US 20230379363A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2023/0379363 A1l

CHIAPPONI et al. 43) Pub. Date: Nov. 23, 2023
(54) PROXY DETECTION SYSTEMS AND (52) US. CL
METHODS CPC HO4L 63/166 (2013.01); HO4L 63/168
(2013.01); HO4L 63/20 (2013.01); HO4L
(71) Applicant: AMADEUS S.A.S., Biot (FR) 43/106 (2013.01)
(72) Inventors: Elisa CHIAPPONI, Antibes (FR); 7) . AB.STRACT .
Mare DACIER, Thuwal (SA); Olivier A proxy d.etectlon. method includes: in response to receiving,
THONNARD, Grasse (FR); Vincent from a client device, a first request to establish a transport-
RIGAL Antil:;es (FR); Mol;ame d layer connection between the client device and the server,
FANG A,R Nice (FR) ’ transmitting a first message to the client device according to
’ a first handshake sequence, for establishing the transport-
layer connection; determining a first time period associated
(21) Appl. No.: 17/746,556 with completion of the first handshake sequence; in response
to receiving, from the client device over the transport-layer
connection, a second request to establish a secure link
(22) Filed: May 17, 2022 between a client endpoint and the server, transmitting a
second message to the client endpoint according to a second
predefined handshake sequence, for establishing the secure
Publication Classification link; determining a second time period associated with
completion of the second handshake sequence; and gener-
(51) Int. CL ating, based on the first time period and the second time
HO4L 9/40 (2006.01) period, a score indicating a likelihood that the client device
HO4L 43/106 (2006.01) is a proxy for the client endpoint.

100

108-3
Client |

108-4
Client

Proxy Detector

118
Auxiliary
Detector

e 120

ind

Request Handler

Patent Application Publication Nov. 23,2023 Sheet 1 of 5 US 2023/0379363 A1

100

108-3
Client

108-1
Client

108-4
Client

Proxy Detector

118
Auxiliary e 1203
Detector

o4
Reguest Handler

FIG. 1

Patent Application Publication Nov. 23,2023 Sheet 2 of 5 US 2023/0379363 A1

204
Memaory 200
Processor
/ 116
208
Comms. Interface

FIG. 2

Patent Application Publication

305

Receive client connect. reguest

!

318
Initiate transport connection

!

315
Determine ﬁr:ft time period

|

320
Receive endpoint request

!

37

Initiate secure link

U
L

{40
g &
o)

Determine second time period

A2
A3
1o

Generate proxy score

Nov. 23,2023 Sheet 3 of 5

US 2023/0379363 Al

300

,/

e SC0TE > Threshold? w1

345

Biock connection

350
Frovide score 1o aux. detecior

FiG. 3

Patent Application Publication Nov. 23,2023 Sheet 4 of 5 US 2023/0379363 A1

108-1 116
108-1
Client
- 400 408
P 404
\@; e 412
116
Proxy Detector

FIG. 4

Patent Application Publication Nov. 23,2023 Sheet 5 of 5 US 2023/0379363 A1

foi
(]
go
k=
foet
o’
£e
LA
fd
&

108-4
Client

0006 56 43 6 50 ¥ 8 30 %4 020 Y 00 30

E

e 516

00 6 50 4 20500 30 A O 0 o OF 50 D O MO VH 50 M ¥ D 5 0 50 % 15 50 5 0

XX
Proxy Detector

100 08 30509 50 35 €0 B8 43 0 50 D O 06 35 0 50 4D 0

512
n\m 40 ms

516 =~ 00 ms\/

FiG. 5

- 520

US 2023/0379363 Al

PROXY DETECTION SYSTEMS AND
METHODS

BACKGROUND

[0001] Servers receive and respond to requests from client
devices, e.g., to deliver data requested by the client devices
in connection with web-based services. For certain services,
responding to such requests can be computationally inten-
sive. For example, servers handling search requests for
travel-related services (e.g., flights, hotels, and the like) may
incur significantly higher computational costs to generate
responses to such requests than the costs incurred by other
servers responsible for the retrieval of previously generated
and indexed data.

[0002] The operators of the above-mentioned servers may
derive little or no return for the cost of servicing fraudulent
or abusive client requests. Upon detecting such requests,
discarding or otherwise altering the usual request handling
process may therefore be desirable, to reduce the allocation
of computational resources to responding to such requests,
with little likelihood of return, e.g., in the form of travel
services being purchased from the server’s operator. Fraudu-
lent or abusive client requests, however, may be routed
through proxy devices, which complicates their detection.
Detecting such requests may be particularly challenging
when the proxy devices are residential or other consumer-
level devices that may also originate legitimate requests.

SUMMARY

[0003] An aspect of the specification provides a proxy
detection method in a server, the method including: in
response to receiving, from a client device, a first request to
establish a transport-layer connection between the client
device and the server, transmitting a first message to the
client device according to a first handshake sequence, for
establishing the transport-layer connection; determining a
first time period associated with completion of the first
handshake sequence; in response to receiving, from the
client device over the transport-layer connection, a second
request to establish a secure link between a client endpoint
and the server, transmitting a second message to the client
endpoint according to a second predefined handshake
sequence, for establishing the secure link; determining a
second time period associated with completion of the second
handshake sequence; and generating, based on the first time
period and the second time period, a score indicating a
likelihood that the client device is a proxy for the client
endpoint.

[0004] Another aspect of the specification provides a
server, including: a communications interface; and a pro-
cessor configured to: in response to receiving, from a client
device, a first request to establish a transport-layer connec-
tion between the client device and the server, transmit a first
message to the client device according to a first handshake
sequence, for establishing the transport-layer connection;
determine a first time period associated with completion of
the first handshake sequence; in response to receiving, from
the client device over the transport-layer connection, a
second request to establish a secure link between a client
endpoint and the server, transmit a second message to the
client endpoint according to a second handshake sequence,
for establishing the secure link; determine a second time
period associated with completion of the second handshake

Nov. 23,2023

sequence; and generate, based on the first time period and
the second time period, a score indicating a likelihood that
the client device is a proxy for the client endpoint.

BRIEF DESCRIPTIONS OF THE DRAWINGS

[0005] Embodiments are described with reference to the
following figures.

[0006] FIG. 1 is a diagram illustrating a communications
system.
[0007] FIG. 2 is a diagram illustrating certain internal

components of the proxy detector of FIG. 1.

[0008] FIG. 3 is a flowchart of a proxy detection method.
[0009] FIG. 4 is a diagram illustrating an example perfor-
mance of the method of FIG. 3.

[0010] FIG. 5 is a diagram illustrating another example
performance of the method of FIG. 3.

DETAILED DESCRIPTION

[0011] FIG. 1 depicts a communications system 100,
including a request handler 104 and a plurality of client
devices, referred to collectively as client devices 108 and
generically as a client device 108. In the illustrated example,
the system 100 includes four client devices 108-1, 108-2,
108-3, and 108-4, although it will be understood that the
system 100 can include greater and smaller numbers of
client devices 108 in other examples. The client devices 108
are computing devices such as desktop computers, smart
phones, laptop computers, or the like. Each client device 108
thus includes suitable hardware elements, such as process-
ing, storage and network communications components, as
well as input and output devices (e.g., keyboards, touch
panels, displays, and the like), enabling the client device 108
to communicate with the request handler 104 over a network
or combination of networks. Communications between the
client devices 108 and the request handler 104 include the
transmission of requests from client devices 108 to the
request handler 104, and the generation and transmission of
responses to such requests from the request handler 104 to
the relevant client devices 108.

[0012] The request handler 104 can be implemented as a
server or set of servers, configured to receive and process
requests from the client devices 108. The request handler
104 therefore includes processing and storage hardware
components, e.g., executing suitable software to receive and
interpret client requests, as well as to generate and return
response data to such requests. The requests may include, for
example, search requests for travel-related goods or ser-
vices, such as search requests for flights between specified
origin and destination locations (e.g., particular cities or
airports), on specified days, or the like. In order to generate
response data for a client request, the request handler 104
can be configured to retrieve and process data from various
repositories and/or interact with other computing devices
(e.g., operated by airlines, or the like), to generate combi-
nations of flights that satisfy search parameters set out in the
client request.

[0013] The generation of response data can be computa-
tionally complex, as the availability and pricing of flights
may be highly variable and dependent on the identity of an
operator of the client device 108, among other factors. The
costs (e.g., in terms of financial commitments, staffing, and
the like) of the computational resources (e.g., processing
time, storage capacity, and the like) allocated to handling

US 2023/0379363 Al

search requests from the client devices 108 may be sup-
ported in part by purchases of the above-mentioned flights
by operators of the client devices 108. Some client requests,
however, are highly unlikely to lead to such purchases, and
committing computational resources to generate responses
to those requests may therefore not be desirable.

[0014] Forexample, some client requests are originated by
scraper bots, and the results generated by the request handler
104 may be used to populate third-party search engines,
storefronts, or the like, thus potentially depriving the opera-
tor of the request handler 104 of at least some of the financial
return associated with those search results, while still having
incurred the computational cost of generating the search
results. As will be apparent to those skilled in the art,
bot-originated requests are not the only type of client request
that it may be desirable to detect and handle differently from
other client requests. Such requests are simply discussed
herein as an illustrative example.

[0015] Bot-originated requests such as those mentioned
above, and/or other client requests that the operator of the
request handler 104 may seek to detect and handle differ-
ently from other requests, may be detected based on the
content of the requests, attributes of the requests’ senders, or
the like. The system 100 may include, for example, an
auxiliary detector 110, e.g., in the form of an additional
server or set of servers, and/or additional application(s)
expected by the request handler 104. The auxiliary detector
110 is configured to process incoming requests 112 to
determine whether each request 112 is likely to have origi-
nated from a bot or other source for which differential
handling is desired (e.g., sources presenting security risks,
engaging in fraudulent behavior, or the like). A request may
therefore be forwarded to the request handler 104 for further
processing, for example, only if the auxiliary detector 110
determines a low likelihood that the request originated from
a bot.

[0016] Bot-originated requests, however, may be obfus-
cated from detection by the auxiliary detector 110 by routing
such requests through proxies. For example, the client
devices 108-1 and 108-2 are shown transmitting respective
requests 112-1 and 112-2 to the request handler 104 in FIG.
1; the requests 112-1 and 112-2 are generated at the client
devices 108-1 and 108-2 themselves. The client device
108-3, on the other hand, is shown transmitting distinct
requests 112-3 and 112-4 to the request handler 104. The
request 112-3 may be generated at the client device 108-3,
e.g., via input data provided by an operator of the client
device 108-3. The request 112-4, however, originated not at
the client device 108-3, but at a distinct client device 108-4
employing the client device 108-3 as a proxy. In some
examples, additional computing devices may handle the
request 112-4 between the client device 108-4 and the client
device 108-3. For example, a superproxy (not shown) can be
configured to receive instructions from the client device
108-4 (e.g., executing a scraper bot application) and gener-
ate numerous individual requests for transmission via dis-
tinct proxies such as the client device 108-3.

[0017] Various mechanisms are available to detect proxied
requests 112 (e.g., filtering requests based on blacklisted
Internet Protocol (IP) addresses, or the like). Those mecha-
nisms, however, may only detect a portion of proxied
requests. Further, effectiveness of those detection mecha-
nisms may be reduced for certain forms of proxied request.
In the illustrated system, for example, the client device

Nov. 23,2023

108-3 is referred to as a residential proxy, in that the client
device 108-3 is a consumer-level computing device that is
unlikely to trigger conventional proxy-detection mecha-
nisms. The client device 108-3, as seen above, can also
originate legitimate (e.g., not bot-originated) requests that
are preferably processed by the request handler 104 in the
same manner as the requests 112-1 and 112-2, in addition to
proxied requests for which modified handling may be desir-
able.

[0018] To detect proxied requests in general, and requests
routed via residential proxies in particular, the system 100
therefore also includes a proxy detector 116. The proxy
detector 116 can be implemented as a distinct computing
device (e.g., one or more servers) from the auxiliary detector
110 and the request handler 104. In other examples, the
proxy detector 116 can be implemented as an additional
software application executed at the computing device(s)
implementing the auxiliary detector 110 or the request
handler 104. As will be discussed below in greater detail, the
proxy detector 116 is deployed as the first entity in the
request-handing infrastructure (labelled as a request-han-
dling subsystem 120 in FIG. 1) with which the client devices
108 communicate. That is, transport-layer connections and
secure links are established between the client devices 108
and the proxy detector 116, rather than between the client
devices 108 and the auxiliary detector 110 or request handler
104.

[0019] As will be apparent, the client requests 112 are
generally implemented as sequences of messages, e.g., to
establish communications between a client device 108 and
the proxy detector 116, to serve web content or the like to the
client device 108, and to receive the above-mentioned search
request from the client device. Establishing communications
between a client device 108 and the proxy detector 116
typically involves establishing a transport-layer connection,
e.g., based on the Transport Control Protocol (TCP) or
another suitable transport-layer protocol. Once the transport-
layer connection is established, a secure link is established
over the transport-layer connection, e.g., based on the Trans-
port Layer Security (TLS) protocol, Secure Sockets Layer
(SSL) protocol, or the like. Web content, search requests,
response data and the like, can then be exchanged over the
secure link.

[0020] The proxy detector 116 is configured to inspect at
least some of the above-mentioned messages to determine
whether the client device 108 is likely to be operating as a
proxy. In particular, as will be discussed below in greater
detail, the transport-layer connection is established between
the proxy detector 116 and the client device 108 as the
nearest transport-layer device (i.e., ignoring routing hard-
ware implementing link-layer and other lower-level func-
tions). The secure link, however, is established with the
ultimate client endpoint, e.g., the device executing the web
browser or other application that initiated communication
with the subsystem 120 via the proxy.

[0021] In the case of non-proxied requests, the nearest
transport-layer device and the client endpoint are one and
the same, e.g., the client device 108-1 for the request 112-1.
In the case of proxied requests, however, the client endpoint
does not reside at the nearest transport-layer device. In the
context of FIG. 1, for example, the nearest transport-layer
device involved in transmission of the client request 112-4
is the client device 108-3, but the client endpoint is the client
device 108-4. The proxy detector 116 is configured, via the

US 2023/0379363 Al

above-mentioned message inspection, to determine round-
trip time periods associated with the transport-layer connec-
tion and the secure link, and to assess whether the client
device 108 is likely to be operating as a proxy based on those
time periods. Of particular note, the proxy detector 116 can
perform the above-mentioned inspection and assessment
without modifying the messages themselves or the processes
by which the client devices 108 establish communications
with the subsystem 120 (e.g., without delivering executable
code or other content to the client devices 108 that would not
have been delivered in the absence of the proxy detector
116).

[0022] Before discussing the operation of the system 100,
and in particular the functionality of the proxy detector 116,
in greater detail, certain internal components of the proxy
detector 116 will be described with reference to FIG. 2.
[0023] As noted above, the proxy detector 116 can be
implemented as a server in the subsystem 120, distinct from
the auxiliary detector 110 and the request handler 104. In the
illustrated example, the proxy detector 116 includes at least
one processor 200, such as a central processing unit (CPU)
or the like. The processor 200 is interconnected with a
memory 204, implemented as a suitable non-transitory com-
puter-readable medium (e.g., a suitable combination of
non-volatile and volatile memory subsystems including any
one or more of Random Access Memory (RAM), read only
memory (ROM), Electrically Erasable Programmable Read
Only Memory (EEPROM), flash memory, magnetic com-
puter storage, and the like). The processor 200 and the
memory 204 are generally comprised of one or more inte-
grated circuits (ICs).

[0024] The processor 200 is also interconnected with a
communications interface 208, which enables the proxy
detector 116 to communicate with the other computing
devices of the system 100. The communications interface
208 therefore includes any necessary components (e.g.,
network interface controllers (NICs), radio units, and the
like) to enable such communication. The proxy detector 116
can also include input and output devices connected to the
processor 200, such as keyboards, mice, displays, and the
like (not shown). In other examples, input and output
devices can be connected to the proxy detector 116 remotely,
via another computing device (not shown).

[0025] The components of the proxy detector 116 men-
tioned above can be deployed in a single enclosure, or in a
distributed format. In some examples, therefore, the proxy
detector 116 includes a plurality of processors, either sharing
the memory 204 and communications interface 208, or each
having distinct associated memories and communications
interfaces. Implementing the proxy detector 116 in a dis-
tributed format can enable scaling of the computational
resources available to the proxy detector 116, geographic
distribution of the functionality provided by the proxy
detector 116, and the like.

[0026] The memory 204 stores a plurality of computer-
readable programming instructions, executable by the pro-
cessor 200. The instructions stored in the memory 204
include a proxy detection application 212, execution of
which by the processor 200 configures the processor 200 to
perform various functions related to the above-mentioned
inspection and assessment of message exchanged with the
client devices 108 to detect client devices 108 operating as
proxies. In some examples, the application 212 can be
implemented as a set of distinct applications, e.g., a packet

Nov. 23,2023

sniffer application to collect incoming and outgoing mes-
sages, and an analysis application to assess the above-
mentioned time periods.

[0027] In other examples, as noted ecarlier, the proxy
detector 116 can be implemented on computing hardware
shared with either or both of the auxiliary detector 110 and
the request handler 104. For example, the memory 304 can
store not only the application 212, but also one or more other
applications implementing the functionality of the detector
110 and/or request handler 104. In such embodiments, the
application 212 is configured as the endpoint for commu-
nications addressed to the illustrated computing platform.
That is, the application 212, and not the applications imple-
menting auxiliary detection and/or response handling, is
configured to handle the establishment of communications
with client devices 108. Configuring the application 212 (or
the proxy detector 116 more generally, if the proxy detector
116 is implemented in distinct hardware from the other
components of the subsystem 120) as the endpoint enables
the application 212 to inspect messages transmitted by the
nearest transport-layer device, as well as the client endpoint.
[0028] Turning to FIG. 3, a method 300 of proxy detection
is illustrated. The method 300 will be described below in
conjunction with its performance in the system 100, and in
particular by the proxy detector 116, e.g., via execution of
the application 212 by the processor 200.

[0029] At block 305, the proxy detector 116 is configured
to receive a first request from a client device 108. The first
request is a request to establish a transport-layer connection
between the client device 108 and the proxy detector 116,
e.g., a TCP-based connection as noted earlier. The request
may include, for example, a TCP ‘SYN’ message containing
a sequence number, an identifier of the client device 108, or
the like.

[0030] At block 310, in response to the first request
received at block 305, the proxy detector 116 is configured
to send a message (or the first in a series of messages,
depending on the protocol employed to establish the trans-
port-layer connection) to the client device 108, according to
a handshake sequence defined by the relevant protocol.
Turning briefly to FIG. 4, the client device 108-1 and the
proxy detector 116 are shown in isolation, along with a
sequence diagram illustrating various messages exchanged
between the client device 108-1 and the proxy detector 116.
[0031] In particular, to establish a transport-layer connec-
tion 400, the client device 108-1 sends a first request 400a
(e.g., the above-mentioned SYN message) to the proxy
detector 116. The proxy detector 116, upon receiving the
request 400q at block 305, can store a timestamp represent-
ing the time at which the request 400a was received. At
block 310, the proxy detector 116 transmits a message 4005,
such as a SYN-ACK message (in TCP-based embodiments),
containing an acknowledgement of the request 4004, as well
as a sequence number and/or other relevant information. The
handshake sequence continues with a further message 400c
from the client device 108-1, e.g., acknowledging the mes-
sage 4005. In this example, following receipt of the message
400c¢ at the proxy detector 116, the transport-layer connec-
tion 400 is established, and can be used to exchange other
data, e.g., to establish a secure link 404, discussed further
below. As will be apparent to those skilled in the art, the
handshake sequence used to establish the connection 400
need not be exactly as discussed above, depending on the
protocol employed to establish the connection 400.

US 2023/0379363 Al

[0032] The proxy detector 116 is also configured to store
timestamps representing the time at which the message 4005
was sent, and the time at which the message 400c was
received. Returning to FIG. 3, at block 315 the proxy
detector 116 is configured to determine a first time period,
e.g., associated with the above-mentioned handshake
sequence. In this example, at block 315 the proxy detector
116 is configured to determine a time period elapsed
between the transmission of the message 4006 (i.e., the
initiation of block 310), and receipt of the message 400c.
The measured time period, as will now be apparent, repre-
sents the round trip time (RTT) between the client device
108-1 and the proxy detector 116, and is illustrated as a time
period 408 in FIG. 4. Although the RTT measurement at
block 315 is discussed in connection with the handshake
sequence for establishing the connection 400, in other
examples the RTT can be determined after the connection
400 is established, e.g., from any other suitable pair of
messages exchanged between the client device 108-1 and
the proxy detector 116. A suitable pair of messages is a pair
in which the first originates at the proxy detector 116, and the
second necessarily follows the first and is expected to be
transmitted by the client device 108-1 substantially imme-
diately upon receipt of the first.

[0033] Returning to FIG. 3, at block 320 the proxy detec-
tor 116 is configured to receive a second request, to establish
a secure link over the transport-layer connection (e.g., the
connection 400 shown in FIG. 4). The secure link is between
a client endpoint and the proxy detector 116, although it is
not yet known whether the client endpoint is co-located with
the client device 108 (i.c., with the device 108 from which
the request at block 305 was received).

[0034] In response to the second request at block 320, the
proxy detector 116 is configured to transmit a message
initiating a handshake sequence according to a selected
protocol, to establish a secure link with the client endpoint.
In the present example, the protocol employed to establish
the secure link is the TLS protocol, although other suitable
protocols may be employed. It will be apparent that the
handshake sequence involved in establishing the secure link
will vary with the protocol employed at block 325.

[0035] Returning to FIG. 4, to establish the secure link 404
over the connection 400, the client device 108-1 can transmit
a request 404aq, such as a ‘Client Hello’ message as defined
in the TLS protocol. For example, the request 404a can
contain an indication of the supported protocol version (e.g.,
TLS 1.2 or 1.3), indications of cipher suites supported by the
client device 108-1, a random number (e.g., for generation
of a shared master secret, later used to generate encryption
keys) and the like.

[0036] In response to the message 404a, the proxy detec-
tor 116 transmits a message 404b, such as an acknowledg-
ment of the message 4044, to the client device 108-1. The
proxy detector 116 can then transmit one or more further
messages as dictated by the handshake sequence defined by
the relevant security protocol. For simplicity of illustration,
FIG. 4 shows one additional message 404¢ sent by the proxy
detector 116. The message 404c¢ can include, for example,
the ‘Server Hello” message as defined in the TLS protocol.
The message 404¢ can contain a protocol version and cipher
suites supported by the proxy detector 116, a further random
number for later use in key generation. The message 404c¢
can also include a server certificate, or the like.

Nov. 23,2023

[0037] In response to the message 404c¢, the client device
108-1 returns an acknowledgement message 4044, and can
then send a final message 404e to complete the handshake
sequence, such as a ‘Change cipher’ message in the TL.S 1.3
protocol, or a ‘Client key exchange’ message in the TLS 1.2
protocol.

[0038] Referring again to FIG. 3, at block 330 the proxy
detector 116 is configured to determine a second time period
associated with the above-mentioned handshake sequence to
establish the secure link 404. As noted earlier in connection
with block 315, the proxy detector 116 is configured to
maintain timestamps associated with the transmission of the
messages 4045 and 404¢, as well as with the receipt of the
messages 404a, 4044, and 404e. The time period determined
at block 330 represents a round-trip time for the establish-
ment of the secure link 404. That is, the RTT measured at
block 330 is the time elapsed between the transmission of a
message by the proxy detector 116, and the receipt of a
following message (e.g., expected to be transmitted substan-
tially immediately by the client endpoint in response to the
message from the proxy detector 116) from the client
endpoint. In the example shown in FIG. 4, the proxy detector
116 determines a second time period 412 elapsed between
transmission of the message 404c¢, and receipt of the mes-
sage 404e.

[0039] Of particular note, although the example shown in
FIG. 4 involves determining the second time period based on
messages exchanged during the handshake sequence, in
other examples the time period can be determined based on
other messages, after establishment of the secure link 404.
The messages employed to determine the RTT at block 330
are selected, however, to ensure that they travel between the
proxy detector 116 and the client endpoint, whether or not
the client endpoint is behind a proxy. Thus, certain mes-
sages, such as acknowledgement messages, may not be
suitable for use at block 330 because they cannot be guar-
anteed to have originated at the client endpoint. In the
example of FIG. 4, the messages 404¢ and 404e are
employed because the information contained in those mes-
sages is required to establish the secure link 404, and
therefore cannot be generated by an intermediate proxy.

[0040] Upon determining the second time period 325, the
proxy detector 116 is configured to generate a score indi-
cating a likelihood that the client device 108 (e.g., the client
device 108-1, in the example of FIG. 4) is operating as a
proxy for the client endpoint. In other examples, the deter-
mination at block 315 can be performed substantially simul-
taneously with the determination at block 330, given that the
proxy detector 116 can store timestamps associated with the
messages exchanged during the above-mentioned hand-
shake sequences and/or subsequent communications with
the client device 108.

[0041] Generation of the score at block 335 is based on the
first and second time periods, i.e., on the RTT associated
with the transport-layer connection 400, and the RTT asso-
ciated with the secure link 404. Turning to FIG. 4, solely for
illustrative purposes, the first time period is assumed to be
forty milliseconds, and the second time period is assumed to
be fifty-five milliseconds. These time periods are provided
byway of example only, and it will be apparent that varying
network conditions between client devices 108 and the
proxy detector 116 may lead to a wide variety of other time
periods. However, it is expected that non-proxied client

US 2023/0379363 Al

requests exhibit smaller differences between the first and
second time periods than proxied client requests.

[0042] The score determined at block 335, therefore,
assesses whether a difference between the first and second
time periods indicates that the client device 108 with which
the transport-layer connection is established is operating as

a proxy for the client endpoint with which the secure link is
established.

[0043] A wide variety of mechanisms for determining the
score at block 335 are contemplated. For example, returning
to FIG. 5, the proxy detector can determine a difference
between the time periods 408 and 412 (e.g., fifteen milli-
seconds, in this example), and normalize that difference to a
predefined range, based on a configurable maximum differ-
ence. For instance, the proxy detector can normalize the
difference of fifteen milliseconds to a range between zero
and one, with one representing a difference of three hundred
milliseconds or more (e.g., the score can be capped at a value
of one). In the illustrated example, therefore, the proxy
detector 116 generates a score 416 of 0.05 (i.e., 15 ms/300).

[0044] In other examples, the score can be the difference
itself, without normalization. In further examples, the score
can be generated by determining the sum of the two time
periods, and/or by normalizing the sum according to a
predefined range. Various other mechanisms will also occur
to those skilled in the art for generating the score. Any
mechanism selected for generating the score at block 335
reflects the fact that when the transport-layer connection is
established with a client device 108 that is also the client
endpoint for the secure link subsequently established over
the transport-layer connection, the separation between first
and second time periods is expected to be relatively small.
In contrast, when the transport-layer connection is estab-
lished with a client device 108 that is not the client endpoint,
the separation between the first and second time periods is
expected to be greater. Thus, the score-generation mecha-
nism is selected to produce higher (or lower) scores for
greater differences between time periods, and lower (or
higher) scores for smaller differences between time periods.

[0045] Following generation of the score at block 335, the
proxy detector 116 can select a handling action for the client
request 112, and/or for subsequent client requests 112 using
the same secure link. For example, at block 340, the proxy
detector 116 can be configured to compare the score to a
threshold. In examples in which higher scores indicate
higher likelihoods of proxying, therefore, the proxy detector
116 can determine whether the score exceeds a previously
defined threshold. When the determination is affirmative,
indicating that the relevant client device 108 is likely
operating as a proxy, the proxy detector 116 can discard
subsequent requests over the secure link at block 345,
block/terminate the secure link previously established, or the
like.

[0046] When the determination at block 340 is negative,
the proxy detector 116 can forward any client requests
received over the secure link to the auxiliary detector 110
and/or request handler 104, along with the score, at block
350. In some examples, blocks 340 and 345 are omitted, and
the proxy detector 116 simply forwards the score and
request(s) to the auxiliary detector 110. The auxiliary detec-
tor 110 can be configured to determine whether the request
(s) are likely to have been generated by a bot, based at least
in part on the score.

Nov. 23,2023

[0047] Turning to FIG. 5, another example performance of
the method 300 is illustrated, to contrast with the perfor-
mance shown in FIG. 4, in which the client device 108-1
itself is both the nearest transport-layer device and the client
endpoint for secure communications. In FIG. 5, on the other
hand, the client device 108-3 acts as a proxy for the client
device 108-4.

[0048] Prior to receipt of a request a the proxy detector 116
at block 305, the client device 108-4 initiates a transport-
layer connection 500 with the client device 108-3, e.g., via
a three-way handshake sequence implemented via the mes-
sages 500a (e.g., a SYN message), 5005 (e.g., a SYN-ACK
message), and 500c¢ (e.g., an ACK message). Either after
establishment of the connection 500, or (as illustrated)
contemporaneously with establishment of the connection
500, the client device 108-1 initiates a transport-layer con-
nection 504 with the proxy detector 116. Specifically, at
block 305 the proxy detector receives a message 504q (e.g.,
a SYN message). At block 310, via the messages 5045 and
504c¢, the proxy detector 116 and the client device 108-3
complete the establishment of the connection 504. At block
315, the proxy detector 116 determines a first time period
512 associated with the transport-layer connection 504, such
as the RTT between transmission of the message 5045 and
receipt of the message 504c.

[0049] Once the connections 500 and 504 are established,
the client device 108-4 can request establishment of a secure
link 508 over the connections 500 and 504. Of particular
note, the secure link 508 tunnels through the client device
108-3, and therefore cannot be initiated by the client device
108-3 itself. As a proxy, the client device 108-3 is configured
only to route encrypted communications between the client
device 108-4 and the proxy detector 116, using the connec-
tions 500 and 504 (but without accessing the contents of
such communications).

[0050] At block 320, therefore, the proxy detector 116 can
receive a request 508a (e.g., a Client Hello message) from
the client device 108-3. The request 508a was originated at
the client device 108-4, although that fact is not visible to the
proxy detector 116. The client device 108-3 may acknowl-
edge the message 508a to the client device 108-4 via a
message 5085.

[0051] At block 325, the proxy detector 116 is configured
to initiate or continue the relevant handshake sequence to
establish the secure link 508. For example, as noted earlier,
the proxy detector 116 can send an acknowledgement mes-
sage 508¢, which may be relayed to the client device 108-4
in some examples, but is not in the illustrated example. The
proxy detector 116 can then send a message 5084, such as
the previously mentioned Server Hello message, containing
information necessary to establish the secure link 508 (e.g.,
supported cipher suites, and the like). The message 5084 is
relayed to the client device 108-4, and acknowledged via the
an ACK message 508¢ by the client device 108-3. The
message 508e, however, is not used by the proxy detector
116 to determine a time period 516 associated with the
secure link 508, because the message 508¢ cannot be guar-
anteed to have originated at the client endpoint. The message
508¢, that is, does not contain information that can only be
generated or otherwise provided by the client endpoint of the
secure link 508, and therefore may not (and in the illustrated
example, does not) represent a true RTT between the proxy
detector 116 and the client endpoint.

US 2023/0379363 Al

[0052] Once the message 5084 is received at the client
device 108-4, the client device 108-4 may send an acknowl-
edgement 508/, which is not forwarded to the proxy detector
116 in this example, but can be forwarded in other examples.
The client device 108-4 then sends a message 508g to
complete the handshake sequence and establish the secure
link 508. The message 508g is analogous to the message
404¢ shown in FIG. 4. To determine the time period 516 at
block 330, the proxy detector 116 determines the time
elapsed between transmission of the message 5084, and
reception of the message 508g. More generally, as noted
earlier, the proxy detector 116 determines the time elapsed
between a message transmitted from the proxy detector 116
that necessarily terminates at the client endpoint for the
secure connection 508, and a subsequent expected message
that necessarily originates at the client endpoint.

[0053] As seen in FIG. 5, the need to relay messages
between the client devices 108-3 and 108-4 increases the
time elapsed to complete the secure link 508, while the time
required to complete the transport-layer connection 504 is
unchanged relative to FIG. 4. That is, the presence of a proxy
does not affect the connection 504, but lengthens the RTT
associated with the secure link 508.

[0054] To determine a score at block 335, the proxy
detector 116 can be configured, as in the example of FIG. 4,
to determine the difference between the time periods 512 and
516, and to normalize that difference, e.g., against a maxi-
mum of three hundred milliseconds. The result, as shown in
FIG. 5, assuming values of forty milliseconds and two
hundred milliseconds for the time periods 512 and 516, is a
score 520 of 0.53. That is, the score 520 is significantly
higher than the score 416, indicating a greater likelihood that
the client device 108-3 is operating as a proxy.

[0055] As will be apparent, therefore, the system 100 and
specifically the proxy detector 116 enables the detection of
proxied client requests 112 in a manner sufficiently robust to
detect residential proxies that may be challenging to detect
using previous proxy-detection mechanisms, and in a man-
ner that does not require the deployment of executable code
to client devices, or any modification to the message flows
between client devices 108 and the proxy detector 116.

[0056] Specific example embodiments have been
described above. Those skilled in the art, however, will
understand that various meodifications can be made to the
above-examples, within the scope of above teachings. The
scope of the claims below should therefore not be limited by
the specific embodiments set forth in the above examples,
but should be given the broadest interpretation consistent
with the description as a whole.

[0057] Certain expressions may be employed herein to list
combinations of elements. Examples of such expressions
include: “at least one of A, B, and C”; “one or more of A,
B, and C”; “at least one of A, B, or C”; “one or more of A,
B, or C”. Unless expressly indicated otherwise, the above
expressions encompass any combination of A and/or B
and/or C.

[0058] Those skilled in the art will further understand that
in some embodiments, the functionality of the application
212 as described above may be implemented using pre-
programmed hardware or firmware elements (e.g., applica-
tion specific integrated circuits (ASICs), electrically eras-
able programmable read-only memories (EEPROMs), etc.),
or other related components.

Nov. 23,2023

1. A proxy detection method in a server, the method
comprising:

in response to receiving, from a client device, a first

request to establish a transport-layer connection
between the client device and the server, transmitting a
first message to the client device according to a first
handshake sequence, for establishing the transport-
layer connection;

determining a first time period associated with completion

of the first handshake sequence;
in response to receiving, from the client device over the
transport-layer connection, a second request to estab-
lish a secure link between a client endpoint and the
server, transmitting a second message to the client
endpoint according to a second handshake sequence,
for establishing the secure link;
determining a second time period associated with comple-
tion of the second handshake sequence; and

generating, based on the first time period and the second
time period, a score indicating a likelihood that the
client device is a proxy for the client endpoint.

2. The method of claim 1, wherein the transport-layer
connection is based on the Transport Control Protocol
(TCP).

3. The method of claim 2, wherein the first message
includes a SYN-ACK message; and wherein the first time
period is a time elapsed between transmission of the first
message, and receipt of an ACK message from the client
device.

4. The method of claim 1, wherein the secure link is based
on one of (i) the Transport Layer Security (TLS) protocol,
and (i1) the Secure Sockets Layer (SSL) protocol.

5. The method of claim 4, wherein the second time period
is a time elapsed between transmission of the second mes-
sage, and receipt of a next message from the client endpoint
according to the second predefined handshake sequence.

6. The method of claim 1, wherein generating the score
includes determining a difference between the first and
second time periods.

7. The method of claim 1, further comprising selecting a
handling action for future requests over the transport-layer
connection, based on the score.

8. The method of claim 7, wherein the handling action
includes discarding the future requests when the score
exceeds a threshold.

9. The method of claim 1, further comprising providing
the score to an auxiliary detector.

10. A server, comprising:

a communications interface; and

a processor configured to:

in response to receiving, from a client device, a first
request to establish a transport-layer connection
between the client device and the server, transmit a
first message to the client device according to a first
handshake sequence, for establishing the transport-
layer connection;

determine a first time period associated with comple-
tion of the first handshake sequence;

in response to receiving, from the client device over the
transport-layer connection, a second request to estab-
lish a secure link between a client endpoint and the
server, transmit a second message to the client end-
point according to a second handshake sequence, for
establishing the secure link;

US 2023/0379363 Al

determine a second time period associated with
completion of the second handshake sequence; and

generate, based on the first time period and the second
time period, a score indicating a likelihood that the
client device is a proxy for the client endpoint.

11. The server of claim 10, wherein the transport-layer
connection is based on the Transport Control Protocol
(TCP).

12. The server of claim 11, wherein the first message
includes a SYN-ACK message; and wherein the first time
period is a time elapsed between transmission of the first
message, and receipt of an ACK message from the client
device.

13. The server of claim 10, wherein the secure link is
based on one of (i) the Transport Layer Security (TLS)
protocol, and (ii) the Secure Sockets Layer (SSL) protocol.

14. The server of claim 13, wherein the second time
period is a time elapsed between transmission of the second

Nov. 23,2023

message, and receipt of a next message from the client
endpoint according to the second predefined handshake
sequence.

15. The server of claim 10, wherein the processor is
configured, to generate the score, to determine a difference
between the first and second time periods.

16. The server of claim 10, wherein the processor is
further configured to select a handling action for future
requests over the transport-layer connection, based on the
score.

17. The server of claim 16, wherein the handling action
includes discarding the future requests when the score
exceeds a threshold.

18. The server of claim 10, wherein the processor is
further configured to provide the score to an auxiliary
detector.

