
Scalable end-to-end slice embedding and
reconfiguration based on independent DQN agents

Pavlos Doanis1, Theodoros Giannakas2, and Thrasyvoulos Spyropoulos1, 3

1 EURECOM, France, first.last@eurecom.fr
2 Paris Research Center, Huawei Technologies, France, theodoros.giannakas@huawei.com

3 Technical University of Crete, Greece

Abstract—Network slicing in beyond 5G systems facilitates the
creation of customized virtual networks/services, referred to as
“slices”, on top of the physical network infrastructure. Efficient
and dynamic orchestration of slices is needed to ensure the
stringent and diverse service level agreements (SLAs) required by
different services. In this paper, we provide a model that attempts
to capture the problem of dynamic slice embedding and reconfig-
uration supporting a multi-domain setup and diverse, end-to-end
SLAs. We then show that such problems can be optimally solved,
in theory, with (tabular) Reinforcement Learning algorithms (e.g.,
Q-learning) even under, a priori, unknown demand dynamics
for each slice. Nevertheless, the state and action complexity of
such algorithms is prohibitive, even for very small scenarios.
To this end, we propose a novel scheme based on independent
DQN agents: The DQN component implements approximate Q-
learning, based on simple, generic DNNs for value function
approximation, radically reducing state space complexity; the
independent agents then tackle the equally important issue
of exploding action complexity arising from the combinatorial
nature of embedding multiple VNFs per slice, multiple slices, over
multiple domains and computing nodes therein. Using realistic
data, we show that the proposed algorithm reduces convergence
time by orders of magnitude with minimum penalty of decision
optimality.

Index Terms—VNF placement, Network Slicing, 5G Networks,
Reinforcement Learning, Deep-Q Network

I. INTRODUCTION

Network slicing is considered a key enabler for beyond 5G
mobile networks. It facilitates the creation of customized vir-
tual networks/services (“slices”) on top of the physical network
(PN) infrastructure. There are two main goals of slicing: (i)
to ensure that each slice is perceived as an isolated network,
performance-wise, with the desired Quality of Service (QoS)
metric(s) governed by a service level agreement (SLA); (ii)
to ensure the flexible and dynamic utilization of the limited
network resources, which is the only economically viable way
to ensure the stringent and diverse SLAs of the multitude of
services envisioned [1], [2].

While different types of “slicing problems” have been
considered in recent cellular network literature [3], the main
flavors appear to be either: (i) the problem of allocating

The research leading to these results has been supported in part by the
H2020 MonB5G Project (grant agreement no. 871780) and in part by the
H2020 SEMANTIC Project (grant agreement no. 861165). This research
was conducted while Theodoros Giannakas was with EURECOM, Sophia-
Antipolis.

resources of physical nodes among slices (and users of that
slice) sharing that node, e.g. allocating resource blocks in the
Radio Access Network (RAN) [4], [5], or (ii) the problem of
slice embedding; the latter represents slices as graphs (“VNF
chains”) of Virtual Network Functions (VNFs) and a set of
virtual links (VLs) that need to be mapped among physical
nodes and links, while satisfying each slice’s demands [6], [7].
Despite interesting initial attempts to tackle such problems, a
number of challenges arising from the vision of 5G+ slicing
remain: these relate both to the existence of generic yet useful
models, as well as algorithmic efficiency.

First, beyond 5G networks will involve slices whose VNFs
will be spread across multiple technological (and adminis-
trative) domains; they will also be governed by end-to-end
performance KPIs (key performance indicators) that often
depend on the performance along the entire VNF chain (e.g.
queuing delay across an end-to-end, possibly non-loop free
path of VNFs and links). This not only complicates the
modeling of such KPIs in a tractable manner, but immensely
increases the optimization complexity due to the combinatorial
nature of placing multiple (correlated) VNFs, for multiple
slices, among multiple computation nodes.

Second, the majority of the parameters that affect the
performance of each network component (and thus hosted
VNFs) are often unknown a priori, dynamically changing, and
often non stationary, rendering traditional static and central-
ized optimization methods (whether discrete, continuous, or
stochastic) problematic, if not altogether inapplicable.

In this paper, we focus on the latter problem of slice
embedding, assuming that resource allocation per node is per-
formed by a given scheduling algorithm (e.g., proportionally
fair sharing) whose impact is captured by our model. We
summarize below the main contributions of our work:

(C.1) In Section II, we provide a model that attempts to
capture the problem of dynamic slice embedding and recon-
figuration supporting a multi-domain setup and diverse, end-
to-end SLAs . Most of the existing works on slice embedding
focus on solving the ”one shot” optimization problem (i.e.,
based on average and/or static demands) [6], [7], while others
tackle the dynamic problem but for a single domain, slice or
VNF per slice [8], [9], or do not account for the impact of
reconfiguration in network/slice performance [10], [11].

(C.2) In Section III, we discuss how such problems can
be optimally solved, in theory, with tabular Reinforcement

Learning (RL) (Q-Learning) algorithms even under, a priori,
unknown demand dynamics for each slice. While such meth-
ods are inapplicable in realistic problem sizes, they are useful
in providing a baseline for approximate ones, in small enough
setups, as well in grounding more advanced algorithms with
good theoretical properties [12].

(C.3) To deal with the prohibitive state and action complex-
ity of tabular RL algorithms, we propose a novel scheme based
on independent DQN agents: The DQN (Deep-Q Network)
component implements approximate Q-learning, based on sim-
ple, generic Deep Neural Networks (DNNs) for value function
approximation, radically reducing state space complexity; the
independent agents then tackle the equally important issue
of exploding action complexity arising from the combinato-
rial nature of embedding multiple VNFs per slice, multiple
slices, over multiple domains and computing nodes therein
(Section III). Using realistic data, we show that the proposed
algorithm reduces convergence time by orders of magnitude
with minimum penalty of decision optimality (Section IV). A
key novelty of our work is that the proposed multi-agent DQN
scheme is validated both in terms of scalability and optimality,
as well as tested under a real-traffic dataset.

II. SYSTEM MODEL

In this section, we present our system model. We start with
the physical and virtual network models, and related KPIs;
we then explain the state, action, and rewards involved in the
online optimization problem.

A. Physical Network and Slices

As is common in related literature, we represent both
the underlying physical network (PN), and the VNF chains
(“slices”) to be deployed on top of it, by graphs (e.g. [6], [7]).

Physical Network is a weighted undirected graph G = (V, E),
possibly comprising multiple (technological or admin) do-
mains (e.g., Cloud RAN (CRAN), Multi-access Edge Com-
puting (MEC), Core Network (CN)).

Node capacity bv is the capacity of (physical) node v to
host VNFs of that domain (it could also be 0 for some nodes,
e.g. for routers). This capacity could be resource blocks, cores,
containers, etc., depending on the domain.

Link capacity be is the link capacity of edge (or path) e
between two PN nodes (e.g., bandwidth).1

In the example of Fig. 1, there are 3 domains (CRAN, MEC,
CN), with 3, 2, and 3 nodes where VNFs could be executed
respectively and related capacities bv . Nodes are connected
through physical links (of capacity be), or paths comprising
multiple links and nodes of the network.

Network Slices. We assume that a set of slices K (K in total)
must be hosted on top of the PN. We slightly generalize the
common view of a slice, in related 5G literature, and depict a
slice k as follows:

1W.l.o.g., we assume that the routing path between any two nodes is
predetermined, to simplify our discussion. Routing variables could be easily
included in our framework.

A directed graph (“VNF chain”) Hk = (Nk,Lk) of VNFs
(set Nk) that model the various processing tasks required
by flows of this slice, and directed (virtual) links (set Lk)
indicating the order of how these tasks are applied. Our model
is fairly generic, allowing for both loops (e.g., flows passing by
the same VNF multiple times), as well as probabilistic routing
of flows (e.g., to capture the scenarios where not all flows
of a slice require all VNFs in the same order). An example
of such a chain is depicted in Fig. 1, where for slice 2, a
percentage of flows from VNF1 proceed to VNF2 directly,
while the rest must pass through VNF3, possibly going back
to VNF1 as well. A simplified example that maps this slice
modeling to a real service is the following video streaming
slice: the traffic must first receive some baseband processing
at the CRAN and then traverse a Firewall VNF at the MEC.
Only a sample of (possibly malevolent) packets will also go
through a Deep Packet Inspection VNF at the MEC for further
processing before the billing VNF at the CN, while the rest
will go straight for billing [10].

VNF demands dk,n: Each VNF n of slice k is associated
with a resource demand dk,n(t) at each time t, that will be
imposed on the PN node where the VNF is executed.

Virtual link (VL) demands dk,l: Similarly, each (virtual)
link l of slice k has resource demand dk,l(t).2

Remark: These demands are often unknown, stochastic, non-
stationary (correlation between VNFs of the same slice is also
common); the main reason why we require a learning-based
optimization algorithm to tackle this problem.

Demand Dt: Let vector Dt denote the VNF and VL
demands of all slices at time t.

Service Level Agreements qk: Each slice k comes with
some slice-specific requirement qk, which defines a maximum
(or minimum) value for an end-to-end KPI metric.

Control variables xk,i,j: equal to 1 when VNF/VL i of slice
k is hosted by node/link j, and 0 otherwise.

Configuration Ct: Let vector Ct denote the configuration
(embedding) of all VNFs to physical nodes at time t.

As an example, in Fig. 1, VNF 1 of slice 1 is hosted
by node 2, hence c1,1 = 2, and the configuration is Ct =
(c1,1, c1,2, c2,1, c2,2, c2,3).

B. Operational Costs of Physical Network Infrastructure

Given the (usually unknown) demands Dt and the config-
uration Ct at time t, we assume that the system suffers an
instantaneous cost related to both the network performance
(i.e. direct cost to the operator) and slice performance (e.g.,
indirect cost related to SLA violations). We choose to consider
the following cost quantities in this work (other components
can be straightforwardly added to the framework):
Type 1 cost : Node utilization. Accounts for energy consump-
tion expenses and it is equal to the number of active servers.
The idle servers can be set to sleep mode and save energy,
while minimizing this cost also facilitates the admission of

2Note that this load will be added to all physical links along the PN path
between the execution nodes hosting the two VNFs connected by virtual link
l.

Fig. 1. Graphical illustration of the system model. The physical network con-
sists of three technological domains, CRAN, MEC, and CN. The embedding
of 2 slices onto the network is depicted.

new slices by maximizing the free space of resources [13].
We define it as:
r1(Ct) =

∑
v∈V

βv, with βv = 1 if
∑
k∈K

∑
n∈Nk

xk,n,v(t) ≥ 1

(1)
Type 2 cost: Reconfiguration. The cost for migrating VNFs
from their host servers to other servers in the PN. It relates
to the overhead generated for reassigning all VNFs and the
delays incurred by this action, which may lead to penalties
for SLA violations [4], [9]. We define it as:
r2(Ct, Ct+1) = 1/2 ·

∑
k∈K

∑
n∈Nk

∑
v∈V

|xk,n,v(t+ 1)− xk,n,v(t)|

(2)

Type 3 cost: SLA violation. When the maximum value qk
defined by the SLA is exceeded, a penalty is paid to the slice
tenant. This penalty may take any form that is appropriate to
model the impact of violating the corresponding KPI (e.g.,
linear, quadratic, etc.). For example the linear form is:

r3(Ct, Dt) =
∑
k∈K

(fk(Ct, Dt)− qk) (3)

where fk(Ct, Dt) gives the corresponding end-to-end KPI
metric (performance) of slice k as a function of the configu-
ration and the demand.

We give two examples of end-to-end KPIs:

a) Queuing delay: Assuming an M/G/1/Processor Sharing
(PS) type of scheduler (an M/G/1/PS processor with classes
has been shown to be a good approximation for many pro-
portionally fair wireless schedulers [14]), we can calculate the
mean delay experienced by a VNF/VL on the host node/link

j, by [15] 3,4 :

fj(Ct, Dt) =
1

bj − zj(Ct, Dt)
, (4)

where zj(Ct, Dt) =
∑
k∈K

∑
i∈Nk∪Lk

dk,i(t) · xk,i,j(t) (5)

Then, in the case of a simple chain slice, the end-to-end
queuing delay fk(Ct, Dt) is the sum of the delays on the
traversed nodes and links. As an example, in Fig. 1, the delay
experienced by slice 1 is the sum of the delays in node 2, link
(2,3), link (3,6), link (6,9), link (8,9), and node 8. In the case
of a more complex slice, a Jackson network type of analysis
could be applied to calculate the delay [15]. In the remainder
we focus on simple chain slices without loops. Note that this
modeling captures the resource allocator scheduler impact.

b) Underprovision: A penalty is paid when the aggregate
demand of the VNFs/virtual links embedded on a physical
node/link exceeds its nominal capacity [5]:

fj(Ct, Dt) =

{
zj(Ct, Dt)− bj if zj(Ct, Dt) > bj

0 otherwise
(6)

It can be used as a proxy for slice performance on a physical
node/link when details about queuing delay are not available.

C. Reinforcement Learning Formulation

Our goal in the dynamic embedding problem is therefore
to decide the configuration Ct at every time t, (i) towards
optimizing the total system cost (consisting of the various cost
components), while (ii) not knowing a priori how demands
Dt evolve over time. This is an online learning and control
problem, for which Reinforcement Learning (RL) schemes
are a natural candidate. Below, we first define the main
components of any RL scheme, namely its state and action
space, and the rewards (often referred to as “Instantaneous
Cost” in minimization problems [12]). Then, in Sec. III we
present various RL algorithms to maximize these rewards (or
minimize the costs) over an infinite time horizon.

Definition 1 (State St = (Ct, Dt)). We will assume that the
state St of the system at any time t consists of (a) the slices’
configuration Ct on top of the physical network, and (b) the
currently observed resource demand Dt.

Definition 2 (RL agent action At). We assume that at time
t, the action At that our (RL) algorithm needs to decide is
a good (re-)configuration Ct+1 (without knowing the future
demand Dt+1)

Definition 3 (Reward rt). Given some observed state St, an
action At taken by the RL agent, and the next state St+1, the
reward obtained is the weighted sum of (1), (2), (3):
rt+1 = −(w1 ·r1(St+1)+w2 ·r2(St, At)+w3 ·r3(St+1)) (7)

3We assume that two VNFs of the same slice cannot be executed in the
same node.

4In order to avoid degenerate cases where the formula (4) would give
negative values when total demand exceeds capacity, in our simulations we
linearize the part of bj − zj(C,D) ∈ [0.01,−∞] with a straight line equal
to the slope at bj − zj(C,D) = 0.01

III. RL ALGORITHMS

In this section, having defined the basic RL components,
we discuss how different RL schemes could be applied to our
problem; we begin with a theoretically optimal yet practically
inapplicable standard approach, then build towards our own
proposal which attempts to have close-to-optimal performance
yet with greatly improved convergence and scalability proper-
ties for practical setups.

A. State and Action Complexity: an Example

Given the RL formulation (S,A,R, γ), where S,A,R are
the sets of all possible states, actions, rewards respectively
and γ is the discount factor, we can apply a tabular version of
Q-learning with epsilon-greedy policy [12]. In such setups, a
Q(S,A) is maintained for all state-action pairs, and is updated
as follows:
(1− α)Q(St, At) + α(r(St, At, St+1) + γmax

A∈A
Q(St+1, :))

(8)
Such schemes provably converge to the global optimal so-
lution of the problem, without any a priori knowledge of the
demands Dt [16] 5. The important downside of such “tabular”
algorithms is that every possible state-action pair must be
encountered on training enough times each, in order to ensure
convergence to a good estimate of the respective Q-value.

As an example, consider the moderate case of a single
domain, with K = 10 slices. Each slice consists of only one
VNF (assume no VLs); we also have V = 5 servers, and each
VNF resource demand can take one out of B = 4 distinct
values. Even in such a single domain scenario, the state space
already explodes to |S| = 510 · 410. The first component of
the product corresponds to all the possible placements of the
10 VNFs in 5 computation nodes, while the second part to
all possible states of the demand vector Dt. The same holds
for the action space which is already of size |A| = 510, over
which the max operation in (8) must be taken at every training
step! This simple example reveals the notorious curse of
dimensionality standard RL schemes exhibit even in relatively
small sized problems of combinatorial nature.

B. Approximation 1: Deep Q-Network

We, thus, need to radically improve both the state com-
plexity and the action complexity of the above scheme. A
recent and successful approach [17] is to learn a parameterized
function Q(S,A) = f(S; θ) (with the function commonly
being a DNN), instead of the entire Q-table previously.

The agent observes a state St, and computes f(St; θ); for
given θ, the DNN outputs an estimate for the Q value of every
available action At. Observe that unlike tabular Q-learning,
where the state space must be discrete, we can now feed
f with continuous resource demands and not use discretized
levels. The DQN comes with some additional components. In

5In the case of known and Markovian traffic Dt, our problem is a standard
Markov Decision Problem (MDP), and can be solved with value iteration [16].
We will use such an MDP solution as a baseline in some simple examples of
Section IV.

every step, we do a forward pass over the so-called policy
network, that dictates which action to take. We observe a
reward rt+1(St, At, St+1) and the system evolves to St+1.
We store experiences (St, At, rt+1, St+1) to a replay buffer;
from this we sample data points for which we perform the
gradient step. Such use of data improves efficiency (we need
fewer samples to learn). Then, we update the policy network
via stochastic gradient descent using samples from the buffer.
For one sample, the update would be:

θk+1 = θk +∇θ(Qθ(St, At)− target(St+1)), (9)
where target(St+1) = rt+1 + γmaxA∈A Qθ′(St+1, :); the
latter quantity is computed by a DNN (target network) which
is updated every T (a tuning parameter) for stability reasons.
Drawbacks. With DQN, we learn a vector θ (a vector of
size as equal to the DNN trainable parameters) instead of
learning |S| · |A| parameters. However, DQN was designed for
control problems with small action spaces (in [17], there are
less than 20 actions always), and does not scale well for very
large action spaces. In our case, larger problem size means
(a) (combinatorially) more outputs/actions to be computed of
f(St; θ), and (b) harder argmax operations

C. Approximation 2: Independent DQN agents

While state space has been the main issue in mainstream
Deep RL problems (e.g., Atari [17]), action space is often
the bottleneck in such combinatorial nature problems arising
in networking setups. A natural approach for such problems
where the action space can be decomposed is multi-agent: in
our case, the A naturally decomposes into action subspaces
per VNF (or per slice). We therefore apply an IDQN approach,
where each VNF operates as an independent agent.

Each agent maintains a DNN and has its own set of
parameters θi, its policy and target networks, and replay buffer
(as above). When system state St is observed (all agents view
the global state), each agent/slice i decides to which server it
must migrate next. After each agent has taken an action using
its policy network; the global action is formed, a reward and
a new state are observed. These are broadcast to all agents’
buffers, and then each agent makes a gradient update as

θk+1
i = θki +∇θi(Qθi(St, At)− targeti(St+1)). (10)

The take-away is that we have bypassed computationally heavy
step maxA Qθ(S, :) of (9) for so many actions; in fact, for each
agent the available actions now became linear O(V) on the
number of servers, a significant improvement! And moreover,
we can keep less parameters (θi) as we no longer have to learn
the Q(S,A) for so many actions.

Remark: These agents, while they can be distributed on
the infrastructure (e.g., collocated with the respective VNF,
something that has latency advantages in 5G networks) is
first and foremost an algorithmic concept, to decompose (and
reduce) the action complexity; multi-agent solutions for (pos-
sibly centralized) MDP problems have resurged recently [12].

IV. SIMULATION RESULTS

In this section, we have two main goals: first, to establish
that approximate solutions DQN and IDQN are able to con-

verge close to optimal solutions (i.e. ones found by tabular
Q-learning) yet with much higher convergence speed, as the
problem size increases; second, to validate our proposed solu-
tion for such problems, our IDQN implementation algorithm,
in realistic enough setups. As a result, the validation section
consist of two main parts, the former using small enough
scenarios (to obtain the optimal policy) with synthetic data
(for sensitivity analysis), while in the latter we explore the
performance of the IDQN solution using real data from the
Milano dataset [18], in more realistic topologies with much
larger state and action baseline complexity.
Policies. Below we list various algorithms that we will use in
our validation, together with some key parameters for each.
Note that not all algorithms will or can be used in every
scenario (e.g., the first two take more than days to converge,
except in the smaller Scenario 1).
• Policy Iteration (PI): Returns the optimal policy in an offline

fashion, and is applicable when the traffic dynamics are
Markovian and known.

• Q-Learning (QL): This is the RL tabular method (Sec-
tion III, (8)) that returns the optimal policy (for discrete
traffic demands).

• DQN: This is the centralized approximation method (Sec-
tion III, (9)), using a DNN of 3 layers and 60 neurons per
layer. We set its replay memory size to 5000 timeslots, the
target update period to 500 timeslots and the minibatch to
32, since these parameters performed well in a variety of
tested scenarios.

• IDQN: This is the proposed multi-agent approximation
method (Section III, (10)). Each agent (one agent per VNF)
is a DNN of 3 layers and 60 neurons per layer. It uses the
same parameter values with the DQN.

• Group-all: A reference static policy, whose main goal is to
merely minimize the node utilization cost (1); it places all
VNFs in one server and does not react to changing demands
(hence no reconfiguration cost either), but possibly suffering
from frequent SLA violations.

• Split-all: A sister reference policy to Group-all which in-
stead aims to minimize SLA violations (3) only, trying to
“spread out” VNFs among all available servers as much as
possible (no reconfiguration cost either).

• Random: It chooses randomly one of the possible configu-
rations at each timestep.

Note that the discount factor was set to γ = 0.9 for all
RL/MDP algorithms.

A. Part I: Scalability of tabular vs. approximate RL schemes

In this section, we focus on small scenarios, and synthetic
Markov traffic (defined below), so that theoretically optimal
algorithms (Policy Iteration and Q-learning) can be used as
baselines (converge in reasonable time). Our aim is to carefully
study how the increase of problem size (K: number of slices,
V : number of servers) affects the convergence speed of the
approximations, as well as their attained cost, compared to
the optimal. For this reason, in terms of cost performance we
use PI and QL as benchmarks (both find the optimal cost), and

check how DQN and IDQN perform against them (i.e. how far
from the optimal). And moreover, we observe the convergence
speed of QL against DQN and IDQN.

Network Setup and Markov Traffic. We consider a single
domain physical network and two scenarios (a small and a
larger) with different problem sizes, i.e. V and K. Without
loss of generality, we assume each slice consists of one VNF.
The demand of each VNF dk(t) ∈ B = {0, 1} (”ON/OFF”)
and evolves, independently to the other VNFs, as a Markov
process with transition probability matrix

Pk =

[
0.98 0.02
0.02 0.98

]
(11)

This captures a very simple scenario where each slice has
bursty traffic periods followed by long silence periods, not
necessarily coinciding, to better illustrate the optimality of the
chosen actions, as well as the performance of static heuristics.
Using (11) we generate a training and a testing dataset,
with duration 2 · 106 and 8 · 104 time-slots respectively. The
algorithms are trained and tested 10 times in the respective
datasets with different initial random seeds. For the SLAs,
we consider the underprovision SLA (Section II, (6)) where
qk = 0 for all slices, and a quadratic penalty for violations.

Scenario 1. Here, we consider a PN with V = 2 servers and
K = 4 slices to be configured (4096 state-action pairs).

-Convergence Speed (Fig. 2(a)): We depict the average
cost value (over 10 runs, on the y-axis) as a function of time
(counted in terms of iteration, on the x-axis), for the 3 main
algorithms of Section III. The two main points to observe are
the following: (i) the approximate solutions, DQN and IDQN
both achieve similar costs with the theoretically optimal QL
(this has been confirmed for a variety of other small scenarios
as well); (ii) yet, it is impressive that QL already takes quite a
few more iterations to converge, even in such a small scenario
(this is not so surprising since the size of the Q-value table is
already 256 by 16); (iii) since the action space in this scenario
is quite small, there are no additional convergence advantages
by IDQN (compared to DQN), as expected.

-Cost performance (Fig. 2(b)): We depict the cost per time-
slot in the testing dataset via a box plot (for all the algorithms
outlined in the beginning of the Section). The main obser-
vations are: (i) the approximations (DQN and IDQN) have
no problem finding the optimal solution in such a scenario;
(ii) even on this tiny scenario, we get a 20% improvement
compared to the simple static heuristics; and a 60% compared
to the random policy.
Take-away message 1: DQN based approximate policies are
able to find good quality solutions (certainly better than static
reference policies), and quite faster than tabular Q-learning.

Scenario 2 (Fig. 2(c)): We increase the problem size (w.r.t.
Scenario 1), and assume a physical network with V = 3
servers that hosts K = 7 slices (1010 state-action pairs).
While this is still not a very large scenario, in practice, policy
iteration and Q-learning already collapse, due to their memory
and computation requirements; we therefore omit these from
the respective plot. So, Fig. 2(c) is similar to Fig. 2(a), yet

we only compare DQN and IDQN. An important observation
here is that IDQN now presents considerable convergence
time improvements (roughly 10×) compared to DQN; this
is reasonable as the action space in this scenario is growing
large (2187 actions per state). Nevertheless the solution quality
(average cost achieved) is comparable.
Take-away message 2: for realistic size scenarios, even cen-
tralized DQN will collapse in terms of convergence time.

B. Part II: IDQN vs Heuristics

Having established that IDQN agents converge reasonably
fast, using synthetic data scenarios, in this last part we examine
their performance in a more realistic scenario (multiple do-
mains, more nodes, end-to-end queuing delay SLAs, and real
traffic data from the Milano dataset [18] to drive the demand).

Network Setup. We consider a physical network with two
domains, CRAN and CN, with VCRAN = 9 and VCN = 3
servers respectively. There are also 10 slices, each of them
comprising two VNFs, one for each domain (for simplicity
and without loss of generality we assume there are no VLs
involved). We also include end-to-end metrics: SLAs concern
the maximum end-to-end queuing delay (linear penalty for
SLA violations, see (Section II, (4)).

Data Preprocessing. The dataset contains 10K timeseries
of base stations (BS) (with unknown statistics), each with
8926 demand values. In particular, we map each VNF to the
normalized demand of a BS; and to make the simulation more
realistic, we choose highly correlated timeseries for VNFs that
belong to the same slice. So we pick 20 timeseries, one for
each VNF. We use half of the dataset data points for training
and the rest for testing.

Scenario 3 (Fig. 2(d)): We depict the cost per time-slot in the
testing dataset via a box plot (for IDQN, Split-all, Group-all,
and random policy) as produced after 10 runs of training-
testing with different initial random seeds. DQN is omitted
since it is not possible to apply it in practice for this scenario
size (it would require a DNN with 2× 1014 output neurons).
The main observations are: (i) the cost achieved by IDQN is
43% lower compared to the Split-all policy, which was the
best of our baselines; (ii) even the worst policy obtained by
IDQN in the 10 runs performs much better than the baselines.
Take-away message 3: IDQN is scalable and provides signif-
icantly better quality policies compared to static baselines.

V. CONCLUSION

In this paper, we gave a flexible model for the slice
embedding and reconfiguration problem, suitable for multi-
domain setups and diverse end-to-end SLAs. We proposed a
novel DRL scheme based on independent DQN agents that
radically reduces both the state and action complexity to speed
up convergence, and improves cost performance against static
policies. Possible future work includes multi-agent schemes
that consider coordination among different agents to increase
robustness.

(a) Convergence plot (scenario 1) (b) Testing stage cost (scenario 1)

(c) Convergence plot (scenario 2) (d) Testing stage cost (scenario 3)

Fig. 2. Simulation results for the three tested scenarios

REFERENCES

[1] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
slicing and softwarization: A survey on principles, enabling technolo-
gies, and solutions,” IEEE Comms. Surveys Tutorials, 2018.

[2] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network
slicing in 5g: Survey and challenges,” IEEE Comms. Magazine, 2017.

[3] R. Su, D. Zhang, R. Venkatesan, Z. Gong, C. Li, F. Ding, F. Jiang, and
Z. Zhu, “Resource allocation for network slicing in 5g telecommuni-
cation networks: A survey of principles and models,” IEEE Network,
vol. 33, no. 6, pp. 172–179, 2019.

[4] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“Aztec: Anticipatory capacity allocation for zero-touch network slicing,”
in IEEE INFOCOM, 2020.

[5] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“Deepcog: Cognitive network management in sliced 5g networks with
deep learning,” in IEEE INFOCOM, 2019.

[6] S. Vassilaras, L. Gkatzikis, N. Liakopoulos, I. N. Stiakogiannakis, M. Qi,
L. Shi, L. Liu, M. Debbah, and G. S. Paschos, “The algorithmic aspects
of network slicing,” IEEE Comms. Magazine, 2017.

[7] F. Schardong, I. Nunes, and A. Schaeffer-Filho, “Nfv resource allo-
cation: a systematic review and taxonomy of vnf forwarding graph
embedding,” Computer Networks, vol. 185, p. 107726, 2021.

[8] M. Leconte, G. S. Paschos, P. Mertikopoulos, and U. C. Kozat, “A
resource allocation framework for network slicing,” in IEEE INFOCOM,
2018.

[9] F. Wei, G. Feng, Y. Sun, Y. Wang, S. Qin, and Y.-C. Liang, “Network
slice reconfiguration by exploiting deep reinforcement learning with
large action space,” IEEE TNSM, 2020.

[10] S. Agarwal, F. Malandrino, C. F. Chiasserini, and S. De, “Vnf placement
and resource allocation for the support of vertical services in 5g
networks,” IEEE/ACM TON, 2019.

[11] P. T. A. Quang, Y. Hadjadj-Aoul, and A. Outtagarts, “A deep reinforce-
ment learning approach for vnf forwarding graph embedding,” IEEE
TNSM, vol. 16, no. 4, pp. 1318–1331, 2019.

[12] D. Bertsekas, Reinforcement Learning and Optimal Control. Athena
Scientific, 2019.

[13] M. Shojafar, N. Cordeschi, and E. Baccarelli, “Energy-efficient adaptive
resource management for real-time vehicular cloud services,” IEEE
Trans. on Cloud Computing, 2019.

[14] T. Bonald and A. Proutière, “Wireless downlink data channels: User
performance and cell dimensioning,” in MobiCom, 2003.

[15] M. Harchol-Balter, Performance Modeling and Design of Computer
Systems: Queueing Theory in Action, 1st ed. USA: Cambridge
University Press, 2013.

[16] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. The MIT Press, 2018.

[17] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[18] Telecom Italia, “Milano Grid,” 2015.

