
“ It’s a Match! ”
A Benchmark of Task Affinity Scores for Joint Learning

Raphaël Azorin,1 2 Massimo Gallo,1 Alessandro Finamore, 1 Dario Rossi,1 Pietro Michiardi 2

1Huawei Research Center, France
2EURECOM, France

first.last@huawei.com, first.last@eurecom.fr

Abstract

While the promises of Multi-Task Learning (MTL) are at-
tractive, characterizing the conditions of its success is still
an open problem in Deep Learning. Some tasks may benefit
from being learned together while others may be detrimental
to one another. From a task perspective, grouping coopera-
tive tasks while separating competing tasks is paramount to
reap the benefits of MTL, i.e., reducing training and inference
costs. Therefore, estimating task affinity for joint learning is
a key endeavor. Recent work suggests that the training condi-
tions themselves have a significant impact on the outcomes of
MTL. Yet, the literature is lacking of a benchmark to assess
the effectiveness of tasks affinity estimation techniques and
their relation with actual MTL performance. In this paper, we
take a first step in recovering this gap by (i) defining a set of
affinity scores by both revisiting contributions from previous
literature as well presenting new ones and (ii) benchmark-
ing them on the Taskonomy dataset. Our empirical campaign
reveals how, even in a small-scale scenario, task affinity scor-
ing does not correlate well with actual MTL performance.
Yet, some metrics can be more indicative than others.

1 Introduction
For more than two decades since its inception (Caruana
1997), Multi-Task Learning (MTL) has been extensively
studied by the Deep Learning community. For practition-
ers interested in the best strategy to learn a collection of
tasks, the promises of MTL are numerous and attractive.
First, learning to solve several tasks simultaneously can be
more cost-efficient from a model development and deploy-
ment perspective. Second, if the tasks learned together co-
operate, MTL can even outperform its Single-Task Learning
(STL) counterpart for the same computational cost (Stand-
ley et al. 2020).

However, MTL potential advantages are tempered by the
difficulty of estimating task affinity, i.e., identify tasks ben-
efiting from joint learning, without testing all combinations
of tasks. This calls for task affinity scores – to quantify a
priori and at a cheap computational cost the potential ben-
efit of learning tasks together. The quest for the perfect
affinity score is further exacerbated by MTL performance’s
strong dependency on the learning context, i.e., the data and

Copyright © 2023, Association for the Advancement of Artificial
Intelligence. 2nd Workshop on Practical Deep Learning in the Wild.

models used for training. For instance, tasks cooperating in
one learning context can result in competition when using
slightly different data or models (Standley et al. 2020).

Recent works (Fifty et al. 2021; Standley et al. 2020)
have integrated this context-dependency when designing
task grouping strategies. While these approaches avoid a
complete search across all task combinations, they still re-
quire training and comparing some MTL models for the fi-
nal network selection. Furthermore, those studies show that
even in a small-scale scenario, MTL performance cannot be
accurately predicted without actually performing MTL.

Despite providing assessment of task affinity, previous
literature lacks of a broader comparison of the associated
scores. In this work, we take a first step in recovering this
gap by presenting an empirical comparison of several
task affinity scoring techniques. Some of these scores are
inspired by previous literature ranging from Transfer Learn-
ing to Multi-Task Learning: taxonomical distance (Zamir
et al. 2018), input attribution similarity (Song et al. 2019),
representation similarity analysis (Dwivedi and Roig 2019),
gradient similarity (Zhao et al. 2018) and gradient transfer-
ence (Fifty et al. 2021). We benchmark an additional affinity
score which is an original proposal: label injection. We eval-
uate all of them on the public Taskonomy dataset (Zamir
et al. 2018) which is a well-known large benchmark span-
ning several Computer Vision tasks. Note that our objective
is not to present a novel state-of-the-art MTL architecture
but rather an objective benchmark of task affinity estimation
techniques. More specifically we aim to understand if task
affinity scores can (i) be used as proxy for true MTL perfor-
mance and (ii) suggest the best partner task to improve the
performance of a target task. These scores and their discus-
sion aim at helping practitioners gauge the benefit of MTL
for their own set of tasks. In section 2, we review the state
of the art on MTL affinity characterization. In section 3, we
present the affinity scores selected for benchmarking and de-
tail our evaluation protocol. We present our results in sec-
tion 4 and discuss the advantages and limitations of these
scores in section 5. Section 6 concludes the paper.

2 Background and related work
In this section, we first review relevant work on MTL and
task grouping, briefly present the Taskonomy dataset, and
finally introduce task affinity characterization.

Multi-Task Learning The promises of MTL are based on
the assumption that cooperative tasks benefit from induc-
tive transfer during joint learning. By being learned together,
tasks are encouraged to share, at least partially, common rep-
resentations, e.g., the extracted feature vector at the model’s
bottleneck, depending on the model architecture. The intu-
ition is that some tasks might exhibit compatible goals and
help one another during training through synergies, i.e., pos-
itive transfer. However, tasks interference can still degrade
performance if their respective updates become unaligned
or contradictory during simultaneous learning i.e., negative
transfer through competition.

To mitigate these effects, two complementary lines of re-
search both aim at reducing task interference and increasing
task synergies. The first direction focuses on model design,
hence crafting the model such that it is adapted to learn a
certain set of tasks. In this case, the task set is fixed while
the model is adapted to fit all the tasks under considera-
tion. Through hard parameter sharing, task weights can be
adapted during training in order to balance their impact on
the combined loss (Leang et al. 2020; Pascal et al. 2021).
Alternative approaches focus on tuning gradients to mitigate
task interference during MTL training (Chen et al. 2018; Yu
et al. 2020; Kendall, Gal, and Cipolla 2018). In soft param-
eter sharing instead, parameters are segregated by task and
the model is guided, during MTL learning, to only share in-
formation when it is beneficial (Sun et al. 2020; Misra et al.
2016). The second research direction is more recent and fo-
cuses on task grouping strategies by identifying cooperative
tasks that can be grouped to be profitably learned together.
In this case, the model design is fixed while the task set is
adapted i.e., split into potentially overlapping subsets. Re-
cent works from (Fifty et al. 2021) and (Standley et al. 2020)
show promising results as they succeed in stimulating pos-
itive transfer by combining only tasks that are beneficial to
one another. While these two research directions are com-
plementary, our work is more in the scope of the latter as
we benchmark affinity scores that should indicate if tasks
benefit one another when learned together.

Task grouping Task grouping strategies aim at assigning
tasks to models (that can be STL or MTL) in order to max-
imize the total performance of all the tasks under consider-
ation, given a computational budget. More formally, let us
consider the following:

• a set of n tasks T = {t1, t2, ..., tn} that need to be
solved;

• a total computational budget of β Multiply-Add opera-
tions;

• a set of k ≤ n models M = {m1,m2, ...,mk}, each one
associated with its respective amount of Multiply-Adds
operations C = {c1, c2, ..., ck}.

Task grouping aims at constructing M such that for all
ti ∈ T there exists exactly one model mj ∈ M assigned
to solve task ti at inference time, while respecting the com-
putational budget

∑k
j=1 cj ≤ β. Thus, any model from M

can learn an arbitrary number of tasks as long as each task
is assigned to one and only one model at inference time. To

Figure 1: (left) A valid task grouping. Model1 is assigned
both Taska and Taskb for inference. Model2 is assigned
Taskc for inference and it uses Taskb as a cooperative
task only during training. (right) An invalid task grouping.
Model1 and Model2 are both assigned to solve Taskb at in-
ference time.

illustrate this point, we present valid and invalid task group-
ings in fig. 1. The final objective of task grouping is to max-
imize the aggregated test performance:

P =
∑
ti∈T

P (ti|M), (1)

where P (ti|M) denotes the performance1 of task ti using its
assigned model from M. It is worth mentioning that the task
grouping problem differs from simple model selection as (i)
the objective (aggregated performance) and constraints (to-
tal cost) concern all tasks and models simultaneously and
(ii) any model can learn an arbitrary number of tasks.

The optimal task grouping is typically obtained by test-
ing all task combinations within the computational budget.
Therefore, to be as efficient as possible, grouping strategies
rely on task affinity estimates that guide the search of a so-
lution in the task groups space. This approach might only
identify sub-optimal task groups but it has a much a lower
cost than an exhaustive search. Sophisticated task grouping
strategies are studied in (Fifty et al. 2021) in terms of per-
formance and runtime. Such strategies include Higher-Order
Approximation from (Standley et al. 2020), gradients cosine
similarity maximization and task transference approxima-
tion from (Fifty et al. 2021). Our work complements this
benchmark of grouping strategies as we are interested in
assessing the strengths and weaknesses of the underlying
affinity scores. This includes an evaluation of the predictive
quality of such scores. Indeed, the perfect scoring technique
should not only identify the best partner tasks, but also be
a proxy of the true MTL performance. Overall, we aim for
a broader view of affinity scoring qualities with respect to
what provided in the literature.

Taskonomy – the reference framework From a Trans-
fer Learning perspective, Taskonomy (Zamir et al. 2018)
has been a successful attempt at clarifying transfer syner-
gies between visual tasks. From an MTL perspective, (Stan-
dley et al. 2020) performs a broad empirical campaign on
the same dataset to identify which visual tasks should be

1using a task-specific metric such as Intersection over Union for
semantic segmentation or minimizing the model loss

Figure 2: STL model schematic architecture. θB denotes the
backbone weights and θH the head weights.

trained together with MTL. In particular, they evaluate if
learning a target task with a partner task could outperform
learning the target task alone. Thus, this framework quanti-
fies task affinity as the performance gained on a task learned
in MTL versus STL. First, the authors show that coopera-
tion between tasks is not symmetrical, as one task may ben-
efit from another but not necessarily the opposite. Second,
by comparing MTL performance gains for the same pairs
of tasks but learned in various settings i.e., different dataset
size or different MTL model capacity, they unveil the impact
of the training context itself on task cooperation. Based on
this framework, (Fifty et al. 2021) monitors the evolution of
task affinities during MTL training. Their experimentation
on the CelebA dataset (Liu et al. 2018) suggests that task
cooperation evolves throughout training. Furthermore they
also show that hyper-parameters such as the learning rate or
the batch size can also affect cooperation.

Those works provide an in-depth view of relevant MTL
training dynamics. Our work complements these findings
with an in-breath view across several affinity scoring tech-
niques that integrate, at varying degrees, data, model and
hyper-parameters dependencies.

Task affinity We group the methods aiming at quantify-
ing task affinity for MTL under the term “affinity scores”
for short and break them down into three main categories
depending on their requirements for computation.

Model-agnostic affinity scores are computed using solely the
data at hand. This may be accomplished using nomencla-
tures or taxonomies to loosely relate tasks. For example, Ob-
ject classification and Semantic segmentation are both con-
sidered to be semantic tasks while Depth estimation is a 3-D
task (Zamir et al. 2018). This can also be more sophisticated
and make use of information theory to quantify how depen-
dent two tasks are, e.g., using labels entropy as in (Bingel
and Søgaard 2017).

STL-based affinity scores make use of STL models and com-
pare them to estimate affinity between tasks. Common ap-
proaches include comparing the STL models latent repre-
sentations using e.g., the Representation Similarity Analy-
sis (Dwivedi and Roig 2019). Another option is to compare
the STL models attribution maps assuming cooperative tasks
use the same features (Caruana 1997). Also, drawing from
Meta-Learning, (Achille et al. 2019) estimates affinity as the
distance between tasks in an embedded space that encodes
task complexity.

Figure 3: MTL model schematic architecture for two tasks
t1 = a and t2 = b. θB denotes the common backbone
weights. θHa and θHb denote the separate heads weights.

MTL-based approaches estimate task affinity during the
training of surrogate MTL model(s). Such computations
need to be more efficient than testing all tasks combina-
tions, otherwise it would defeat its very purpose of effi-
ciently quantifying task affinity. (Fifty et al. 2021) proposes
an affinity extraction method by simulating the effects that
task-specific updates of the model parameters would have
on other tasks. (Standley et al. 2020) extends pairwise MTL
performance gain to higher-order task combinations i.e.,
groups of three or more tasks. Also, both (Fifty et al. 2021)
and (Zhao et al. 2018) propose to compute the cosine sim-
ilarity between task-specific gradient updates as a way to
estimate task affinity during MTL training.

3 Methodology
Based on the assumption that grouping cooperative tasks to-
gether is a key success factor of MTL, we are interested in
quantifying task affinity through several scores. In this sec-
tion, we motivate the affinity scores selected and we detail
the evaluation protocol implemented to benchmark them.

3.1 Affinity scores
To simplify reasoning on task cooperation and competition,
we restrict ourselves to pairwise task affinity estimation, i.e.,
affinity scores for 2-task MTL. We depict typical STL and
pairwise-MTL architectures in Figures 2 and 3 respectively.
Considering two tasks t1 = a and t2 = b and a batch of
examples X , we denote:

• their resp. loss functions La and Lb

• their resp. STL models STLa and STLb with losses

– LSTLa
= La(X , STLa)

– LSTLb
= Lb(X , STLb)

• their joint MTL model MTL(a,b) with loss

– LMTL(a,b)
= La(X ,MTL(a,b)) + Lb(X ,MTL(a,b))

We consider six task affinity scores that we further describe
in the remainder of this section. Their detailed computations
are available in the supplementary material. Some scores
are symmetric, i.e., assessing how much two tasks a and b
help each other regardless of direction; others instead are
asymmetric, i.e., assessing how much a target task a bene-
fits from being learned with a partner task b. For each metric
we report its category (model-agnostic, STL-based or MTL-
based) and contribution (borrowed from literature, revisited
from literature or novel).

Taxonomical distance (TD) Model-agnostic – borrowed:
A natural way of assessing affinity between tasks from a
human perspective is to organize them through a hierarchi-
cal taxonomy. For example, classification datasets such as
(Van Horn et al. 2018) or (Wah et al. 2011) provide hier-
archical class granularity that can be used to group similar
tasks together as in (Achille et al. 2019). In our case, we used
the tasks similarity tree from (Zamir et al. 2018). This sym-
metric affinity score is computed as the distance between a
and b in the tree.

Input attribution similarity (IAS) STL-based – revisited:
(Caruana 1997) defines related tasks as tasks that use the
same features. Following this definition we assess how tasks
relate to one another in terms of input attribution similarity
using InputXGradient (Shrikumar et al. 2016) to compute
attribution maps for STLa and STLb. The affinity score
is then obtained via the cosine similarity of the attribution
maps (Song et al. 2019). Therefore this score is symmetric.

Representation similarity analysis (RSA) STL-based – re-
visited: RSA, a well-known method in the computational
neuro-sciences community (Dwivedi and Roig 2019), relies
on the assumption that, if tasks are similar, they learn sim-
ilar representations, i.e., a given input should be projected
in similar locations in the latent space. Referring to fig. 2,
this score compares the latent representations structures be-
tween the respective backbones θB of STLa and of STLb.
In a nutshell, RSA uses the Spearman correlation of Repre-
sentation Dissimilarity Matrices. This is a symmetric score.

Label injection (LI) STL-based – novel: Another way to
estimate task affinity is to measure the performance gained
from adding the target label of another task to the input. For
example, a task a targeting the classification of handwrit-
ten digits could be paired with a task b targeting the predic-
tion of even and odd digits. Since the two tasks are (clearly)
related, “injecting” the label of task b, i.e., providing it as
complementary input when training task a, could lead to
performance increase for task a. The performance of label
injection can be considered as a proxy of task affinity. This
affinity score is asymmetric. It is computed as the perfor-
mance gain between the standard STL model for task a and
the b-injected STL model for a denoted by STLa←b, i.e.,

LSTLa
− LSTLa←b

LSTLa←b

, (2)

using the test losses from the fully trained models.

Gradient similarity (GS) MTL-based – borrowed: This
task affinity score relies on the assumption that cooperative
tasks yield similar i.e., non-contradictory, weights updates to
the model backbone during MTL training. This score, which
we borrow from (Fifty et al. 2021; Zhao et al. 2018), is sym-
metric. It is computed as the cosine similarity between gra-
dients from each task loss with respect to the MTL model
common backbone weights. Using the notation from fig. 3,

we compute:

Scos

(
∂La(X , θB , θHa)

∂θB
,
∂Lb(X , θB , θHb)

∂θB

)
, (3)

at each epoch, and average these cosine similarities across
all training epochs.

Gradient transference (GT) MTL-based – borrowed: Dur-
ing MTL training, by simulating task-specific updates to the
common backbone, one can estimate how it would impact
the other task’s performance. This corresponds to the losses
look-ahead ratio defined in (Fifty et al. 2021). This asym-
metric score is computed comparing the loss of task a af-
ter updating the common backbone according to b, and the
loss of task a before this simulated update. Referring to the
notation from fig. 3, we denote the b-specific update of the
common backbone by θB|b. Thus, we compute:

La(X , θB|b, θHa)

La(X , θB , θHa)
, (4)

at each epoch, and average these ratios throughout training.

3.2 Evaluation
We evaluate these affinity scores against the true MTL per-
formance. Moreover, we evaluate the scores across three lev-
els by progressively relaxing the constraint of the analysis.

True performance: MTL gain. As in (Standley et al. 2020),
we quantify MTL success as the relative gain between STL
and MTL performance in terms of test loss. MTL gain for a
target task a when using a partner task b is defined as:

G(a|b) =
LSTLa − LMTL(ā,b)

LMTL(ā,b)

, (5)

where LSTLa
is the test loss for task a in a STL config-

uration, and LMTL(ā,b)
is the test loss for task a in a MTL

configuration using tasks a and b for joint learning. Note that
the contribution of task b to the MTL loss is not considered
when computing the gain, yet is considered during training.
We perform an exhaustive search through all possible pairs
of tasks to compute the “ground truth” affinities. These serve
as baseline against which each affinity score is evaluated.

Level 1: predictive power. As previously stated, an ideal
affinity score should be a proxy of the actual MTL gain:
higher/lower score should imply large/small benefit from
joint training. This is a stringent requirement, yet easy to
quantify by mean of Pearson’s correlation. Specifically, for
each target task a and affinity scoring technique, we com-
pute the correlation between the MTL gain across all part-
ner tasks (the true performance) and the affinity score across
the same partners (the proxy of the performance). It follows
that affinity scoring techniques with correlation values close
to −1 (perfect negative correlation) and +1 (perfect positive
correlation) have strong predictive power; correlation values
close to zero imply no predictive power.

Level 2: partners ranking. To relax the previous require-
ment, we define acceptable an affinity score capable to suc-
cessfully rank potential partner tasks by decreasing order of
MTL gain. More formally, for a target task a, and a set of
partner tasks P , we want an affinity score δ such that:

∀ ti ∈ P, rank(δ(a, ti)) = rank(G(a|ti)), (6)

To evaluate the agreement between the ranking given by the
affinity score and the actual ranking by MTL gain obtained
by exhaustive search, we use Kendall’s correlation coeffi-
cient (Kendall 1948) that ranges from −1 (opposite rank-
ings) to +1 (same rankings).

Level 3: best partner identification. In case only pairs of
tasks are considered for MTL, one is essentially interested
in finding the best partner. This means that we can further
relax the previous constraint and for a target task a, we want
an affinity score δ such that:

argmax
ti∈P

δ(a, ti) = argmax
ti∈P

G(a|ti), (7)

To evaluate this, we report the MTL gain obtained when
choosing the top partner according to the affinity score and
compare it with the maximum MTL gain obtained when
choosing the actual best partner.

4 Results
In this section we first detail the data and models used to
evaluate the proposed affinity scores. Then, we present the
results of our empirical campaign along the three levels of
evaluation previously defined.

4.1 Experimental protocol

Dataset. In this work, we select a portion of the Taskon-
omy medium-size split. This constitutes a representative
dataset of Computer Vision tasks, composed of labeled in-
door scenes from 73 buildings whose list is available in
the supplementary material. The whole dataset amounts to
726,149 input images which represent approximately 1.2 TB
including the various labels. We select the same five tasks as
(Standley et al. 2020; Fifty et al. 2021) to conduct our ex-
periments, namely:
• Semantic segmentation (SemSeg)
• 2D SURF keypoints identification (Keypts)
• Edges texture detection (Edges)
• Depth Z-Buffer estimation (Depth)
• Surface normals estimation (Normal)

A detailed description of the tasks can be found in the sup-
plementary material from (Zamir et al. 2018).

Models definition. We build on the work of (Standley et al.
2020) to train five STL models for the five aforementioned
tasks and ten pairwise MTL models. Models are variants
of the Xception architecture (Chollet 2017), composed of a
backbone that learns a latent representation of the input and

MTL gain on
Trained

with SemSeg Keypts Edges Depth Normal Avg.

SemSeg - -11.81 -10.22 -0.55 +0.95 -5.41
Keypts -6.70 - -8.67 -9.87 -13.88 -9.78
Edges -22.01 +1.26 - -8.24 +2.18 -6.70
Depth +18.02 -3.81 +16.69 - -6.37 +6.13

Normal +50.24 +29.56 +78.05 -0.45 - +39.35

Table 1: True performance: MTL gain. Ground-truth MTL
gain for each target task (column) and each partner task
(row) e.g., the task Edges performs 78.05% better than
learned alone in STL when trained with Normal as partner.

a head. In the case of the STL models, the backbone output
is forwarded to a single head that produces the final predic-
tion, cf. fig. 2. In the case of the pairwise MTL models, the
shared backbone output is forwarded to two disjoint heads,
one for each task under consideration by the MTL model,
cf. fig. 3. In this work, as well as in (Standley et al. 2020;
Fifty et al. 2021), we only consider hard parameter sharing
for the MTL backbone. While this approach simplifies rea-
soning about shared representations and weights updates, it
does not incorporate task interference mitigation strategies.

In terms of model capacity, we replicate the Xception17
models design from prior work in (Standley et al. 2020),
allowing each STL model only half of the capacity i.e.,
number of Multiply-Add operations, of a pairwise MTL
model. This constraint is implemented by reducing the num-
ber of channels in the CNN blocks composing the backbone.
Therefore, STL and MTL models use the same architec-
ture but with varying capacity. Each model is trained for 50
epochs with a decreasing learning rate, selecting the best-
performing epoch on the validation set as final model. Fi-
nally, hyper-parameters are set to default values from (Stan-
dley et al. 2020) with no further tuning.

4.2 Experimental results
In the following we report our evaluation based on the
methodology described in section 3.2. The detailed values
of each affinity score are instead reported in the supplemen-
tary material.

MTL gain. In Table 1, we report the ground truth MTL gain
for each pair of tasks. We reiterate that these results serve
as reference for evaluating the affinity scores. Furthermore,
recall that MTL gains are tightly related to the specific train-
ing conditions of our experiment i.e., the data, models and
hyper-parameters used, and they may vary if computed in
another setting. From this table, we note that some tasks are
more helpful than others. For example, Normal is a help-
ful partner task, but fails to be significantly assisted by any
other task. Overall, we find MTL gains to be highly asym-
metric. Nonetheless, almost all tasks would benefit from be-
ing learned with their best partner. This is in line with the
findings of (Standley et al. 2020).

Predictive power. Table 2 shows the Pearson correlation be-
tween the MTL gain and each individual affinity score. Each

Model
agnostic STL-based MTL-based

Task TD IAS RSA LI GS GT
SemSeg 0.4 0.99 0.81 0.99 0.79 0.76
Keypts -0.03 -0.06 -0.37 0.95 0.22 -0.08
Edges -0.34 -0.44 -0.68 0.90 -0.37 -0.66
Depth 0.90 0.98 0.96 0.64 0.69 0.97

Normal 0.60 0.38 0.20 -0.11 -0.19 0.40
All-at-once 0.08 0.08 -0.15 0.47 -0.08 -0.02

Table 2: Level 1: predictive power. Affinity scores correla-
tion with MTL gain. e.g., using Label injection (LI) to esti-
mate affinities for the target task SemSeg, its output strongly
correlates with the actual MTL gains (Pearson corr. = 0.99).

row considers a separate target task, while the last row la-
beled as all-at-once reports the correlation computed using
all pairs of all target tasks together.

Starting from such an aggregate scenario, we can see
that no scoring technique strongly correlates with the MTL
gains. Only Label injection moderately correlates with MTL
gain across all tasks pairs (Pearson corr. = 0.47). This inval-
idates the predictability property desired for an ideal affinity
score. Interestingly, when considering a single target task at
a time, some affinity scores successfully predict MTL per-
formance. For example, Depth’s MTL gains can be predicted
using Input attribution similarity (corr. = 0.98). Yet, no
scoring provides a stable correlation across all tasks pairs.

Partners ranking. In Table 3, we evaluate each affinity
scoring technique in terms of its ability to correctly rank po-
tential partner tasks according to the MTL gains they pro-
vide. For a given target task, we compare the rank obtained
from the affinity score with the rank obtained from the MTL
gains by mean of the Kendall rank correlation. As in the pre-
dictive power evaluation table, each row reports on the cor-
relation for each target task separately while in this case the
last line summarizes the overall performance using the aver-
age of the rank correlations across target tasks.

Starting from the aggregate view, we observe that no
score-based ranking correlates strongly with true ranking.
Only Label injection and Gradients similarity show a mod-
erate and positive correlation (average Kendall corr. = 0.47
and 0.4 resp.). Differently from before, when considering
specific targets tasks, the correlation does not necessarily
improve. For instance, Keypts and Normal STL-based scores
completely fail, yet MTL-based scores are not necessarily
better. Still considering Keypts target task, notice how La-
bel injection shows significantly higher Pearson correlation,
while the Kendall correlation shows that half of the partner
tasks are wrongly ranked according to the affinity score.

Best partner identification. Table 4 shows the top-1 part-
ner according to each affinity scoring technique. This is to be
compared with the maximum MTL gain that can be achieved
using the actual best partner. Label Injection correctly iden-
tifies the best partner for four out of five tasks. However, not
a single affinity score is capable of correctly identifying Nor-
mal’s best partner for MTL. Furthermore, Keypts and Edges

Model
agnostic STL-based MTL-based

Task TD IAS RSA LI GS GT
SemSeg 0.0 1.0 0.33 1.0 0.67 0.67
Keypts 0.0 0.0 0.0 0.0 0.67 0.33
Edges -0.33 -0.33 -0.33 0.67 0.0 -0.33
Depth 1.0 0.67 1.0 0.67 1.0 0.67

Normal 0.33 0.0 0.0 0.0 -0.33 0.0
Average 0.2 0.27 0.2 0.47 0.4 0.27

Table 3: Level 2: partners ranking. Comparison of partner
tasks ranking by affinity score versus by MTL gain. e.g.,
Label injection (LI) perfectly ranks partners for the target
task SemSeg (Kendall corr.= 1).

seem to be particularly difficult tasks for best partner identi-
fication. All scores but Label injection recommend choosing
either one as best partner for the other, while the actual best
choice is Normal for both of them.

5 Discussion and future work
A perfect affinity score should be both predictive of the ac-
tual MTL gain and cheap to compute. As prior work hints
that the training conditions themselves impact MTL gain, it
seems particularly tough to reconcile these properties as we
also verify throughout our experimental campaign. In this
paper, we benchmark various affinity scoring techniques that
incorporate data, model and hyper-parameters dependencies
at varying degrees: from model-agnostic scores that do not
take these into account, through STL-based scores that try to
include them, to MTL-based scores that are supposed to be
the closest to the actual MTL learning conditions. Unfortu-
nately, none of the selected scores, not even the MTL-based
ones that are close to MTL training, can accurately predict
MTL gain across all pairs of tasks. However, Label injec-
tion, the original affinity score we introduce, appears useful
for predicting the gains corresponding to potential partners
given a target task. We also observe that, surprisingly, MTL-
based scores are not necessarily better than STL-ones, i.e.,
not even quantifying affinity during the actual MTL training
seems sufficient to link affinity to performance.

From a cost perspective, except for Taxonomical dis-
tance, all the scoring techniques we benchmark require some
model training. We quantify the computational cost of an
affinity score by the total amount of training it requires to
estimate affinities across all pairs of tasks. Let us consider
n tasks and a standard half-capacity STL model with its re-
spective number of Multiply-Add operations denoted by cs.
Using this notation, we report the computational cost asso-
ciated with each affinity score in Table 5. While Input at-
tribution similarity and Representation similarity only re-
quire one STL model per task2, Label injection requires to
train an additional STL-injected model for each ordered pair.
Regarding MTL-based scores, both Gradient similarity and

2In some scenario, the STL models may be readily available,
such that the costs associated with Input attribution similarity and
Representation similarity can be amortized.

Model-agnostic STL-based MTL-based

Task Expected
partner TD IAS RSA LI GS GT

SemSeg Normal Normal (0) Normal (0) Depth (-32.2) Normal (0) Depth (-32.2) Depth (-32.2)
Keypts Normal Edges (-28.3) Edges (-28.3) Edges (-28.3) Normal (0) Edges (-28.3) Edges (-28.3)
Edges Normal Keypts (-86.7) Keypts (-86.7) Keypts (-86.7) Normal (0) Keypts (-86.7) Keypts (-86.7)
Depth Normal Normal (0) SemSeg (-0.1) Normal (0) Normal (0) Normal (0) SemSeg (-0.1)

Normal Edges SemSeg/Depth (-4.9) SemSeg (-1.2) Depth (-8.6) Depth (-8.6) Depth (-8.6) Depth (-8.6)

Table 4: Level 3: best partner identification. Comparison of best partner selection by affinity score. In parenthesis, we report
the difference of MTL gain between the actual best and the selected partner. e.g., For the target task Keypts the actual best is
Normal and all scores but Label injection (LI) select Edges leading to 1.26 - 29.56 = -28.3 decrease in performance gain.

Model
agnostic STL-based MTL-based

Cost TD IAS RSA LI GS GT
of

Multiply
Adds

0 n · cs n · cs n · cs +
2
(
n
2

)
· cs

(
n
2

)
·2cs

(
n
2

)
·2cs

Table 5: Affinity scores costs. Comparison of training costs
considering all pairs across n tasks, where cs denotes the
amount of Multiply-Add operations for a standard half-
capacity STL model.

Gradient transference3 require to train a full-capacity MTL
model for each unordered pair of tasks. Finally, while Tax-
onomical distance may appear cost-efficient, it has been es-
tablished using a Transfer Learning-based taxonomy that it-
self requires STL models training, cf. (Zamir et al. 2018).

From a practical perspective, Label injection can correctly
identify the best partner for most tasks, except for Normal,
for which none of the other scores succeeded. As in (Stan-
dley et al. 2020), we find that Normal is different from the
other tasks: it benefits others but it is better learned alone.
We conjecture that the high complexity of this task makes it
a good partner for sharing knowledge during joint learning,
but prevents it from being helped by easier tasks. To fur-
ther corroborate this hypothesis, task complexity need to be
incorporated in the affinity scoring design. We believe that
Task2Vec from (Achille et al. 2019) is a first step towards this
direction as it establishes a distance metric between tasks in-
corporating task difficulty from a Transfer Learning perspec-
tive. Unfortunately, Task2Vec cannot be directly used in our
context as it has only been defined for homogeneous tasks
i.e., from the same domain. Indeed, in (Achille et al. 2019),
the tasks are defined using coarse or fine-grained classifica-
tion variations from the same hierarchy. We leave the explo-
ration of this research direction as future work.

While this empirical campaign provides a better under-
standing of the challenges to take up when designing task
affinity scores, it is not conclusive given the high variabil-
ity coming from data, models, and tasks used for MTL. In
other words, while some results are encouraging, more re-
search is required to make those mechanisms actionable for

3We neglect the cost of the simulated task-specific update dur-
ing Gradient transference training.

an actual model design and operation. In this direction, we
identify some limitations that we intend to tackle in future
work. First, this analysis is limited to five Computer Vision
tasks. Some model-agnostic affinity scores such as Taxo-
nomical distance might not be trivially adapted to other task
domains. Second, the affinity scores we defined can only
estimate pairwise task affinity. While this is a reasonable
starting point, various effects may be at play when learn-
ing more than two tasks simultaneously. (Zhang, Hayes, and
Kanan 2021) propose a new perspective on a sample-wise
basis to quantify task transfer and interference separately.
However, their metrics are defined for classification tasks
only and their adaptation to heterogeneous tasks is an open
question. Third, the MTL architecture we selected features
hard parameter sharing and a static combined loss with equal
weights. Although this design choice is consistent with prior
work and facilitates reasoning on tasks cooperation, it does
not take advantage of the recent advances in task interfer-
ence mitigation techniques for MTL training (Chen et al.
2018; Yu et al. 2020; Kendall, Gal, and Cipolla 2018). In-
deed, tasks may be affine but still interfere during joint learn-
ing if no mechanism is implemented to attenuate it, which is
why MTL architecture design and task grouping strategies
are complementary lines of research.

6 Conclusion
Based on the assumption that identifying cooperative tasks
to be learned together is a key success factor of MTL, we
borrowed, adapted and designed various task affinity scores
for this purpose. We benchmarked these scores for pairs of
tasks on a public Computer Vision dataset to discuss their
strengths and weaknesses. Although no score is perfectly
predictive of MTL gain, some of them still hold value for
practitioners, by being able to identify the best partner for
a given target task. This empirical campaign offers a better
understanding of the conditions that allow MTL to be supe-
rior to STL and sheds light on the challenges to be met when
predicting it.

References
Achille, A.; Lam, M.; Tewari, R.; Ravichandran, A.; Maji,
S.; Fowlkes, C. C.; Soatto, S.; and Perona, P. 2019.
Task2vec: Task embedding for meta-learning. In Proceed-

ings of the IEEE/CVF international conference on computer
vision, 6430–6439.
Bingel, J.; and Søgaard, A. 2017. Identifying beneficial task
relations for multi-task learning in deep neural networks.
arXiv preprint arXiv:1702.08303.
Caruana, R. 1997. Multitask learning. Machine learning,
28(1): 41–75.
Chen, Z.; Badrinarayanan, V.; Lee, C.-Y.; and Rabinovich,
A. 2018. Gradnorm: Gradient normalization for adaptive
loss balancing in deep multitask networks. In International
conference on machine learning, 794–803. PMLR.
Chollet, F. 2017. Xception: Deep learning with depthwise
separable convolutions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 1251–
1258.
Dwivedi, K.; and Roig, G. 2019. Representation similarity
analysis for efficient task taxonomy & transfer learning. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 12387–12396.
Fifty, C.; Amid, E.; Zhao, Z.; Yu, T.; Anil, R.; and Finn,
C. 2021. Efficiently identifying task groupings for multi-
task learning. Advances in Neural Information Processing
Systems, 34: 27503–27516.
Kendall, A.; Gal, Y.; and Cipolla, R. 2018. Multi-task learn-
ing using uncertainty to weigh losses for scene geometry and
semantics. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 7482–7491.
Kendall, M. G. 1948. Rank correlation methods.
Leang, I.; Sistu, G.; Bürger, F.; Bursuc, A.; and Yogamani, S.
2020. Dynamic task weighting methods for multi-task net-
works in autonomous driving systems. In 2020 IEEE 23rd
International Conference on Intelligent Transportation Sys-
tems (ITSC), 1–8. IEEE.
Liu, Z.; Luo, P.; Wang, X.; and Tang, X. 2018. Large-
scale celebfaces attributes (celeba) dataset. Retrieved Au-
gust, 15(2018): 11.
Misra, I.; Shrivastava, A.; Gupta, A.; and Hebert, M. 2016.
Cross-stitch networks for multi-task learning. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 3994–4003.
Pascal, L.; Michiardi, P.; Bost, X.; Huet, B.; and Zuluaga,
M. A. 2021. Maximum Roaming Multi-Task Learning. Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
35(10): 9331–9341.
Shrikumar, A.; Greenside, P.; Shcherbina, A.; and Kundaje,
A. 2016. Not just a black box: Learning important features
through propagating activation differences. arXiv preprint
arXiv:1605.01713.
Song, J.; Chen, Y.; Wang, X.; Shen, C.; and Song, M. 2019.
Deep model transferability from attribution maps. Advances
in Neural Information Processing Systems, 32.
Standley, T.; Zamir, A.; Chen, D.; Guibas, L.; Malik, J.; and
Savarese, S. 2020. Which tasks should be learned together
in multi-task learning? In International Conference on Ma-
chine Learning, 9120–9132. PMLR.

Sun, X.; Panda, R.; Feris, R.; and Saenko, K. 2020.
Adashare: Learning what to share for efficient deep multi-
task learning. Advances in Neural Information Processing
Systems, 33: 8728–8740.
Van Horn, G.; Mac Aodha, O.; Song, Y.; Cui, Y.; Sun, C.;
Shepard, A.; Adam, H.; Perona, P.; and Belongie, S. 2018.
The inaturalist species classification and detection dataset.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, 8769–8778.
Wah, C.; Branson, S.; Welinder, P.; Perona, P.; and Belongie,
S. 2011. The caltech-ucsd birds-200-2011 dataset.
Yu, T.; Kumar, S.; Gupta, A.; Levine, S.; Hausman, K.;
and Finn, C. 2020. Gradient surgery for multi-task learn-
ing. Advances in Neural Information Processing Systems,
33: 5824–5836.
Zamir, A. R.; Sax, A.; Shen, W.; Guibas, L. J.; Malik, J.; and
Savarese, S. 2018. Taskonomy: Disentangling task transfer
learning. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 3712–3722.
Zhang, Y.; Hayes, T. L.; and Kanan, C. 2021. Disentangling
Transfer and Interference in Multi-Domain Learning. arXiv
preprint arXiv:2107.05445.
Zhao, X.; Li, H.; Shen, X.; Liang, X.; and Wu, Y. 2018. A
modulation module for multi-task learning with applications
in image retrieval. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), 401–416.

Abstract

The following elements are provided in the supplementary
material:

1. Affinity scores raw values
2. Taskonomy buildings used
3. Affinity scores computation

A Affinity scores raw values
In Tables 6 to 11, we report the raw affinities estimations for
all tasks, using each affinity scoring technique. Results are
rounded at the second decimal.

Affinities estimations
with SemSeg Keypts Edges Depth Normal

SemSeg - -8 -6 -8 -5
Keypts -8 - -4 -12 -9
Edges -6 -4 - -10 -7
Depth -8 -12 -10 - -5

Normal -5 -9 -7 -5 -

Table 6: Taxonomical distance (TD). Distance between tasks
in the similarity tree from (Zamir et al. 2018). Multiplied by
−1 for consistency (i.e., higher means more affinity).

Affinities estimations
with SemSeg Keypts Edges Depth Normal

SemSeg - 0.25 0.23 0.31 0.45
Keypts 0.25 - 0.52 0.18 0.23
Edges 0.23 0.52 - 0.18 0.22
Depth 0.31 0.18 0.18 - 0.29

Normal 0.45 0.23 0.22 0.29 -

Table 7: Input attribution similarity (IAS). Cosine similarity
between STL models attribution maps.

Affinities estimations
with SemSeg Keypts Edges Depth Normal

SemSeg - 0.33 0.37 0.46 0.46
Keypts 0.33 - 0.66 0.04 0.05
Edges 0.37 0.66 - 0.12 0.13
Depth 0.46 0.04 0.12 - 0.69

Normal 0.46 0.05 0.13 0.69 -

Table 8: Representation similarity analysis (RSA). Represen-
tation similarity analysis using the STL models backbones
output.

Affinities estimations
with SemSeg Keypts Edges Depth Normal

SemSeg - -2.93 -3.50 -3.07 +3.70
Keypts -8.47 - +4.97 -8.31 +1.42
Edges -15.93 -4.20 - -9.58 +2.42
Depth +4.04 -3.34 -1.26 - +20.29

Normal +25.68 +60.29 +23.79 +66.30 -

Table 9: Label injection (LI). Performance gain (%) when
incorporating the label from the partner task in the STL
model’s input, relative to standard STL.

Affinities estimations
with SemSeg Keypts Edges Depth Normal

SemSeg - 0.51 0.39 1.93 1.54
Keypts 0.51 - 1.89 0.75 1.0
Edges 0.39 1.89 - 0.92 0.59
Depth 1.93 0.75 0.92 - 8.40

Normal 1.54 1.0 0.59 8.40 -

Table 10: Gradient similarity (GS). Cosine similarity be-
tween task-specific gradient updates on the MTL backbone.
Averaged across all training epochs. Multiplied by 100.

Affinities estimations
with SemSeg Keypts Edges Depth Normal

SemSeg - +0.02 +0.25 +1.69 +0.74
Keypts -0.03 - +0.38 -0.01 +0.01
Edges -0.20 +0.71 - +0.19 +0.27
Depth +0.47 +0.01 +0.15 - +0.90

Normal +0.27 +0.03 +0.16 +1.26 -

Table 11: Gradient transference (GT). Look-ahead ratio sim-
ulating the effect of applying task-specific updates to the
MTL backbone for the other task. Averaged across all train-
ing epochs.

B Taskonomy buildings used
We split our subset of the Taskonomy dataset into train, val-
idation and test sets, on a per-building basis.

Train set These buildings amount to 603,437 input images.

• adairsville
• airport
• albertville
• anaheim
• ancor
• andover
• annona
• arkansaw
• athens
• bautista
• bohemia
• bonesteel
• bonnie
• broseley
• browntown
• byers
• scioto
• nuevo
• goodfield
• donaldson
• hanson
• merom
• klickitat
• onaga
• leonardo
• marstons
• newfields
• pinesdale
• lakeville
• cosmos
• benevolence
• pomaria
• tolstoy
• shelbyville
• allensville
• wainscott
• beechwood
• coffeen
• stockman
• hiteman
• woodbine
• lindenwood
• forkland

• mifflinburg
• ranchester
• springerville
• swisshome
• westfield
• willow
• winooski
• hainesburg
• irvine
• pearce
• thrall
• tilghmanton
• uvalda
• sugarville
• silas

Validation set These buildings amount to 82,345 input
images.

• corozal
• collierville
• markleeville
• darden
• chilhowie
• churchton
• cauthron
• cousins
• timberon
• wando

Test set These buildings amount to 40,367 input images.

• ihlen
• muleshoe
• noxapater
• mcdade

C Affinity scores computation
In Table 12, we detail the computation of each selected affin-
ity score. Considering two tasks t1 = a and t2 = b and a
batch of examples X , we denote:
• their resp. losses functions La and Lb

• their resp. STL models STLa and STLb with losses
– LSTLa = La(X , STLa)
– LSTLb

= Lb(X , STLb)

• their joint MTL model MTL(a,b) with loss
LMTL(a,b)

= La(X ,MTL(a,b)) + Lb(X ,MTL(a,b))

Note that if the score is symmetric, it assesses how much
the two tasks help each other regardless of direction. If it is
asymmetric, it considers how much the target task a benefits
from being learned with the partner task b. While all scores
could not be constrained to lie in the same range, higher al-
ways means more affinity.

Affinity
scoring Type Computation Comment Range

Taxonomical
distance (TD)

Model-
agnostic Distance between tasks in a taxonomy tree.

Symmetric. Taxonomy
borrowed from (Zamir
et al. 2018). Multiplied
by −1 for consistency
i.e., higher is better.

] − ∞, 0]

Input
attribution
similarity

(IAS)

STL-
based

1

|X |
∑
x∈X

Scos(Attr(STLa, x), Attr(STLb, x)), (8)

where Scos is cosine similarity, X denotes a batch
of examples and Attr the attribution method used.

Symmetric. Revisited
from (Song et al.

2019). Computed on
a subset of the test set
(2,048 images) using
InputXGradient
attribution (Shriku-

mar et al. 2016).

[−1,+1]

Representation
similarity
analysis
(RSA)

STL-
based

RSA(θBa, θBb,X), (9)

where RSA denotes the Representation Similiarity Anal-
ysis, X a batch of examples, θBa and θBb the back-

bone weights of the STL models for tasks a and b resp.

Symmetric. Revisited
from (Dwivedi and

Roig 2019). Computed
on a subset of the test

set (2,048 images).

[−1,+1]

Label
injection (LI)

STL-
based

LSTLa − LSTLa←b

LSTLa←b

, (10)

where STLa←b represents the STL model
for task a, modified to ingest the correspond-
ing label from task b in addition to the input.

Asymmetric. Novel
proposal. Computed

using test losses.

]−∞,+∞[

Gradient
similarity

(GS)

MTL-
based

1

N

N∑
i=1

Scos(
∂La(X , θiB , θ

i
Ha)

∂θiB
,
∂Lb(X , θiB , θ

i
Hb)

∂θiB
), (11)

where N denotes the number of training epochs, Scos the
cosine similarity, X a batch of examples, θiB the weights
of the common MTL backbone at the ith epoch, θiHa and
θiHb the weights of the heads for a and b at the ith epoch.

Symmetric. Borrowed
from (Fifty et al. 2021;

Zhao et al. 2018).
[−1,+1]

Gradient
transference

(GT)

MTL-
based

1

N

N∑
i=1

1−
La(X , θi+1

B|b , θ
i
Ha)

La(X , θiB , θ
i
Ha)

, (12)

where N denotes the number of training epochs, X a batch of
examples, θi+1

B|b the weights of the common MTL backbone
updated using the loss of task b at the epoch i + 1, θiHa and
θiHb the weights of the heads for a and b at the ith epoch.

Asymmetric. Borrowed
from (Fifty et al. 2021).

]−∞,+∞[

Table 12: Tasks affinity scores description and computation considering two tasks t1 = a and t2 = b.

	Introduction
	Background and related work
	Methodology
	Affinity scores
	Evaluation

	Results
	Experimental protocol
	Experimental results

	Discussion and future work
	Conclusion
	Affinity scores raw values
	Taskonomy buildings used
	Affinity scores computation

