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Abstract—Cellular connected unmanned aerial vehicles
(CCUAVs) are expected to enable new disruptive verticals with
a significant impact on different business sectors. In particular,
to enable connected and safe operations, the concept of drone
corridors has recently received attention. In general, CCUAVs
suffer from poor received signal strength, and they perceive large
interference due to the high line-of-sight probability with the
interfering sectors. In this paper, we propose an ADAM-based
algorithm to optimize the electronic tilt of base stations deployed
in an LTE network to improve the quality of service in predefined
aerial corridors. Importantly, the numerical analysis results
indicate that it is feasible to re-tune antenna sector directions to
distribute, in an optimized manner, more power in the targeted
corridors while minimizing interference, with a minimum impact
for the ground, allowing usage of an already deployed LTE
network for beyond line of sight (BLoS) communication.

I. INTRODUCTION

Remotely pilot and equipped with sensors, unmanned aerial
vehicles (UAVs) are set to change the world we are living
in. Among others, they have already had a major impact
on precision agriculture, surveillance and security as well
as search and rescue [1], [2]. UAV technology will become
commonplace in the following years, also disrupting our
approaches to delivery and transportation. Packages, food and
medicines will be delivered in a fast and safe manner with
the use of UAVs. Autonomous flying taxis will redefine how
we commute, and in turn, where we live and work. With these
prospects, the value of the UAV industry has been estimated to
reach USD 58.4 billion by 2026 [3]. More importantly, UAVs
are expected to enable new disruptive verticals.

From a telecommunications perspective, UAV applications
can be classified into 2 categories: i) UAV-aided networks, with
UAVs as flying wireless network access points, and ii) cellular
connected UAVs (CCUAVs), with UAVs connected to the
network as flying user equipment (UE). Importantly, to support
the growing CCUAV operations, governments and industries
are looking at building the UAV highways of the sky. Thinking
of them as sky lanes, this segregated aerospace can facilitate
transformational opportunities within cities, as they provide a
management —and importantly a legal— framework for the
secure control and operation of UAVs [4], [5]. Supporting UAV
highways with a reliable cellular connectivity will be a must
to i) send/receive the required command and control (C&C)
information to/from UAVs, and ii) pursue legislators to ease
the current strict regulations on civilian pilot-less flights within
cities, giving the green light to the new UAV markets [6]–[8].

Given a predefined fourth and/or fifth generation (4G/5G)
cellular network, most CCUAV research has aimed at optimiz-
ing CCUAV aerial trajectories to support a given UAV quality
of service (QoS), e.g., a 50 ms latency at 3 nines of reliability
with 100 kbps capacity for C&C channels [9].

In [10], Bulut E. and Guevenc I. formulated an optimal
CCUAV trajectory optimization problem under discontinuous
signal reception constraints, and solved it, using dynamic
programming. In [11], Challita U. et al. investigated an
interference-aware CCUAV trajectory planning method, using
an echo state network (ESN) as reinforcement learning (RL)
framework to optimize time of flight, latency and caused
interference. In [12], Esrafilian O. et al. proposed an optimal
trajectory design for CCUAVs using a coverage map obtained
by combining a 3D environment map and a radio propagation
model. In [13], Bayerlein H. et al. put forward a framework
for CCUAV trajectory optimization using an environment map,
Internet of thing (IoT) data and RL to jointly minimise time
of flight and collisions and maximize QoS over the path.

Despite the importance of UAV trajectory optimization,
we envision, however, that aerial highways are more likely
to be planned and deployed according to governmental and
aerospace criteria, rather than purely connectivity ones [14].
Thus, optimizing third generation partnership project (3GPP)
long term evolution (LTE) and new radio (NR) networks
to support the required UAV QoS over a predefined UAV
highway may be a more practical approach —and plausible
business— than tailoring aerial corridors to existing networks.
This different —and/or complementary— viewpoint requires
for a different type of research than that presented earlier, and
unfortunately, the literature is not extensive in this area of
research, with only a limited number of pioneering works.

In [15], Maeng S. J. et al. provided a closed-form expression
for the UAV signal-to-interference-plus-noise ratio (SINR)-
based outage probability in a simple scenario with two ground
BSs using uptilted antennas to optimize performance over
defined air space regions. In [16], Chowdhury et al. proposed a
ground network architecture with co-channel antennas oriented
towards the sky and an enhanced inter-cell interference coor-
dination (eICIC) technique to mitigate interference to/form the
aerial corridors. In [17], Singh S. et al. investigated the optimal
positioning of millimetre wave (mmWave) access points to
provide connectivity on predefined aerial waypoints. In [18],
Bhuyan A. et al. extended the previous work, additionally
investigating the use of uplink non-orthogonal multiple access
(NOMA) over predefined UAV trajectories to increase capacity
and enhance physical layer security.978-1-6654-3540-6/22 © 2022 IEEE



Fig. 1: Network Layout with 19 tri-sectorized cells with up to 4 aerial
highways

Since NR deployments are still ramping up, and because
LTE ones are the most widespread as of today, in this paper,
we attempt to assess up to which extend a network operator can
relay on LTE to support a reliable aerial highway connectivity,
while having a minimum impact on its terrestrial performance.
In more detail, we focus on the BS downtilt optimization prob-
lem, developing a light-weight large-scale stochastic network
model suitable for optimization, and proposing an ADAM-
based optimization framework to solve the stochastic opti-
mization problem [19]. Using these tools, we analyse and
quantify the benefits of segregated aerospace over traditionally
assumed unconstrained CCUAV flights, as well as the gains
of the proposed BS downtilt optimization.

The rest of the paper is organised as follows. In Section II,
we define the system model. In Section III, we formulate our
constrained maximization problem to tune the BS antenna
downtilts and optimise aerial highway performance. In Sec-
tion IV, we present the proposed algorithm. In Section V, we
discuss the results. In Section VI, the conclusions are drawn.

II. SYSTEM MODEL

This work considers a downlink LTE interference-limited
scenario with terrestrial BSs and UEs as well as CCUAVs
placed over predefined aerial routes. To drive our system-level
analysis, we use the 3GPP macro urban models in [20], [21]
for terrestrial UEs and those in [9] for CCUAVs.

A. Network Model

According to [20], 19 terrestrial BS sites at a height of
25 m are distributed in a 2-tier hexagonal grid with an inter-
site distance (ISD) of 500 m, as shown in Figure 1. 3 sectors1

per site are considered, thus having NBS = 57 sectors in
our scenario. The operational carrier frequency is fc, and we
assume a bandwidth B0, with a full frequency reuse in all
cells. The transmission power per sector is P0 [20].

To study the signal qualities in terms of SINR of both
terrestrial UEs and CCUAVs, 2 regular square grids, kg and ka,

1In this paper, the terms sector and cell are used interchangeably.

are deployed at altitudes, hg and ha, respectively. For brevity,
let us use k to denote any of these 2 grids in the sequel,
i.e. k = {kg, ka}, and denote by Nk and dk the number of
grid points and the inter-grid point distance (IGD) in the k-th
grid, respectively. Let us also denote by ku = kg ∪ ka the set
containing all the grid points of both grids, kg and ka, and by
Nu = Ng +Na its cardinality.

With this notation, the vertical and horizontal antenna gain
offsets between a sector b ∈ {1, . . . , NBS} and the location of
a grid point u ∈ {1, . . . , Ng} ∪ {1, . . . , Na}, are presented in
eqs. (1) and (2), respectively [20], i.e.
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where θub is the relative angle in the zenith plane between the b-
th sector and the u-th grid point, θtiltb is the electrical antenna
downtilt of the b-th sector, with values, for both angles, in
[−90◦,+90◦], θ3dB is the vertical 3 dB beamwidth, SLAv is
the side-lobe attenuation in the vertical plane, ϕu

b is the relative
angle in the azimuth plane between the b-th sector and the u-
th point, with values in [−180◦,+180◦], ϕbst

b is the boresight
angle of the b-th sector, ϕ3dB is the horizontal 3 dB beamwidth,
and Am is the side-lobe attenuation in the horizontal plane.

The total antenna gain offset can be then calculated as in
eq. (3), i.e.
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Note that in this paper, θ = 0◦ point towards the horizon,
and G0 is the maximum antenna gain.

Importantly, we use the grids, kg and ka, to drive the 2D
spatially correlated lognormal stochastic process adopted to
calculate the shadow fading realizations at each grid point
u. In more details, we model shadowing through the sum of
sinusoids (SOS) approach presented in [22] with the urban
macro parameters specified in [21] for the ground grid kg ,
and those in [9] for the aerial grid ka. For completeness, note
that σk

SF represents the standard deviation of the lognormal
random variable governing the shadowing generation process
in the k-th grid, and that, τub is used to refer to the stochastic
shadow fading value of the b-th sector in the u-th grid point.

The line of sight (LoS) probability and the corresponding
path loss ρub between the b-th sector and the u-th grid point
are computed using the urban macro models specified in [21]
for the ground grid kg , and those in [9] for the aerial grid, ka.

B. CCUAV Highways

In our analysis, we consider R aerial highways, and in
contrast to [10]–[13], where the CCUAV trajectory is the result
of an optimization process targeted at maximising UAV QoS,
in our model, each aerial highway is simply represented by a
straight line. This is because we assume that they have been
a priori defined by an authority according to physical and



not connectivity requirements, and thus requirements such as
minimum time to target are the main design driver.

The aerial grid ka is used to define the R aerial highways.
A given aerial highway is represented as a collection of
‘sequential’ grid points on the aerial grid ka. For convenience,
let us denote by kr ∈ ka the set of aerial grid points defining
our R aerial highways, and by Nr its cardinality. Let us also
denote by ke = kg ∪ kr the set containing all grid points in
grid kg and set kr, and by Ne = Ng +Nr its cardinality. We
will refer to ke as the set of evaluation points in our network.

To avoid border effects, it is important to note that aerial
highways have been deployed within —or around— the central
site to capture the inter-cell interference from the 2 tiers
of neighbouring cells. Moreover, to facilitate the analysis of
results, the R aerial highways follow a symmetrical vertical
deployment from Ya to Yb at different Xr positions. They
are designed such that each route crosses multiple cell centers
and edges to capture different network condition. All routes
are depicted in Figure 1.

C. Received Signal Strength and Cell Association

To define the serving/interfering cells of the u-th grid point,
a cell association rule based on the maximum received signal
strength (RSS) is adopted. In more details, RSSs are calculated
using eq. (4), while serving cells are found solving eq. (5), e.g.
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u
b τ
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and
su = argmax

b
{RSSub | b ∈ {1, . . . , NBS}} . (5)

Once the best server is found, note that subscripts {s, i}
are used instead of subscript b to identify the serving and
interfering cells, respectively. Using this notation, RSSus is
the received power from the serving cell s ∈ {1, ..., NBS}
to the u-th point, while RSRPu

i is that from the non-serving
cell i ∈ {1, ..., NBS}\s to the u-th point. Recall that, since
the shadowing τub is a stochastic variable, both RSRPu

b and
su are stochastic variables too.

D. Signal to Interference Plus Noise Ratio

To assess the signal quality, the SINR γu evaluated at the u-
th point is defined as follows:
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where σ2 is the noise power, and we use τu in the argument of
γu to highlight the stochastic nature of the SINR. We consider
that a grid point is out of coverage, if its SINR is below
threshold γout

th .
Minimum CCUAV QoS requirements for CCUAV are re-

ported in Table 5.1-1 of [9].

III. TILT OPTIMIZATION OF AERIAL HIGHWAYS

In this section, we propose an optimization framework
to fine tune sector antenna downtilts with the objective of
maximizing the overall average network performance, while
guaranteeing a minimum QoS on the aerial highways.

The reason why we focus on the optimization of antenna
downtilts is because strategically directing more power to the
aerial highways through downtilt optimization helps alleviating
one current major challenges to CCUAV QoS provisioning, i.e.
the large interference perceived by them, resulting from the
potentially large number of LoS interfering BSs —the higher
the CCUAVs, the more the LoS interfering BS [8].

In more details, to find the best sector antenna downtilts for
all NBS sectors, we formulate a stochastic spectral efficiency
maximization problem constrained to minimum aerial highway
SINR requirements based on the system model described in
Section II as follows:
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where the optimization parameters θtilt are the set of downtilt
angles and, to prevent the algorithm from ending up in a solu-
tion where the points have extremely high or low performance,
log(·) is used for fairness.

Note that maximizing spectral efficiency over all grid points
in set ke aids at minimising the impact on terrestrial per-
formance and providing the best performance to CCUAVs.
Constraining on aerial highway SINR requirements, instead,
allows for provisioning the required CCUAV QoS.

IV. PROPOSED SOLUTION

Given the non-convex and stochastic nature of Problem (P1),
and after analyzing multiple formulation and solvers (e.g.
stochastic gradient descent (SGD), genetic programming), we
reformulate the problem removing the constraint and using a
utility f (f) (·) and a penalty g(f) (·) function to define the
objective function z(f). We use an ADAM-based optimizer to
solve the reformulated Problem (P2), where λ is the trade-off
parameter between the mentioned utility and penalty functions,
e.g. a higher λ gives more importance to fulfilling constraints.

max
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(P2)
It should be noted that the selected ADAM-based optimizer is
a well-know method to efficiently solve non-convex stochastic



problems with a sparse gradient. In more detail, ADAM is
an extension of SGD, which computes individual adaptive
learning rates for different parameters from estimates of first
and second moments of the gradient [19].

In Algorithm 1, we present the details of the implementation
of our ADAM-based algorithm.

Algorithm 1: ADAM Based Algo for Antenna Tilts
1 Init network layout, grids points and aerial highways;
2 Init tilt angles θtilt ← θtilt

3GPP;
3 Init opt hyper-parameters;
4 Compute cell association;
5 Sectors selection;
6 l← 0;
7 for i in NIter do
8 Obj func z ← 0;

for f in NSF do
9 Compute channel realization ρub , τ

u,(f)
b ;

10 Compute SINR γ
e,(f)
opt ;

11 Compute intermediate Obj func z(f) of the f -th realization;
12 z ← z + z(f);

end
13 Compute ADAM gradient from Obj func z;
14 Update selected sector antenna downtilts θtilt ← θtilt

ADAM;
15 if |∇z(j)| ≤ ϵ, ∀j ∈ {i, . . . , i− t} and l > Lmax then
16 l← 0;
17 Compute cell association;
18 else if |∇z(j)| ≤ ϵ, ∀j ∈ {i, . . . , i− t} and l ≤ Lmax then
19 Save intermediate solution;
20 Explore solution space θtilt ← θtilt

3GPP + U(−20◦, 0◦);
21 p← p+ 1;
22 if p = Pmax then
23 break;

end
24 l← l + 1;

end
25 From the intermediate saved solution select the final one;

First, the proposed algorithm builds over the system model
presented in Section II, realising all important variables.
Importantly, sector antenna downtilts are initialized with the
values suggested in [20], i.e. θtilt

3GPP. Once the play ground
is set, the optimization hyper-parameters are initialized, and
the serving sector is found for every evaluation point. Then,
before any gradient computation occurs, we implement a
sector selection process to decompose the complexity of the
optimization problem. In more detail, this process, based on
aerial route knowledge and geometry calculations, is used to
reduce the set of sector antenna downtilts to adjust in the
optimization. Using this process, not only the speed of the
algorithm is improved, but it also allows it to operate over a
more ‘local’ objective function with a smoother shape, which
in turn, enhances the performance of our ADAM optimizer.
Once the sectors to optimise are selected, an optimization
loop comprised at most of NIter iterations is performed. At
each iteration, first, the cumulative objective function z is set
to zero, and then, to embrace the stochastic nature of our
problem, the algorithm iterates over NSF spatially correlated
shadow fading realizations, using the inner loop. For each
such iteration, the SINR γe ∈ ke, together with the objective
function z(f) of the particular f -th shadow fading realization,

are calculated and accumulated in the cumulative objective
function z. Then, the ADAM gradient is calculated from z, and
the selected sector antenna downtilts are updated consequently.

Importantly, it should be noted that updating sector antenna
downtilts may change best serving cell. Thus, to aid the
optimizer to escape from spurious local maximum, caused by
this suboptimal cell association, the algorithm subsequently
checks if z has reached a quasi-stationary condition, and, if so,
a new cell association process is performed. The parameter ϵ is
used to control the quasi-stationary condition and this cell re-
association process. In particular, two conditions are checked,
whether the value of the norms of the objective gradient |∇z|
has remained below the threshold ϵ for t iterations, and if the
number of iterations l from the previous cell re-association
is greater than Lmax. If these two conditions are true, the
iteration counter l is set to zero, and an association process is
carried out. If only the first condition is true, we assume that
the optimization has converged, and the algorithm saves the
intermediate solution. Moreover, to continue exploring the so-
lution space, it jumps to another sector antenna downtilts initial
configuration. The new initial value will be the one suggested
in [9] plus a random component uniformly distributed. After
Pmax explorations the iteration terminates.

Finally, among the intermediate solutions saved, the final
one is selected such that most of the constraints are satisfied,
and the objective function is maximised.

V. EVALUATION AND DISCUSSION

In the following, we present the results obtained when using
the algorithm introduced in Section IV on the system model
defined in Section II. In particular, we investigate:
A) how different aerial highway altitudes impact system

performance, in terms of 5% percentile and average SINR
gains. In more details, we compare optimized results
with those obtained using the sector antenna downtilts
suggested by the 3GPP in [20], i.e. θtilt = θtilt

3GPP. We
also provide an analysis on the impact of our optimization
to terrestrial grid points SINRs.

B) The benefits of using aerial highways with respect to
unconstrained CCUAV flights, equivalent to a random
CCUAV deployment, in terms of SINR gains and the
number of PRBs needed to fulfil the minimum CCUAV
QoS requirements.

C) The CCUAV performance when an increasing number of
aerial highways are deployed in the network.

As baseline minimum CCUAV QoS requirement, we set
minimum throughput TC&C = 100 kbps [9]. Using NPRB = 1
physical resource block (PRB) with BPRB = 180KHz, and
using the Shannon theorem together with a safety margin of
80 kbps, we obtain γr

th = 0 dB as a minimum required SINR
for each aerial evaluation point.

Table I presents the parameters and the values used in this
experimental evaluation.

A. Impact of different altitude on the SINR performance
Figure 2 shows the SINR distributions of the aerial evalua-

tion points placed in R1 (see Figure 1) for different altitudes



Param Value Param Value

ISD 500 m Xr {±100,±200}m
NBS 57 σ

kg,(LoS)

SF 4 dB
fc, B0 2.6 GHz, 20 MHz σ

kg,(NLoS)

SF 6 dB
P0, G0 43 dBm, 14 dBi σ

ka,(LoS)
SF {3.34,2.40,1.72,1.24} dB

hg 1.5 m σ
ka,(NLoS)
SF 6 dB

ha {50,100,150,200}m R {1,2,3,4}
IGD 25 m Nr {33,66,99,132}

Ng , Na 6780, 6780 γout
th , γr

th -6, 0 dB
θtilt
3GPP 15◦ λ 2 · 106 bits/sec/Hz

θ3dB 10◦ ADAM Lr 0.1
ϕ3dB 70◦ NIter, NSF 1000, 100
ϕbst {30◦, 150◦, 270◦} ϵ, t 10−3, 10
SLAv 20 dB Lmax, Pmax 20, 2
Am 25 dB BPRB 180 KHz

Ya, Yb -400 m, +400 m TC&C 100 Kbps

TABLE I: Parameters values summary

ha and for both the optimized and none optimized cases.
From this figure, it can be seen that the mean value of
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Fig. 2: Aerial points SINR distribution at different altitude with R =
1, Nr = 33, γr

th = 0 dB

the SINR of the CCUAVs for the none optimized case de-
creases as the altitude increases, going from −6.14 dB@50m
to −7.25 dB@200m. This is due to the increasing inter-cell
interference, as the higher the aerial highway the larger the
LoS probability. This is in line with the results in [8].

With regard to our optimization, the results show that it
introduces significant average gains of 7.61 dB and 7.33 dB
at the 5% percentile and mean SINR, respectively. This is
due to the enhanced signal power and mitigated inter-cell
interference towards the aerial highway. For completeness,
Table II provides a summary of such gains.

Aerial 5% Perc SINR 50m 100m 150m 200m
Opt [dB] -1.65 -1.87 -1.73 -1.19

Not Opt [dB] -9.70 -8.85 -8.99 -9.34
Gain [dB] 8.05 6.98 7.26 8.15

Aerial Mean SINR 50m 100m 150m 200m
Opt [dB] 2.07 1.01 0.05 0.69

Not Opt [dB] -6.14 -5.69 -6.41 -7.25
Gain [dB] 8.21 6.71 6.46 7.94

Ground 5% Perc SINR 50m 100m 150m 200m
Opt [dB] -1.54 -1.62 -1.58 -1.67

Not Opt [dB] -1.21 -1.21 -1.21 -1.21
Gain [dB] -0.34 -0.41 -0.36 -0.46

TABLE II: Summary of the aerial and ground points SINR perfor-
mances for different altitudes

Considering the optimized curves, despite the clear decreas-
ing trend with the aerial highway height at the head of the
distribution, the 5% percentiles values are similar. This result
is driven by the evaluation points placed at the cell edge, whose
performance is hard to optimize regardless of the altitude.

To analyze the impact of our optimization on the ground net-
work, Table II reports the 5% percentile SINR of the terrestrial
evaluation points, while considering different aerial highway
altitudes. As expected, optimizing the ground network for
aerial usage negatively impacts the ground performance, and
such impact is larger at the cell edge. However, the impact
is not major, with an average performance loss of −0.39 dB
(detailed values are reported in Table II).

B. Aerial Highways Benefits
To show the benefits of segregating aerial space for

CCUAVs, we compare two optimization frameworks. In the
first framework, we uniformly drop Nr aerial evaluation
points, and optimize the ground network for them. Once
the network is optimized, to simulate random movement of
CCUAVs, we perform 100 new drops of Nr aerial evaluation
points in new random positions, and we evaluate network
CCUAV performance for each new drop. We do not optimize
the network at each new random position, because, in reality,
antenna downtilts can not be optimized dynamically. In the
second framework, we consider our aerial highways, with Nr

aerial evaluation points placed over R1 (see Figure 1) at an
altitude of 150m. The obtained SINR distributions are shown
in Figure 3. Analyzing the results, we can state that optimizing
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Fig. 3: Comparison of SINR distribution of random aerial point po-
sitions and aerial highway points with R = 1, Nr = 33, γr

th = 0 dB

aerial highways allow for a more secure CCUAV performance,
with a gain of 2.93 dB at the 5% percentile SINR. To put this
gain in perspective, it should be noted that, to achieve the set
requirement of TC&C = 100 kbps with such 5% percentile
SINRs, 2 PRBs per CCUAV are needed for the unconstrained
CCUAV framework, while only 1 is required when using aerial
highways. This means that the aerial highway framework can
support double the CCUAVs.

C. Impact of multiple highways

In the following, we analyse how the performance evolves
when deploying multiple aerial highways in the same area. We



consider two scenarios: 2 routes symmetrically deployed in the
network center (inner routes in Figure 1), and all 4 routes. The
obtained SINR distributions are shown in Figure 4.

Although increasing the number of aerial highways linearly
increases the number of flying CCUAVs, it also leads to a
worse performance in each one of them. In particular, for the
2 routes scenario, we obtain, at the 5% percentile and mean
SINR, −1.60 dB and 0.83 dB, respectively. Instead, for the 4
routes scenario, we respectively get −1.83 dB and 0.20 dB. A
maximum loss of 0.92 dB is achieved at the 56% percentile.
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Fig. 4: SINR Performances for 2 and 4 highways at 150m

This performance loss is due to the limited degrees of freedom
of the network to satisfy the more aerial evaluation points
— a more complex problem. In more details, it is harder to
simultaneously bring more power to a larger number of aerial
evaluation points. Moreover, the more signal power brought
in a highway increases now the interference towards the aerial
points of neighboring highways.

These results show how authorities and network operators
should carefully decide the number of aerial highways to
deploy in an area, as more highways bring more capacity and
choice, but may, at some point, compromise performance.

VI. CONCLUSION

In this paper, we have proposed an ADAM-based algorithm
to fine tune the antenna downtilts of an LTE terrestrial network
to optimize QoS on predefined aerial highways. Our results
indicated that it is feasible to re-tune antenna sector directions
to distribute, in an optimized manner, more power in the sky
while minimizing interference, with a minimum impact in the
ground network. This allows for the usage, to some extend, of
an already deployed LTE network for reliable BLoS commu-
nication. However, from all numerical results presented in this
paper, it should also be noted that, it was not possible to always
satisfy minimum SINR constraints. This is mainly due to the
existence of challenging cell edge aerial evaluation points,
and because our LTE network, through the analysed downtilt
optimization, does not have the flexibility to simultaneously
direct power and mitigate inter-cell interference towards a large
number of directions. Future work will integrate different 5G
beamforming and interference mitigation techniques to further
enhance overall aerial performance.
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