SDN Framework for QoS provisioning and latency
guarantee in 5SG and beyond

Sofiane MESSAOUDI
EURECOM
Sophia Antipolis, France
sofiane.messaoudi @eurecom.fr

Abstract—In this paper, we unveil the Software-Defined Low
Latency (SDLL) framework based on Software-Defined Net-
working (SDN) to provision the Quality of Service (QoS) and
guarantee ultra-low latency in 5G and beyond Transport Networks
(TN). SDLL aims to tackle Time Sensitive Networking (TSN)’s
weaknesses by providing agility and flexibility in terms of Traffic
Engineering (TE) and Queue Management (QM) to guarantee
low end-to-end (E2E) latency even under congested links. SDLL
provides a flexible and on-demand way to change end-to-end
paths and queue configurations (ex., add or remove queues). We
conducted extensive experimentation by implementing SDLL using
Open Network Operating System (ONOS) and Open vSwitch
(OVS) tools and comparing its performances against two standard
solutions: SDN Shortest Path (SDNSP) (one queue per port)
and Software-Defined QoS (SDQoS) (three queues per port).
Obtained results indicate that SDLL can guarantee low E2E
latency compared to the two other solutions, particularly when:
(1) the links are congested and (2) many low-latency critical
services are run in parallel.

I. INTRODUCTION

Although 5" Generation (5G) is still under deployment, the
research community is already establishing the requirements
of 6" Generation (6G) systems. Ultra low latency is one of
the main requirements that should be natively supported, which
is not been well addressed in 5G. The expected services and
applications [1] in 6G such as holograms and tactile Internet
need a highly synchronized communication from the Radio
Access Network (RAN) to the network service to guarantee
ultra-low End-To-End (E2E) latency.

5G and beyond connectivity involves different network
segments, i.e., RAN, Core Network (CN), and Transport
Network (TN). The TN includes not only the Backhaul links
connecting the CN to the RAN but also the Fronthaul and
Midhaul, which result from the functional splits of the RAN
that appeared in 5G [2]. Therefore, to guarantee a very low E2E
latency, the three parts need to be optimized, i.e., RAN, CN,
and TN. For the RAN, works need to be done to reduce the
slot duration further and improve the Hybrid Automatic Repeat
Request (HARQ) mechanisms [3]. The reduction of latency
at the CN has already been addressed in 5G, where network
slicing is used. However, ensuring very low latency at the TN
level is still challenging.

Most of the existing approaches to guarantee low latency
in TNs are relying on Time Sensitive Networking (TSN), which
was devised by the Institute of Electrical and Electronics

Adlen Ksentini
EURECOM
Sophia Antipolis, France
adlen.ksentini @eurecom.fr

Christian BONNET
EURECOM
Sophia Antipolis, France
christian.bonnet@eurecom. fr

Engineers (IEEE). TSN specifications define two standards:
The first one is based on synchronous communication (IEEE
802.1Qch and IEEE 802.1Qbv) [4]. It uses a precise and
common time reference shared among all the TSN devices (i.e.,
routers). It allows the scheduling of the traffic transmission
in a deterministic way to maintain a lower bound for the
latency. However, it needs a network-wide coordinated time,
which hinders the scalability of the network. In addition,
using reserved time slots for each flow may lead to poor
utilization of network resources. The second one is based on
asynchronous communications (IEEE 802.1Q) [5]. In contrast
to the synchronised version, no common time reference is
needed and shared between devices. Each device implements
advanced scheduling on a two-level queuing hierarchy to shape
the traffic and achieve a bounded latency at each hop.

Although the TSN is an interesting approach, it still has
weaknesses in fully sustaining the low latency expectation
of 5G and beyond services. On one hand, TSN provides hop-
by-hop bounded latency and not E2E latency guarantee; the
latter is highly needed when multiple paths are available.
Indeed, high E2E visibility is crucial when the links get
congested, and changing the path is necessary to continue
ensuring low latency. On the other hand, TSN adopts a static
configuration of the different queues of the switch, which
has limitations when several Ultra-Reliable Low Latency
Communications (URLLC) traffics are competing for the same
high-priority queue. Indeed, 5G specifications define more than
10 services as delay critical, with different levels of criticality.
For instance, Electricity Distribution is the highest delay critical
service (Sms E2E latency), while Vehicle-to-Everything (V2X)
message and real-time gaming can be considered less critical
(50ms E2E latency). Accordingly, the network should be in the
capacity to protect the highest delay critical services, even in
the presence of others. This can be achieved only by using an
agile Queue Management (QM) system, which is impossible
in TSN.

To overcome the above-cited limitations, in this paper,
we embrace an Software-Defined Networking (SDN)-based
approach. SDN provides all the flexibility and agility to
guarantee E2E low latency even when several delay-critical
services are running in parallel. SDN provides the necessary
functions, known as Create, Read, Update, and Delete (CRUD),
to program and monitor the network elements. It includes

dynamic QM, to ensure a real-time E2E control of the
different flows running in the network. The proposed solution,
namely (Software-Defined Low Latency (SDLL)), relies on
the new data plane 5G specifications. It uses the Quality Flow
Identification (QFI) [6] information to map the 5G services
to TN traffic classes (and queue) to fulfill the needed Quality of
Service (QoS). Furthermore, SDLL adapts to the network load
by dynamically updating queues (add or remove) which permits
segregating among URLLC traffics and hence protecting the
highest priority traffics (strongest delay-critical services). The
contributions of this work are manifolds:

« We introduce a SDN-based novel framework for QoS
provisioning in 5G and beyond, featuring a low latency
guarantee;

. We propose a Traffic Engineering (TE) algorithm that
ensures efficient resource management while providing
a bounded E2E latency for URLLC services even in a
loaded network;

« We present a dynamic QM algorithm to enforce priority
among URLLC services.

The rest of the paper is organized as follows: Section 2
introduces the state-of-the art solutions. Our solution is shown
in Section 3 and evaluated in Section 4. We conclude the paper
in Section 5.

II. RELATED WORK

In this section, we review different works that have been done
in correlation with QoS provisioning and latency guarantee in
communication networks.

In [7], authors developed an SDN framework
named Software-Defined Queuing (SDQ) for QoS provisioning
by selecting the right path and queue according to the
network bandwidth management. Indeed, they route the traffic
through the path with the smallest available bandwidth weight.
However, their configuration was static and not updated
compared to our SDLL solution.

[8] proposed a queuing model to analyze an Open-
Flow—based SDN network. They also considered a classification
of the incoming packets. But, the topology was fixed and
included only one switch, which reduced the number of
available paths and hence the complexity of the conducted
analysis.

[9] delivered a framework that synthesizes paths through
the network. To guarantee that flows meet both the bandwidth
and E2E timing requirements, they solved a multi-constraint
optimization problem using a heuristic algorithm and exhaustive
emulations and experiments on hardware switches to demon-
strate the techniques and feasibility of their approach based
on SDN. Despite that, their solution is theoretical and is not
dynamic in term of queue management comparing to ours.

In [10], evaluations were done on the performance of LEAR-
NET through simulation in a 5G asynchronous deterministic
backhaul network where incoming flows have characteristics
similar to the four critical 5G QoS Identifiers (5QIs) defined
in 3rd Generation Partnership Project (3GPP) Technical Specifi-
cation [11]. This solution is based on asynchronous TSN which

provides hop-by-hop bounded latency and not E2E latency
guarantee (the latter is highly needed when multiple paths are
available).

All the above solutions do not consider the QM part and
their monitoring. Instead, our solution considers several inputs
(i.e., packets priority, number of hops, number of queues, and
their loads) in the path computation to route traffic, aiming at
achieving a guaranteed E2E low latency for critical applications
even in a loaded network.

III. SOFTWARE DEFINED LOW-LATENCY (SDLL)
A. SDLL concept and interaction with 5G data plane

SDLL is a SDN-based solution that controls, monitors, and
manages a 5G TN (Backhaul) composed of a number of
programmable switches. SDLL uses the CRUD functions to
ensure agility in managing 5G service traffic to guarantee
required QoS, and particularly low-latency for delay-critical
services (known as URLLC services). Figure 1 shows the
positioning of SDLL in a 5G data plane. To recall, to create a
communication link with outside and start sending and receiv-
ing traffics, a User Equipment (UE) needs to establish a session
that creates dedicated bi-directional tunnels or bearers. At the
core network side, the bearer encapsulates UE’s packets Internet
Protocol (IP) in GPRS Tunneling Protocol (GTP) tunnels
between the gNodeB (gNB) and User Plane Function (UPF).
The GTP header includes information on the user traffic, like
the QoS that the gNB and UPF should apply to the tunnel. This
information in 5G corresponds to the 5G QFI field. 5G QoS
Identifier (5QI) is a mechanism whereby packets are classified
into various QoS classes. Thus, the QoS can be tailored
to specific requirements. Each QoS class has specific QoS
characteristics (such as packet delay and packet loss). There
are approximately two dozen standard 5QI values, grouped
into two types of resources: Guaranteed Bit Rate (GBR) and
Non-Guaranteed Bit Rate (Non-GBR). QoS characteristics
include resource type, priority level (lower number implies
higher priority), Packet Delay Budget (PDB), Packet Error
Rate (PER), Maximum Data Burst Volume (MDBYV), etc.
The QFI value is assigned by the 5G CN according to the UE
subscription and the service to run. Therefore, QFI is a critical
value that needs to be taken into account when carrying the
tunnel traffic over the 5G TN or Backhaul.

As depicted in the figure, the SDLL is composed of
the SDN controller and the SDN applications that run the TE
and QM. The SDN control plane is independent of the 5G
network infrastructure. The only interaction between SDLL
and 5G data plane is the border switches (i.e., the routers
connecting the gNB and UPFs to the 5G TN) that need to
map the QFI to a Differentiated Services Code Point (DSCP)
value. In SDLL, we use the mapping proposed in [12], which
specifies a set of 3GPP QoS Class Identifier (QCI) and 5QI
to DSCP mappings to reconcile the marking recommendations
offered by the 3GPP with the recommendations offered by
the Internet Engineering Task Force (IETF). This maintains a
consistent QoS treatment between 5G networks and the Internet.
It is worth noting that border switches need to parse the GTP

header to extract the QFI and modify the IP header (layer 2)
with the corresponding DSCP value to route the packet through
the 5G TN according to SDLL control. The mapping process
is done in the two directions of the traffic, i.e., Uplink and
Downlink.

(spLL

Legend:

------ SDN Control Plane

------ Transport Network Data Plane
Data Plane (Radio)

' (0 Tunnel

____________________________ .e'_..__,'_____l_____\‘__'.__‘,_________________________

DW%» .

!
fir= aNB!, Internet
H

'
5G-SDN CONTROL Plane | f
'

SDN Application Layer

SDN Control Layer

5G Radio Access 5G Transport Network (Backhaul)

Figure 1: The 5G SDNized network infrastructure.

A more focused representation of SDLL is shown in Figure 2.
Here, we detail the different elements interacting SDLL
with 5G TN. The solution is represented within the three layers
of the SDN. The SDLL application is located on the first layer.
It is installed on top of a SDN controller. In this work, it
corresponds to a Java-made Open Network Operating System
(ONOS) controller. The SDLL applications contain two parts,
namely queue management and traffic engineering. The former
utilizes ONOS Representational State Transfer Application
Programming Interface (REST API) and the Open vSwitch
Database Management (OVSDB) Protocol to manage queues
at the switches and get their statistics, while the former decides
on the flow rules to communicate to switches via the OpenFlow
protocol. Accordingly, each packet entering a switch is routed
by designating the right queues along a chosen path. It is worth
mentioning that our solution is applicable to Open vSwitch
(OVS) but can be intended to any other technology (i.e., switch)
with integrated Data Base (DB) and NorthBound Interfaces
(NBI) that enable the QM and the flux rules installation.

SDLL Framework

Traffic Engineering Queue Management
Client

ONOS Rest API j— A
(Northbound API)
A

Application Layer

Server

OpenFlow
ovsDB
(Southbound API)

Control Layer A

ONOS Controller —>

OpenFlow
OVSDB Client
(Southbound APl) ~~ |

Server

Infrastructure

Layer Switch n

= |Port n-2| |Port n-1

Figure 2: The architecture view of the SDLL framework.

A flow rule ¢ is composed of: Match set (1) to identify a
flow; Action set (t) to define the actions executed on each
packet of the flow; and Priority (p) that is used to relatively
order rules in the forwarding switch. In our solution the Match
set includes the DSCP value of the packets, the Action set is
to route the packets of each flow through a set of port numbers
and queue IDs, while the priority is the same for all the flow
rules. Please refer to the equations 1, 2, 3, and 4.

&={[u], 171, p} (€]
©=10,1,2,..,56})
7 ={output(port,ymper, queue;q)} 3)
0=10,1,2,...,65535} 4)

B. SDLL details

In SDLL, for every flow newly coming into the network, a
PACKET-IN message is generated by the respective access node
(i.e., border switches of the SDN forwarding plane or Backhaul).
As a response, the process shown in Algorithm 1 is triggered.
In what follows, we describe the two main components of
the SDLL framework along with the workflow they use.

1) Traffic Engineering (TE): This module is responsible for
choosing an E2E path for every incoming packet and hence
for the 5G flow. It operates as follows: (1) Check if there
is already an allocated path (i.e., flow rule) for the incoming
packet. (2) If not, list all the available paths between the source
and the target destination. (3) Choose the paths according to
the packet priority: - Shortest path (the path with the minimum
number of hops) for High Priority (HP) packet to satisfy its
requirements; - The path with the minimum queue number (the
sum of the queues number in the ports of a given path) (see
Eq. 5) for Medium Priority (MP) packet to be sure that the
average output rate of the queues in that path is maximum so
that it reduce the E2E transmission delay; - The path with the
minimum average queue load (the sum of the average queues
loads in the ports of a given path) (see Eq. 7) for Low Priority
(LP) packets so that the E2E queuing delay be minimal. It is
worth mentioning that border switches need to parse the GTP
header to extract the QFI and modify the IP header (layer 2)
with the corresponding DSCP value to route the packet through
the 5G TN.

-1
wemind T or}

i=1

w is the minimum queue number in the list of paths, 5)
WhCl‘C{ 7 is the number of hops between source and destination,

p; is the number of queues in a port i

. [0j,i*x100
y=min { 5 }
v is the shortest path hop by hop minimum queue load, (6)
where 0j,; is the load of queue j in port i,

§ is the queue size (100 packet for each)

) {n—l Qi (Uj‘iXIOO]}
@=min _
i=1j=1 4)]

Where{ ¢ is the minimum average queue load in all the paths,

2) Queue Management (QM): For each flow, this module
enforces the QoS settings received from the SDLL framework
on the forwarding devices along the communication path
selected for the flow. This module implements the different
functions: CRUD queues, specifies the scheduling algorithms,
and sets the parameters for these queues. The detailed workflow
is described in Algorithm 1.

3) SDLL Workflow: The SDLL framework reduces the
load imbalances in the network. Also, the chosen path for
the specific traffic priority p ({0,1,2,3,4,8,10,12,14} for LP,
{16,18,20,22,24,26,28,30} for MP and {32,34,36,38} for HP)
is used as a reference for the QM module to install the QoS
settings and the required queues (lines 14, 22 and 24). The TE
module translates the chosen path into flow rules, which include
data such as the output port number and queue Identifier (ID)
(line 25). Furthermore, a threshold is specified for the HP
packets by y with a predicate of (80%, 50% and 30%) of 4.
Hence, if y is exceeded (line 15), the LP packets are diverted
to another ¢ path. Also, a new queue with higher priority for
HP* packets (u in {40,44,46,48,56}) is created in the switch
port where the HP packet is located and the other queues in
that port will be updated by reducing their maximum rate (lines
17, 18). Finally, the flow rules are pushed to the intermediate
nodes involved in the communication (lines 25 and 26).

IV. PERFORMANCE EVALUATION
A. Technical Details

In order to evaluate the performance of SDLL framework, we
consider a network topology composed of (8) virtual switches
and (24) hosts. Figure 3 depicts that topology. We use ONOS as
an SDN controller, OVS for the SDN switches and Mininet for
the network topology. Table I includes all technical details
of the envisioned setup. In the performance evaluation, a
maximum of 1,2 x 10% packet (5 x 10* packet for each host)
have been generated for each of the following two scenarios:

- &
-

G

i
=//

e .//l_

23 hosts

Figure 3: Network topology used for the setup.

Scenario 1: The 24 hosts are grouped into three sets of 8
hosts. Each group generates the same type of traffic (a;; is HP,
a;» is MP, and a;3 is LP). In each group, we choose a host
as a reference, while the others are seen as interference (i.e., 3

hosts for traffic interests and 21 hosts for traffic interference).

We varied the number of packets generated by each host (a1 =

Algorithm 1 SDLL Workflow
Inputs: {Paths} : {Hosts} : {Links} : {Flow Rules} :
{Queues statistics}
Outputs: {New Flow Rule with best path and queue}
The controller receives a packet with a u (packet-in
message)
if it exists a path with a flow rule for this packet with
the DSCP p then:
Send the packet via this path and queues
else
Find all the potential paths to the destination
if path list is empty then:
The destination is unreachable
else
Sort the list by (7, v, @)
Check the packet priority u
if pu =32 then:
Chose the path with the minimum 7
if y> Threshold then:
Diverts (¢ < 16) packets to other ¢ paths
Create a new queue and update the others
maximum rate
Split the (u = 32) packets and diverts the
(1 =40) packets to the new queue
else
Goto 23
elseif (1 <32) and (u=16):
Chose the path with
elseif (1< 16) and (u=0):
Chose the path with ¢
Install the flow rules on the devices for the path
Goto 5

5x 10%, azj=2.5x 10%, and a3j=5x 103; where j represents
the type of the traffic as quoted above), and y from (80%,
50%, and 30%). Comparison is made with the default and
static configurations SDN Shortest Path (SDNSP) and Software-
Defined QoS (SDQoS). SDNSP is configured with one queue
on each port of the network switches while SDQoS includes
three queues on each. Also, there is no QM on the two solutions.

Scenario 2: In this scenario, we focus only on HP traffic.
Therefore, 12 hosts generate HP packets and the 12 others HP*
with (5 x 10* packet for each). Only two hosts are considered
for traffic interest. The others are seen as interference. We
also varied y from (80%, 50%, and 30%) for HP packets. We
compared the results also with SDNSP and SDQoS.

We have put the network under realistic conditions aiming
at stressing the switches (especially Switch 1, which is the
entry point of the entire hosts) with a large number of packets
and ensuring none of the queues are empty.

B. Results

In the performance evaluation, we consider the network
latency as the main comparison metric.

- L] n n - 30 | eaverage ‘ —
© || © = max = 600 |— |
30 I i 2
g 0 g * min 3
> [® i > 20 (- > L il
Q Q Q
= 20 | = =]
5} |3} [= 13}
2 | | 5 < 400 |- 1
— 10 = 10 — ~
[m
2 2| 1o 1
=]I | | | = =
0 b o I | | | | | 200 | ! } } ! } } —
al a2 a3 all a2l a3l al2 a22 a3 al3 a?23 a3s3 all a2l a3l al2 22 a3s?2 al3 a23 a33
(a) SDNSP (b) SDQoS (c) SDLL (y = 80%)
T T T T T
2600 |- 7 2 600 |-
= 3
= =
> = B > = i
Q Q
= =
2 £ 400
] f— —] — -
3 400 3
m o = -
o [1 o
5a) 5a)
200 & \ \ \ \ \ \ \ — 200 |- \ \ I I I I I —
all a2l a3l al2 22 as32 al3 @23 @33 all a2l a3l al2 22 as32 al3 23 @33

(d) SDLL (y = 50%)

(¢) SDLL (y =30%)

Figure 4: Scenario 1 E2E latency results experienced by (HP, MP, LP) packets (a.;) and handled by SDNSP and SDQoS
static solutions, and SDLL framework with different threshold (y) and number of packets (a;).

Table I: Technical details of the setup.

Ubuntu 20.04.4 LTS

ONOS 2.7.0, Mininet 2.2.2, OpnVSwitch 2.13.5,
Ping iputils s20190709, OpenFlow 1.6

Linear

Maximum of 1.2 % 10% packet divided between
24 hosts (5 x 104 packet each)

10,000 packet/second

Operating System

Software and protocols

Topology

Packets generated

Generation rate

Packet size 65507 bytes

Number of iterations 100

Priority queues High, medium and low
Bandwidth 50 Gb/s for each link

Queuing mechanism Hierarchical Token Bucket (HTB)

Figure 4 depicts the obtained results in scenario 1 (in
ms and ps) regarding y, and a@;; packets type and number.
Indeed, figure 4a, 4b and (4c, 4d, 4e) shows the (minimum,
average and maximum) E2E latency experienced on scenario
1 by SDNSP, SDQoS and (SDLL, respectively) for HP, MP,
and LP (a;; is HP, a;, is MP, and a;3 is LP) packets with
different y relative to HP queue load (80%, 50% and 30%)
and a;; (a1j =5x10% apj =2.5x10%and az; =5x10°). It
is worth mentioning that SDNSP and SDQoS are traffic type
agnostic solutions. We make three main observations here.

« Low latency is guaranteed by SDLL: As expected in these
figures, the latency is bounded under 649.9 us for HP,
MP, and LP traffic. As mentioned above, for SDNSP
and SDQoS, packets of all traffic types traverse the
shortest path (i.e., from switch 1 to switch 2 to switch 3 as
shown in Figure 3) until it gets saturated, so the packets
split to other longer paths (such as from switch 1 to switch
4 to switch 5 to switch 3) which increase the latency. The
value is less than 34.4ms, and this represents a factor
of almost x53 in comparison with SDLL value. We also
notice a reduction in latency on this experience when
a;. is getting low which is related to the underload of
the system (queues and links). Furthermore, we can see a
difference in the latency between each type of traffic when

using SDQoS compared to SDNSP, and this is related to
the prioritization of HP and MP over LP packet by setting
the HP, MP and LP queues maximum rate to (50%, 30%,
and 20%) of the total bandwidth respectively.

« (Almost) similar results were seen for each priority: We
observe that the average latency of the three types of
traffic (i.e., HP, MP and LP) is comparable with a small
tendency to prioritize the HP packets over the MP packets
and the MP over the LP packets. Indeed, exploiting
the same high bandwidth offered through the different
switches, hence providing several paths, the SDLL could
handle incoming packets at each switch faster and without
significant queuing delays. It can also be noticed that
when the network is loaded, the latency experienced by
packets of the same traffic category does not fluctuate
hugely (0.3ms with SDLL and 32.16ms with SDNSP)
and remains stable below a target value, which is in line
with the core spirit of deterministic networking.

« Very low latency is guaranteed by reducing the threshold:
Indeed we can see from the pictures that the latency
of HP packets is correlated with the threshold value related
to hop-by-hop queue load. Thus, a low threshold could
be used for strict priority traffic to make a ceil on the
queues load. Hence this will reduce the queuing delay
and guarantee very low latency for that type of traffic.

Figure 5 depicts the Cumulative distribution function (CDF)

of latency (in ms and us) obtained for HP and HP* packets as
addressed in scenario 2. It shows as in scenario 1, a bounded
latency around 650 s when SDLL is in use,19 ms for SDQoS
and 25ms for SDNSP with more advantage for HP* traffic
over HP in SDLL related to the threshold value. The results
reveal that our solution is well suited for different numbers
and types of traffic. Indeed, in SDLL, the entire HP and HP*
traffic are sent over the shortest path, which is from switch
1 to switch 2 to switch 3. When the queues in this path are
overloaded, new queues are created on this path, and others

09 ! B 0.9 H — mp+ = 09 H — wp -

0.8 [~ 1 8 0.8 [{ —— w 1 B 08 1 — np*. y=s80% B

0.7 B 0.7 H B 0.7 1 oty msom -

o 06 = 0.6 [_ 0.6 [. -
a 05 B 0.5 B 0.5 [T HPT.y=30% -
O o4 \ - 04 |- - 04 |- .
03 |- /f 4 03 |- B 03 |- B

0.2 | 02 |- = 02 |- -

0.1 [= 0.1 [= 0.1 |- -

I I L //\/ I I I [L L L | . I I I

15 17 19 21 23 25 27 29 10 11 12 13 14 15 16 17 18 19 20 200 270 340 410 480 550 620 690

Average E2E latency (ms)

(a) SDNSP

Average E2E latency (ms)

(b) SDNQoS

Average E2E latency (us)

(c) SDLL

Figure 5: Scenario 2 E2E latency results experienced by HP and HP* packets when using SDNSP, SDQoS and SDLL with
v = (80%,50%,30%) for HP packets.

are updated as explained previously in the Algorithm 1.

Figure 6 shows the latency variation during a period of time
when using SDLL. We considered a sample of 200 packets
sent over 50,000 HP and HP* packets for each host during a
period of 1.3 seconds. It shows the adaptability of the solution
regarding the variation of the latency, which increases when
the HP queue is filling up, and when 7y is exceeded (time =
0.24s), a new queue is created with a high maximum rate,
while other queues are updated to reduce the average E2E
latency of HP* packets.

500
450
400
350
300
250
200
150
100

50

0 i | i i J I
0 0.2 0.4 0.6 0.8 1 12

Time (s)

T T T I T
AN I DL AN YA

—— HP

—— npt, y=30%

Average E2E latency (us)

Figure 6: SDLL latency variation during a period of time.

These results can confirm the efficiency of the TE module
for guaranteeing a very low E2E latency bound for a different
type of traffics. They also show the power and the adaptability
of the QM module for the same purpose, which is the main
contribution of SDLL.

V. CONCLUSION

In this paper, we introduced SDLL solution for QoS
provisioning and latency guaranty in 5G and beyond. The
main purpose was to explore all the E2E paths in the 5G TN
and choose the optimal ones in terms of the number of hops,
number of queues, and queues load in a dynamic and seamless
way. It allows TE and QM in real time to guarantee low latency
according to traffic load and priority. Results show that our
solution outperforms two reference solutions. Our future focus
will be working on a theoretical way to set the best thresholds
and implementing this solution on an open-source hardware
target (NetFPGA) [13] to demonstrate its efficiency in a real
and scaled environment.

ACKNOWLEDGMENT

This work was partially supported by the European Union’s
Horizon 2020 Research and Innovation Program under the
5G!Drones project (Grant No. 857031).

REFERENCES

[1] L-T. N. 2030, “A blueprint of technology, applications and market
drivers towards the year 2030 and beyond,” 2019. [Online].
Available: https://www.itu.int/en/ITU-T/focusgroups/net2030/Documents/
White_Paper.pdf

A. Ksentini, P. A. Frangoudis, A. PC, and N. Nikaein, “Providing low
latency guarantees for slicing-ready S5g systems via two-level MAC
scheduling,” IEEE Netw., vol. 32, no. 6, pp. 116—123, 2018. [Online].
Available: https://doi.org/10.1109/MNET.2018.1800005

K. Boutiba, A. Ksentini, B. Brik, Y. Challal, and A. Balla, “Nrflex:
Enforcing network slicing in 5g new radio,” Comput. Commun., vol. 181,
pp. 284-292, 2022.

L. Zhao, P. Pop, and S. S. Craciunas, “Worst-case latency analysis
for IEEE 802.1gbv time sensitive networks using network calculus,”
IEEE Access, vol. 6, pp. 41803-41815, 2018. [Online]. Available:
https://doi.org/10.1109/ACCESS.2018.2858767

Z. Zhou, J. Lee, M. S. Berger, S. Park, and Y. Yan, “Simulating
TSN traffic scheduling and shaping for future automotive ethernet,” J.
Commun. Networks, vol. 23, no. 1, pp. 53-62, 2021. [Online]. Available:
https://doi.org/10.23919/JCN.2021.000001

X. Yin, Y. Liu, L. Yan, and D. Li, “Qos flow mapping method of multi-
service 5g communication for urban energy interconnection,” in 2021
International Conference on Wireless Communications and Smart Grid
(ICWCSG), 2021, pp. 75-78.

A. N. Abbou, T. Taleb, and J. Song, “A software-defined queuing
framework for qos provisioning in 5g and beyond mobile systems,’
IEEE Netw., vol. 35, no. 2, pp. 168-173, 2021.

Y. Goto, B. Ng, W. K. G. Seah, and Y. Takahashi, “Queueing analysis
of software defined network with realistic openflow-based switch model,”
Comput. Networks, vol. 164, 2019.

R. Kumar, M. Hasan, S. Padhy, K. Evchenko, L. Piramanayagam,
S. Mohan, and R. B. Bobba, “End-to-end network delay guarantees
for real-time systems using SDN,” in 2017 IEEE Real-Time Systems
Symposium, RTSS 2017, Paris, France, December 5-8, 2017. 1EEE
Computer Society, 2017, pp. 231-242.

J. Prados-Garzon, T. Taleb, and M. Bagaa, “LEARNET: reinforcement
learning based flow scheduling for asynchronous deterministic networks,”
in 2020 IEEE International Conference on Communications, ICC 2020,
Dublin, Ireland, June 7-11, 2020. 1EEE, 2020, pp. 1-6.

3GPP TS 23.501, “System architecture for the Sg system, v16.1.0,” 2019.
J. Henry, T. Szigeti, and L. M. Contreras, “Diffserv to QCI Mapping,”
Internet Engineering Task Force, Internet-Draft draft-henry-tsvwg-
diffserv-to-qci-04, Apr. 2020, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-henry-tsvwg-diffserv-to-qci/04/

N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore,
“Netfpga sume: Toward 100 gbps as research commodity,” IEEE Micro,
vol. 34, pp. 32-41, 09 2014.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]

[13]

