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Abstract—Sparse Bayesian Learning (SBL) is a popular com-
pressed sensing technique in which the sparsifying prior for
the unknowns in the underdetermined linear system is mod-
eled as a Gaussian scale mixture. This leads to a number
of hyperparameters which involve at least the variance profile
and the noise variance, but also possible parameters in the
variance profile priors. These hyperparameters are typically
determined by Type I or Type II Maximum Likelihood (ML)
estimation. In this paper we introduce SURE SBL in which the
hyperparameter optimization (and not estimation) is based on
Stein’s Unbiased Risk Estimator (SURE). Indeed the ultimate
performance criterion is usually the Mean Squared Error (MSE)
of the sparse parameters or the resulting signal model. We
review the SURE approach and its use in the world of automatic
control. Then we apply the SURE approach to the MSE of the
sparse parameters (linear model input) and find that it yields the
same hyperparameter optimization as by Type II ML. We finally
propose the SURE approach at the level of the output of the linear
model, where it leads to new hyperparameter adjustments.

I. INTRODUCTION

Sparse signal reconstruction and compressed sensing (CS)
has received an enormous amount of attention in recent years.
Some applications include massive multi-input multi-output
(MIMO) channel estimation [1], direction of arrival estimation
[2], biomagnetic imaging [3], image restoration and echo
cancellation. The compressed sensing (CS) problem can be
formulated as

y = Ax+w, (1)

where y are the observations or data, A is called the mea-
surement or sensing matrix which in a first instance is known
and is of dimension N × M with N < M , x is the M -
dimensional sparse signal and w is the additive noise. In the
exactly sparse case, the unknown x contains only K non-
zero entries, with K << M . w is assumed to be a white
Gaussian noise, w ∼ N (0, γ−1I) with precision (inverse
variance) γ. To address this problem, a variety of algorithms
such as Orthogonal Matching Pursuit (OMP) [4], basis pursuit
[5] and the iterative re-weighted l1 and l2 algorithms [6] exist
in the literature. Compared to these algorithms, using Bayesian
techniques for sparse signal recovery (SSR) generally achieves
the best performance. It is worth mentioning that [7] provides
a detailed overview of the various SSR algorithms which
fall under l1 or l2 norm minimization approaches such as
Basis Pursuit, LASSO etc., and Sparse Bayesian Learning
(SBL) methods. The authors justify the superior recovery
performance of SBL compared to the conventional methods
mentioned above. The SBL algorithm was first introduced

by [8] and then proposed for the first time for SSR by [9].
In a Bayesian setting, the aim is to calculate the posterior
distribution of the parameters x given some observations (data)
and some a priori knowledge.

Compared to other state of the art techniques, the critical
point about SBL is the hierarchical prior modeling which
results in sparsification of the state x. The Bayesian LASSO
[10] uses a similar hierarchical modeling with a Gaussian-
Exponential prior (equivalent to a Laplace prior) and it turns
out to be a special case of the Student t prior in SBL.

In SBL, the unknown parameters x are modeled as decor-
related zero mean Gaussian1 x ∼ N (0, (Diag(ξ))−1) with
precision profile ξ. The estimation of the hyperparameters
ξ, γ and the sparse signal x is performed jointly. In one ap-
proach, the hyperparameters are estimated first using evidence
maximization, which is referred to as the Type II Maximum
Likelihood (ML) method [7], which is also an instance of
Empirical Bayes (EB) estimation (i.e. Bayesian estimation
with a parameterized prior in which the hyperparameters are
estimated also). For a given estimate of ξ, γ, the Gaussian
posterior of x is formulated as p(x|y, ξ̂, γ̂) and the mean
of this posterior distribution is used as a Linear Mimimum
Mean Squared Error (LMMSE) [11] point estimate of x̂. In
[12], the authors propose a Fast Marginalized ML (FMML) by
alternating likelihood maximization w.r.t. the hyperparameters.
Both previous approaches allow for a greedy (OMP-like,
Orthogonal Matching Pursuit) initialization which improves
convergence speed. Recently, Approximate Message Passing
(AMP) [13], generalized AMP (GAMP) and vector AMP
(VAMP) [14], [15], [16] were introduced to compute the
posterior distributions in a message passing (MP) framework,
with reduced complexity. The fundamental idea behind the
derivation of AMP is the central limit theorem and Taylor
series expansions, which allows to simplify the messages to
be exchanged in MP and reduce their number. However, so far
the Bayes optimality of these AMP algorithms has been shown
only for i.i.d. or right orthogonally invariant A, which severely
limits their applicability. More recent attempts at obtaining

1Notations: The operator (·)T represents the matrix transpose. The pdf of a Gaussian
random variable x with mean µ and variance σ2 is written asN (x;µ, ν). xk represents
the kth element of the vector x. KL(q||p) represents the Kullback-Leibler distance
between the two distributions q, p.An,: represents the nth row of matrixA. blkdiag(·)
represents the blockdiagonal part of a matrix. diag(X) or Diag(x) represents a vector
obtained by the diagonal elements of the matrix X or the diagonal matrix obtained with
the elements of x in the diagonal respectively. 1M represents a vector of length M with
all ones as the elements. For a matrix A, A ≥ 0 signifies it is non-negative definite.
IM represents the identity matrix of size M . tr{A} represents the trace of A (sum of
diagonal elements). Ai,j represents element (i, j) of matrix A.



converging versions of (G)AMP appear in [17], [18], where
alternating constrained minimization of a large system limit
of the Bethe Free Energy is pursued.

SBL (LMMSE) involves a matrix inversion step (at each
iteration in Type I ML, which is joint estimation of parameters
x and hyperparameters), making it computationally complex
even for moderately large datasets. An alternative approach
to SBL is using variational approximation for Bayesian in-
ference [19]. Variational Bayesian (VB) inference tries to
find a factored approximation of the posterior distribution
which maximizes the variational lower bound on ln p(y). [20]
introduces a Fast version of SBL by alternatingly maximizing
the variational posterior lower bound with respect to single
(hyper)parameters. In [21], the authors introduce a Belief
Propagation (BP) based SBL algorithm which turns out to be
computationally more efficient. The authors use BP to infer
the posterior pdf of x and the hyperparameters are estimated
using the EM algorithm. The authors in [22] propose a MP
approach combining BP and mean field (MF) approximations.
MF is a special case of VB in which the partitioning of
variables is pushed to the scalar granularity level. The benefits
of the combined scheme can be summarized as follows: While
the MF approach always admits a convergent implementation
and the low complexity BP yields a good approximation of
the posterior marginals if the factor graph has no cycles.
The authors show that the MP fixed-point equations for a
combination of BP and MF correspond to stationary points of
one single constrained region-based free energy approximation
and provide a clear rule stating how to couple the messages
propagating in the BP and MF parts. Hence, it is advantageous
to apply a combination of BP and the MF approximation on
the same factor graph to exploit their respective virtues while
limiting their drawbacks (MF has lower complexity than BP,
but is potentially more suboptimal). However, [22] does not
treat at all the topic of how to split nodes between BP and
MF.

[23] uses the Approximate Message Passing (AMP) algo-
rithm for LMMSE and introduces a non-parametric algorithm
called NOPE that does not require any knowledge of the signal
and noise powers (these two parameters are adjusted via SURE
actually). The authors also prove that in the large system limit,
NOPE achieves the same performance as that of the LMMSE
equalizer.

Another approach appears in [24] (and former publications
by the same authors), called the SPICE methodology, in which
they adjust hyperparameters by covariance fitting using the
weighted covariance fitting cost function

tr{(yyT −R)R−1(yyT −R)} (2)

where R is the one appearing in (20). Now, (2) differs from
the optimally weighted covariance fitting criterion

tr{(yyT −R)R−1(yyT −R)R−1} (3)

which leads to the same hyperparameter adjustments as Type
II ML (EB).

II. EMPIRICAL BAYES VIA SURE: STATE OF THE ART

In this section, we provide a short overview of some
Bayesian estimation schemes which are similar to SBL or of
which SBL can be seen as a special case.

A. James-Stein Estimator

The Bayesian likelihood interpretation of (possibly overde-
termined) Compressed Sensing can be written as

min
x
‖y −Ax‖22 − 2γ−1 ln p(x) . (4)

Stein and James in their landmark paper [25] showed that
for the linear Gaussian model with i.i.d. prior p(x) =
N (x;0, ξ−1I), it is possible to construct a nonlinear estimate
of x with lower (deterministic) MSE than that of ML for
all values of the unknown true (deterministic) x. This is
an instance of (parametric) empirical Bayes in which the
hyperparameters in the prior are estimated from the data
also. A popular design strategy here is to minimize Stein’s
Unbiased Risk Estimate (SURE) [26], which is an unbiased
estimate of the MSE. SURE directly approximates the MSE
of an estimate from the data, without requiring knowledge
of the hyperparameters (ξ). Stein’s landmark discovery lead
to the study of biased estimators that outperform minimum
variance unbiased estimators (MVUE) in terms of MSE, see
e.g. the work by Yonina Eldar [27]. Shrinkage estimators and
penalized maximum likelihood (PML) estimators are examples
of this. If the penalty term in PML can be interpreted as a prior
log likelihood, then James-Stein is an instance of PML, which
considers a Bayesian likelihood for deterministic parameters.

B. More General Covariance Gaussian Prior in Automatic
Control

Another approach are the so-called kernel methods in linear
system identification for (1) [28]. A good overview of Kernel
methods, in connection with machine learning can be found
in [29]. Traditional methods in that area are ML or prediction
error methods (PEM) which are optimal in the large data limit.
The kernel methods are an instance of PML and represent a
generalization of James-Stein. The prior considered is p(x) =
N (x;0,P ) for some symmetric positive semidefinite kernel
matrix P . leading to

x̂ = arg min
x∈RM

‖y −Ax‖2 + 1

γ
xTP−1x. (5)

The kernel P (η) is a parameterized family of matrices, where
η ∈ Rp. η are the hyperparameters. Methods for hyperparam-
eter estimation include cross-validation (CV), empirical Bayes
(EB), Cp statistics and Stein’s unbiased risk estimate (SURE).
SBL can be interpreted as a special case with diagonal P with
(inverse) diagonal elements η.

1) Kernel hyperparameter estimation: In this subsection,
we provide an overview of a few hyperparameter estimation
techniques known in the literature, see [30] for more details.



The first approach is to estimate the hyperparameters using
Empirical Bayes (EB = Type II ML):

η̂EB = argmin
η
fEB(P (η)),

fEB(P (η)) = yTQ−1y + ln det(Q) , Q = APAT +
1

γ
IN .

(6)
There exists also two SURE methods, where the estimation
problem gets formulated as below.
SURE 1: is based on minimizing the MSE of signal recon-
struction (MSEx(P ) = E(‖x̂− x‖2)):

SUREx : η̂Sx = argmin
η
fSx(P (η)), with

fSx(P (η)) =
1

γ2
yTQ−TA(ATA)−2ATQ−1y

+
1

γ
tr{2R−1 − (ATA)−1},

with R = ATA+
1

γ
P−1.

(7)

SURE 2: is based on minimizing the MSE of output prediction
(MSEy(P ) = E(‖Ax̂+w∗ − y‖2)), w∗ is an independent
copy of the noise w:

SUREy : η̂Sy = argmin
η
fSy(P (η)), with

fSy(P (η)) =
1

γ2
yTQ−TQ−1y + 2

1

γ
tr{APATQ−1}

(8)
The MSE at the level of the sparse expansion coefficients
x is perhaps not the most relevant, and neither the MSE at
the level of the measurements y. In general, the matrix A
is the cascade of two matrices A = Ψ Φ where Ψ is the
measurement matrix and Φ is the dictionary in which the
representation of the signal s = Φx becomes sparse. The
main MSE of interest is that of the signal s. In this paper
we explore the adjustment of the hyperparameters via the
SURE MSE of s. We also explore the optimization of another
hyperparameter which parametrizes a Generalized Gaussian
prior, of which Gaussian and Laplace distributions are special
cases. We compare to the standard SBL versions based on ML.
It should also be possible to extend the large system analysis
of [31] to the new setting.

III. PRIOR VARIANCE DETERMINATION IN FAST SBL
ALGORITHMS

Consider an analysis per component xi in which we opti-
mize over the prior variance pi, keeping others Pi fixed. Then
Variational Bayes, like EM, converges to:

pi = |x̂i(pi)|2 + σ2
x̃i(pi)

= b|x̂i(0)|2 − σ2
x̃i(0)
c+ (9)

where x̂i(pi) and σ2
x̃i(pi)

are the LMMSE estimate and the
corresponding error variance for a priori variance pi. The first
line corresponds to the update equation at convergence of VB
(or EM), yielding an implicit equation for pi. The expression
corresponds to the orthogonality principle of LMMSE: the
prior variance equals the estimate variance plus the error

variance, where the estimate variance is replaced by its in-
stantaneous value.

The second line is the corresponding solution, which is
also the estimate for pi in Type II ML (EB). It is again an
intuitive expression: for an unbiased estimate, the power in
the estimate equals the prior power plus the estimation error
variance.

IV. STEIN’S UNBIASED RISK ESTIMATOR: SURE
PRINCIPLE

Consider a simple additive white Gaussian noise model:

y = z + v (10)

where v ∼ N (v; 0, σ2I). Let ẑ(y) be an estimator of z. Then
we get for the MSE

MSEz=E ‖ẑ− z‖2 = E {‖z‖2 + ‖ẑ‖2 − 2 ẑT z}
(a)
=E {‖z‖2 + ‖ẑ‖2 − 2 ẑTy + 2σ2 tr{∂ẑ

T

∂y } }
=E {‖z‖2 − ‖y‖2 + ‖ẑ− y‖2 + 2σ2 tr{∂ẑ

T

∂y } }
(11)

where E is w.r.t. v (z is treated as deterministic) and (a)
follows as a property of the Gaussian pdf [32]. By dropping
expectation, we get an instantaneous unbiased estimate of the
MSE and the corresponding SURE function (which is the part
of M̂SE that depends on ẑ)

M̂SEz = ‖z‖2 − ‖y‖2 + SUREz ,

SUREz = ‖ẑ− y‖2 + 2σ2 tr{∂ẑ
T

∂y } .
(12)

In SUREz, the first term reflects the effect of bias in ẑ whereas
the second term reflects the variance of ẑ and the noise effect
in the first term due to replacing z by y.

V. FIRST SBL SURE APPLICATION: COMPONENT-WISE xi

Consider component i of the LMMSE estimate for x in
SBL, x̂i(pi). Then a simple instance of the previous additive
noise model is

x̂i(0) = xi + x̃i(0) (13)

where x̃i(0) has variance σ2 = σ2
x̃i(0)

. We consider the
LMMSE estimator

x̂i = x̂i(pi) =
pi

pi + σ2
x̂i(0) (14)

Then we get

SURExi(pi)=

(
σ2

pi + σ2
x̂i(0)

)2

+ 2
σ2 pi
pi + σ2

=

(
σ2

pi + σ2
x̂i(0)

)2

− 2
σ4

pi + σ2
+ 2σ2

(15)

where as a function of pi, the first term is decreasing and the
second term is increasing. We get

∂SURExi

∂pi
= 2σ4(pi + σ2 − x̂2i (0))/(pi + σ2)3. (16)

SURExi(pi) has a single extremum, a local minimum, at pi =
x̂2i (0)− σ2. We have

∂SURExi

∂pi
(pi = 0) = 2(1− x̂2i (0)

σ2
). (17)



So, the minimum of SURExi(pi) occurs at positive pi when
x̂2i (0) > σ2, but at negative pi in the opposite case. Hence,
since we need pi ≥ 0, we get for the optimum

pi = b|x̂i(0)|2 − σ2
x̃i(0)
c+ (18)

which leads to exactly the same result as by VB or Type
II ML (EB). This could be extended to the (non-Gaussian)
Generalized Linear Model via GAMP.

VI. SURE APPLIED TO SBL: DISCUSSION

Consider now the linear model z = Ax with diagonal
Gaussian prior for x: a simple additive white Gaussian noise
model:

y = Ax+ v ,v ∼ N (v; 0, σ2I) , x ∼ N (x; 0,P ) (19)

where x,v are independent. By the Gauss-Markov theorem,
the posterior for x is Gaussian again

x|y∼N (x; PATR−1y, P − PATR−1AP )
∼N (x; S−1ATy, σ2S−1)

(20)

where R = APAT + σ2I is the covariance matrix of y and
the expressions with S = ATA+σ2P−1 are valid only if P
is non-singular, or by rewriting S−1 = P (ATAP+σ2I)−1 =
P 1/2(P 1/2ATAP 1/2 + σ2I)−1P 1/2.

In the SURE approach, the Gaussian prior on x is not really
considered as the true prior, but rather as a mechanism that
leads to biased estimates for x in a principled way, allowing
to optimize the bias for MMSE.

In some compressed sensing settings (e.g. DoA estimation),
the important information is in the support of x (or diag(P )).
In that case the estimation of the individual components xi and
their prior power pi is indeed important (previous section). The
treatment of these components can be adressed jointly via the
Component-Wise Conditionally Unbiased (CWCU-)LMMSE
approach [33] which leads to e.g.

x̂(0) = (diag(S−1ATA))−1S−1ATy. (21)

Note that the (partial) Bayesian modeling (of xi) is a must
here, in the application of SURE, as no deterministic estimate
of x is possible in the underdetermined case.

VII. SECOND SBL SURE APPLICATION: LINEAR MODEL
OUTPUT z = Ax

In other compressed sensing settings (e.g. channel esti-
mation with a superposition of multipath components), the
important quantity is s = Cx in which a signal s gets
represented (approximated) as a superposition of atoms in a
dictionary C. In this case, x is not as important as the resulting
s. In compressed sensing, we cannot measure the whole of s
but only a projection (sketch) z = Bs = Ax with A = BC.
for instance, in OFDM based wireless channel estimation, B
may have the structure of a fat permutation submatrix and is
semi-orthogonal. In such case, the MSE on z is representative
of the MSE on s. Hence we focus on the estimation of z, which
in case of no RIP (Restricted Isometry Property) on A (C)
could be quite different from a superposition of estimations of

the xi. This SURE application is closely related to the SURE
2 criterion in Automatic Control mentioned earlier.

The estimation in the underdetermined linear model (fat
A) is related to the case of reduced rank (overdetermined)
A discussed in [32].

Hence with ẑ = Ax̂ = APATR−1y = AS−1ATy,
parameterized by P ,

SUREz(P ) = ‖y − ẑ‖2 + 2σ2 tr{∂ẑ
T

∂y } = σ4yTR−2y

+2σ2tr{APATR−1} = ‖y‖2 + yTAS−1ATAS−1ATy

−2yTAS−1ATy + 2σ2tr{S−1AAT }
(22)

Focusing on optimizing one pi at a time, making explicit the
dependence on pi

S = Si +
σ2

pi
eie

T
i

⇒ S−1 = S−1
i
− S−1

i
ei(e

T
i S
−1
i
ei +

pi
σ2 )
−1eTi S

−1
i
,

S−1ei = S
−1
i
ei(e

T
i S
−1
i
ei +

pi
σ2 )
−1 pi

σ2

(23)
Note that x̂i(0) = (eTi S

−1ATAei)
−1eTi S

−1ATy =
(eTi S

−1
i
ATAei)

−1eTi S
−1
i
ATy.

Then we get

SUREz(pi;Pi) = ‖y‖2 + yTAS−1ATAS−1ATy

−2yTAS−1ATy + 2σ2tr{S−1AAT }

= ‖y‖2 − 2yTAS−1
i
ATy + yTAS−1

i
ATAS−1

i
ATy

+2(eTi S
−1
i
ei +

pi
σ2 )
−1(eTi S

−1
i
ATy)2

−2yTAS−1
i
ATAS−1

i
ei(e

T
i S
−1
i
ei+

pi
σ2 )
−1(eTi S

−1
i
ATy)

+(eTi S
−1
i
ei+

pi
σ2 )
−2(eTi S

−1
i
ATy)2‖AS−1

i
ei‖2

+2σ2tr{AS−1
i
AT } − 2σ2(eTi S

−1
i
ei +

pi
σ2 )
−1‖AS−1

i
ei‖2

= ‖y −AS−1
i
ATy‖2 + 2σ2tr{AS−1

i
AT }

−2σ2(eTi S
−1
i
ei+

pi
σ2 )
−1

(‖AS−1
i
ei‖2−eTi S

−1
i
ATyyTAS−1

i
P−1
i
S−1
i
ei)

+(eTi S
−1
i
ei +

pi
σ2 )
−2(eTi S

−1
i
ATy)2‖AS−1

i
ei‖2

= a− 2 b

c+ pi/σ2
+

d

(c+ pi/σ2)2
(24)

where P−1
i

should be interpreted as (P−1)i (hence with 0 in
diagonal position i).
SUREz(pi;Pi) is of similar structure as SURExi

(pi;Pi).
Hence we get

pi = σ2bd
b
− cc+ . (25)

Though this expression requires further interpretation, it is
expected that the assignment of power pi in SUREz is (even)
more affected (more sparsifying) in the case that A contains
columns that are close to collinear.
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