RCCA PKE, PS be a simulation-
extractable NIZK, and let Π be the MixNet protocol from [13] instantiated with
PKE and PS. The protocol Π realizes FMix with setup assumptions a thresh-
old decryption functionality FTDec[PKE] and a common-reference string func-
tionality FCRS. More in detail, there exist a simulator S and negligible function
negl(λ,m) such that for any static-corruption environment Z with running time
TZ there exist an adversaries B,B′ whose running time is O(TZ(λ)), such that:

|Pr [RealZ,Π(λ) = 1]− Pr
[
{FCRS,FTDec}-HybridFMix

Z,S (λ) = 1
]
|

≤ 3AdvmRCCA
B,PKE(λ) +Advsim−ext

B′,PS′ (λ) + negl(λ,m)

We stress that the function negl(λ,m) in the statement of Theorem 6 is inde-
pendent of TZ and only depends on the number of mixers (which we can think
as a small number). The proof of the theorem follows by inspection of the proof
of Theorem 5 in [13] and observing that the three steps of the proof that reduce
to the pv-Rand-RCCA security of PKE can be performed tightly by relying on
the multi-ciphertext RCCA security definition (cf. Definition 8). In [14] we give
more details and we show how to instantiate the necessary simulation-extractable
NIZK using the tightly-secure QA-NIZK based on the MDDH assumption of Abe
et al. [2]. Thus, instantiating the protocol with PKE2 (resp. PKE3) we obtain a
MixNet protocol that reduces almost-tightly in the number of mixed messages
to the MDDH (resp. TMDDH) Assumption.

References

1. M. Abdalla, F. Benhamouda, and D. Pointcheval. Disjunctions for hash proof
systems: New constructions and applications. In EUROCRYPT 2015, Part II,
2015.

2. M. Abe, C. S. Jutla, M. Ohkubo, and A. Roy. Improved (almost) tightly-secure
simulation-sound QA-NIZK with applications. In ASIACRYPT 2018, Part I, 2018.

3. S. Bayer and J. Groth. Efficient zero-knowledge argument for correctness of a
shuffle. In EUROCRYPT 2012, 2012.

4. M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user
setting: Security proofs and improvements. In EUROCRYPT 2000, 2000.

5. X. Boyen. The uber-assumption family (invited talk). In PAIRING 2008, 2008.
6. M. Burmester, Y. Desmedt, and J. Seberry. Equitable key escrow with limited time

span (or, how to enforce time expiration cryptographically). In ASIACRYPT’98,
1998.

7. R. Canetti, H. Krawczyk, and J. B. Nielsen. Relaxing chosen-ciphertext security.
In CRYPTO 2003, 2003.

8. M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Malleable proof
systems and applications. In EUROCRYPT 2012, 2012.

9. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In CRYPTO’98, 1998.

10. Y. Dodis, I. Mironov, and N. Stephens-Davidowitz. Message transmission with re-
verse firewalls—secure communication on corrupted machines. In CRYPTO 2016,
2016.

29

11. A. Escala, G. Herold, E. Kiltz, C. Ràfols, and J. Villar. An algebraic framework
for Diffie-Hellman assumptions. In CRYPTO 2013, Part II, 2013.

12. A. Faonio and D. Fiore. Improving the efficiency of re-randomizable and replayable
CCA secure public key encryption. In ACNS 20, Part I, 2020.

13. A. Faonio, D. Fiore, J. Herranz, and C. Ràfols. Structure-preserving and re-
randomizable RCCA-secure public key encryption and its applications. In ASI-
ACRYPT 2019, Part III, 2019.

14. A. Faonio, D. Hofheinz, and L. Russo. Almost tightly-secure re-randomizable and
replayable CCA-secure public key encryption. Cryptology ePrint Archive, Paper
2023/152, 2023. https://eprint.iacr.org/2023/152.

15. A. Faonio and L. Russo. Mix-nets from re-randomizable and replayable CCA-secure
public-key encryption. In Security and Cryptography for Networks, 2022.

16. P. Fauzi, H. Lipmaa, J. Siim, and M. Zajac. An efficient pairing-based shuffle
argument. In ASIACRYPT 2017, Part II, 2017.

17. R. Gay, D. Hofheinz, E. Kiltz, and H. Wee. Tightly CCA-secure encryption without
pairings. In EUROCRYPT 2016, Part I, 2016.

18. R. Gay, D. Hofheinz, and L. Kohl. Kurosawa-desmedt meets tight security. In
CRYPTO 2017, Part III, 2017.

19. R. Gay, D. Hofheinz, L. Kohl, and J. Pan. More efficient (almost) tightly secure
structure-preserving signatures. In EUROCRYPT 2018, Part II, 2018.

20. J. Groth. Rerandomizable and replayable adaptive chosen ciphertext attack secure
cryptosystems. In TCC 2004, 2004.

21. S. Han, S. Liu, L. Lyu, and D. Gu. Tight leakage-resilient CCA-security from
quasi-adaptive hash proof system. In CRYPTO 2019, Part II, 2019.

22. D. Hofheinz. Adaptive partitioning. In EUROCRYPT 2017, Part III, 2017.
23. C. S. Jutla and A. Roy. Shorter quasi-adaptive NIZK proofs for linear subspaces.

In ASIACRYPT 2013, Part I, 2013.
24. K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption scheme. In

CRYPTO 2004, 2004.
25. B. Libert, M. Joye, M. Yung, and T. Peters. Concise multi-challenge CCA-secure

encryption and signatures with almost tight security. In ASIACRYPT 2014, 2014.
26. B. Libert, T. Peters, M. Joye, and M. Yung. Compactly hiding linear spans -

tightly secure constant-size simulation-sound QA-NIZK proofs and applications.
In ASIACRYPT 2015, Part I, 2015.

27. B. Libert, T. Peters, and C. Qian. Structure-preserving chosen-ciphertext security
with shorter verifiable ciphertexts. In PKC 2017, Part I, 2017.

28. U. M. Maurer. Abstract models of computation in cryptography (invited paper).
In 10th IMA International Conference on Cryptography and Coding, 2005.

29. U. M. Maurer and S. Wolf. Diffie-Hellman oracles. In CRYPTO’96, 1996.
30. M. Naveed, S. Agrawal, M. Prabhakaran, X. Wang, E. Ayday, J.-P. Hubaux, and

C. A. Gunter. Controlled functional encryption. In ACM CCS 2014, 2014.
31. O. Pereira and R. L. Rivest. Marked mix-nets. In FC 2017 Workshops, 2017.
32. M. Prabhakaran and M. Rosulek. Rerandomizable RCCA encryption. In

CRYPTO 2007, 2007.
33. C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge

and chosen ciphertext attack. In CRYPTO’91, 1991.
34. R. E. Tarjan. Efficiency of a good but not linear set union algorithm. In Journal

of the ACM, 1975.
35. Y. Wang, R. Chen, G. Yang, X. Huang, B. Wang, and M. Yung. Receiver-

anonymity in rerandomizable RCCA-secure cryptosystems resolved. In
CRYPTO 2021, Part IV, 2021.

30

https://eprint.iacr.org/2023/152

	Almost Tightly-Secure Re-Randomizable and Replayable CCA-secure Public Key Encryption

