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Abstract—The multi-user linearly-separable distributed com-
puting problem is considered here, in which N servers help to
compute the real-valued functions requested by K users, where
each function can be written as a linear combination of up to
L (generally non-linear) subfunctions. Each server computes a
fraction γ of the subfunctions, then communicates a function of
its computed outputs to some of the users, and then each user
collects its received data to recover its desired function. Our goal
is to bound the ratio between the computation workload done
by all servers over the number of datasets.

To this end, we here reformulate the real-valued distributed
computing problem into a matrix factorization problem and then
into a basic sparse recovery problem, where sparsity implies
computational savings. Building on this, we first give a simple
probabilistic scheme for subfunction assignment, which allows
us to upper bound the optimal normalized computation cost
as γ ≤

K
N

that a generally intractable ℓ0-minimization would
give. To bypass the intractability of such optimal scheme, we
show that if these optimal schemes enjoy γ ≤ −rK

N
W−1

−1 (−
2K
eNr

)
(where W

−1(·) is the Lambert function and r calibrates the com-
munication between servers and users), then they can actually
be derived using a tractable Basis Pursuit ℓ1-minimization. This
newly-revealed connection opens up the possibility of designing
practical distributed computing algorithms by employing tools
and methods from compressed sensing.

Index Terms—Distributed computing, Linearly-separable func-
tions, Compressed sensing, Sparse representation.

I. INTRODUCTION

Distributed computing plays an important role in speeding

up non-linear and computationally hard computing tasks. As

the complexity of these tasks increases, there is an ever rising

need for novel parallel processing techniques that efficiently

offload computations to groups of distributed servers. This

same complexity increase also brings about many challenges,

including, to name a few, computing accuracy [1], [2], scal-

ability [3]–[5], privacy and security [6]–[10], and latency

and straggler mitigation [11]–[15]. There is also substantial

research work on various explorations of communication vs.

computation trade-off [14], [16], [17], [18]. Moreover, moti-

vated by the applicability of deriving schemes that work on

real numbers, other interesting related settings, such as the

Lagrange-coded secret sharing over real numbers [19], coded

distributed polynomial evaluation over complex matrices [20],

0This work was supported by the European Research Council (ERC)
through the EU Horizon 2020 Research and Innovation Programme under
Grant 725929 (Project DUALITY) and Grant 101003431 (Project SONATA)

[21], as well as the setting of secure distributed multiplication

of real or complex matrices [22], have emerged. For a detailed

survey of related research works, the interested reader is

referred to [23], [24].

This same aforementioned complexity increase, has also

brought about various related frameworks such as MapReduce

[25] and Spark [26] that apply to broad classes of functions.

Focusing on functions over finite fields, the recent work

in [27], [28]1 proposed the so-called Multi-User Linearly-

Separable Distributed-Computing framework, which allows

for distributed computation of functions that adhere to the very

broad linearly separable format, which in turn captures various

classes of linear and non-linear functions of practical interest2.

Such functions have the form

F (D1, D2, . . . , DL) =
∑L

l=1
flgl(Dl)

where D1, D2, . . . , DL are the L input datasets,Wl = gl(Dl)
are the computed outputs of basis subfunctions gl(Dl), and

fl are scalar coefficients. In the multi-user (K users and N
servers) setting where each user asks for its own function, the

work in [27] transformed the distributed computing problem

into a simple (preferably sparse) matrix factorization problem

over finite fields, and then proceeded to make the direct con-

nection between distributed computing, matrix factorization,

and a new coding theoretic approach. In particular, for a K×L
demand matrix F where each row describes the coefficients

that define the function requested by a user, the problem was

transformed into the factorization problem F = DE, where D

and E are the decoding and encoding matrices respectively. E

dictated which server should compute which subfunction and

then how each server should combine the computed outputs

before transmitting, while the K × N decoding matrix D

dictated which user should each server communicate to and

how each user should combine the various received signals.

Then, a solution was proposed that derived from the powerful

class of covering codes, and from a new class of so-called

partial covering codes. In particular, the parity-check matrix

from such codes played the role of D, while then, after

1Multi-user variant of [14] which generalizes the many distributed com-
puting problems such as gradient coding, matrix-matrix multiplication and
etc.

2For more information on this, please see [29], [30].



considering the columns of F as syndromes, the columns of E

were identified as the coset leaders with minimum weight, thus

guaranteeing the sparsest E and thus the least computational

cost. For example, when D is derived from the basic class

of covering codes over a q-ary field, then the corresponding

normalized computational cost γ ∈ [0, 1] — describing the

fraction of all subfunctions each server had to compute —

took the form γ = H−1
q (K/N) where H−1

q (·) is the functional

inverse of the entropy function.

We are here though interested in computing functions di-

rectly over the reals, which will indeed constitute a substantial

deviation from the finite field case. This emphasis on the real

(or complex) domain is necessitated by the fact that computing

a real-valued problem over a finite field (after discretization)

may not be as practical as computing it directly over the

reals, mainly because discretization may entail large precision

costs and accuracy losses, as well as because finite field

computations are notoriously slower than floating point oper-

ations. For that, we will consider real-valued functions over L
real-valued datasets (or equivalently, with L component/basis

subfunctions), and N computing servers and K users each

demanding their own function. As we are now working in the

field of real numbers, the coding theoretic approach in [27]

does not directly apply, and thus a new approach is required.

Here, our approach is based on establishing, for the first

time, a connection between distributed computing and com-

pressed sensing. As a first step, we show (Proposition 1) that

there exists an achievable scheme whose normalized computa-

tional cost is bounded above as γ ≤ K
N

. This is a probabilistic

scheme, where D is chosen from the Gaussian ensemble, and

where the corresponding sparsity of E is the outcome of a

randomized process. Then we propose ℓ0-minimization, which

takes as input D and F to yield a sparse E. This minimization

though is generally intractable, and for this reason, we draw

from the rich literature of compressed sensing to suggest a

more practical approach where we show (Theorem 1) that as

long as there exists a scheme whose computational cost is

bounded by γ ≤ −rK
N
W−1

−1 (−
2K
eNr

) (where W−1(·) is the

Lambert function and r is a parameter that calibrates the

communication between servers and users) we can in fact

employ a tractable basis pursuit ℓ1-minimization to derive such

scheme.

Notations: For matrices A and B, then [A,B] indicates the

horizontal concatenation of the two matrices. We define [n] ≜
{1, 2, . . . , n}. For any matrix X ∈ F

m×n, then X(i, j), i ∈
[m], j ∈ [n], represents the entry in the i-th row and j-th

column, while X(i, :), i ∈ [m], represents the i-th row, and

X(:, j), j ∈ [n] represents the j-th column of X. For two index

sets I ⊂ [m],J ∈ [n], then X(I,J ) represents the sub-matrix

comprised of the rows in I and columns in J . We will use

∥X∥0 to represent the number of nonzero elements of some

matrix (or vector) x. Also, ⊗ is the Kronecker product and

vec(X) is the vectorization of X.A∗ represents a conjugate of

A. AS represents a matrix that consists of only the columns

of A indexed in S ⊂ [N ]. Im×m represents an m×m identity

matrix.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the multi-user linearly-separable distributed

computation setting (cf. Fig. 1), which consists of K
users/clients, N active servers, and a master node that coor-

dinates servers and users. The tasks performed on each server

may entail substantial computational complexity as well as

time constraints. We consider a setting where each server n
can communicate in a single shot (a single time-slot) to some

arbitrary user-set Tn ⊂ [K], via a dedicated broadcast channel.

In our setting, each user asks for a (generally non-linear)

function from a space of linearly-separable functions, where

each such function takes several datasets D1, . . . , DL as input,

and is of the form of a linear combination of individual

subfunctions gl(Dl) ∈ R, each taking a single dataset Dl as

input. Thus, the function Fk(D1, . . . , DL) ∈ R, demanded by

user k ∈ [K], is a real-valued function of the form

Fk(D1, D2, . . . , DL) ≜ fk,1g1(D1) . . .+ fk,LgL(DL) (1)

= fk,1W1 + . . .+ fk,LWL (2)

where Wl = gl(Dl) ∈ R, l ∈ [L] is a so-called ‘file’ output,

and fk,l ∈ R, k ∈ [K], l ∈ [L] are the linear combination

coefficients that define each desired function.

A. Phases of the Process

The model involves three phases, with the first being the

demand phase, the second being the assignment and compu-

tation phase, and the final one the transmission and decoding

phase. In the demand phase, each user k ∈ [K] requests Fk(·)
from the master node, who then deduces the decomposition as

in (2). Then, based on these K desired functions, during the

assignment and computation phase, the master assigns some of

the subfunctions to each server n, which then proceeds to com-

pute these and produce the corresponding files Wl = fl(Dl)
for all the subfunctions fl(Dl), l ∈ Wn it is responsible for.

During the transmission phase, each server n ∈ [N ] broad-

casts

zn ≜
∑

l∈[L]

en,lWl, n ∈ [N ] (3)

in a single shot its own linear combination of the locally

computed output files, and does so to its own particular subset

of users Tn. The above is defined by the so-called encoding

coefficients en,l ∈ R which are determined by the master.

Finally, during the decoding phase, each user k linearly

combines the received signals as follows

F ′
k ≜

∑

n∈[N ]

dk,nzn (4)

for some decoding coefficients dk,n ∈ R, n ∈ [N ], determined

again by the master node. Naturally dk,n = 0, ∀k /∈ Tn. In the

end, we say the exact decoding is successful when F ′
k = Fk

for all k ∈ [K].
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Fig. 1. The K-user, N -server, L-Dataset linearly-separable computation
setting. Once each user informs the master of its desired function Fk(·),
each server n ∈ [N ] computes a subfunction Wl = fl(Dl) ∈ R in
Wn ⊆ [L]. Afterwards, server n broadcasts a linear combination zn (of
the locally available computed files) to all users in Tn. This combination is
defined by the coefficients en,l. Finally, for decoding, each user k ∈ [K]
linearly combines (based on decoding vectors dk) all the received signals
from all of the servers it has received from. Decoding should produce for
each user its desired function Fk(D1, . . . , DL).

B. Problem Formulation

Similarly to the finite field case, also here, to formu-

late the problem we use f ≜ [F1, F2, . . . , FK ]⊺, fk ≜

[fk,1, fk,2, . . . , fk,L]
⊺, k ∈ [K],w ≜ [W1,W2, . . . ,WL]

⊺

where f represents the vector of the demanded functions

outputs (cf. (2)), fk the vector of function coefficients for user

k (cf. (2)), and w the vector of output files combined over all

subfunctions. We also have en ≜ [en,1, en,2, . . . , en,L]
⊺, n ∈

[N ]z ≜ [z1, z2, . . . , zN ]⊺ respectively representing the en-

coding vector at server n, and the overall transmitted vector

across all the servers (cf. (3)). Furthermore, we have dk ≜

[dk,1, dk,2, . . . , dk,N ]⊺, k ∈ [K]f ′ ≜ [F ′
1, F

′
2, . . . , F

′
K ]⊺

respectively representing the decoding vector at user k,

and the vector of the decoded functions across all the users.

In addition, we have F ≜ [f1, f2, . . . , fK ]⊺ ∈ R
K×L,E ≜

[e1, e2, . . . , eN ]⊺ ∈ R
N×L,D ≜ [d1,d2, . . . ,dK ]⊺ ∈ R

K×N

where F represents the K × L so-called jobs matrix of all

function coefficients across all the users, where E represents

the N ×L computing and encoding matrix across all servers,

and where D represents the K × N decoding matrix across

all the users.

Directly from (2), we have that

f = [f1, f2, . . . , fK ]⊺w (5)

and from (3) we have the overall transmitted vector taking the

form

z = [e1, e2, . . . , eN ]⊺w = Ew. (6)

Furthermore, directly from (4) we have that

F ′
k = dT

k z (7)

and thus we have

f ′ = [d1,d2, . . . ,dK ]⊺z = Dz. (8)

Recall that we must guarantee

f ′ = f . (9)

After substituting (5), (6) and (8) into (9), we see that the

above feasibility condition in (9) is satisfied if and only if

DEw = Fw. (10)

For this to hold for any w, we must thus have

DE = F. (11)

Note that throughout the whole paper, we assume that K ≤ N .

C. Computational Cost

Recalling quickly that each server n computes the subfunc-

tions whose index are in Wn, and since Wn = supp(E(n, :)),
then the normalized computation cost in our case naturally

takes the form

γ ≜

∑N

n=1 |Wn|

NL
=

∥E∥0
NL

. (12)

As one can see, γ simply describes the average fraction of

subfunctions that must be computed by each server, which is

also the fraction of non-zero elements in E. It is now clear that

decomposing F into the product of two matrices D and sparse

E, implies reduced computation cost which results in reduced

delay. In particular, the fewer number of nonzero elements in

a row of E means less delay in finishing up a task for a server.

III. RESULTS

In this section, we first give a basic probabilistic scheme for

subtask assignment, based on employing a Gaussian3 random

matrix D, where the scheme employs a simple zero-forcing

approach that solves a determined linear system. Albeit basic,

this will allow us to upper bound the optimal normalized com-

putation cost — which a generally intractable ℓ0-minimization

would give — as γ ≤ K
N

.

Proposition 1. For the multi-user linearly-separable dis-

tributed computing problem, with K users, N servers and

L datasets, employing a random Gaussian D, guarantees

that with probability 1, there exists a scheme with bounded

normalized computation cost γ ≤ K/N , which serves as an

upper bound the ℓ0-minimal cost.

Proof. From (11), we have that F(:, l) = DE(:, l),F(:, l) ∈
R

K×1, ∀l ∈ [L] where for each l, in the context of the ℓ0-

minimization in (14), we have y = F(:, l), D = A and E(:
, l) = z, where again we have an underdetermined system of

equations.

Consider choosing L arbitrary random subsets Sl ⊂
[N ], l ∈ [L] where |Sl| = K. Now for each l ∈ [L],
we focus on the l − th column E([N ], l) of E and set

3This implies that each entry of D is independently and identically picked
from a Gaussian distribution.



the elements E([N ]\Sl, l) = 0, i.e., from column l, only

the elements indexed by Sl remain non-zero. Now since

F(:, l) = D([K], [N ]\Sl)E([N ]\Sl, l) + D([K],Sl)E(Sl, l),
we get F(:, l) = D([K],Sl)E(Sl, l), which is a determined

system of equations that allows us to determine E(Sl, l). In the

above, D([K],Sl) is the corresponding K×K submatrix of D.

Given the above, each such D([K],Sl) is a K ×K Gaussian

sub-matrix, which is naturally nonsingular with probability

one. Thus, the determined system of equations always has a

unique solution for E(Sl, l), ∀l ∈ [L], therefore the scheme

works for all F (:, l), l ∈ [L]. This scheme guarantees that

∥E(:, l)∥0 ≤ K, then ∥E∥0 ≤ KL, and thus guarantees that

γ ≤ K
N

. Better performance can be achieved by employing

ℓ0-minimization as in (14).

As we will discuss in Section IV, ℓ0-minimization is known

to be NP-hard [31], hence intractable. To offer a practical so-

lution, the following theorem utilizes results from compressed

sensing to describe a range of practical solutions, which now

use ℓ1-minimisation in order to find — as we will clarify later

on — sparse (and unique) encoding matrices E.

Theorem 1. For the multi-user linearly-separable distributed

computing problem, with K users, N servers and L datasets,

if a scheme exists with a (κ, β) sub-Gaussian random matrix

D (cf. Lemma 2) for which ℓ0-minimisation would yield

γ ≤ −
1

r

K

N
W−1

−1 (−
2K

erN
), 0 ≤ K/N ≤ 12(2β + κ)/κ2,

then the corresponding (and unique) E can be found via basis

pursuit ℓ1-minimization with probability at least 1 − 2e−
KL
r ,

where r = 12(4β + 2κ)/κ2.

Proof. The proof is provided in the following section, which

starts with a brief primer on compressed sensing.

IV. PROOF OF THEOREM 1

Before proceeding with the proof, we quickly describe some

basic properties of compressed sensing.

A. Brief Primer on Compressed sensing

We provide here a brief introduction of the compressed

sensing results [31]–[41], which will be employed in our

distributed computing problem. We will utilize notation com-

mon to the compressed sensing literature, and the link to the

computing parameters will be clarified in the next subsection.

As described in [35], compressed sensing seeks to recover

a sparse vector x ∈ R
p from a few underdetermined linear

measurements of the form:

y = Ax ∈ R
m (13)

where A ∈ R
m×p,m, p ∈ N is the so-called measurement

matrix, and y = [y1, ..., ym]T is the measurement vector. In

our case, as we will see later on, y will be associated to our

computing and encoding matrix E, then A to the communi-

cation and decoding matrix D, and x will be associated to

the jobs matrix F. The general approach is to recover the

sparsest solution via a basic but computationally intractable

ℓ0-minimization that takes the form

min
z∈Rp

∥z∥0 :=

p∑

i=1

1|zi|≠0 subject to y = Az (14)

where 1|zi|≠0 denotes the indicator function. This same opti-

mization will lead to the sparsest solution for E and thus will

yield the smallest possible γ. To the best of our knowledge,

there are no results that enables us to bound the weight of this

sparsest solution, and for that we will use a basic constructive

approach to bound γ.

The NP-hard nature of the optimization problem in (14) has

led to the consideration of an ℓ1-norm minimization approach,

also known as basis pursuit, which is considered as the closest

convex tractable alternative for (14), and which is given by

min
z∈Rp

∥z∥1 :=

p∑

i=1

|zi| (15)

s.t. y = Az. (16)

It is well established in compressed sensing that the estimate

x̂ ∈ R
p obtained by solving (15), achieves the desired unique

solution x as long as some conditions are satisfied4. These

conditions are closely related to certain properties of the

measurement matrix, with one such condition being the well

known restricted isometry property (RIP) [42], which dictates

how well ℓ1-norm optimization algorithms, such as basis

pursuit [43], can perform. This is captured in the following

result, found in [31, Theorem 6.2], which is reproduced here.

Lemma 1. For a matrix A ∈ R
m×p and for

δs(A) ≜ max
S⊂[p],|S|≤s

∥A∗
SAS − Im×m∥

2
2→2 (17)

being the sth restricted isometry constant, and if δ2s(A) < 1
3 ,

then every s-sparse vector x ∈ R
p is the unique solution of

minimize
z∈Rp

∥z∥1 subject to Az = Ax. (18)

In particular, the above Lemma shows that having a mea-

surement vector y ∈ R
m, where we know apriori that it is

a result of a linear system Ax, x ∈ R
p,m ≤ p, induced

by a unique and s-sparse vector x if δ2s(A) < 1
3 , then via

having a ℓ1-minimizer, we can find z as a solution to Az,

which it has minimum ∥z∥1, then the above Lemma guarantees

that the solution of this minimization is equal to x. The

above lemma shows that having δ2s(A) < 1/3 is sufficient to

guarantee the exact recovery of all unique s-sparse vectors via

ℓ1-minimization. It basically states that if A behaves relatively

similar to orthonormal matrices when operating on sparse

vectors, then ℓ1-minimization will act as an ℓ0-minimization.

In our problem here, it is important that we pick D such that

A abides by the above property. The following two results tell

us directly how to do that. The first, below, is directly adapted

from [31, Theorem 9.2].

4For our computing problem. these will be conditions in the form of an
upper bound on γ.



Lemma 2. Let A ∈ R
m×p be an i.i.d. (zero mean, unit

variance) sub-Gaussian random matrix with parameters β and

κ such that

P(|Ai,j | ≥ t) ≤ βe−κt2 , ∀t > 0. (19)

Then, δ2s(
A√
m
) ≤ δ is satisfied with probability at least 1 −

2e−
δ2m
2c for any δ such that

m ≥ 2cδ−2s ln(
ep

2s
) (20)

where

c =
2(4β + 2k)

3k2
. (21)

Combining Lemma 2 and Lemma 1 after setting δ = 1/3,

implies that the uniform recovery of all s-sparse vectors is

possible with high probability via the ℓ1-minimization in (15)

as long as the number of measurements satisfies m ≥ (12(4β+
2κ)/κ2)s ln( ep2s ) .

B. Proof of Theorem 1

Directly from (11), we have

vec(F) = (D⊗IL×L)× vec(E), (22)

which matches the compressed sensing setting y = Ax in (13)

when considering y = vec(F), A = D⊗IL×L, and x =
vec(E), where now m = KL and p = NL.

Furthermore, let us also note that directly from [44], we

have

δs(D⊗ IL×L) ≤ δs(D). (23)

With the elements of D being chosen independently from

a zero-mean, unit-variance sub-Gaussian distribution with

parameters β, κ (cf. (19)), we can now employ Lemma 1

and (23), together with Lemma 2 after setting δ2s < δ = 1/3,

to conclude that the exact recovery threshold for a unique E

matrix via ℓ1-minimization driven by basis pursuit, takes the

form

KL ≥ r ∥E∥0 ln(
eNL

2r ∥E∥0
) (24)

where r = 12(4β+2κ)/κ2. Then after normalizing both sides

by NL and applying (12), we get

K

N
≥ rγ ln(

e

2rγ
). (25)

Let us now define f(x) ≜ −r−1xW−1
−1 (−

2x
e
) and evaluate it

on the both sides of (25), at x1 = K/N and x2 = rγ ln( e
2rγ )

since f(x) is a monotonically increasing function on 0 ≤ x ≤
r/2 and r/2 ≥ x1 ≥ x2 ≥ 0, we have f(x1) ≥ f(x2), in

the view of the fact that its inverse5 function is f−1(x) =
rx ln( e

2rx ), we can retrieve the claim.

5To see this, for g(x) ≜ rx ln( e
2rx

) and f(x) ≜

−r−1xW−1
−1 (−2x/e), we see that g−1(x) = f(x) simply because

f(g(x)) = −r−1g(x)W−1
−1 (−

2g(x)
e

) = −x ln( e
2rx

)W−1
−1 =

−x ln(e/2rx)W−1
−1 (

2rx
e

ln(2rx/e)) = −x ln(e/2rx)/ ln(2rx/e) = x.

V. DISCUSSION AND CONCLUSION

In the context of our distributed computing problem, it

is interesting to observe some of the similarities that exist

between the real case (which employed compressed sensing

techniques) and the finite-field case in [27], which employed

the structure of covering codes whose covering radius was a

measure of the sparsity of the solution for E. For example,

in the extreme case of L = qK , the work in [27] revealed6

the optimal normalized computational cost to be of the form

of γ ≃ H−1
q (K/N), which almost matches γ ≃ K/N in the

limit of large q, derived in this paper.

It is also worth noting that our result in Theorem 1

automatically accepts an additional uniqueness property —

on the sparsest solution x in (13) — which is in fact not

needed in our distributed computing problem. It would be

interesting to explore further improvements in the computa-

tional costs, upon the removal of this uniqueness condition.

Finally, one can imagine that further improvements in the

distributed computing problem could also benefit from the

deep connections revealed in [35] between compressed sensing

and error correction.
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