WATMIN (Wireless ATM INterconnection)

Phase 1 Implementation Document

N. Tavier, C. Bonnet, D. Loisel

tavier, bonnet, loisel b 5
{ , bonnet, loisel} @ eurecom.fr RR-97-038

(AVATERRTE R

2515
Documentation Eurecom

RRh-9%-033

Sophia, September 1997.

Institut Eurécom
Departments of Mobile Communications & Corporate Communications

2229, route des Crétes
BP 193
06904 Sophia-Antipolis
FRANCE

Abstract

The purpose of this document is to introduce the WATMIN project, to describe its basic archi-
tecture and engineering concepts, and to describe the implementation of the Phase 1. The WAT-
MIN project aims to provide seamless network connectivity to mobile computer users. It proposes
to do this by employing the ATM technology as the backbone to interconnect multiple wireless
networks.

Unlike some other research projects which attempt to provide wireless access to ATM by
extending ATM over the wireless interface, WATMIN retains IP addressing and routing to the
mobile computers, and uses ATM only to interconnect the wireless network equipment.

Mobile computing poses a number of specific technical challenges, such as mobility manage-
ment, limited bandwidth of wireless links, address resolution protocol (ARP) problems, and hand-
offs for mobile hosts as they move. The paper details each of these problems and suggests
tailored solutions for each.

WATMIN uses an innovative approach to extend the possibility of mobility between IP net-
works, by retaining the IP addressing to the mobile hosts. It also considers the decentralised
architectures for communications between mobile hosts. It proposes adding intelligent process-
ing to the access points, in addition to their usual function of packet forwarding between the wire-
less and fixed segments. This document presents the Address Resolution Protocols problems
raised in such a context and the solutions we have proposed.

Introduction

ATM is becoming common place in the consumer market, with possible applications in all
types of services and networks. ATM offers high speed transport, and can be used for both local
and wide area networks supporting a range of applications including conventional data, and real
time applications. Wireless networks allow computer users the freedom to roam over a local area,
without the need to be physically interconnected with cumbersome cabling. The WATMIN (Wire-
less ATM INterconnection) project has proposed a solution dealing with both domains.

We consider a wireless network as consisting of a number of mobile hosts which are connected
to the fixed network via an Access Point (AP). Wireless LANs may be based upon either a cen-
tralised or decentralised architecture. If the communication is centralised, connections between
two mobile hosts are obliged to pass by the Access Point. For various reasons we have decided to
use the decentralised one: when mobile hosts within the same cell can communicate directly.
without passing via the Access Point.

This document presents the possibility of exploiting the benefits of ATM to provide mobility to
users, by acting as a backbone for the interconnection of multiple wireless IP networks. The
research has been carried out as part of the WATMIN (Wireless ATM INterconnection) project at
the Institut Eurécom.

Table of Contents

1.0 Summary of the WATMIN Projectcccooveiiienmmiiinines 4
L1 COUELIIE ..ooveensemeammonnnebesnd s sats s A TR R TS S AT RS A S Y e s e T AR R 4
[.2 Mobility Considerations in WATMIN ... 4
2.0 WATMIN Phase 1 DeSCIIPLIONccocciiismirerinisensnsressesssssssssossissssnsssesnsssnsssessssensans 5
2 PHASE | IOPBEOUIVES s mnysesiivacusssnssssssnsasntsssihsassvssvss sibmaess sussssvssnsoass sapmasanss s ssmoomssssessimammassd
2.2 Eurecom Testhed ATChIECIUTEiiiciiiviieieiieeiirer et san st s et 3
3.0 VWAL PEOLBEOL crsvrssesonmsnsnnmpnnonsnnnsssss s smssss o s msmre poses PO sy s e s s o Ag RS i s soiis it 7
3 Access Point Start-up / Registration of all ATM CHents ... 7
32 Mobile Host Association to an Access POINL.....cvoveeieirinieiniissnmiinrmnsssssiesssionissnsissimme: 7
Zia Connection between MH to an other Host, all in the same IP subnetworkc.cc.o.. 8
3.4 Address Resolution Protocol MeChaniSms. ... uueeecieiceiiiiiioiiisiimnsns s aesissnne g
4.0 Configuration Validationocoviceeeriieininii s 12
4.1 PANG TESL...cvovurvrereeerasessiaiusissmssassiessasasa s st s ee bbb bR SRR s 13
4.2 DEDUGZINE c.vcerevecuererersensinresrsasssisabsbst s bbb SRR R 13
4.3 L VIS R e 10, Jore e s e 14
5.0 Acerss Point ATCHHBOUIIE.ur»ereesusvisisinsiasiossiiseisossiss sossnsssns ikhss visgssasssa sossinsss 15
5.1 AP DeSiZN APPrOACHEScvurvmveriseistiistisis st 15
5.2 IP ROULING QN the AP ...ououiriiuiircinieisiitiss ittt 17
8.3 Architecture of the implementation of the Access POINU.....oooi 19
5.4 Address Resolution Protocol (ARP) ModifiCations.coeeiveiiminiiniiiiesn 20
5.5 Modification of the ATMARP mechanism in the AP ..o 23

List of Figures

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Proposed ATChItECIUIEcuoviuritiemnmiiinsii st 5
ARP PIODIEINS ..ccucviimiunreriisssstsinsssescsssisisssss st sisnsssesessssssistasissssssssass 9
ARP PIODIEIIS «..cueviiecucriieesieseie st 10
ARP SOIUtIONS ..cccvvvieiinriiissssressasensissssossnsssssrnesesssssnnsssssasesssssstss sesssssssanssases 11
Configuration for validation ... j2
The layer structure of @ NEEWOIK......coooiiniiiiiiii 16
[P 1ayer PrOCESSINE. ..vovurueirirmsrersessssestsesesss s e 16
Typical WATMIN Configuration.Access Point ATChISCIUR coeintipiens 17
Routing table of the Access Point (AP1) with two MHs registered. 18
Architecture of the Access POINL......cvcviriiiiiiniesieniinsins 19
Flow Chart of arp_rcv() fUnCion. ..o 21
Flow Chart of arp_rcv() function Watmin MOATHEE, ... oy 22

1.0 Summary of the WATMIN Project

1.1 Outline

WATMIN will provide an ATM interconnection service between multiple wireless LANs. The
ATM network will serve as a backbone for the transfer of data between individual wireless LANSs.
It is hoped to demonstrate the advantages of ATM over more traditional interconnection tech-
niques with regards to mobility management. In our analysis of the problem, we first consider the
possible scope of mobility that a mobile host may demonstrate as it moves over the ATM and IP
networks The next section outlines the different types of mobility that may be exhibited by a
mobile host.

1.2 Mobility Considerations in WATMIN

1.2.1 Mobility within a single radio cell

We consider a radio cell as the coverage area of an Access Point, thus it is centred around it. A
host is mobile within the boundaries of this radio cell. Contact must be retained with the host as it
roams over the Access Point coverage area. This is a purely radio path function performed by the
wireless LAN protocol, and requires no additional functionality in the WATMIN project.

1.2.2 Mobility between neighbouring cells

A mobile host may migrate over the cell boundaries between adjacent Access Points. The
individual radio path characteristics, and traffic flows define which of the access points has con-
trol of the mobile host at any particular time. Now we have the notion of handover between
access points, whereby the control of the mobile host is transferred during the transmission of
user data. In order to carry out the handover, and host location updates, we require a specific pro-
tocol operating between the access points, which is carried over the ATM backbone. In this sce-
nario we consider the access points to be configured within the same Internet network.

1.2.3 Mobility between wireless LANs on different IP subnetworks

Here the mobile host passes over the boundary between two separate wireless LAN cells,
which are no longer configured within the same IP subnetwork. This implies that the host is no
longer contactable under the same IP network address. If we are to carry out effective handover
between IP networks, we must be able to update the mobiles routing information and provide this
information to the network. This requires a mechanism to perform location updating between IP
networks, which once again must operate over the ATM backbone.

1.2.4 Mobility between different ATM routing domains

The mobile host may pass from one ATM routing domain to another. That is to say it moves
between ATM subnetworks. This will call for some consideration to the differences in ATM
addressing and signalling between different ATM subnetworks.

2.0 WATMIN Phase 1 Description

The WATMIN project has been divided into four logical phases. Each phase deals with a dif-
fering degree of host mobility. A description of the overall project stages for WATMIN is given in

[1].

This section describes the system design for Phase 1 of the WATMIN project. It includes a
detailed description of the system architecture and the new mechanisms.

2.1 Phase 1 objectives
The principle design aspects of phase 1 are:

« The interconnection of wireless and ATM networks by the Access Point within the
same IP subnetwork.

+ The design of Access Points that perform packet forwarding, interfacing and mobil-
ity management functions. (ATM / wireless cards, associated drivers and internal
functionality).

+ Programming / adapting drivers for ATM and WaveLAN networks.

« Definition of mobility management elements in both the Access Point (Association
Agent daemon) and the Mobile Host (Wat_mobile daemon).

« Establishment of end to end connections between a Mobile Host and an ATM fixed
host both in the same IP subnetwork.

2.2 Eurecom Testbed Architecture

In this section we intend to describe the Watmin Testbed Architecture used in EURECOM.
Figure | presents our current configuration. Within the same IP subnetwork, we have 2 wireless
cells interconnected with our campus ATM backbone. Note that we call a cell the coverage area of

S

an Access Point..

o ~ 192.168.4.25
g W
o 192.168.4.1
/ e YJ AT\M;}RP
/ server
| o102 192.168.4.23
\
% o / \\
o / 192.168.4.20
o \ = |
= — - — = /
WaveLAN 1 \ s

4 -
o 19216844 _ “WaveLAN 2

e JCREE) —_—

Figure 1 Proposed Architecture

2.2.1 System Components
« Mobile Hosts (MH):

+ 2 x Dell 486/T PCs running at 33 MHz. Equipped with 2 Mbps NCR WaveLAN-AT
cards. Using the LINUX operating system.

+ WaveLAN Driver :The WaveLAN card is usually shipped with a MS-DOS, Win-
dows, or OS/2 driver. However NCR also supply an experimental driver for Wave-
LAN under LINUX. Also D. Joseph of the Massachusetts Institute of Technology
has made his LINUX driver for WaveLAN PCMCIA available on the public domain.

« Access Point (AP): The Access Point for the Mobile Hosts to the fixed network. It has to for-
ward IP packets between the wireless and the wired networks.

+ Pentium PC running at 133MHz. Equipped with 2 Mbps NCR WaveLAN-AT card,
(wireless interface), and an Efficient Networks EN155P adapters (ATM card).
Using the LINUX operating system.

« ATM Driver: Work is currently in progress at the EPFL, where they have developed
and tested two device drivers and a suitable API for ATM on LINUX. The drivers
are for the Zeitnet ZN 1221 and Efficient Networks EN155P adapters. Both of these
are PCI bus cards and run at 155Mbps over multimode fibre. The drivers support
Classical IP (RFC 1577), and LAN Emulation. The device drivers are responsible for
the segmentation and reassembling of IP packets for transportation over ATM as
well as physical layer operations. The API contains daemons for establishing ATM
sockets, (PVC or SVC), exchanging data, and closing the connections when the data
transfer is complete.

» Each interface (WaveLAN and ATM) of the AP is configured with a distinct IP
address within the same IP network.

« ATMARP Server: (ATMARP). A dedicated process situated on an ATM host, responsible for
address resolution, (IP --> ATM)

e« ATM Switch --> ForeRunner ASX-200.

6

-

3.0 Watmin Protocol

With regards to the ATM configuration and operation, WATMIN is closely based upon Classi-
cal TP (marked [C-IP]). Additional functions have been added in order to provide support for the
section of native LAN (WLAN), and for host mobility. Inspiration has been taken from Mobile IP
[M-IP], WaveLAN protocols [WaveLAN/AROUND], and LAN Emulation [LANE]. Any additional
functions that are not available under any of these protocols are marked [WATMIN].

3.1 Access Point Start-up / Registration of all ATM Clients
NOTE: The AP registration process is the same as classical IP client registration.

« All ATM clients (i.e. hosts, routers, servers, and the access points), possess their ATM and IP
addresses (pre-configured in memory). [C-IP]

« Also all ATM clients are pre-configured with the ATM address of the ATMARP server. [C-IP]
« Upon start-up, access points (AP) connect to the ATMARP using a point to point VC. [C-IP]
« The ATMARP sends an [INATMARP-req] to the AP requesting its IP address. [C-IP]

« The AP replies with an [INATMARP-rep] containing its IP address. [C-IP]

« The ATMARP server constructs an ATMARP table containing bindings of ATM to IP
addresses for each client on the network. These values have a limited lifetime and must be
updated at regular intervals. [C-IP]

3.2 Mobile Host Association to an Access Point

The scenario: A mobile host (MH) starts-up in a single cell (i.e. no overlap), of its home IP net-
work!. The mobile host will have to register itself to the Access Point wich have the control of the
cell. The registration procedure of a client to an Access Point is WATMIN specific. The procedure
is described below:

« An Association_Agent (AA), is a daemon process situated on the Access Point, whose purpose
is to allow Mobile Hosts to associate themselves to an Access Point. [WATMIN]

« A dacmon WAT _mobile daemon equivalent is situated on each mobile host. [WATMIN]

« The AA broadcasts Association-Agent-Advertisement messages (Ivl 3), periodically to all the
mobile hosts in the cell coverage. [WATMIN]

« ARP? takes care of the IP to MAC address resolution, and the message is broadcast on the
wireless interface.

« The client on the MH responds to this Association-Agent-Advertisement message with an Asso-
ciation-Request message (1vl 3), which it sends to the Association Agent daemon. [WATMIN]

« The Association-Request message contains, the IP address of the MH and other information
which is used to select the mode of operation and authenticate the request.

« The AA opens a connection to the ATMARP server, which in turn sends an [InATMARP-
req]. The AA responds to that request with an [InATMARP-rep] where it substitutes in the
source IP address field its IP address with the MH’s one. It leaves unchanged the source ATM
address field (it contains the AP ATM address).

1. All mobile hosts have a home IP network, where they are usually located i.e office or work place.
2. ARP is an integral part of IP equipped hosts, mobile or not.

7

Therefore the ATMARP server has a new entry in its ATMARP table. The association MHs IP
address with the APs ATM address.

To confirm the registration to the ATMARP server, the AP sends an [ATMARP-req] for the [P
address of the MH.

Once it receives the [ATMARP-rep] message the AP stores the IP address of the MH in its
‘Watmin Association table’,? and returns an Association-Reply to the mobile confirming that it
is successfully associated to the AP. The IP table entry includes the interface on which the MH
is found, (in the case of multiple port gateways). [WATMIN]

The MH is now associated to the AP, and can send and receive messages. [WATMIN]

3.3 Connection between MH to an other Host, all in the same IP subnetwork

[Se]

A mobile host wishing to send packet to an other host only has the destination IP address.

In order to resolve the IP address to a usable MAC address it uses ARP [IP]. The MH broad-
casts an [ARP-req] to all hosts on its subnet (using the subnet mask), over the MAC broadcast
address. [IP]

One of two things may happen:

. The destination is in the same cell coverage4 as the MH and returns its own MAC address to

the MH in an [ARP-rep].

. The destination is NOT in the same cell coverage, but beyond the Access Point.

« Thus, the AP will perform an [ARP-rep] to the MH where it substitutes in the IP
source field the IP address of the destination to its [P address. It fills the MAC source
field with its MAC address. Thus the AP acts as a proxy [WATMIN] (ARP modifi-
cations).

« NOTE: the AP maintains a table of IP addresses for all MHs currently in the cell
coverage (the WATMIN Association Table). Thus if it sees an [ARP-req] with the IP
address of a MH currently in the cell coverage -- it ignores the request in order to
respect the decentralized model. [WATMIN]

+ Then, the AP performs an [ATMARP-req] to the ATMARP server, with the IP address
of the destination. [C-IP]

« If the ATMARP server has a value in its tables for the destination (i.e the host is reg-

istered), it will return the ATM address of the destination host to the Access Point.
[C-IP]
« The AP will store the IP: ATM binding in a local cache for future reference, and

open an ATM connection to the destination. [C-IP]

« The MH upon receiving an [ARP-rep] will store the binding [MAC:IP], in a local
ARP cache for future reference. [IP]

« The MH will address the frames, (level 2) to the MAC address of the AP, whilst
retaining the IP address of the destination host (level 3). [IP]

» The AP will then forward the packets, (level 3) to the destination host over the ATM
circuit using encapsulation (RFC 1483). [C-IP]

3. Association table lists IP addresses for all MH currently associated to a particular Access Point
4 A mobile node on the same WLAN network can enter into direct communication with the source mobile node
WITHOUT passing via the Access Point.

|
\
l
I
I
!

« NOTE: The fixed ATM host is unaware of the fact that the destination host is a
mobile. The access point acts as a gateway, screening level 3 packets incoming to its
cell coverage. The AP performs encapsulation of IP packets over the ATM network
to the destination host.

3.4 Address Resolution Protocol mechanisms

We have just explained the design of the Watmin protocol and especially the modifications of
the ARP mechanism required in the AP if want it to act as a kind of Proxy. Now we have to take
care of sides effects regarding the Address Resolution Protocol in our special configuration. The
overlapping of cells configured within the same IP subnetwork causes serious problems regarding
the ARP mechanism. We have to underline the fact that problems are coming from our choice of
having various cells and our ATM backbone all configured within the same IP subnetwork.

3.4.1 Address Resolution Protocol Problems
First we would like to describe the sides effects that could occur in our configuration.

s |st Problem:

L o o 192.168.4.25
- 92.168.4.1 ™4
& 192.168.4.
p oy ATMARP
@ l)~.}€)\8.4.] 1 St
; :
\
[ARP-rep @ e — = 192.168.4.21 192.168.4.23
\ e ™ ~
\ ARP-req (192.168.4.25) .
~ s @ 192.168.4.20
- MH1 / e
o ki ,
= JOLIGEAL . | “\
WaveLAN 1 N, $MH3 -1 = /

3
/
SO 19216844 © _ ~WaveLAN 2

Figure 2 ARP problems

Let us consider the following configuration (Figure 2), the Mobile Host MHI, located close to
the border of its cell (AP1 cell) issues an [ARP-req] (A) for the IP address of the ATM worksta-
tion ATM1 (192.168.4.25). As we have already underlined it, this request is broadcasted through
the wireless Interface. As we have modified the ARP mechanism of its AP, AP1 will respond to
that request (by sending an [ARP-rep] (B)) because in our configuration it acts as a proxy for the
ATM workstation ATM 1. But the MH3 in the neighbouring cell is able to receive that request (A’)
(because of the broacasting). Of course it will not respond to it, as is not concerned by the request.
But with the normal implementation of the ARP mechanism under LINUX when an [ARP-req] is
received, whether it has to respond or not, it has to check if it has already an entry in its ARP table
regarding the source IP address of the request and if it has one, it has to update this entry with the
source MAC address contained in the request. Note that if the request is not regarding one of its TP
address, if it has not an entry for the source IP it won’t create one ! Therefore if a MH (MH3) in
the neighboring cells receives an [ARP-req] from a MH registered to another cells, if it has

9

already an ARP entry for the IP address of the requester, it will thus update this entry. If these sta-
tions were not moving it would not have created any problems but as their name say they are
Mobile. Therefore the MH could have updated its ARP entry. In our example MH3 could have
updated its ARP entry for the IP address of MHI, if it moves (C) it could be in a position where
it can no longer communicate directly with MH1, thus its ARP table will no longer be valid and
the MH will not be able to recover from that situation. In this case, it will just believe that the
MHI is down. So we have to prevent the system from entering in such a situation, for that we
have to guaranty the constant validity of the ARP table in each MH. We have to forbid direct com-
munications between MHs that are not registered to the same cell. We propose to add some modi-
fications to the ARP mechanism in all AP to avoid that kind of problems. Because in a first step
we did not want to modify the kernel of each MH.

+ 2nd Problem:

The other problem is almost the same but it is more comprehensible (see Figure 3). We take the
same initial configuration that we have presented for the first problem. This time, we take the case
where a MH is sending an [ARP-req] for an IP address of an MH registered to the neighbouring
AP. In our figure, MH1 is requesting the resolution for the IP address of MH3. For that it broad-
casts an [ARP-req] ((A) and (A")). Therefore, with the modifications added to the ARP mecha-
nism of the AP (AP1), this one will “normally” responds (B) to that request because the only way
to contact an host outside the group of mobiles registered to this AP should be to pass throuhg this
AP. But in our case if the mobile is close to the fronteer of the cell where MH3 is located it will be
able to receive the request (A’), thus it will update or create its ARP entry table for the IP address
of the requester and will reply with an [ARP-rep] (B’) containing its own MAC address. Thus,
MH! will receive two different responses. Depending upon the order in which it has received
those replies, MH1 may have an invalid entry. It could establish direct “‘air”connection with a MH
outside of its cell and this must be avoided. Because as we already described in the first problem,
if one of the mobile moves off (C), the connection may no longer be possible and thus each
mobile would have no way to recover from that situation. Thus we need to assure the constant
validity of each MH’s ARP cache.

ATM1

P 192.168.4.25
-~
- 192.168.4.1 3

y ATMARP
/ @ server
I ARP-rep @ _ 192.168.4.23
\ s T A

\ ARP-req (192.168.4.4) 5

N rf' .f 192.168.4.20\

S~ 19216842

-— |
WaveLAN 1 N T . a8
N

© .7
192.168.4.4 -

— WaveLAN 2

~

e — —

Figure 3 ARP problems

S

ey

.

i

.

i

i

)

To respect the WATMIN requirements (i.e. no modifications of the protocol stack of the
MH), the solution we proposed is to add other modifications in the ARP mechanism of the AP and
to exchange messages between neighbouring APs (see Figure 4).

3.4.2 Solutions to ARP problems

ATM1 ATMARP

192.16

oo

4.

(el

5 server

192.168.4.23

g - 0
5 ' [ARP-notify]

(192.168.4.4)

y 192.168.4.1\
/ 8 APl Kioziegan1 N\
/ [ARP-rep @
j _
|
l

] \ _
g -
/ |
OR .
| e ~192.168.4.21
\ / 0 a3l

[ARP-req] (192.168.4.4)

\ 7
\ MHI J’f £
4 [

rd

I
/

192.1 68.4\.‘2Q
\
[AA_Advertisement]

D

N 192.168.4.2 g
\ \ Ty (ARP_wat: 192.16%.4.4)
N Y, Mu3 /
~ % K
~ i “ N 75
o = 192.168.4.4 -
WaveLAN 1 o e WaveLLAN 2

~ e
= —

Figure 4 ARP Solutions

In the AP, when it receives an [ARP-req] (A) sent by a MH in its cell, the ARP function will
systematically inform the Association Agent that an MH (with IP address: IP@MH) has issued an
[ARP-req] (The aim of that procedure is to inform the AA that it has to notify its neighbouring
AP that their MHs may have wrong ARP information about the requesting MH). On the other
hand, in order to force the requester to get the right information in its ARP table, we will re-trans-
mit 2 more identical [ARP-rep] (B1)(B2) after a certain delay. The AA will then send messages
(D) to the APs of its neighbouring cells to inform them that their MHs may have invalid ARP
entry for the IP address of the MH that has issued the [ARP-req]. Each AP will make use of the
[AA_Advertisement] (E) messages that are periodically broadcasted to inform the Wat_Mobile
daemon of each MH of its cell, that they have to update or to create the ARP entry with the right
association: MAC address of their AP with the IP address of the MH that has issued the

11

[ARP_req]. For that purpose we have to create a new field ARP_wat in the [AA_Advertisement]
to carry this information. Thus the AA fills the ARP_wat field of the AA_advertisement with the
[P address of the requester. As the Wat_Mobile daemon in each MH receives the
[AA_Advertisement], it thus updates or creates an entry even if it has not required it. Therefore
with that procedure, we are trying to prevent MHs from issuing to much [ARP-req] and we
assure that the ARP cache of each mobile is valid in the sense that no direct communication is
possible between two mobiles that are not registered to the same Access Point. The details of the
implementation are explained a little bit further.

4.0 Configuration validation

After having achieved the design phase and having chosen the cards we will use for the Access
Point and for all mobile hosts, we started to try to send packets from a mobile host to an ATM sta-
tion and in the reverse direction as well. This was the first step to validate our choice of cards.

For this test, we decided to have two subnets: one for the WaveLan (192.168.4.0) and one for
the ATM subnet (192.168.3.0). The Access Point will act as a gateway between the 2 subnets. The
fact that we have chosen 2 subnets was led by the simplicity of such a test where no WATMIN
specific modifications was required. The configuration we have tested can be seen in the figure
below. The test consists in sending packets from “nelke” to “purcell” and in the reverse direction.

Access Point
Mobile Host

“ravel”
“purcell”
) 1P
WaveLan WaveLan | ATM | Ethernet
driver | driver driver driver
Ethernet
subnet
193.55.114.0°
ATM
_S_Ml ATM ATM Sl.lbnet
driver 192.168.3.0

“brahms”

Ethernet

Ethernet host Abiar

Figure 5 Configuration for validation

o oSN PEE O A0 M SN MR e

"

4.1 Ping Test

In the test we will try to ping purcell from nelke. When pinging host B from host A, indeed we
send an [CMP message from host A to host B, and the host B send back an ICMP message. Thus
with ping we test the connection between host A and B.

Unfortunately the test did not work. Hence, in a first step we tested different configuration that
were using the cards we had chosen:

+ from nelke (ATM station): >>ping brahms (Ethernet host). The test was valid.
« from purcell (Mobile host): >>ping brahms (Ethernet host). The test was valid.

At this step, we were sure that the problem was coming from the drivers in the AP and specifi-
cally in the case of a ping between an ATM station and a Mobile host. But we did not know at this
step, if the problem of forwarding a packet in the AP was in both directions or only in one and in
this case in which direction the AP was working well.

4.2 Debugging

In order to precise where the problem was located, we had to make the various functions print
many debugging informations. The functions was the ones used when the forwarding of packet is
required. This is almost the only way of debugging the kernel: by using the function printk that
prints messages in the file /var/adm/messages (see [1] page X). As you can imagine, we had to
analyse a huge amount of debug messages in order to find out where the problem lied. We quickly
concluded that there was only one direction for which the AP was unable to forward the packet:
from a Mobile host to an ATM host.

When analysing more accurately the debugging messages, the only hint we had was this two
messages:
. >> eni(itf 0): VCI 80 has mis-aligned TX data
2. >> put_dma: unaligned addr (0xdb8426)

This two messages are coming from the ATM driver. The packet coming from the WaveLAN’s
side is passing through the WaveLAN driver without any fatal error, through the IP layer without
any trouble and it’s when is passing through the ATM driver that the problem occurs. And we get
this two messages. The first one comes from the function do_zx() in linux/drivers/atm/eni.c where
there is the test:

if ((unsigned long) skb->data & 3)
printk(KERN_ERR DEV_LABEL "(itf %d): VCI %d has mis-aligned TX data\n",

vee->dev->number,vee->vel);

The second comes from the function put_dmaf() in linux/drivers/atm/eni.c where we can find
the test:

if (paddr & 3)
printk(KERN_ERR "put_dma: unaligned addr (0x%1x)\n",paddr);

As the messages were coming from the ATM driver, we asked the author [2] of this driver if he
had an idea from where the problem comes from. Werner Almesberger (DI-LRC, EPFL,
Lausanne) explained to us that the ATM driver requires an alignment to a four-byte boundary for
reasons of performances of the system. He said that because mis-aligned memory accesses also

13

tend to be a lot more expensive than aligned ones, so the overall performance of the systems using
that driver is improved by making sure the alignment is right. The problem here is that the byte-
shifter in the ENI board that is supposed to take care of re-adjusting mis-aligned data does not
seem to work very well. So he suggested that we should look into fixing the alignment of packets
received by the WaveLAN board.

So we decided to concentrate our effort on the value of skb->data and the assignment of this
value. As we have said previously, the only way of debugging the kernel is to make use of the
function printk() to print debugging informations. So we print the value of skb->data all along its
trip through the different functions of the WaveL AN driver and through the IP layer’s functions.

It turned out that the problem was only coming from the assignment of skb->data and what 1s
done with this value within the wavelan driver, especially in the function void
wavelan_receive(device *dev) in file linux/drivers/net/wavelan.c. We concluded that the problem
was located here because apart from the scope of this function the value of skb->data is never
modified until it is passed to the ATM driver.

We show you what is done in the function wavelan_receive(device *dev) regarding skb-
>data:

1 sksize = pkt_len;

2 if ((skb = dev_alloc_skb(sksize)) == (struct sk_buff *)0)

C I |

4 printk("%s: could not alloc_skb(%d, GFP_ATOMIC)\n", dev->name, sksize);
5 Ip->stats.rx_dropped++;

6 |/

7 else

8

9 skb->dev = dev;

10 obram_read(ioaddr, rbd.rbd_bufl, skb_put(skb,pkt_len), pkt_len);
11 skb->protocol=eth_type_trans(skb,dev);

12 netif_rx(skb);

I3 e

14)

The function wavelan_receive() as its name says is the one called when a packet is received on
the WaveLLAN card. Before this piece of code, some checking are done but they are not regarding
our matter. What we show you, here, is where the skb->data is allocated in order to store the data
received on the card. At line 2, an skb structure is allocated with respect to the packet length
pkt_len. Here the value of skb->data is aligned on four-byte. The four-byte alignment means that
(skb->data & 3) = 0 so that in hexadecimal format skb->data ends by 0,4,8 or A. At line 10, the
packet received on the card is read and written in the skb structure thanks to the function
obram_read(). This step does not modify the value of skb->data so the alignment is kept. The
next step is the one responsible for our problem. The function eth_type_trans() adds
ETH_HLEN= 14 to skb->data, but as you can see 14 is not a multiple of 4, hence at this step we
loose the four-byte alignment. And at line 12, the structure skb is passed to the function netif_rx()
that put the skb in a queue that IP Jayer’s functions will process. As we have said previously the IP
layer’s function will not modify the value of the skb->data. So we can say that we have located
the problem.

4.3 Bug fix

After having located where the problem lays, we have to find a kind of glue in order to fix it.
What we want is that, before calling the function netif_rx(), skb->data must be four-bytes
aligned. We proposed the following modifications of wa velan_receive():

14

9w GuB Saf SR NG SaS TS A an BN G e 8 N

1 sksize = pkt_len + 2;

2 if ((skb = dev_alloc_skb(sksize)) == (struct sk_buff *)0)

3

4 printk("%s: could not alloc_skb(%d, GFP_ATOMIC)\n", dev->name, sksize);
5 Ip->stats.rx_dropped++;

6

7 else

8 {

9 skb->dev = dev;

10 skb_reserve(skb,2);

11 obram_read(ioaddr, rbd.rbd_bufl, skb_put(skb,pkt_len), pkt_len);
12 skb->protocol=eth_type_trans(skb,dev);

13 netif_rx(skb);

7 R

15]

16

Hence we proposed to add 2 to the value of skb_size in order to reserve 2 more bytes for the
skb structure, this is done at line 1. And then at line 10, we use the function skb_reserve() from
linux/net/core/skbuff.c that will add 2 to skb->data, updates other values of the structure sbk and
makes some checking on this structure. Thus, from the step of the allocation of skb->data to the
call of netif_rx, we have added 14+2=16 to skb->data therefore we have kept the four-bytes align-
ment of skb->data.

Now, the test ping purcell from nelke is working. Therefore we have a configuration where the
AP is able to forward packet between a mobile host to an ATM station in both directions. There-
fore we have fixed the problem and we can say that the configuration we are working with, is
ready for the WATMIN specific modifications. The validation phase of the configuration is now
achieved.

5.0 Access Point Architecture

In this section, we will describe the current architecture of our AP. We present the various
modules that has been implemented and all the modifications done in the kernel. We will first
introduce our approach to carry out the AP functionalities. And then we try to give to the reader
an accurate description of the implementation.

5.1 AP Design Approaches

As we have already described it, in section 2.0, we have chosen to have 2 wireless cells inter-
connected with our ATM backbone, the important characteristic is that they are all configured
within the same IP subnetwork. Thus, the AP should act as a kind of bridge as it is interconnect-
ing segments which are configured within the same subnetwork. We also could use the term of
“proxy” to qualify its action. In a first step, we were thinking about modifying the IP layer (see
figure 6) and more precisely the forwarding function (linux/net/ipv4/ip_forward.c). We had imag-
ined that the ip_forward() function (see figure 7) would have use an internal (kernel) table (con-
taining all the IP address of the MH associated with this AP) to forward the packet to the right
driver. But modifying this was not enough, because not only the ip_forward() function need to
know how to route those packets but functions like ip_rev() in linux/net/ipv4/ip_input and much
more. Indeed if we add kept this idea, we would have re-written another kind of routing table.

15

» ul) Oa AN M

Therefore we have dropped this idea and we have decided to make use of the routing table. This
idea was much more better in the sense that we did not have to make big modification in the Ker-
nel, thus keeping the Watmin idea to make a light weight implementation in term of modifications
in the Kernel. The other good aspect is that we do not have to take care about the validity of a new
routing mechanisms implemented in the Kernel. By using the routing table already implemented
we are almost sure that things will work well. But the idea of having a “Watmin Association
Table” in the Kernel is kept in order to solve ARP problems.

BSD Socket

INET socket

TCP UDP

[P

Device Drivers ARP

Cards

Figure 6 The layer structure of a network.

P UDP, TCP
Transport Protocols [CMP. IGMP

Packets Packets

Packets

Network Interfaces

Network

Figure 7 IP layer processing.

16

5.2 IP Routing in the AP

To understand how we will use the routing table in the AP, we prefer to present the testbed con-
figuration. In figure 8, we represent a typical situation of WATMIN where we have 2 WaveLans
with their respective Access Point (APl and AP2) connected to the ATM backbone. We show the
case where there are 2 mobile hosts in each WaveLAN Cell. What is interesting in the figure is
that we represent the state of several routing tables as well as the “Watmin Association table” in
each AP. We have to underline the fact that in this configuration all the mobiles hosts are already

registered with an AP. Our aim is to show how packet will be routed.

g

MH1 J

192.168.4.1
ST
MH2 Ly
192.168.4.2
destination gateway if
192.168.4.0 | 0.0.0.0 ethl
default 192.168.4.10 | ethl

MH2 routing table

Y_ AP1

192.168.4.10 192.168.4.11
destination gateway if
MH if 192.168.4.1 0.0.0.0 ethl
192.168.4.1 | ethl 192.168.4.2 0.0.0.0 ethl
192.168.4.2 | ethl 192.168.4.255| 0.0.0.0 ethl
ARl Watmin Association Table | 192-168.4.0 0.0.0.0 atm0

AP1foutingable

192.168.4

ATM1

o)

191]168.4.21
l92.l68.4.2;\,‘t AP2
Wave MH "
1183112332 Z:m destination gateway if
e 192.168.4. 0.0.0.0 eth
AP2 Watmin Association Table | 192.168.4.2 0.0.0.0 athil
192.168.4.255| 0.0.0.0 ethl
192.168.4.0 0.0.0.0 atm0
'\/' AP2 routing table
MH3 y
192.168.4.3 e
MH4
WaveL N2 192.168‘4.41

Figure 8 Typical WATMIN Configuration.Access Point Architecture

The situation is not so easy because we are working within the same IP subnetwork. This is
why the reader may be somewhat surprised by the content of the routing tables. In an AP, the rout-
ing entry regarding the subnet 192.168.4.0 to which it belongs says that it can be reached through
the ATM interface (atm0). Thus, this table entry routes all the packet destinated to our subnet, to
the ATM interface. You could ask how the MHs could be reached in such a situation. When a MH
is registered to the AP, we had a new routing entry that says that the IP address of the MH can be
reached by sending the packet through the WaveLAN interface (ethl). Thus, for each MH asoci-
ated to the AP, we add a new entry in the routing table. Those new entries have a flag set that
means that this routing entry is regarding a host. This is very relevant because someone could ask
if there was no conflict with the routing entry regarding the IP subnet. There is no problem
because when trying to find a routing entry, the ip_rt_route() function (net/ipv4/route.c) first looks
for host entry, therefore the MH routing entries will be taken into account before the subnet entry.
An other special entry need to be set up at the begining, the entry for broadcasting on the subnet
we need this one because the Association_Agent has to broadcast the [AA_Advertisement] mes-
sage on the wireless cell. For that we add the entry 192.168.4.255 passing through the Wireless
interface (ethl). The figure 9 represents how the routing table of the Access Point AP1 looks like
when there is 2MHs already registered to it. Figure 8 gives a summary of the topic and represents
the routing table of a Mobile Host registered to an Access Point.

Just a word about the routing table of the MH, the only modification for it is that when the
Wat_Mobile daemon receives the confirmation of its association with the AP, it modifies only one
routing entry by setting the IP Address of the AP as the default route.

destination gateway if
192.168.4.1 0.0.0.0 ethl
192.168.4.2 0.0.0.0 ethl

192.168.4.255| 0.0.0.0 ethl
192.168.4.0 0.0.0.0 atm(

Figure 9 Routing table of the Access Point (API) with two MHs registered.

At this step, let us give you a summary of the situation in order to understand the use of these
dynamic modifications of the routing tables.

« When an ATM workstation wants to send a packet to a MH:

As we have described it in section 3.3, when the MH is registered to an Access Point, the
Association procedure has added a new binding to the ATMARP server (IP address of
the MH : ATM address of the AP), thus, when an ATM WS wants to send a packet to the
MH, it fisrt ask the ATM server to resolve the IP address to the ATM address. The ATM
WS sends the packets to the AP. The packet received on the ATM interface of the AP
goes up to the IP where the routing tables are consulted. As it has an entry for the IP of
the MH the packet is thus forwarded on the Wireless interface. And finally it reaches its
final destination.

« In the reverse direction, when a packet is sent from a MH to an ATM workstation:

When the MH wants to send an IP packet to an ATM WS station, the first time it needs to
resolve the IP address to the MAC address by sending an [ARP-req] (as they are within
the same IP subnetwork). As we have modified the ARP mechanism of the AP, this one
will respond for the ATM WS. Thus, the MH will send its packet to the AP. With the
routing entry that says that the subnetwork can be reached through the ATM interface the
[P layer passes the packet to the Classical IP module that sends the packet to the final
destination: the ATM WS.

5.3 Architecture of the implementation of the Access Point

In this section we present the Access Point Architecture. We described wich modules has been
created to carry out the Watmin functionnalities and wich modules has been slightly modified, in
the Kernel and in the user space.

In order to carry out the watmin functionnalities, we have decided to implement most of them
in a daemon in the user mode. We did not want ot overload the kernel if we were able to do it.

Figure 10 gives a good overview of the architecture of the Access Point.

IE l daemon®* l l e
3 @ () 1
|
[INET* INET SVC# SvC
ARP_message
= & (d) | *
o * il TERIE | e A
- ARP* ATMARP*
—— WAT#* m g
_ e functions
P WATMIN (b) e c___ x__x_ i
& Association © ‘
Table®*
* Encaps. C-1P -
ATMARP table
WLAN ATM -

Network

Tl

to remote hosts

Legend:

#* : module modified
=% module created

Figure 10 Architecture of the Access Point

Association _Agent daemon:

This module is the daemon that implements most of the functionalities of the Watmin
Protocol. It is implemented in the user space. You can find this module in the directory
Jusr/sre/watmin under the name AA_daemon.c.

When started, it makes use of a new system call that will initiate the various functionali-
ties of the WAT module in the Kernel and creates a message queue (ARP_message
queue) in order to receive message coming from this modules. When started the
AA_daemon needs to know which AP are its neighbours. This is required for the proce-
dure that solves the ARP problems.

It is responsible for broacasting the [AA_Advertisement] messages. It waits also for the
[Association-Request] from the MHs that would like to be associated with it. in turns it
makes a new system call in order to inform the WAT module in the kernel that a new
mobile wants to be registered to the AP. This system call is carrying the IP address of the
MH, it is essentially used by the WAT modules to updates the WATMIN Association
table. In order to register the new binding to the ATMARP server we have to call the
ATMARP client modules that will be responsible for that. Thus, we have to use the sys-
tem calls already implemented by the solution of Werner Almersberger. We have to
define new flags for those system calls in order to implement our specific call to a new

19

functionality of the ATMARP modules. When the AA_daemon receives the confirmation
from the ATMARP modules saying that the ATMARP server has register the new bind-
ing, it acknowledges the Association of the MH by sending the [Association_Reply] to
it. At this step the handover of the MH is not implemented!

The AA_daemon is responsible for listening to the message sent in the ARP_message
queue by the ARP module. In turn, it will notify to its neighbouring APs that a MH in its
cell has issued an [ARP-req] by sending an [ARP-notify] message containing the IP
address of the MH. Then the other AA_daemon will add the IP address of the MH that
has issued the [ARP-req], in the wat_arp field of the [AA_Advertisement] broadcasted
periodically. Thus, each mobile will be able to update or to create an ARP entry contain-
ing the binding IP address of the MH: MAC address of their AP.

For further details on the implementation please refer to the code in the file /usr/src/wat-
min/AA_daemon.c on the PC “ravel”.

*+ ARP module

The ARP modules has been modified with respect to the solutions we have proposed in
section 3.3 and 3.4.2. The details of the modifications of the ARP mechanism are given
in section 5.4. The modifications are regarding the file /usr/src/linux/net/ipv4/arp.c

« WAT module

At this step of the implementation, what we call the WAT module is implemented in the
file /usr/src/linux/net/ipvd/arp.c, it regroups the functions that treat the various system
calls made by the AA_daemon and the functions that handle the Warmin Association
table.

« ATMARP module

We call it 2 module but this represents the various function that process the system calls
used by the ATMARP daemon in the user space (for further information please refer to
[2], it explains more about the implementation of classical IP under linux. The aim here
is to modify the implementation in order to accept other system call. These one will be
responsible for the procedure that will register a new binding to the ATMARP server. In
the section future work we will present the concept of the procedure and explain where
the modifications should be made.

5.4 Address Resolution Protocol (ARP) Modifications.

As we have already said: the routing tables are a little bit modified as well as the way they are
consulted. In section 3.3 we have described the modifications of the ARP mechanism in the AP
required if want it to act as a PROXY. In section 3.4 we have underlined ARP problems raised in
such a context and we have proposed solutions to overcome them. Thus in this section we present
the modifications implemented in the ARP mechanism.

5.4.1 ARP Mechanism Flow Chart in Linux

We will, first, describe how the ARP mechanism works when an [ARP-req] or an [ARP-rep]
s received. We have to underline the fact the ARP implementation is a little bit different from the
UNIX onc. Figure 11 shows how an ARP packet is processed in Linux. All the ARP packets
received are processed by the function arp_rev() (linux/net/ipvé4/arp.c).

ST
\

ARP checkings ()

Source HW address -> sha 2
Source IP address ->sip (2)
Target HW address -> tha
Target IP address ->tip

Extraction of fields from the arR packet:

ARP request 3)
: NO ;
(4) tip = my_IP_addr Pl'gi?ég%floti'ies)
ey
YES
(8) arp_send () (6)
(7 arp_send ()
|
(9) arp_update()
RETURN

Figure 11 Flow Chart of arp_rcv() function.

Description :

When the arp_rcv() is called the fisrt things done are different tests (1) on the compatibility of
protocols and on the various types of the packet. After, there is an extraction of the fields con-
tained in the packets (2). Then, the function tests wheher it is an [ARP-req] or not (3). If it is an
[ARP-req], it has to check if the request is for us (i.e. target IP = my_IP_address) (4). If it is the
case we have to send an [ARP-rep] to the requester(8), with our hardware address (i.e MAC
address). If it is not the case we have to check if the request is regarding an IP address for which
we have a Proxy ARP Entry(5), if it is the case we have to send an [ARP-rep] to the requester(7)
containing our MAC address. Finally, we have to update the ARP cache: the function arp_update
is called (9). With respect to the parameters given, the function will do the following:

« If the target IP address received matches one of the IP address of the host, the
arp_update() function will either create a new entry or update the entry regarding the
IP address of the sender(source IP of the ARP message).

21

|

» If the target IP address received does not match one of the IP address of the host, the
arp_update function will be allowed to update an entry matching with the source IP

address. But the function will not be allowed to create a new entry in that case.

5.4.2 Watmin Modifications in the ARP mechanism

C arp_rcv())

\

ARP checkings

Extraction of fields from the arp packet:
Source HW address -> sha
Source IP address -> sip
Target HW address -> tha
Target IP address ->tip

(4) tip = my_IP_addr

(1)

NO Search for

sip in Watmin | ; ;
P Proxies Entries

table ?

YES
(8) arp_send () tip :b‘l‘q/aa'fmiﬂ (6) < Proxy Entry found
(11) '
YES
(12) arp_send () (7) arp_send ()
(13) | Wat_ARP()
9) arp_update()
RETURN

Figure 12 Flow Chart of arp_rcv() function Watmin Modified.

|
|

In order to achieve the Watmin requirements, we had to make the modifications showed in bold
in figure 12. If the [ARP-req] is not for the AP, we fisrt check if the requester is one of the MHs
in the AP’s cell overage, for that matter we search if the sip (source IP address) is present in the
Watmin Association table. If it is not the case, it is the normal case where we look for proxy
Entries. Otherwise we are in the Watmin exception case. If the target address is not in the Watmin
Association table, we have to send a [ARP-rep] because the AP is acting as the forwarder for this
type of destination. This [ARP-rep] will be exactly the same as if it was a request for us (same as
(8)) excepted that the source IP field contains the target IP address of the [ARP-req] received. If
the target is not present in the Watmin Association table we will not do anything because the MH
ragarded will respond to that request as it is located in the same cell as the requester (we use a
decentralized model). After this, we have to call the Watmin specific function called: Wat_arp().
The Wat_arp() function informs the AA_daemon that a MH has issued an [ARP-req] in the cell
and therefore that it has to notify this fact to its neighbouring AP. The Wat_arp() function inform
the AA_daemon by sending a message in the ARP_message queue.

Description of the Watmin Modifications in the AP ARP mechanism:

5.5 Modification of the ATMARP mechanism in the AP

In this section, we will give you all the indications in order to implement the modifications
required to register the IP address of the MH to the ATMARP server.

In the registration phase of a MH to an AP (section 3.0), we described the fact that the AP
needs to register the MH to the ATMARP server. In our configuration, the AP will act as an ATM
proxy for its MHs.

To achieve this registration phase, we propose to modify the ATMARP client (developed by W.
Almersberger [x]). By opening a special socket SVC* (Figure 10,(e)) and using new command
flags, the AA communicates to the ATMARP client that it intends to register a new MH. To
implement the opening of the socket, we advise the reader to take the ideas from the ATMARP
daemon (source /usr/src/atm/arpd/atmarpd.c and atm.c). New flags must be added to process this
Watmin request (in file /usr/src/linux/include/linux/sockios.h). As we have done for the imple-
mentation of the system call regarding the Watmin Association table other modifications must be
done in the kernel in order to process the new flags. Then, in the file /usr/src/linux/atm/atmarp.c
you have to process this new flags, in fact you just have to do exactly the same as what is done for
the other flags: it calls a function that send the request to the ATMARP daemon in the user space.
Then in the daemon, you need to have another case in the switch() of the function arp_ioctl() to
treat the case. What should be done is described thereafter.

The principle of the registration makes use of the selector field of the ATM address of the AP.
Thus, it will associate an unused selector to the IP address of the MH (information stored in the
WATMIN Association table), this step could be done when the flags is first treated in the kernel
(file /usr/src/linux/atm/atmarp.c). Then the ATMARP daemons opens a new connection (with the
selector field chosen) to the ATMARP server. The later when the connection is opened, will issue
an InATM_request to the caller. On the reception of this type of message, the ATMARP client
(AP) will systematically checks if the selector of the ATM address used for the connection is one
associated with the TP address of an MH under its control. In this case, it will substitute in the
INATMARP_reply (field source IP address) the IP address of the AP by the MH’s one. Those
modifications will be done in the function inarp_reply() (file /usr/src/atm/arpd/arp.c). Then the
WATMIN Association entry used is validated and the registration of the MH to the ATMARP
server is confirmed to the AA.

In the INATMARP_reply and the INnATMARP_request sent by the AP, the source IP address
will be systematically adapted according to the selector of the ATM address used by the connec-
tion. With that method, we think that the ATMARP client of the AP will be consistent with the

23

|
‘ l
!

=

=

—

*.

—

—

i

e

TR

=

2

|

—

information stored in the ATMARP server. To implement this new mechanism other modifica-
tions must be done in the function inarp_request() (file fusr/src/atm/arpd/arp.c).

At this step we think that we have found a way to register the MH to the ATMARP server with-
out having to modify the ATMARP server. We hope that what we have proposed will work cor-
rectly.

Conclusion

This report has presented the current status of the WATMIN project. A MH, roaming in a cell
coverage is able to communicate with an ATM host in the same IP subnetwork. It makes use of a
light weight process in the user space of the MH and the implementation of new mechanisms in
the AP. The implementation of the modifications required in the ATMARP client mechanism is
still incomplete, but a description of what should be done is provided. Our implementation of the
AP has enabled us to leave the MH’s protocol stack unchanged.

Thus, the fisrt phase is almost complete! The design of the second phase (handover between
cell in the same IP subnetwork) has been started but it is still incomplete.

