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Abstract—massive Machine Type Communications (mMTC)
network slices in 5G aim to connect a massive number of MTC
devices, opening the door for a widened attack surface. Network
slices are well isolated, resulting in a low impact on other running
slices when attackers control IoT devices belonging to a mMTC
network slice (i.e., in-slice attack). However, the impact of the
in-slice attacks on the shared infrastructure components with
other slices, such as the 5G Core Network (CN), can be harmful,
considering the massive number that can be part of mMTC slice.
In this paper, we propose a zero-touch security management
solution that uses Machine Learning (ML) to detect and mitigate
in-slice attacks on 5G CN components, focusing on Distributed
Denial of Service (DDoS) attacks. To this aim, we propose: (1) a
novel closed-control loop that assists the 5G CN in detecting and
mitigating attacks; (2) a ML algorithm that predicts the upper
bound of expected MTC devices Attach Requests during a time
interval (or an event); (3) a detection algorithm that analyzes
an event and uses the ML output to compute a probability that
a specific device has participated to an attack; (4) a mitigation
algorithm that disconnects and blocks MTC devices suspected to
be part of an attack; (5) a Proof of concept implementation on
top of a 5G facility.

Index Terms—Network Slicing, Machine Learning, Denial of
Service, 5G, Zero-touch Service Management (ZSM), Security

I. Introduction

IN recent years, computing has evolved to support the
growing market of Internet of Things (IoT), which involves

pieces of hardware, such as sensors, smart door locks, smart-
watches, etc., having the ability to connect to the network,
transmit and receive data. A recent forecast estimates the
number of IoT devices that should be connected to the network
will exceed 25.4 billion in 2030 [4].

In terms of connectivity to the network, several technologies
are candidates to connect these devices. We can mention
LORA, SigFox, IEEE 802.14.5, and 5G. The latter is seen as
an excellent alternative since it allows continuous connectivity
of the IoT devices, supporting even mobile devices (i.e.,
embedded in cars or drones). 5G is the latest generation
of mobile networks promising the support of several new
emerging services, including those relying on IoT. 5G uses the
concept of network slicing to efficiently manage the common
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infrastructure and provision network resources tailored to the
network service needs. A network slice is a virtual network
built using Virtual Network Functions (VNF) that run as Vir-
tual Machines (VM) or containers on top of cloud infrastruc-
ture (central or edge) as well as Physical Network Functions
(PNF) such as 5G base stations. A network slice is composed
of different sub-slices that span over different technological
domains, radio, core network, cloud, and transport. Sub-slices
are stitched together to build the end-to-end network slice
tailored to the application. Sub-slices can be specific to the
owners (ex., VNF running applications or network services)
or shared among slices (ex., 5G Core Network - CN, gNB).

5G envisions the running of network services relying on IoT
as a network slices of massive Machine Type Communications
(mMTC) type. As its name indicates, this type of network slice
is intended and optimized to connect a massive number of IoT
devices to a service or an application. It is worth noting that
5G also specifies two other types of network slice, namely
ultra Reliable Low Latency Communications (uRLLC) and en-
hanced Mobile BroadBand (eMBB), which are envisioned for
low-latency-demanding applications (e.g., autonomous driv-
ing, Industry 4.0) and high bandwidth-demanding applications
(e.g., Virtual and Augmented Reality), respectively. Last but
not least, 5G supports multi-tenancy, as network slices run
in parallel, and a high degree of isolation is ensured among
them; a network slice component (control or data plane) cannot
access other network slices’ components. In this work, we
focus on mMTC network slices since they are used to deploy
IoT applications and services using MTC devices.

The growing market of IoT devices has increased cyber
security threats and widened attack surfaces; hence securing
modern networks is a challenging task. Indeed, IoT devices are
often weak when it comes to security, considering: (1) their
usual low-cost and the lack of the necessary built-in security
controls to defend against threats; (2) their constrained envi-
ronment and limited computational capacity. Besides, they are
a high-value asset to attackers. Indeed, finding a vulnerability
of a type of device allows attackers to infect more devices
of that type and, hence, conduct attacks from the infected
equipment. For example, in 2016, a Malware called Mirai
infected between 800,000 and 2.5 million devices through
default passwords and used them to conduct Denial of Service
(DDoS) attacks against some public web applications.

5G was designed with built-in security controls to address
many of the threats found in 4G/3G/2G networks, such as
enforcing mutual authentication to prevent fake base-station



attacks, encrypting subscriber identities, and enforcing more
secure cipher suites. However, more functionality always
comes with new risks and attack vectors when opening the
network to IoT devices, particularly. Some of these risks
can affect the performances of 5G network functions (mainly
the service availability). By embracing network slicing, 5G
networks can mitigate inter-slice attacks as isolation is one of
the key features. Indeed, the isolation guaranteed by network
slicing offers performance guarantees to the applications and
ensures isolation, such that attacks (e.g., leakage, breach, Dis-
tributed DDoS - DDoS) remain contained and do not propagate
to the network. However, an in-slice attack may correspond to
a subset of the UEs attached to a specific network slice issuing
malicious traffic towards the infrastructure services. A typical
example is compromised MTC devices (i.e., IoT devices)
generating a massive number of network attachment requests.
These attacks need to be quickly identified and mitigated to
avoid system failure. It is worth noting that 3GPP clearly
stated in [1] that 5G networks should be protected from DDoS
attacks, where mechanisms detecting and mitigating this type
of attack are needed.

In this paper, we propose Zero-touch Security Management
(ZSM) solution that addresses the challenges of in-slice DDoS
attack detection and mitigation, considering the case of mMTC
network slices. Generally, this type of attack targets the 5G
CN elements shared among the network slices. The proposed
ZSM solution relies on a closed-control loop composed of
a triplet (Monitoring System - MS, Analytical Engine - AE,
and Decision Engine - DE) that interacts with the 5G CN in
order to detect attacks and automatically react by mitigating
the attacks. The critical challenge addressed in this work is
how to detect a DDoS attack initiated by a compromised set
of MTC devices inside a network slice. Indeed, there is no
available traces or dataset that reproduce abnormal traffic in
5G, unlike other types of networks where many datasets are
available. Besides, it is very challenging to detect during an
event if there is an attack and what are the involved devices in
the attack. To overcome these limitations, we followed 3GPP
traffic models [2] [3] for MTC to identify normal traffic and
train a ML model to recognize the normal traffic and hence
also abnormal traffic. The proposed solution waits until the
end of an event to analyze the traffic (normal or abnormal)
and deduces if an attack happened and which are the involved
devices. Then, all the devices will be detached and banned
from future access to the network. We believe our solution
is pertinent to mitigating a DDoS attack as the latter loses
its intensity if the number of involved devices is reduced by
detaching and blocking them.

The paper’s contributions are:

• A novel closed-control loop featuring AI/ML to achieve
ZSM in 5G and beyond networks,

• A novel approach that detects MTC attach events over a
time duration,

• A novel ML algorithm that leverages Gradient Boosting
to learn and predict an upper bound interval for normal
MTC traffic (following a β(3, 4) as per the recommenda-
tion of 3GPP),

• A novel DDoS detection algorithm that defines a detection
rate of all MTC devices involved in an attack,

• A novel mitigation algorithm that detaches and blocks all
MTC devices that have been suspected to be part of an
attack,

• An implementation of the ZSM concept (i.e., closed-
control loop) has been done on a 5G facility to prove
the concept and evaluate the performances of the attack
detection and mitigation algorithms.

The rest of this paper is organized as follows. In Section
II, we present a review of related works. We provide general
background about the used mechanisms to detect and mitigate
DDoS attacks. Section III details the contributions related to
attach events and attack detection, including the devised ML
method. Section IV presents our attack mitigation algorithm.
In Section IV, we introduce the proof of concept implementa-
tion and extensive performance results of the proposed detec-
tion algorithm, comparing it with a statistical-based solution.
Finally, section V concludes the paper.

II. Background and related work
In this section, we provide the necessary background and

related work to understand the concepts presented in the
paper. First, we start by highlighting the 5G thread landscape.
Second, we present how ML is used to detect different threats.
Then, we end the section by focusing on DDoS attacks in 5G
that rely on IoT devices.

A. 5G threat Landscape

A 5G network comprises four major technological domains:
the Radio Access Network (RAN), CN, transport network, and
inter-connect network [5]. From a security perspective, some
threats affect all of these planes, and others affect only specific
ones. [6]. Threats in 5G can be classified according to the
parts (or the technological domains) of the network they are
impacting [6]:
• User Equipment (UE) threats: Mobile botnets can launch

DDoS attacks on multiple network layers, impacting the
5G infrastructure, web servers, and other UEs. The goal
here is to disturb and shut-down services.

• RAN threats: Rogue base station threats for conducting
Man in the Middle (MitM) attacks. This class of attacks
can compromise user information, break privacy and track
users, and cause a Denial of Service.

• CN threats: These attacks relate to elements of the CN,
including Software Defined Networking (SDN) and VNF
components, as well as Network Slicing. These attacks
can lead to Denial of Service, eavesdropping, intercep-
tion, or hijacking [7].

• Network slicing threats: attacks that can break the isola-
tion between network slices [6].

• SDN threats: Separation of control and user (data) plane
that allows a malicious user to attack the link between
the control and the user planes. For instance, a DDoS
attack could be performed, or control could be gained
over network devices (ex., Topology Poisoning attacks).
[8].



B. Machine Learning for threat detection

ML has gained a broad interest in many applications and
fields of study, particularly in cybersecurity. With hardware
and computing power becoming more accessible, ML methods
can be used to analyze and classify bad actors from a huge
set of available data. ML algorithms and approaches can be
categorized into supervised and unsupervised learning [9].
Supervised learning approaches are made in the context of
classification, where input matches to an output, or regression,
where input is mapped to continuous output. Unsupervised
learning is mostly accomplished through clustering and has
been applied to exploratory analysis and dimension reduction.
Both clustering and regression methods can be applied in
cybersecurity for analyzing malware in near real-time, thus
eliminating the weaknesses of traditional detection methods
[9]. ML techniques have been used to detect and mitigate
DDoS attacks on networks effectively. Successful approaches
have always used a variety of features to achieve great results.
They have targeted DDoS attacks that are either very popular
(with public datasets available) or easy to reproduce (for which
creating a dataset similar to real-world behavior is possible).
Most of these approaches target common application protocols
like TCP and UDP. Table I summarizes some of the existing
research in this area.

TABLE I
Comparison of some DDoS attack detection solutions

Reference The mitigated attacks ML algorithms used
João Henrique Corrêa
et al. 2019 [10]

TCP SYN flood KNN and Decision
Trees

Rohan DDoShi et al.
2018 [11]

TCP SYN flood,
UDP flood, HTTP
GET flood

KNN, SVM, Deci-
sion Trees, Random
Forests and Neural
Networks

Faisal Hussain et al.
2020 [12]

Various attacks on ap-
plication protocols

RESNET

Xiaoyong Yuan et al.
2017 [13]

Various attacks on ap-
plication protocols

CNN and RNN

Maryam Ghanbari et
al. 2018 [14]

Various attacks on ap-
plication protocols

CNN after SVM pre-
processing

Roberto Doriguzzi-
Corin et al. 2020 [15]

Various attacks on ap-
plication protocols

CNN

However, it is difficult to make a comparison among these
solutions as they use different datasets. Further, the accuracy
levels of these solutions can be misleading since they consider
that a packet is a sample in the dataset instead of a malicious
host. Therefore, with the flooding nature of the DDoS attacks,
even a naive decision of considering that all the traffic is ma-
licious would yield an accuracy higher than 80%. Finally, the
lack of publicly-available data and datasets for attack detection
on 5G networks makes it hard to understand, reproduce and
mitigate 5G attacks.

C. Detection of DDoS attacks in IoT and 5G networks

Many works relying on ML have designed algorithms and
tools to detect and mitigate DDoS attacks. In [16], a ML algo-
rithm is proposed to circumvent attacks through an automated
solution in 5G networks. It has been integrated with the Deep

Packet Inspection (DPI) function to detect unfamiliar attacks in
the traffic of IoT devices. A solution named “Corero” has been
introduced in [17]. It aims to help organizations to comprehend
5G attacks and specifically prevent DDoS attacks by using
automatic and real-time detection algorithms. However, the
presented approach needs to use a very high-cost infrastruc-
ture. In [19], the authors present an IoT security framework,
including Azure, AWS IoT, and SmartThings. The AWS
framework supports mutual authentication of IoT devices,
which can be done using certificates, groups, roles, and AWS
Cognito identities. The used authorization is policy-based,
with the rules mapped to each certificate, allowing the owners
of IoT devices to define their rules. All IoT traffic is encrypted
to secure communications. In [20], the authors propose using
security monitoring methods to detect and prevent massive
IoT devices from being attacked or controlled. The proposed
solution prevents IoT devices from being used maliciously to
launch, for instance, DDoS attacks. The detection mechanism
of the proposed solution is based on a randomization technique
to defend against DDoS signaling attacks that emerged in the
new 5G Radio Resource Control (RRC) three-state model.
The work in [18] proposes a modified Network Intrusion
Detection System (NIDS) that defends against DDoS attacks
on the mobile edge of multi-tenant 5G networks. The proposed
approach solves the problem by combining traditional NIDSs
with a classifier based on Support Vector Machines (SVM)
to obtain the needed information on the devices’ traffic. Two
filters are implemented: the first one is placed at the mobile
edge computing servers to prevent spoofing attacks close to
the source, and the second one is located in cloud servers to
classify the complete network traffic.

Unfortunately, the few works mentioned in this section
propose solutions that need new software or specific protocols,
which are not standard and need a costly implementation.
Besides, they do not consider the context of network slicing,
where most of the addressed challenges are solved thanks to
network slice isolation. Therefore, the main remaining security
threats come from compromised devices running inside the
slice. In this case, shared network components are vulnerable
to in-slice attacks since the devices are under the tenant’s
control and have the green light to access the network. To
the best of the authors’ knowledge, our work is the first one
that addresses the challenge of in-slice attack detection and
mitigation in 5G considering mMTC network slices.

III. Zero-touch security management for in-slice attack:
Assumptions & System architecture

Our work aims to provide a solution featuring ZSM of in-
slice attack detection and mitigation considering mMTC slices
in 5G. The proposed solution relies on ML to detect abnormal
traffic of MTC devices that could cause DDoS on the control
plane of the 5G core network (by flooding the AMF with
signaling messages). Hence, it will be possible to mitigate
the attack by making efficient decisions to prevent flooding
of the AMF with traffic and causing DDoS or deteriorating
performance for legitimate users. This type of attack can be
more effective on mMTC than other 5G services, assuming the



very high number of MTC devices supposed to support. In this
work, we assume that a mMTC slice is composed of: (1) a
shared sub-slice with other existing network slices, which runs
the 5G CN (including the AMF) and gNB; (2) a specific sub-
slice to run the application that collects data from the MTC
devices.

It is well accepted that MTC devices generate two main
types of traffic [21]. The first one is “Periodic”, where the
devices emit data periodically, which may correspond to the
case of meteorological data. The second type is “Event-
Driven”. In this case, the devices emit data when a specific
event occurs; for example, smoke (the signal of a possible
fire) is detected. Detecting anomalous traffic in the first type
is simple, as most of the anomaly detection algorithms can
directly be applied to the problem. However, predicting when
an event will consistently occur for the second type of traffic
is very challenging. While there exist models for the traffic
during activity periods, it is difficult to solve the problem of
finding anomalies just by trying to learn the function the data
distribution follows; if we consider time-series data. To detect
malicious traffic of MTC devices, we will consider the traffic
model proposed by 3GPP, which suggests that traffic of MTC
devices’ connection after detecting an event follows the β(3, 4)
probability distribution [23]. Accordingly, we assume that
(1) normal traffic follows the β(3, 4) probability distribution;
(2) the detection events do not overlap (i.e., each event is
independent of the other). We argue the latter by the fact that
most of the devices run only one type of application, which
monitors a single event.

Fig. 1. The high-level vision of envisioned system architecture.

Fig. 1 illustrates the high-level vision of the system, which
is composed of the closed-control loop components (MS,
AE, and DE) that interact and protect the shared sub-slice
components (5G CN and gNBs) against DDoS attacks. Here,
we focus on protecting AMF as it is the entry point of the
5G CN and treats all the Attach Requests coming from the
different gNB under its control.

The closed-control loop is composed of three entities:
Monitoring System (MS), which collects information from
the AMF, Analytical Engine (AE), which uses ML to predict
attacks, and Decision Engine (DE), which reacts to the alert

sent by AE by acting on AMF (block and blacklist UE). The
control-control loop runs as software and can be co-located
with the orchestrator managing the life cycle of the shared
sub-slice [22]. It should be noted that AMF, via an Element
Manager (EM), exposes API for an orchestrator or a manager
to extract and monitor information on the AMF’s functioning
or to change the configuration of the latter. In the proposed
framework, MS monitors the Attach Requests received by the
AMF, while DE requests AMF to send Registration Reject
to suspected devices. Fig. 2 highlights the interaction among
the different actors involved in detecting and mitigating DDoS
attacks: the mMTC network slice components (UEs and 5G
CN) and the closed-control loop elements (MS, AE, and DE).
It is worth noting that the closed-control loop runs in parallel
to the mMTC network slice elements and only monitors Attach
Requests to detect and mitigate attacks. In the considered
scenario, the MTC devices (or UEs), when detecting an event
or participating in an attack, first send a Attach Request to
AMF. The latter must first authenticate the devices and then
give them access to the network resources (register the device),
mainly to the data plane, to send data to the remote application.
During the authentication process, the AMF checks with the
Unified Data Management (UDM) if a device is blacklisted
or not. To recall, UDM is the 5G CN function, which stores
subscribers’ information (Subscriber Permanent Identifier -
SUPI- Quality of Service -QoS- Policy, the key k, Operator
key, etc.). A device is blacklisted if it has participated in
an attack. Meanwhile, MS, via the EM/AMF API, monitors
the Attach Requests received by AMF. MS filters the data
to extract needed information, such as timestamps and SUPI.
This information is communicated to AE that processes the
whole event (attach period that may correspond to an attack)
in order to classify if the event corresponds to an attack or not.
When the event finishes, AE communicates the list of involved
UEs; for each UE, a probability of being part of the attack is
included. DE then mitigates the attack by requesting AMF
to send a Registration Reject message to UEs having a high
probability of being in the attack while adding the concerned
UEs to a blacklist maintained by the UDM. The following
sections will detail each component of the closed-control loop
with an important focus on the AE functions, which represent
the critical components of the framework.

IV. Closed-control loop: Attacks detection

A. Monitoring System (MS)

MS collects data from AMF on every Attach Request
received from the MTC devices. This data is accessible
through the API exposed by EM of AMF. For each Attach
Request, MS extracts the device identifier SUPI and a precise
timestamp. Indeed, in the 5G protocol, each UE is identified
with a unique identifier called SUPI. The latter is encrypted
to provide better privacy and prevent the International Mobile
Subscriber Identity (IMSI) catcher attacks that were popular
in the previous generation of telecommunication protocols.
It should be noted that SUPI is not transferred in clear text
over the RAN, which makes it challenging to identify devices
from the traffic received on the radio layer. Therefore, our
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Fig. 2. Interaction of the mMTC network slice and the closed-control loop to detect and mitigate attacks

solution has to intervene at the 5G CN (i.e., AMF), which
can decrypt the SUPI information. The extracted information
is then forwarded to AE via a communication bus based on
the Publish/Subscribe concept.

B. Analytical Engine (AE)
Fig. 3 illustrates a detailed vision of the AE components,

which are: Sampler, Activity Detector, DataBase (DB), Event
Detector, and Analysis components. They interact together to:
(1) detect when an event starts and ends. It can correspond to
MTC devices report (normal traffic) or attacks; (2) analyze the
event to detect if it is normal or abnormal traffic; (3) compute
the detection rate for each device (probability that a device
has participated in the attack) and send a report to DE. We
decided to separate the event detection from event analysis to
improve performances and consider all the relevant data when
running the overall attack detection algorithm. Indeed, we
decided to detect activity periods (i.e., events) in the network
traffic and only feed data to the ML algorithm at the end of an

event, which provides the advantage that the resource-intensive
component (detection analysis) runs once every event. We also
consider two corner cases: (1) after a duration clearly greater
than the maximum length of an event; (2) when peak traffic
exceeds a limit indicating that it is definitely an attack. For
both cases, we tag the devices as malicious.

The only downside of separating event detection from the
analysis is that UEs participating in an attack will not get
banned right away when the attack starts. However, since the
damage in DDoS attacks stems from their duration in time, the
devices will get disconnected and blacklisted a few seconds or
minutes after the event starts by DE. The detection algorithm
does not need to run in real-time, and it can look at data of
the whole event.

1) Event detection: To detect activity periods, we first
calculate the rate of Attach Request. To this end, we devise a
new component called the Sampler, which receives data that
reaches AE from MS and emits data periodically by grouping
the Attach Requests in time intervals of a fixed length. Fig. 4



Fig. 3. AE’s components
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Fig. 4. Sampler: attach requests on time intervals of a fixed length

illustrates how the Sampler works. The upper part of the figure
shows the real Attach Request timestamp reception, while the
down part of the figure shows the output of the Sampler that
groups the Attach Requests every 3 seconds. The Sampler
outputs allow detecting the start and end of an event. If there
is traffic, and we are not already in an event, we consider that
an event has started. If we are in an event and detect that the
system has not received traffic for a given duration, we assume
that the event has ended. We use a DB for storing all the data
relevant to the event. To have a modular system, we separate
the Activity Detector (the part that detects whether there is
traffic or not) and the Event Detector (the part that delimits
an event’s start and end timestamps).

As stated earlier, a DB is used to store information about
the event, namely the number of Attach Requests received
for each event, a list of SUPI values that identify the devices
that emitted each Attach Request, and timestamps. The DB is
accessible and used by: (1) the Sampler to store pairs (times-
tamp, supi), retrieve the largest timestamp stored, retrieve all
the data stored, and delete all the data stored; (2) Activity and

TABLE II
The design of our key-value database

Key Type Used By
devices sorted set Sampler

is event string Activity and Event Detector
last attach requests sorted set Activity and Event Detector

Event Detectors to store and edit a boolean value is event. It
is worth noting that a relational DB is not an optimal choice in
terms of the DB model. A better choice is a Time Series DB,
as we will store time events. After many considerations, we
finally opted for a key-value database. Indeed, our processing
of timestamps will still be efficient, as we will be using a sorted
set, and we will be able to store the boolean value needed by
the Activity Detector. This avoids the need for multiple DBs
inside AE. The design of the database is highlighted in table
II.

2) Event analysis: ML Algorithm: The core component of
AE is the Analysis Component, which receives data about one
event, including the SUPI identifiers of all the devices that
sent an Attach Request; then, it calculates a percentage for
each device being part of an attack. The Analysis Component
output (i.e., a percentage) should be zero ideally for normal
traffic, as no abnormal behavior is present. When some devices
misbehave and send Attach Requests that clearly do not
correspond to normal traffic, the Analysis Component output
should be higher than 0. The detection rate should increase
as the traffic rate increases above the normal level. We also
want high detection rates (preferably 100%) for traffic likely
to cause a DDoS attack.

Many algorithms can be applied to solve this problem.
However, not all of them can be used as we have two important
considerations:
• We already have a model for our data: the β(3,4) proba-

bility distribution.
• New equipment can be introduced so that the event

lengths can vary. Hence, the envisioned algorithm should
not detect these changes as anomalies.

While malicious traffic that triggers DDoS is easily discernible
from normal traffic, it is hard to evaluate the detection rates for
anomalies that are not blatant attacks (i.e., when the traffic rate
is just a bit above the prediction interval bound, for example).



In what follows, we enumerated a list of algorithms that can
be used for this purpose.
• Statistical tests, checking the mean, median, extremums,

variance, and more, and comparing them with the proper-
ties of the β(3, 4) distribution. Note that we will compare
our proposed solution against a statistical-based solution.

• k-NN, SVM, Isolation Forests, Decision Trees, Gradient
Boosting, etc.

• Deep Learning algorithms based on Neural Networks
(Auto Encoders, Recurrent Neural Networks).

We discarded Deep Learning based algorithms as learning
from data is not something we want. It would break our second
consideration, and the change in the number of connected
devices could trigger wrong predictions. Further, we believe
that a neural network trained on normal traffic will not give
a gradually higher detection probability on outliers because it
does not consider outliers as elements that are more distant
from normal data. It instead works with the combination of
linear and non-linear mathematical operations. We considered
the algorithms that can calculate prediction intervals, which
are intervals that likely include our data. Indeed, if we can get
an interval that includes our data, we can use the distance
from its upper bound to calculate a prediction percentage.
The most popular ML algorithm for calculating prediction
intervals is Gradient Boosting. It is an extension of Boosting,
where the additive generation of weak models is based on the
gradient descent algorithm over an objective function [25]. The
Gradient Boosting decision tree algorithm has demonstrated
great performances on many machine learning tasks, including
global contests [26]. It produces a prediction model in the form
of an ensemble of weak prediction models, often decision or
regression trees. It combines weak “learners” into a single
strong learner in an iterative fashion, lowering the error
estimated with the chosen loss function at each stage.

3) Event analysis - Data generation and model training:
We generated data for training the ML algorithm in the same
format as the data we run our detection on, i.e., timestamps of
Attach Requests in a simulated event. We used a 5G testbed
with emulated UE to emulate an event and generate data. The
details on the 5G testbed are provided in section VI.

Algorithm 1 is used for generating data. The complexity of
this algorithm is O(n2), where n ∗ n operations are required
for inputs, while each outer loop runs n times. We consider
that the average number of equipments that would take part
in an event is duration×3

7 . We argue this by the fact that the
mean of the β(a, b) distribution is a

a+b , where a=3 and b=4.
We generate random numbers following the β(3, 4) probability
distribution. These numbers represent the expected timestamps
of Attach Requests. We send Attach Requests and sleep for a
duration equal to the difference between the random numbers
generated to simulate the event. When this step ends, the data
is stored in a file, where each entry corresponds to a sample
period. Let us note by S the sample vector defined as {s1,
s2, s3, . . . , sn}, where s1 corresponds to the sample period 1,
and noted in an entry of the file as (t1 - 0) (t1 = ∆); si is
(ti+1−0) (ti+1 = i+1∗∆). The duration of the sample period is
identical and obtained as follows: ∆ = Total Duration Event

n . For
the training phase, we will use the data generated earlier to

Algorithm 1 Data Generation
1: procedure Generate even data (int duration, int sample

duration )
▷ The average number of equipments that would connect
during an event of length duration

2: num equipments = f loor( duration×3
7 )

3: timestamps is an array of num equipments reals
4: for i← 1 To num equipments do
5: timestamps[i]← random β3,4() × duration
6: end for
7: Sort the timestamps array
▷ At this point, timestamps has real values in the range
[0,duration] sampled is a list of integers

8: k ← 0.0
9: i← 0

10: sampled index← 0
11: while k <= duration do
12: j← 1 ▷ Count the number of samples in the

range [k, k + sample duration]
13: count ← 0
14: while j < num equipments and timstamps[ j] <

k + sample duration do
15: count ← count + 1
16: j← j + 1
17: end while
18: i← j
19: sampled[sampled index]← (k, count)
20: sampled index← sampled index + 1
21: k ← k + sample duration
22: end while
23: Output sampled
24: end procedure

train a Gradient Boosting algorithm to predict for each sample
si, the upper bound of the number of Attach Request expected
during that sample period; we note it by Predicti. Here we
are interested in the upper bound value as it corresponds to
the maximum intensity of normal traffic; hence exceeding this
value means that we are most probably facing a DDoS attack.
Once the training is done, we obtain a vector P that contains
n predicted values corresponding to the maximum expected
Attach Requests per sample period. The Predictedi values are
also stored in the file with each corresponding entry. The file
will be used later as an input to analyze an event and calculate
the detection rate.

4) Event analysis - Detection: During the detection step,
the event detected by the Sampler is stored in the DB. The
event is organized in sample periods equal to n with a duration
∆ (the same value used for the training phase). This will allow
us to normalize the number of samples of an event since each
event has a different duration period, and the β(3, 4) intensity
depends on the duration. Thus, we do not need to train the
model using different durations, as the normalization step will
allow training on a single duration corresponding to β(3, 4)
distribution. Since the event has been organized by sample
periods with the total number of Attach received during the



sample period as well as the SUPI of the UE, we use the ML
model (mainly the file obtained in the precedent step) to extract
the Predicti values for each sample period. Then, we derive
another bound for each sample period as follows: Predicti ×
(AE DETECTION THRESHOLD - 1); a limit above which
any traffic gets a 100% detection rate and gets classified as
malicious. For each sample period, we calculate the detection
rate as follows:

For xi, the number of Attach Requests in the sample period
[si] :

If xi ≤ Predicti, then detectioni = 0.
Else,
detectioni = min(1.0, x−Predicti

Predicti×(AE DET ECT ION T HRES HOLD−1) )
where 0 < detectioni < 1.

Let us suppose that during an interval (∆), the number of
Attach Requests is greater than the predicted one, meaning
abnormal traffic. In this context, to estimate the other bounds,
from which detection values are 100%, we use predictedi ×

(AE DET ECT ION T HRES HOLD−1); the predicted value
is multiplied by a constant, corresponding to the rate between
the distance of x from the Predicti. This is needed to reduce
the ML errors impact and hence reduce the False Positives.
Note that if detectioni is higher than zero, all the involved
UEs during that sample period are considered as part of a
DDoS attack with rate detectioni.

V. Closed-control loop: attacks mitigation

DE is the decision-maker of the closed-control loop system.
It receives data from AE and decides the actions to take
for UEs that emit abnormal traffic. DE gets as input a list
including the suspected UEs (SUPI) and their correspond-
ing detection rate values (i.e., detectioni) belonging to the
attacks. We devise two versions of DE. The first solution
blacklists devices if their calculated prediction is higher than
DE DETECTION THRESHOLD (i.e, a configurable param-
eter). The lower the threshold value, the higher the probability
that devices are blacklisted. Therefore, the network operator
would use lower values in order to be more strict, but in turn,
it may increase the false positive. To avoid having high false-
positive results and simplify the configuration, we introduce a
second solution that relies on three thresholds. This solution
considers the whole event and classifies the received list of
UEs into three categories: F1, F2, and F3. DE calculates how
many UEs have obtained a detection rate (detectioni) higher
than 0.8 and assigns it to the first category, namely F1. The
second category includes UEs having a detection rate between
0.3 and 0.8. This category corresponds to F2. The remaining
UEs are included in F3. Then, DE checks if, in the event, a
significant part of the devices had higher than usual detection
rates. As a result, different decisions are to be taken:
• First, if F1 ≥ F2 and F1 > F3, DE blacklists all

the devices by adding their SUPI values to a table of
blacklisted values, and disconnect them from the network.

• Second, if F2 ≥ F1 and F2 ≥ F3 and (∀x ∈ detection, x >
0), DE adds the SUPI values to a table named “non-
trusted devices”. Each UE belonging to this table has a
counter named Timsi. The counter is increased by 1 each

Fig. 5. Test platform and technological components

time the UE is involved in abnormal traffic that is not
blatantly an attack. The counter is incremented until it
reaches a value that yields to blacklist the device.

• Third, DE ignores the alert sent by AE, and it will do
nothing.

The reason behind using 3 categories is based on the
AE analysis and the results accuracy of the employed ML
algorithm. Indeed, we notice that when the detection values
associated with the connected devices sent by AE are high, the
devices’ generated traffic does not follow the Beta distribution.
Hence, they should be immediately blacklisted as they present
abnormal behavior, justifying the need for the first category.
The latter is considered a red alert, and the associated devices’
SUPI are blacklisted. However, when the values are neither too
high nor too low, it means that the traffic is almost close to
the Beta distribution. In this case, the detected devices have
malicious behavior, or the values are due to technical failure.
So we introduced the second category, which means that the
devices are not blacklisted; but DE memorizes the associated
SUPI for future events. If the devices are classified in the
second category more than 2 times, they will be considered
malicious and moved to the first category to be blacklisted.
The last category corresponds to the detected traffic being very
close to the Beta distribution. This case can be either an error
in the ML calculation or a delay in sending the Attach Request.

VI. Performance Evaluation

A. The test platform

To validate the proposed zero-touch security management
system, we have used a 5G testbed deployed at EURECOM1.
The testbed has been developed and used in many 5G Eu-
ropean projects such as 5GEve2 and 5G!Drones3. We have
implemented the closed-control loop components (i.e., MS,
AE, and DE) and a Element Manager (EM) on top of the
AMF. The latter exposes API to (1) MS to monitor the Attach

1https://www.youtube.com/watch?v=90SRV9ZpPVot
2https://www.5g-eve.eu/
3https://5gdrones.eu/



Request message; (2) DE to detach and blacklist UEs involved
in an attack. Fig.5 illustrates the different technologies used
to implement the above-mentioned components. As a quick
reminder, the roles of the different components are:
• MS and Sampler: MS is the first component to receive

traffic from the 5G CN. It performs basic filtering on
it. While the Sampler does sampling of the input data,
it receives information on Attach Requests as they are
received (with no guaranteed periodicity) and emits peri-
odic data, with the number of Attach Requests received
in time intervals of a given length.

• Activity and Event Detectors: These components receive
the sampled data and should detect an event. For each
event, these components only emit data at its end, with
the number of requests on each time-slice along with the
UE list that emitted traffic during the event.

• Analysis Component: This component runs the ML algo-
rithm on the given data, calculating a detection rate for
each time-slice (for all devices in the time-slice).

• DE: This component receives data from the Analysis
Component and decides which devices should be discon-
nected from the network and then blacklisted.

• MQTT Broker: is used to implementing the communica-
tion bus between the different components of the closed-
loop control system, and between the closed-loop control
system and the AMF.

Regarding the UE, we used and updated a 5G UE emulator,
my5G-RANTester4, to be able to send a high number of UE
Attach Request messages in parallel to simulate an attack
or normal traffic. Indeed, my5G-RANTester is a tool for
emulating control and data planes of the UEs and gNB.
my5G-RANTester follows the 3GPP Release 15 standard for
RAN. By using my5G-RANTester, it is possible to generate
different workloads and test several functionalities of a 5G CN,
including its compliance with the 3GPP standards. Scalability
is also a relevant feature of the my5GRANTester, which can
mimic the behavior of a large number of UEs and gNBs
simultaneously accessing a 5G CN. Currently, the wireless
channel is not implemented in the tool. The AMF and 5G CN
components are based on OpenAirInterface (OAI).

As described earlier, AE and DE use several parameters that
need to be tuned to optimize the different steps of the event
analysis. These parameters are summarized in Table III and
defined as follows:
∆(Sec): Length of the sampling interval. A message is sent
from the sampler every ∆ seconds, including the number of
UEs that connected in the last interval of time of this length.
UNCHANGED INTERVALS COUNT: Number of inter-
vals without activity after which an event is marked as
finished. This parameter is used to detect the end of an
event. For instance, if we assume its value is equal to 4 and
INTERVAL LENGTH is 6, then we can consider an event has
ended if there is very little to no activity for 24 seconds (or
four intervals) while an event was ongoing.
REQUEST THRESHOLD: If there are fewer requests than
this value in an interval of time, we assume no activity.

4https://github.com/my5G/my5G-RANTester

Fig. 6. Normal traffic - four events

Fig. 7. Malicious traffic

MAX EVENT DURATION (Sec): If the end of the event is
not detected after MAX EVENT DURATION, we consider it
is an attack.
DE DETECTION THRESHOLD: a threshold used by DE
to determine if a device should be banned from the network or
not. Any detection rate higher than this value leads the system
to ban the device.

Regarding the testing conditions, as we do not have datasets
that include both positives and negatives, we generate traffic
corresponding to non-malicious using the β(3, 4) probability
distribution, while for abnormal traffic, any other distribution
can be used.

To test our system under realistic circumstances, we lever-

TABLE III
The configurable parameters in our system

Parameter Name Default
Value

Component

INTERVAL LENGTH 6.0 Sampler
UNCHANGED INTERVALS COUNT 4 Sampler
REQUEST THRESHOLD 1 Detector
MAX EVENT DURATION 600 Detector
DE DETECTION THRESHOLD 0.35 DE



aged my5G-RANTester with a script that emulates real UE
traffic (control plane) to communicate with 5G CN compo-
nents. We used the emulator to simulate an event with different
chosen SUPI values. The generated traffic is similar to what
real UEs would generate. It follows the 3GPP specifications
15. Algorithm 2 generates the traffic featuring:
• Simulating an event: Sending Attach Requests that follow

the Beta-distribution
• Simulating an attack: Sending Attach Requests that follow

the uniform distribution
• Simulating a Attach Request of a single UE
Algorithm 2 is used for simulating an event. It is very

similar to the algorithm that generates data. The complexity
of this algorithm is O(n), where n operations are required for
input, and the outer loop runs n times. Here, n corresponds
to the number of devices involved in an event. Figs. 6 and 7
show a visualization of traffic likely corresponding to a normal
(four events and attack) and malicious one, respectively.

Last but not least, readers may see a video5 showing a
demonstration of all the components, i.e., closed-control loop
as well as AMF and UEs, working together to detect DDoS
attacks. The following section will provide some results on
the model accuracy obtained via the experiments.

B. Test results

To evaluate the performance of the proposed framework,
we focus mainly on the performance of the attack detection
algorithm, which is the key function of the closed-control loop.
To this end, we evaluate the Gradient Boosting algorithm to
detect DDoS attacks accurately and compare its performance
with a statistical method. Like the Gradient Boosting solution,
the statistical method is applied at the end of the event. Based
on the event duration, the statistical method defines a limit
function using the mathematical function of β(3, 4) to compare
the different points by the report to this limit; all the points
exceeding this limit are considered as a possible attack. The
main differences compared to Gradient Boosting are: (i) it

5https://www.youtube.com/watch?v=QzCmGfwtDLAt=7s

Algorithm 2 Event simulation
1: procedure Simulate Event(int duration)
2: num equipments = f loor( duration×3

7 )
3: timestamps is an array of num equipments reals
4: for i← 1 To num equipments do
5: timestamps[i]← random β3,4() × duration
6: end for
7: currS UPI ← MCC + MNC + ”0000000001”
8: S leep(timestamps[0])
9: for i← 1 To num equipments − 1 do

10: S endAttachRequest AS YNC(currS UPI)
11: currS UPI ← str(int(currS UPI) + 1)
12: Sleep(timestamps[i])
13: end for
14: S endAttachRequest AS YNC(currS UPI)
15: end procedure

Fig. 8. The result of the detection algorithm over normal traffic

Fig. 9. The result of the detection algorithm over abnormal traffic

needs the exact duration of the event; (ii) it uses the β(3, 4)
function to deduce the limit.

a) Gradient Boost: We measure the accuracy of the
Gradient Boosting algorithm in front of normal and abnormal
traffic. On normal traffic, the accuracy denotes how often the
system yields a detection rate of UEs that is greater than zero.
This does not mean that these devices will get banned, but
ideally, a value of 0 should be returned for all the devices
emitting normal traffic. To evaluate our model on normal traffic
(True Positive (FP) = False Negative (FN) = 0), we generate
data for 500 normal events and run our detection algorithm
on each of them. We then counted the number of UEs for
which we obtained a greater-than-zero detection rate versus the
total number of UEs in all the events. We generate the event
duration randomly (between 30 and 250 seconds). Regarding
malicious traffic (True Negative (TN) = False Positive (FP)
= 0), we also ran 500 tests, but this time, between 7 and
15 Attach Requests are received every 6 seconds, for a total
duration that is random between 30 and 250 seconds.

Fig. 8 allows visualizing the results for normal traffic. The
points correspond to the event data, while the green line is the
anomaly interval. If a point is outside the limit (in green), it
will be assumed as an attack. For normal traffic, the accuracy
is computed as 1− FP

T N+FP . Hence, the results show an Accuracy
on normal traffic of 96.76859478052322%. We expected this
result as the interval used in our training data includes around
95% of the data in the training dataset, as depicted in Fig.8.

Fig.9 illustrates the results for malicious attacks. For this
case, the accuracy is computed as 1− FN

FN+T P . Hence, the results
show an accuracy of 83.63319140762557%. This represents an
excellent result as banning a relevant part of the devices taking



TABLE IV
Impact of the AE detection threshold on the Gradient Boosting accuracy

AE DET ECT ION T HR. 1.2 2.0 3.0
Normal event 82.98654 96.76859 97.64853

Abnormal event 81.91305 83.6331914 61.86956

part in a DDoS attack is enough to mitigate it. We recall that
this is just the detection rate calculated by the AE component,
the final decision regarding the devices that should be banned
is taken by the DE component.

Table IV shows the performance of the Gradient
Boosting-based solution when modifying the
AE DET ECT ION T HRES HOLD value. It is worth
recalling that this value is used to derive the detection rate
and corresponds to a protecting gap to reduce the impact of
the ML prediction error and hence reduce the FP value. We
remark that the value allowing to reduce both FP and FN
is 2.0. Also, when the AE DET ECT ION T HRES HOLD
value increases, FP is reduced as the FN increases; whereas
when it is reduced, both FP and FN increase.

b) Statistical Method: For the sake of comparison, we
used the same scenarios as for Gradient Boosting to generate
normal and abnormal traffic. Then, we applied the statistical
method and verified its accuracy in detecting attacks. Fig.
10 illustrates the usage of the statistical method in case of
an abnormal event. The discontinue green line shows the
β(3, 4) curve obtained according to the event duration. The
β(3, 4) curve allows us to have a limited path from which all
the outside points are considered anomalies, hence potential
attacks. The statistical method’s results show that 36.0% of the
Attach requests are not following the β(3,4) distribution (they
are out of the limit path). Therefore, they can be considered
potential attacks. On the other hand, Fig. 11 presents a test
of a normal event. The results show that 90.0% of the Attach
Requests follow the β(3,4) distribution. The accuracy of the
statistical method to detect anomaly are : ((1 − FP

T N+FP =

84.21052 % (normal traffic), 1 − FN
FN+T P = 57.142857 %

(abnormal traffic))). We remark that these values are weaker
than the ones obtained with the Gradient Boosting algorithm.
We argue these differences by the fact that the duration
estimation has a strong impact on the statistical solution. The
shape of the β(3, 4) curve changes drastically according to the
duration (noted D), which seriously impacts the accuracy. For
instance, we change the duration by +/- ϵ = 2sec, and the
obtained results are summarized in Table V. We see clearly
from this table the impact of the duration on the accuracy
as a small error on the duration drastically yields a drop in
the accuracy. Particularly, if the duration is less than the real
one, many points will be out of the curve. In the Gradient
Boosting algorithm, we do not have this concern, as the latter
normalizes the sample period duration and uses the trained
model to detect the interval.

c) Decision Engine: Regarding DE performances, we
evaluated the first version that relies on a single thresh-
old DE DETECTION THRESHOLD. Accordingly, in this
section, we evaluate the DE DETECTION THRESHOLD
impact on the number of blocked devices. Table VI

TABLE V
The accuracy of the statistical model considering different Duration values

GB Static
Method D - ∆t D D + ∆t
Normal traffic 96.76859 45.18924 84.21052 80.24568
Abnormal traffic 83.633191 30.4156 57.142857 51.86854

TABLE VI
Impact of the DE Detection threshold

DE DET ECT ION T HR. 0.1 0.35 0.8
Nb (Normal event) 3 1 0

Nb (Abnormal event) 21 16 10

shows the number of banned UEs for three values of the
DE DETECTION THRESHOLD. As expected, we remark
that lower threshold values (ex. 0.1) are very conservative,
which allows blocking more UE. While a higher threshold
value (ex. 0.8) may be less strict and reduces the num-
ber of banned UE. We advise two solutions to fix the
DE DETECTION THRESHOLD value. The first one con-
siders the performance limit of the element to protect against
DDoS attacks. In our case, we computed the response time of
the AMF to Attach Requests while increasing their number.
After a certain number of Attach Requests, we noticed that the
AMF started to be very slow, which can be caused by a DDoS
attack. Therefore, after some tests, we found that the value of
DE DETECTION THRESHOLD equal to 0.35, which avoids
reaching the number of Attach Request that yields bad AMF
performances. Another solution is to use a dynamic threshold
value that decreases or increases over time according to the
number of consecutive events classified as an attack.

VII. Conclusion

In this paper, we introduced a zero-touch security manage-
ment framework that aims to protect mMTC network slices
from in-slice DDoS attacks. The proposed framework relies
on a closed-control loop that tracks Attach Requests generated
by MTC devices to detect abnormal traffic and mitigate
possible DDoS attacks. The mitigation process is enforced

0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

70
Limit Path (b(3,4))
Event data outside the b(3,4))
Event data inside the b(3,4)

Time

R
eg

is
tr

at
io

ns

Fig. 10. The result of the statics method over abnormal traffic.
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Fig. 11. The result of the statics method over normal traffic.

through disconnecting and banning suspected devices. The
attack detection algorithm uses a ML technique, specifically
Gradient Boost, to create a prediction interval that is likely
to include normal traffic in our system. It then calculates, for
every sample that is outside the interval, a metric that depends
on its distance from the bound of the interval; this metric is
called the detection rate. The decision engine uses this metric
to take action to mitigate attacks, which consists in banning
and disconnecting devices from the network to prevent them
from conducting similar attacks in the future. The proposed
framework has been implemented using a 5G testbed. The
obtained results demonstrate the closed-control loop’s ability
to predict and mitigate DDoS attacks efficiently.
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